concept design of an ultra low noise

Upload: vincent-s-ryan

Post on 31-May-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Concept Design of an Ultra Low Noise

    1/17

    Silent Aircraft

    http://silentaircraft.org/

    Concept design of an ultra low noise, fuel efficient aircraft

    The concept aircraft SAX-40 (Silent Aircraft eXperimental) is a result ofan iterative design process (SAX-01 to SAX-40) to achieve low noise

    and improved fuel burn.

    We predict:

    149 passenger-miles per UK gallon of fuel (compared with about 120 for the

    best current aircraft in this range and size). This is equivalent to the Toyota

    Prius Hybrid car carrying two passengers.

    A noise of 63 dBA outside airport perimeter. This is some 25dB quieter than

    current aircraft.

    Why does the 'Silent' Aircraft concept design look like this?

    Design for low noise

    At take-off the engines are the largest sources of noise from an aircraft. The Silent

    Aircraft Initiative low noise target is achieved by:

    installing the engines embedded within the fuselage with intakes above the

    wings to shield much of the engine noise from listeners on the ground

    novel ultra-high bypass engines with a variable-area exit nozzle. This means

    the engines can operate for low noise with low speed exhaust jets at take offand during climb, and then be optimised for minimum fuel burn in cruise

    throughout the climb, the thrust, nozzle settings and climb rate are optimised

    for low noise, subject to meeting legal requirements

    long engine exhaust ducts provide space for extensive acoustic liners to

    absorb the sound

  • 8/14/2019 Concept Design of an Ultra Low Noise

    2/17

    On approach, the airframe on a conventional aircraft is as noisy as the engines. Onthe Silent Aircraft the approach noise is reduced by:

    an airframe design that enables the aircraft to approach at lower speed and

    so land further down the runway. Further reduction in airframe noise on

    approach noise is due to

    o low-noise fairings on the undercarriage

    o advanced airfoil trailing edge treatment

    o a deployable drooped leading edge on the wings and vectored thrust,

    which are used to enable low-speed flight without more noise. Thereare no flaps or slats

    the engines are designed for low noise, have a low idle thrust and they are

    able to spool up quickly if a go-around is necessary

    Low noise is therefore not achieved by a single design feature but results from manydisciplines integrated into the design and operation of a noise-minimising aircraft

    system.

    1. Advanced airfoil trailing edge treatment

    2. Airframe shielding of forward propagating engine noise

    3. Exit nozzles rotate to provide thrust vectoring in combination with the elevons

    this gives quiet drag via increased induced drag

    4. Optimised extensive liners for low engine noise

    5. Variable area exhaust nozzle and ultra-high bypass ratio engines at take-off

    for low jet noise

    6. Deployable drooped leading edge for quiet approach

    7. Faired, low noise undercarriage for quiet approach

    8. Advanced centrebody design enables a low approach speed, thereby reducing

    the airframe noise sources on approach

    9. Engines have a low idle thrust enabling low approach speed

  • 8/14/2019 Concept Design of an Ultra Low Noise

    3/17

    Design for low fuel burn

    The airframe is highly efficient. It is an all-lifting design. Although based initially onthe Blended-Wing-Body concept, it makes use of a novel centre-body shape with

    leading edge carving. This balances the aerodynamic forces without the need for atail, and enables an optimal wing design with an elliptical lift distribution and low

    cruise drag. The resulting lift to drag ratio of 25 to 1 is some 10% better than otherall-lifting designs such as the Blended-Wing-Body and about 33% better than current

    aircraft. The weight and drag are reduced by embedding the engines in the airframe.The aircraft wake is further reduced by ingesting the air near the aircraft into the

    engines. Careful attention has been given to the inlet duct design to minimise theflow distortion at the fan face. Finally, the area of the exit nozzle is set to operate the

    engines at optimum efficiency throughout cruise.

    1. Variable area exhaust nozzles tuning engine for optimum cruise efficiency

    2. Embedded, boundary layer ingesting, distributed propulsion system for

    reduced fuel burn

    3. Advanced centrebody design for excellent lift to drag ratio

    4. Elliptical lift distribution at cruise for excellent lift to drag ratio

    Major design features of the conceptual aircraft

    The aircraft (SAX-40)

    The aircraft is an all-lifting design, producing lift on the centre-bodyas well as the wings. The airframe makes use of a novel centre-body

    shape with leading edge carving. This balances the aerodynamic forceswithout the need for a tail, and enables an optimal wing design with an

    elliptical lift distribution and low cruise drag.

    Range: 5,000 nm

    Number of passengers: 215 (3 class)

    Cruise ML/D:

    SAX-40: 20.1Boeing PW BWB ML/D : 17-18

    Boeing 777 ML/D : 17.0

    ML/D = (Mach number) X (Lift) (Drag)

  • 8/14/2019 Concept Design of an Ultra Low Noise

    4/17

    1. Centrebody with leading edgecarving

    2. Winglet rudder

    3. Elevons

    4. Centrebody boundary layeringested

    5. Thrust vectoring, variable areanozzle

    6. Deployable drooped leading edge

    7. Faired undercarriage

    Cruise:

    Mach number: 0.8Altitude: 40,000 45,000 ft

    Lift/Drag: 25.1 23.5Static margin: 5.9% 9.5%

    Span: 221.6 ft (incl. winglet)

    Gross Area: 8,998 ft2

    MTOW (Maximum Take-Off Weight):

    332,560 lbs

  • 8/14/2019 Concept Design of an Ultra Low Noise

    5/17

    Centre of Gravity travel: 0.4 m

    OEW (Operational empty weight): 207,660

    lbsStructure: 104,870 lbs

    Payload: 51,600 lbsFuel: 73,310 lbs

    The engines (GRANTA 3401)

    The aircraft has three novel engines - the engine type is called GRANTA 3401. Each

    engine has a single core, driving three high capacity low speed fans. This distributedpropulsion system is designed to ingest the boundary layer on the aircraft

    centrebody which reduces the fuel burn. The multiple small fan design is easier toembed in the airframe, and leads to reduced weight and nacelle drag. It also

    enhances boundary layer ingestion, thereby improving fuel efficiency, and the low fantip speeds lead to low noise. The engine has an ultra-high bypass ratio 18.3 at take-

    off for low jet noise, 12.3 at top of climb for good efficiency.

    1. axial-radial compressor

    2. extensive acoustics liners

    3. variable area nozzle

    4. low noise 5 stageLow Pressure Turbine

    5. transmission system to transitpower from Low Pressure Turbine

  • 8/14/2019 Concept Design of an Ultra Low Noise

    6/17

    to Fans

    6. 3 high capacity,

    low speed Fans

    Fan Diameter: 1.20 mEngine Length: 2.46 m

    Cruise Fuel Flow: 0.86 kg/s

    Bare weight: 6,566 lbs / engine

    Installed weight: 12,058 lbs / engine

    Top of climb Take-off

    Fan pressure ratio 1.50 1.19

    Bypass ratio 12.3 18.3

    Overall pressure

    ratio48.8 24.2

    What is the 'Silent' Aircraft predicted to sound like?

    Conventional Engine compared with the Concept Engine(Granta-3401)

    Simulated sound files constructed from the predicted sound

    for FLY-OVER condition, 40degreesbehind (3-sec each) (you will need

    RealPlayer to listen to this sound file)

    1. Modern conventional engine

    2. GRANTA 3401 bare engine

    3. GRANTA 3401 (with shielding)

    4. GRANTA 3401 (with liners)

    5. GRANTA 3401 (with shielding and

    liners)

    http://cdn.streamcdn.com/realplayer.rpm?mt=cmi&fn=FLYOVER_behind.mp3http://cdn.streamcdn.com/realplayer.rpm?mt=cmi&fn=FLYOVER_behind.mp3http://cdn.streamcdn.com/realplayer.rpm?mt=cmi&fn=FLYOVER_behind.mp3http://cdn.streamcdn.com/realplayer.rpm?mt=cmi&fn=FLYOVER_behind.mp3
  • 8/14/2019 Concept Design of an Ultra Low Noise

    7/17

    for FLY-OVER condition, 40degrees

    ahead (3-sec each) (you will need

    RealPlayer to listen to this sound file)

    1. Modern conventional engine

    2. GRANTA 3401 bare engine3. GRANTA 3401 (with shielding )

    4. GRANTA 3401 (with liners)

    5. GRANTA 3401 (with shielding and

    liners)

    The noise from SAX taking off / landing at a hypothetical runway, typical of a large

    international commercial airport, has been predicted. The airport we consider has: aperimeter 1km from the start of the runway, a 3.0 km long runway, with the airport

    perimeter a further 1.0 km from the end of the runway. The airport width is 0.45 km

    either side of the runway. For comparison the corresponding figures for LondonHeathrow are 0.7 km, 3.9 km long runway, 1.0 km, and 0.45 km to either side.

    Distances for takeoff noise analysis

    Temperature: ISA+12?C

    Sideline noise estimate

    Challenge at Outset:

    Sideline noise dominated by jet and fan buzz-saw

    Solution:

    High thrust and low jet velocity using variable area nozzle

    Extensive liners

    Airframe shielding

    Airframe design for enhanced low speed performance

    http://cdn.streamcdn.com/realplayer.rpm?mt=cmi&fn=FLYOVER_ahead.mp3http://cdn.streamcdn.com/realplayer.rpm?mt=cmi&fn=FLYOVER_ahead.mp3http://cdn.streamcdn.com/realplayer.rpm?mt=cmi&fn=FLYOVER_ahead.mp3http://cdn.streamcdn.com/realplayer.rpm?mt=cmi&fn=FLYOVER_ahead.mp3
  • 8/14/2019 Concept Design of an Ultra Low Noise

    8/17

    Cut-back noise estimate

    Challenge at Outset:

    Jet noise reduction with steep, low speed climb-out.

    Solution:

    Takeoff power management and variable area nozzle

    Extensive liners

    Airframe shielding

    Airframe design for enhanced low speed performance

  • 8/14/2019 Concept Design of an Ultra Low Noise

    9/17

    SAX-40 noise overview

    Temperature: ISA+12?C

    Approach noise estimate

    Challenge at outset:

    Airframe, fan, and turbine noise.

  • 8/14/2019 Concept Design of an Ultra Low Noise

    10/17

    Solution:

    No flaps or slats.

    Displaced threshold.

    Undercarriage fairing.

    Airframe design for enhanced low speed performance.

    Deployable drooped leading edge.

    Low noise LPT design.

    Trailing edge brushes.

    Low engine idle thrust.

  • 8/14/2019 Concept Design of an Ultra Low Noise

    11/17

    What is the predicted fuel burn of the 'Silent' Aircraft?

    In addition to quiet, analysis suggests high fuel efficiency.

    passenger miles per

    UK gallonMach * Lift/Drag

    SAX-40 ~149 20.1

    Toyota Prius Hybrid

    Car~144 w/ 2 people -

    Boeing 777 103 - 121 17.0

    Boeing 707 55 - 70 13.5

    Non-SAX data cited from Lee, Lukachko, Waitz, and Schafer (2001)

    Emission predictions: total carbon and NOx

    Low noise solution expected to have low pollutant emission

    Low pollutant emission primarily a result of low aircraft fuel burn.

  • 8/14/2019 Concept Design of an Ultra Low Noise

    12/17

    Total CO2 emission is 89.5 g per passenger-nm

    Total NOX emission is 0.22 g per passenger-nm

    Why are aircraft noisy and what can be done about it?

    What generates noise on conventional aircraft?

    From the engine, the main sources of noise are the fan (labelled A in the diagram to

    the right), and the high speed propulsive jet (labelled B):

    On approach, the airframe makes as much noise as the engine. The flow over theflaps (labelled B below), slats and undercarriage (labelled A below) is unsteady and

    generates sound (Image showing the strength of the sound sources, courtesy ofNLR). The jet noise contribution is labelled C.

  • 8/14/2019 Concept Design of an Ultra Low Noise

    13/17

    What can we do about these noise sources?

    We will not achieve our noise target with engines hanging underneath wings - weneed a greater integration of airframe and engine. For example, using the airframe

    to shield the engine noise from listeners on the ground.

    The videos below illustrate the effects of shielding:

    With engines underneath thewings, the sound tends to be

    reflected downwards.

    (video to follow on 7 November)

    The noise made by engines abovethe wings is shielded from

    listeners on the ground.

    (video to follow on 7 November)

    We can also use extensive acoustic liners in the inlet and exit engine ducts to absorbengine noise.

    All airframe noise sources are cut by reducing approach speed, and so there arebenefits from flying the final approach more slowly.

    There are also benefits from reducing the engine fan speed and the jet velocity, sincetheir noise increases significantly with speed.

  • 8/14/2019 Concept Design of an Ultra Low Noise

    14/17

    Low noise approaches

    A variety of techniques can be employed to reduce the noise impacts

    of aircraft as they approach an airport, including:

    keeping the aircraft high for as long as possible (increasing the distance from

    the aircraft noise sources to the ground)

    keeping the aircraft at low engine power for as long as possible (reducing

    engine noise)

    keeping the aircraft in a clean aerodynamic configuration for as long aspossible (reducing airframe noise)

    minimising overflight of highly populated or sensitive areas

    Continuous Descent Approaches (CDAs)

    One effective technique is called Continuous Descent Approach (CDA). This technique

    keeps aircraft higher and at lower thrust for longer by eliminating the level segmentsin conventional step down approaches.

  • 8/14/2019 Concept Design of an Ultra Low Noise

    15/17

    Significant noise, fuel burn and emissions benefits can result, but there can be

    potential impacts on air traffic control & flight crew procedures.

    'Silent' Aircraft advanced CDA flight trials

    In order to investigate the potential benefits and challenges with advanced CDAs in

    the operational system, the SAI Operations team has been coordinating a flight trialsprogramme involving a large number of KIC partners from airports, air traffic control,

    regulators, operators, and suppliers.

    A set of advanced CDA procedures were developed for a regional UK airport which

    also incorporated other low noise best practice techniques of Precision AreaNavigation (allowing the procedure to be programmed into the aircraft Flight

    Management System to optimise the approach path) and Low Power/Low Drag (tokeep the aircraft in a clean aerodynamic configuration)

    The procedures comprise a set of waypoints with:

    a lateral profile to allow low population exposure to noise

    vertical constraints which assist the achievement of a CDA vertical profile

    speed constraints designed to achieve low power/low drag

  • 8/14/2019 Concept Design of an Ultra Low Noise

    16/17

    Flight trials of the procedures have been ongoing with a variety of aircraft types.

    Initial results show promising reductions of noise, fuel burn and emissions, and alsoindications of areas where further improvements could be sought.

    Further details will be released shortly.

  • 8/14/2019 Concept Design of an Ultra Low Noise

    17/17

    Future challenges

    The Silent aircraft is currently a conceptual design. There are manychallenges that would have to be overcome before it could become a

    reality in the 2030 time frame.

    These include market viability, financing, societal acceptance, aircraft certification, as

    well as the technical challenges of the propulsion system / airframe integration,

    structural analysis and manufacturability of non-circular pressure vessel, themechanical design of thrust vectoring and variable area nozzle, and detailedassessment of the low speed aerodynamic performance.

    The project has also clearly identified these challenges and identified a path toaddress them.