concept presentation by: amarinder sawhney jeffrey ip

21
Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Upload: jacey-whitaker

Post on 14-Dec-2015

225 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Concept Presentation

By: Amarinder Sawhney

Jeffrey Ip

Page 2: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Why does salt dissolve in water?

Page 3: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Water is a polar molecule: one end has a slightly positive charge, another has a slightly negative charge

Page 4: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

When the NaCl crystals get closer to the positively and negatively charged poles of the H2O molecule, the Na+ and Cl- ions are pulled apart

You can think of the H2O molecule as a strong magnet

Click here for more details Attraction between (polar) water

molecules and ions is an example of intermolecular forces at work (specifically ion-dipole forces)

Page 5: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Intermolecular forces are the forces of attraction and repulsion between molecules. Intermolecular forces should not be confused with intramolecular forces, which are the electrostatic forces that hold the atoms of a molecule together (e.g., covalent and ionic bonds)

Intermolecular forces are typically weaker than intramolecular forces, and account for the bulk properties of matter (e.g., boiling point, melting point, etc.)

Intermolecular forces are also known as van der Waals forces, named after Johannes van der Waals who first postulated them

Page 6: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Dispersion (London) Dipole-induced dipole Ion-induced dipole Dipole-dipole Hydrogen bond Ion-dipole

Page 7: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

http://www.chem.ufl.edu/~itl/4411/lectures/lec_g.html

Page 8: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Periodic Trends – students will learn about the periodic table, the different groups of elements, and the how atomic radius, electronegativity, etc., change across rows and columns. (B2.1, B2.2, B3.3)

Electronegativity – students will learn to predict the nature of a bond (e.g., nonpolar covalent, polar covalent, ionic), using electronegativity values of atoms. (B2.1, B2.5)

Intramolecular Forces – Students will explore the difference between ionic and covalent bonds and their formation. (B2.1, B3.4)

Lewis Structures and Molecular Models – Students will learn to draw Lewis structures to represent bonds in ionic and molecular compounds. Students will also build molecular models and write structural formulae to familiarize themselves with the shape and structure of molecules. (B2.1, B2.4, B2.6).

Intermolecular Forces – Students will learn about intermolecular forces through lecture, a jigsaw activity, an inquiry based online module, and a lab

Page 9: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Video demonstration can be viewed here http://workbench.concord.org/database/ac

tivities/227.html This is a two day module that allows

students to explore intermolecular forces concepts in greater detail using an interactive inquiry based online module

Once completed students will “Create a Report of [their] Work” and hand it in for marking

Page 10: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

This jigsaw activity is a cooperative learning activity where students collaborate to explore concepts related to intermolecular forces

Instructions: Students form groups of (number of people per group depends on class size). Members of the group are numbered off. Each number is assigned a type of intermolecular force (e.g. Hydrogen bonding, dipole-dipole, etc.). Students with the same number form a new group (an “expert group”) and research on their assigned intermolecular force. Once research is complete, students reform their original groups and take turns teaching each other about their assigned intermolecular force.

Page 11: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Students will complete a graphic organizer (e.g. Flow chart, concept map, mind map, etc.) to summarize and demonstrate the knowledge they have gained about intermolecular forces so far

This will be used as a formative assessment

Click here for an example

Page 12: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Penny drop experiment

Found here on pg. 35 – 37 NOTE: a selection of 6 labs are found in the same document

for teachers to choose from (pg. 27 and following) This lab addresses the relationship between surface tension

and strength of intermolecular forces, so prior to lab the concept of surface tension should be reviewed

Students place droplets of water on a penny until it spills over and they note the number of droplets

Students place droplets of rubbing alcohol on a penny until it spills over and they note the number of droplets

They record their observations and answer discussion questions related to intermolecular forces

Page 13: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Safety Rubbing alcohol is used in this lab and it is

both toxic and flammable, so students should be warned not to ingest it or let fire near it

Assessment Students write up a lab report in standard

format including observation chart, answers to discussion questions, discussion of sources of error, and a conclusion; they are assessed based on KICA criteria

Page 14: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Role of intermolecular forces

• The granulated sugar falls essentially grain by grain off of the black contact paper into

the sugar container and all of the sugar falls off (a few grains may remain). This is due

to the force of gravity on the sugar particles. • The powdered sugar falls off in one clump. There will be a trail left by the

powdered sugar as well as clumps of powdered sugar remaining on the card. Even if

the card is tipped upside down, these clumps will remain on the card. All of this is due

to electrostatic forces, specifically Van der Waals forces, and not gravity. • The size of the object affects the dominant forces acting upon it. • IMPORTANT: The powdered sugar is not nanosized! The average particle

size is 1-10 μm, which is 1,000-10,000 times bigger than a nanometer.

Page 15: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Role of intermolecular forces in illustrating behaviour of ZnO

• Zinc oxide forms weakly agglomerated nanoparticles. • An aqueous dispersion of zinc oxide is very viscous due to Van der Waals

interactions which in turn makes the liquid very difficult to stir. • Addition of Darvan C, a polyelectrolyte, coats each nanoparticle with negative

charge. This causes the particles to repel each other significantly lowering the viscosity. • This repulsion causes the particles no longer want to stick together as much

and the solution becomes easy to stir. • The behavior of the ZnO illustrates how important electrostatic forces are in determining the behavior of the ZnO solution. • The ZnO particles range from 200-800 nm which is much closer to the

nanometer size

Page 16: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

1. Why oil and water don’t mix? 2. What is role of hydrogen bonding in DNA

model? 3. What role is played by intermolecular

forces in human immune system? http://workbench.concord.org/database/

activities/227.html All application answers are in this link

Page 17: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Maintaining appropriate internet conduct Students will be given explicit instructions

to perform jigsaw activity and role play effectively

Proper use of PPE in penny drop lab

Page 18: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Diagnostic assessment (after demonstration): Exit ticket, and/or KWL chart [K/U, C]

Jigsaw activity: Students fill out an information chart covering all concepts that expert groups research; informal observations by teacher [K/U, T/I, C]

Interactive online module: Students hand a printed copy of their work by clicking the “generate report” button on the module and hand it in to be marked [K/U, T/I, C, A]

Graphic organizer: Students hand in their completed graphic organizer for marks [K/U, T/I, C]

Students complete problem sets for homework [K/U, T/I] Students write a test/ quiz about the material [K/U, T/I, C, A] NOTE: K/U = knowledge and understanding, T/I = thinking and

investigation, C = communication, and A = application

Page 19: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Visual – Spatial and Kinesthetic learners may have difficulties understanding the 3-D shapes of the atoms, valence electrons and orbitals as well as the shapes of the molecules. Hence, the shape and the bonding properties would be difficult to determine. This could be addressed by using hands-on laboratories and role playing of bonds and atoms.

Students will have difficulties with abstract ideas and therefore need to view videos, demonstrations.

Special needs and students with exceptionalities must be accommodated to fit their varying learning styles and modified according to their individual IEPs. (lab activities)

A handout for ELL learners will be given. A sample handout with important terms is given in the next slide.

Page 20: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

SCH3U

B3. demonstrate an understanding of periodic trends in the periodic table and how elements combine to form chemical bonds

B2.1 use appropriate terminology related to chemical trends and chemical bonding, including, but not limited to: atomic radius, effective nuclear charge, electronegativity, ionization energy, and electron affinity

B2.2 draw Lewis structures to represent the bonds in ionic and molecular compounds B2.5 predict the nature of a bond (e.g., non-polar covalent, polar covalent, ionic), using electronegativity

values of atoms B2.6 build molecular models, and write structural formulae, for molecular compounds, including those with

multiple valences, and name the compounds using the IUPAC nomenclature system B3.3 state the periodic law, and explain how patterns in the electron arrangement and forces in atoms

result in periodic trends (e.g., in atomic radius, ionization energy, electron affinity, electronegativity) in the periodic table

B3.5 compare and contrase the physical properties of ionic and molecular compounds (e.g., NaCl and CH4; NaOH and H2O)

E3.1 describe the properties of water (e.g., polarity, hydrogen bonding), and explain why these properties make water such a good solvent

E3.2 explain the process of formation for solutions that are produced by dissolving ionic and molecular compounds (e.g. Salt, oxygen) in water, and for solutions that are produced by dissolving non-polar solutes in non-polar solvents (e.g., grease in vegetable oil)

Page 21: Concept Presentation By: Amarinder Sawhney Jeffrey Ip

Salt and Water demonstration: http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/molvie1.swf

Good overview of intermolecular forces concepts: http://www.chem.ufl.edu/~itl/2045/lectures/lec_g.html

Inquiry based online module for intermolecualr forces: http://workbench.concord.org/database/activities/227.html

Sample graphic organizer: http://www.concord.org/~btinker/molo/molo_concept_maps/atom_forces_attractions.html

Intermolecular forces labs (including the Penny Drop Lab plus other activities and a concept overview):

http://www.haspi.org/curriculum-library/MedicalChemistry/03%20Standard%202%20Chemical%20Bonds/Labs%20and%20Activities/IntermolecularForces.pdf