conceptos de redes

55
Universidad Tecnológica Cadereyta Fundamentos de Redes Materia Conceptos de redes Tema Lic. Oscar Tamez González Profesor Omar Livy Quirino Galván Alumno

Upload: zipperrra

Post on 26-Jun-2015

792 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Conceptos de redes

Universidad Tecnológica

Cadereyta

Fundamentos de Redes

Materia

Conceptos de redes

Tema

Lic. Oscar Tamez González

Profesor

Omar Livy Quirino Galván

Alumno

28TIC1AVN

Miércoles 01/Septiembre/2010

Page 2: Conceptos de redes

Elementos de un sistema de comunicación (red)

Los componentes de una red tienen funciones específicas y se utilizan dependiendo de las características físicas (hardware) que tienen.Para elegirlos se requiere considerar las necesidades y los recursos económicos de quien se desea conectar a la red, por eso deben conocerse las características técnicas de cada componente de red.

SERVIDORo Son computadoras que controlan las redes y se encargan de permitir o no el acceso

de los usuarios a los recursos, también controlan los permisos que determinan si un nodo puede o no pertenecer a la red

o La finalidad de los servidores es controlar el funcionamiento de una red y los servicios que realice cada una de estas computadoras dependerá del diseño de la red

ESTACION DE TRABAJOo Es el nombre que reciben las computadoras conectadas a una red, pero que no

pueden controlarla, ni alguno de sus nodos o recursos de la mismao Cualquier computadora puede ser una estación de trabajo, siempre que este

conectada y se comunique a la redNODOS DE RED

Un nodo de red es cualquier elemento que se encuentre conectado y comunicado en una red; los dispositivos periféricos que se conectan a una computadora se convierten en nodos si están conectados a la red y pueden compartir sus servicios para ser utilizados por los usuarios, como impresoras, carpetas e información.

TARJETA DE REDSon tarjetas de circuitos integrados que se insertan en unos órganos de expansión de la tarjeta madre y cuya función es recibir el cable que conecta a la computadora con una red informática; así todas las computadoras de red podrán intercambiar información.Las tarjetas de red se encargan de recibir la información que un usuario desea enviar a través de la red a uno de los nodos de esta y la convierte en un paquete, luego envía la información a través de un cable que se conecta a la tarjeta

Page 3: Conceptos de redes

MEDIOS DE TRANSMISIONEstos elementos hacen posible la comunicación entre dos computadoras, son cables que se conectan a las computadoras y a través de estos viaja la información.Los cables son un componente básico en la comunicación entre computadorasExisten diferentes tipos de cable y su elección depende de las necesidades de la comunicación de red.

CABLE COAXIALEsta constituido por un hilo principal de cobre cubierto por una capa plástica rodeada por una película reflejarte que reduce las interferencias, alrededor de ella existe una malla de hilos metálicos y todo esto esta cubierto por una capa de hule que protege a los conductores de la intemperie.

CABLE PAR TRENZADOSe utiliza para la conexión de redes, es el que tiene 4 pares de cables; pero existen 3 variaciones con esta característica y pueden utilizarse para comunicarse los nodos de una red.*UTP: (unshielded twisted pair – par trenzado no apantallado) es la variante mas utilizada para la conexión de redes por su bajo costo, porque permite maniobrar sin problemas y porque no requiere herramientas especializadas ni complicadas para la conexión de nodos en una red.

*STP (shielded twisted pair - par trenzado apantallado) tiene una malla metálica que cubre a cada uno de los pares de los cables, que además están cubiertos por una película reflejante que evita las interferencias.*FTP (foiled twisted pair – par trenzado con pantalla global) tiene una película reflejante que cubre a cada uno de los pares de cables

FIBRA OPTICALa fibra óptica es resistente a la corrosión y a las altas temperaturas y gracias a la protección de la envoltura es capaz de soportar esfuerzos elevados de tensión en la instalación.La desventaja de este cable es que su costo es elevado, ya que para su elaboración se requiere vidrio de alta calidad además de ser sumamente frágil de manipular durante su fabricación.

Existen dos clases de cables de fibra óptica:*MONOMODO tiene un hilo que contiene un núcleo central con alto índice de refracción, este tipo de fibras necesitan emisiones láser, se usan en redes de área metropolitana y de área mundial.*MULTIMODO contiene dos o más fibras de vidrio y cada una esta conformada de la misma forma que el hilo monomodo, se usan en redes de área local, pues es menos costoso.

Page 4: Conceptos de redes

CONECTORESLos conectores son aditamentos con los que los cables se conectan a las tarjetas de red ubicadas en los nodosLa función de los conectores es muy importante, ya que sin ellos es imposible utilizar los cables para conectar un nodo a la red.Cada medio de transmisión tiene sus conectores correspondientes y gracias a ellos se logra recibir o transmitir la información con las características que permiten los cables.

USB (Bus Universal Serie)Permite conectar y desconectar los periféricos mientras la computadora esta encendida, sin afectar a otros periféricos que estén en funcionamiento. Cuando se conecta el nuevo dispositivo USB el sistema operativo se encarga de buscar controladores necesarios sin necesidad que lo haga el usuario

CONCENTRADORES RUTEADORESSon dispositivos utilizados para recibir los cables correspondientes a cada uno de los nodos de una red y realizar una conexión de tipo punto a punto.Los concentradores reciben la información que envía uno de los nodos y la reenvían a través de todos los cables que se encuentran conectados a este.Los ruteadores reciben la información que envía uno de los nodos y detecta a cual va dirigida, para enviarla a través del cable correspondiente.

BRIDGESLos bridges (repetidores o amplificadores) son dispositivos que reciben la información enviada por un cable, y la reenvía con intensidad y velocidad original a través de otro cable ya sea hasta el nodo u otro repetidor o amplificador.Su función es actuar como si el nodo que envía la información se moviera físicamente de un punto muy distante a otro sitio.Los repetidores o amplificadores realizan la misma función y lo que los diferencia es que los primeros se usan en transmisiones de señales digitales y los segundos en señales analógicas.

MODEMEs un dispositivo que convierte las señales digitales en analógicas y viceversa, posteriormente las envía y/o recibe a través de una red telefónica.Es una contracción de las palabras MO-dulador / DEM-odulador. Existen dos tipos de módems: externos e internos (tarjetas de circuitos integrados), los externos pueden ser conectados a cualquier computadora sin complicaciones y los internos se ubican dentro del gabinete de una computadora.

Page 5: Conceptos de redes

COMUNICACIÓN INALAMBRICAEl avance tecnológico hoy en día ocurre en los modos de transmisión de la información, ya que no es conveniente llamarlos medios, pues no se consideran elementos físicos sino lógicos, se utilizan en ondas de radio y microondas para enviar información de un dispositivo a otro.La comunicación inalámbrica depende de las frecuencias utilizadas para el envió de la información, el hardware se encarga de convertir el lenguaje binario de las computadoras a frecuencias, dicha información es empaquetada y protegida de forma que garantice la recepción y lectura de información en otra computadora que reciba la señal

Algunos de los modos de comunicación inalámbrica son:WiFi (Wireless Fidelity - Fidelidad sin cables)Es una frecuencia de ondas de radio que contiene un conjunto de estándares para la comunicación, se creo para su aplicación en redes de área local, actualmente combinándolas con otras frecuencias y equipos se utiliza para conectar esa red de área mundial (Internet).BLUETOOTHEs una frecuencia de ondas de radio, esta tecnología se creo pensando en dispositivos que se alimentan de energía de baterías y no de los contactos tomacorriente de casa u oficina, por lo que consume mucho menos energía y además necesita un hardware mas económico.

INFRARROJOSLa comunicación con infrarrojos ocurre a través de haces de luz enviados de un transceptor a otro a distancias cortas, su comunicación requiere de línea visual, es decir que los dispositivos que se comunican deben verse entre si, sin tener obstáculos físicos. La seguridad es alta ya que es imposible inferir físicamente la comunicación.UMTS (Sistema Universal de Comunicación Móvil)Ofrece mayor capacidad de transferencia y es la mas reciente, pero los altos costos de la modificación de equipos existentes (antenas de transmisión) y el poco apoyo ha provocado que las empresas de telefonía móvil no la adopten aun y sigan utilizando la tecnología EDGE.

WiMax (Intercomunicación Mundial para acceso por microondas)Convierte la información (voz, datos) en ondas de radio y permite conexiones entre nodos hasta de 48 km. De distancia y no requiere área visual, la comunicación se da a través de estaciones base que cuentan con antenas ubicadas estratégicamente para abarcar áreas mayores con alcances dentro de los limites permitidos.Pueden ser utilizadas para conectar redes locales o de área metropolitana, aunque no son muy comunes los equipos que utilizan esta tecnología.

Page 6: Conceptos de redes

SISTEMA OPERATIVO DE REDEs el programa que prepara el hardware de una computadora para que pueda ser utilizada por los usuarios, sin el la computadora es solo un montón de partes tecnológicas agrupadas sin utilidad para realizar tareas.Se encarga de identificar dispositivos y características de la computadora para que cada uno de ellos trabaje adecuadamente; es el programa que comunica a todos los dispositivos identificados, para que juntos realicen las tareas que les corresponden y así obtengamos respuestas a las instrucciones que damos a la computadora; es la interfaz que nos permite entender lo que sucede dentro de una computadora mediante imágenes y textos, se le denomina plataforma y es necesario en una computadora.

Las funciones que realiza un sistema operativo de red son:-Soporte de archivos: crea, comparte, almacena y recupera archivos en la red.-Comunicaciones: se refiere a toda la información que se envía a través de los cables.-Servicios de soporte de equipo: incluye los servicios especiales como impresiones, respaldos, detección de detección de virus en la red.

Page 7: Conceptos de redes

Transmisión de datosModos de transmisiónUna transmisión dada en un canal de comunicaciones entre dos equipos puede ocurrir de diferentes maneras. La transmisión está caracterizada por: la dirección de los intercambios el modo de transmisión: el número de bits enviados simultáneamente la sincronización entre el transmisor y el receptor

Conexiones simples, semidúplex y dúplex totalesExisten 3 modos de transmisión diferentes caracterizados de acuerdo a la dirección de los intercambios: Una conexión simple, es una conexión en la que los datos fluyen en una sola dirección, desde

el transmisor hacia el receptor. Este tipo de conexión es útil si los datos no necesitan fluir en ambas direcciones (por ejemplo: desde el equipo hacia la impresora o desde el ratón hacia el equipo...).

Una conexión semidúplex (a veces denominada una conexión alternativa o semi-dúplex) es una conexión en la que los datos fluyen en una u otra dirección, pero no las dos al mismo tiempo. Con este tipo de conexión, cada extremo de la conexión transmite uno después del otro. Este tipo de conexión hace posible tener una comunicación bidireccional utilizando toda la capacidad de la línea.

Page 8: Conceptos de redes

Una conexión dúplex total es una conexión en la que los datos fluyen simultáneamente en ambas direcciones. Así, cada extremo de la conexión puede transmitir y recibir al mismo tiempo; esto significa que el ancho de banda se divide en dos para cada dirección de la transmisión de datos si es que se está utilizando el mismo medio de transmisión para ambas direcciones de la transmisión.

RS-232C.

RS-232-C estándar, en informática, estándar aceptado por la industria para las conexiones de comunicaciones en serie. Adoptado por la Asociación de Industrias Eléctricas, el estándar RS-232-C recomendado (RS es acrónimo de Recommended Standard) define las líneas específicas y las características de señales que utilizan las controladoras de comunicaciones en serie. Con el fin de estandarizar la transmisión de datos en serie entre dispositivos. La letra C indica que la versión actual de esta norma es la tercera de una serie.

Casi siempre el conector DB-25 va asociado con el RS-232C, y se muestran las disposiciones de los contactos en las figuras siguientes. Sin embargo, no está definido en el estándar y algunos fabricantes utilizan otro conector en gran parte de sus equipos.

Con este tipo de standard podemos transmitir y recibir al mismo tiempo, puesto que hay una patilla para cada una de las actividades.

Este tipo de standard tiene sus limitaciones en la transmisión y recepción como lo es la limitante de distancia, que es de 15 metros. Puede funcionar bien en recorridos de cable mucho más lagos con todas las velocidades pero siempre habrá riesgo de perdida de datos.

La transmisión digital es la transmisión de pulsos digitales, entre dos puntos, en un sistema de comunicación. Con los sistemas de transmisión digital, se requieren una facilidad física tal como un par de alambres metálicos, un cable coaxial o un vínculo de fibra óptica para interconectar a los dos puntos en el sistema. Los pulsos están contenidos dentro de y se propagan con la facilidad de transmisión.

Transmisión en serie y paralela

Page 9: Conceptos de redes

El modo de transmisión se refiere al número de unidades de información (bits) elementales que se pueden traducir simultáneamente a través de los canales de comunicación. De hecho, los procesadores (y por lo tanto, los equipos en general) nunca procesan (en el caso de los procesadores actuales) un solo bit al mismo tiempo. Generalmente son capaces de procesar varios (la mayoría de las veces 8 bits: un byte) y por este motivo, las conexiones básicas en un equipo son conexiones paralelas.

Conexión paralelaLas conexiones paralelas consisten en transmisiones simultáneas de N cantidad de bits. Estos bits se envían simultáneamente a través de diferentes canales N (un canal puede ser, por ejemplo, un alambre, un cable o cualquier otro medio físico). La conexión paralela en equipos del tipo PC generalmente requiere 10 alambres.

Estos canales pueden ser: N líneas físicas: en cuyo caso cada bit se envía en una línea física (motivo por el cual un cable

paralelo está compuesto por varios alambres dentro de un cable cinta) una línea física dividida en varios subcanales, resultante de la división del ancho de banda. En

este caso, cada bit se envía en una frecuencia diferente...Debido a que los alambres conductores están uno muy cerca del otro en el cable cinta, puede haber interferencias (particularmente en altas velocidades) y degradación de la calidad en la señal...

Conexión en serieEn una conexión en serie, los datos se transmiten de a un bit por vez a través del canal de transmisión. Sin embargo, ya que muchos procesadores procesan los datos en paralelo, el transmisor necesita transformar los datos paralelos entrantes en datos seriales y el receptor necesita hacer lo contrario.

Estas operaciones son realizadas por un controlador de comunicaciones (normalmente un chip UART, Universal Asynchronous Receiver Transmitter (Transmisor Receptor Asincrónico Universal)). El controlador de comunicaciones trabaja de la siguiente manera:

Page 10: Conceptos de redes

La transformación paralela-en serie se realiza utilizando un registro de desplazamiento. El registro de desplazamiento, que trabaja conjuntamente con un reloj, desplazará el registro (que contiene todos los datos presentados en paralelo) hacia la izquierda y luego, transmitirá el bit más significativo (el que se encuentra más a la izquierda) y así sucesivamente:

La transformación en serie-paralela se realiza casi de la misma manera utilizando un registro de desplazamiento. El registro de desplazamiento desplaza el registro hacia la izquierda cada vez que recibe un bit, y luego, transmite el registro entero en paralelo cuando está completo:

Transmisión sincrónica y asincrónicaDebido a los problemas que surgen con una conexión de tipo paralela, es muy común que se utilicen conexiones en serie. Sin embargo, ya que es un solo cable el que transporta la información, el problema es cómo sincronizar al transmisor y al receptor. En otras palabras, el receptor no necesariamente distingue los caracteres (o más generalmente, las secuencias de bits) ya que los bits se envían uno después del otro. Existen dos tipos de transmisiones que tratan este problema: La conexión asincrónica, en la que cada carácter se envía en intervalos de tiempo irregulares

(por ejemplo, un usuario enviando caracteres que se introducen en el teclado en tiempo real). Así, por ejemplo, imagine que se transmite un solo bit durante un largo período de silencio... el receptor no será capaz de darse cuenta si esto es 00010000, 10000000 ó 00000100... Para remediar este problema, cada carácter es precedido por información que indica el inicio de la transmisión del carácter (el inicio de la transmisión de información se denomina bit de INICIO) y finaliza enviando información acerca de la finalización de la transmisión (denominada bit de FINALIZACIÓN, en la que incluso puede haber varios bits de FINALIZACIÓN).

En una conexión sincrónica, el transmisor y el receptor están sincronizados con el mismo reloj. El receptor recibe continuamente (incluso hasta cuando no hay transmisión de bits) la información a la misma velocidad que el transmisor la envía. Es por este motivo que el receptor y el transmisor están sincronizados a la misma velocidad. Además, se inserta información suplementaria para garantizar que no se produzcan errores durante la transmisión.

En el transcurso de la transmisión sincrónica, los bits se envían sucesivamente sin que exista una separación entre cada carácter, por eso es necesario insertar elementos de sincronización; esto se denomina sincronización al nivel de los caracteres.La principal desventaja de la transmisión sincrónica es el reconocimiento de los datos en el receptor, ya que puede haber diferencias entre el reloj del transmisor y el del receptor. Es por este motivo que la transmisión de datos debe mantenerse por bastante tiempo para que el receptor pueda distinguirla. Como resultado de esto, sucede que en una conexión sincrónica, la velocidad de la transmisión no puede ser demasiado alta.

Modulación

Page 11: Conceptos de redes

Se denomina modulación al proceso de colocar la información contenida en una señal, generalmente de baja frecuencia, sobre una señal de alta frecuencia.

Debido a este proceso la señal de alta frecuencia denominada portadora, sufrirá la modificación de alguna de sus parámetros, siendo dicha modificación proporcional a la amplitud de la señal de baja frecuencia denominada moduladora.

A la señal resultante de este proceso se la denomina señal modulada y la misma es la señal que se transmite.

Es necesario modular las señales por diferentes razones:

1) Si todos los usuarios transmiten a la frecuencia de la señal original o moduladora, no será posible reconocer la información inteligente contenida en dicha señal, debido a la interferencia entre las señales transmitidas por diferentes usuarios.

2) A altas frecuencias se tiene mayor eficiencia en la transmisión, de acuerdo al medio que se emplee.

3) Se aprovecha mejor el espectro electromagnético, ya que permite la multiplexación por frecuencias.

4) En caso de transmisión inalámbrica, las antenas tienen medidas más razonables.

En resumen, la modulación permite aprovechar mejor el canal de comunicación ya que posibilita transmitir más información en forma simultánea por un mismo canal y/o proteger la información de posibles interferencias y ruidos.

Demodulación

Page 12: Conceptos de redes

Es el proceso mediante el cuál es posible recuperar la señal de datos de una señal modulada.

Un MODEM es un dispositivo de transmisión que contiene un modulador y un demodulador.

Señales de transmisión y señales de datos

Las señales de transmisión corresponden a la portadora, mientras que las señales de datos correspondes a la moduladora.

De acuerdo al sistema de transmisión, se pueden tener los siguientes casos.

Señal de transmisión Señal de Datos

Analógica Analógica

Analógica Digital

Digital Analógica

Digital Digital

Page 13: Conceptos de redes

MEDIOS DE COMUNICACIÓN.

El cable par trenzado

Es de los más antiguos en el mercado y en algunos tipos de aplicaciones es el más común. Consiste en dos alambres de cobre o a veces de aluminio, aislados con un grosor de 1 mm aproximadamente. Los alambres se trenzan con el propósito de reducir la interferencia eléctrica de pares similares cercanos. Los pares trenzados se agrupan bajo una cubierta común de PVC (Policloruro de Vinilo) en cables multipares de pares trenzados (de 2, 4, 8, hasta 300 pares).

Un ejemplo de par trenzado es el sistema de telefonía, ya que la mayoría de aparatos se conectan a la central telefónica por medio de un par trenzado. Actualmente, se han convertido en un estándar en el ámbito de las redes LAN(Local Area Network) como medio de transmisión en las redes de acceso a usuarios (típicamente cables de 2 ó 4 pares trenzados). A pesar que las propiedades de transmisión de cables de par trenzado son inferiores, y en especial la sensibilidad ante perturbaciones extremas, a las del cable coaxial, su gran adopciónse debe al costo, su flexibilidad y facilidad de instalación, así como las mejoras tecnológicas constantes introducidas en enlaces de mayor velocidad, longitud, etc.

 

Estructura del cable par trenzado:

Por lo general, la estructura de todos los cables par trenzado no difieren significativamente, aunque es cierto que cada fabricante introduce algunas tecnologías adicionales mientras los estándares de fabricación se lo permitan. El cable está compuesto, por un conductor interno que es de alambre electrolítico recocido, de tipo circular, aislado por una capa de polietileno coloreado.

Debajo de la aislación coloreada existe otra capa de aislación también de polietileno, que contiene en su composición una sustancia antioxidante para evitar la corrosión del cable. El conducto sólo tiene un diámetro de aproximadamente medio milímetro, y más la aislación el

diámetro puede superar el milímetro.

Page 14: Conceptos de redes

Sin embargo es importante aclarar que habitualmente este tipo de cable no se maneja por unidades, sino por pares y grupos de pares, paquete conocido como cable multipar. Todos los cables del multipar están trenzados entre sí con el objeto de mejorar la resistencia de todo el grupo hacia diferentes tipos de interferencia electromagnética externa. Por esta razón surge la necesidad de poder definir colorespara los mismos que permitan al final de cada grupo de cables conocer qué cable va con cual otro. Los colores del aislante están normalizados a fin de su manipulación por grandes cantidades. Para Redes Locales los colores estandarizados son:

Naranja / Blanco – Naranja. Verde / Blanco – Verde. Blanco / Azul – Azul Blanco / Marrón – Marrón

En telefonía, es común encontrar dentro de las conexiones grandes cables telefónicos compuestos por cantidades de pares trenzados, aunque perfectamente identificables unos de otros a partir de la normalización de los mismos. Los cables una vez fabricados unitariamente y aislados, se trenzan de a pares de acuerdo al color de cada uno de ellos; aún así, estos se vuelven a unir a otros formando estructurasmayores: los pares se agrupan en subgrupos, los subgrupos de agrupan en grupos, los grupos se agrupan en superunidades, y las superunidades se agrupan en el denominado cable.

De esta forma se van uniendo los cables hasta llegar a capacidades de 2200 pares; un cable normalmente está compuesto por 22 superunidades; cada sub-unidad está compuesta por 12 pares aproximadamente; este valor es el mismo para las unidades menores. Los cables telefónicos pueden ser armados de 6, 10, 18, 20, 30, 50, 80, 100, 150, 200, 300, 400, 600, 900, 1200, 1500, 1800 ó 2200 pares.

Page 15: Conceptos de redes

Tipos de cable par trenzado:

Cable de par trenzado apantallado (STP):

En este tipo de cable, cada par va recubierto por una malla conductora que actúa de apantalla frente a interferencias y ruido eléctrico. Su impedancia es de 150 Ohm.

 El nivel de protección del STP ante perturbaciones externas es mayor al ofrecido por UTP. Sin embargo es más costoso y requiere más instalación. La pantalla del STP, para que sea más eficaz, requiere una configuración de interconexión con tierra(dotada de continuidad hasta el terminal), con el STP se suele utilizar conectores RJ49.

Es utilizado generalmente en las instalaciones de procesos de datos por su capacidad y sus buenas características contra las radiaciones electromagnéticas, pero el inconveniente es que es un cable robusto, caro y difícil de instalar.

Cable de par trenzado con pantalla global (FTP):

En este tipo de cable como en el UTP, sus pares no están apantallados, pero sí dispone de una pantalla global para mejorar su nivel de protección ante interferencias externas. Su impedancia característica típica es de 120 OHMIOS y sus propiedades de transmisión son más parecidas a las del UTP. Además, puede utilizar los mismos conectores RJ45. Tiene un precio intermedio entre el UTP y STP.

Cable par trenzado no apantallado (UTP):

El cable par trenzado más simple y empleado, sin ningún tipo de pantalla adicional y con una impedancia característica de 100 Ohmios. El conector más frecuente con el UTP es el RJ45, aunque también puede usarse otro (RJ11, DB25, DB11, etc), dependiendo del adaptador de red.

Page 16: Conceptos de redes

Es sin duda el que hasta ahora ha sido mejor aceptado, por su costo accesibilidad y fácil instalación. Sus dos alambres de cobre torcidos aislados con plástico PVC han demostrado un buen desempeño en las aplicaciones de hoy. Sin embargo, a altas velocidades puede resultar vulnerable a las interferencias electromagnéticas del medio ambiente.

El cable UTP es el más utilizado en telefonía.

Categorías del cable UTP:

Cada categoría especifica unas características eléctricas para el cable: atenuación, capacidad de la línea e impedancia. Existen actualmente 8 categorías dentro del cable UTP:

 Categoría 1: Este tipo de cable esta especialmente diseñado para redes telefónicas, es el típico cable empleado para teléfonos por las compañías telefónicas. Alcanzan como máximo velocidades de hasta 4 Mbps.

Categoría 2: De características idénticas al cable de categoría 1.

Categoría 3:Es utilizado en redes de ordenadores de hasta 16 Mbps. de velocidad y con un ancho de banda de hasta 16 Mhz.

Categoría 4: Esta definido para redes de ordenadores tipo anillo como Token Ring con un ancho de banda de hasta 20 Mhz y con una velocidad de 20 Mbps.

Categoría 5: Es un estándar dentro de las comunicaciones en redes LAN. Es capaz de soportar comunicaciones de hasta 100 Mbps. con un ancho de banda de hasta 100 Mhz. Este tipo de cable es de 8 hilos, es decir cuatro pares trenzados. La atenuación del cable de esta categoría viene dado por esta tabla referida a una distancia estándar de 100 metros:

  Categoría 5e: Es una categoría 5 mejorada. Minimiza la atenuación y las interferencias. Esta categoría no tiene estandarizadas las normas aunque si esta diferenciada por los diferentes organismos.

Categoría 6: No esta estandarizada aunque ya se está utilizando. Se definirán sus características para un ancho de banda de 250 Mhz.

Page 17: Conceptos de redes

Categoría 7:No esta definida y mucho menos estandarizada. Se definirá para un ancho de banda de 600 Mhz. El gran inconveniente de esta categoría es el tipo de conector seleccionado que es un RJ-45 de 1 pines.

En esta tabla podemos ver para las diferentes categorías, teniendo en cuenta su ancho de banda, cual sería las distancias máximas recomendadas sin sufrir atenuaciones que hagan variar la señal:

El cable coaxial.

El cable coaxial tenía una gran utilidad en sus inicios por su propiedadidónea de transmisión de voz, audio y video, además de textos e imágenes.

Se usa normalmente en la conexión de redes con topología de Bus como Ethernet y ArcNet, se llama así porque su construcciónes de forma coaxial. La construcción del cable debe de ser firme y uniforme, por que si no es así, no se tiene un funcionamiento adecuado.

Este conexionado está estructurado por los siguientes componentes de adentro hacia fuera de la siguiente manera:

Un núcleo de cobre sólido, o de acero con capa de cobre, o bien de una serie de fibras de alambre de cobre entrelazadas dependiendo del fabricante.

Una capa de aislante que recubre el núcleo o conductor, generalmente de material de polivinilo, este aislante tiene la función de guardar una distancia uniforme del conductor con el exterior.

Una capa de blindaje metálico, generalmente cobre o aleación de aluminio entretejido (a veces solo consta de un papel metálico) cuya función es la de mantenerse lo mas apretado posible para eliminar las interferencias, además de que evita de que el eje común se rompa o se tuerza demasiado, ya que si el eje común no se mantiene en buenas condiciones, trae como consecuencia que la señal se va perdiendo, y esto afectaría la calidad de la señal.

Por último, tiene una capa final de recubrimiento, de color negro en el caso del cable coaxial delgado o amarillo en el caso del cable coaxial grueso, este recubrimiento normalmente suele ser de vinilo, xelón ó polietileno uniforme para mantener la calidad de las señales.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Una breve comparación entre el cable coaxial y el cable par trenzado:

El cable coaxial es más inmune a las interferencias o al ruido que el par trenzado.

El cable coaxial es mucho más rígido que el par trenzado, por lo que al realizar las conexiones entre redes la labor será más dificultosa.

Page 18: Conceptos de redes

La velocidad de transmisión que podemos alcanzar con el cable coaxial llega solo hasta 10Mbps, en cambio con el par trenzado se consiguen 100Mbps.

Algunos tipos de cable coaxial:

 Para ver el gráfico seleccione la opción "Descargar"

El RG-75 se usa principalmente

para televisión

Cada cable tiene su uso. Por ejemplo, los cables RG-8, RG-11 y RG-58 se usan para redes de datos con topología de Bus como Ethernet y ArcNet.

Dependiendo del grosor tenemos:

Cable coaxial delgado (Thin coaxial):

El RG-58 es un cable coaxial delgado: a este tipo de cable se le denomina delgado porque es menos grueso que el otro tipo de cable coaxial, debido a esto es menos rígido que el otro tipo, y es más fácil de instalar.

Cable coaxial grueso (Thick coaxial):

Los RG8 y RG11 son cables coaxiales gruesos: estos cables coaxiales permiten una transmisión de datos de mucha distancia sin debilitarse la señal, pero el problema es que, un metro de cable coaxial grueso pesa hasta medio kilogramo, y no puede doblarse fácilmente. Un enlace de coaxial grueso puede ser hasta 3 veces mas largo que un coaxial delgado.

Page 19: Conceptos de redes

Dependiendo de su banda tenemos:

Banda base:

Existen básicamente dos tipos de cable coaxial. El de Banda Base, que es el normalmente empleado en redes de ordenadores, con una resistencia de 50Ohm, por el que fluyen señales digitales.

Banda ancha:

El cable coaxial de banda ancha normalmente mueve señales analógicas, posibilitando la transmisión de gran cantidad de información por varias frecuencias, y su uso más común es la televisión por cable.

Los factores a tener en cuenta a la hora de elegir un cable coaxial son su ancho de banda, su resistencia o impedancia característica, su capacidad y su velocidad de propagación.

El ancho de banda del cable coaxial está entre los 500Mhz, esto hace que el cable coaxial sea ideal para transmisión de televisión por cable por múltiples canales.

La resistencia o la impedancia característica depende del grosor del conductor central o malla, si varía éste, también varía la impedancia característica.  

Page 20: Conceptos de redes

Fibra Óptica:

A partir de 1970, cables que transportan luz en lugar de una corriente eléctrica. Estos cables son mucho más ligeros, de menor diámetro y repetidores que los tradicionales cables metálicos. Además, la densidadde información que son capaces de transmitir es también mucho mayor. Una fibra óptica, el emisor está formado por un láser que emite un potente rayo de luz, que varia en función de la señal eléctrica que le llega. El receptor está constituido por un fotodiodo, que transforma la luz incidente de nuevo en señales eléctricas.

 En la última década la fibra óptica ha pasado a ser una de las tecnologías más avanzadas que se utilizan como medio de transmisión. Los logros con este material fueron más que satisfactorios, desde lograr una mayor velocidad y disminuir casi en su totalidad ruidos e interferencias, hasta multiplicar las formas de envío en comunicaciones y recepción por vía telefónica.

La fibra óptica está compuesta por filamentos de vidriode alta pureza muy compactos. El grosor de una fibra es como la de un cabello humano aproximadamente. Fabricadas a alta temperatura con base en silicio, su proceso de elaboración es controlado por medio de computadoras, para permitir que el índice de refracción de su núcleo, que es la guía de la onda luminosa, sea uniforme y evite las desviaciones.

Como características de la fibra podemos destacar que son compactas, ligeras, con bajas pérdidas de señal, amplia capacidad de transmisión y un alto grado de confiabilidad ya que son inmunes a las interferencias electromagnéticas de radio-frecuencia. Las fibras ópticas no conducen señales eléctricas, conducen rayos luminosos, por lo tanto son ideales para incorporarse en cables sin ningún componente conductivo y pueden usarse en condiciones peligrosas de alta tensión

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Las fibras ópticas se caracterizan por una pérdidas de transmisión realmente bajas, una capacidad extremadamente elevada de transporte de señales, dimensiones mucho menores que los sistemas convencionales, instalación de repetidores a lo largo de las líneas (gracias a la disminución de las perdidas debidas a la transmisión), una mayor resistencia frente a las interferencias, etc.

Page 21: Conceptos de redes

La transmisión de las señales a lo largo de los conductores de fibra óptica se verifica gracias a la reflexión total de la luz en el interior de los conductores óticos. Dichos conductores están constituidos por un ánima de fibras delgadas, hechas de vidrios ópticos altamente transparentes con un índice de reflexión adecuado, rodeada por un manto de varias milésimas de espesor, compuesto por otro vidrio con índice de reflexión inferior al del que forma el ánima. La señal que entra por un extremo de dicho conductor se refleja en las paredes interiores hasta llegar al extremo de salida, siguiendo su camino independientemente del hecho de que la fibra esté o no curvada.

 Estos cables son la base de las modernas autopistas de la información, que hacen técnicamente posible una interconectividad a escala planetaria.

Los tipos de fibra óptica son:

Fibra multimodal

En este tipo de fibra viajan varios rayos ópticos reflejándose a diferentes ángulos, los diferentes rayos ópticos recorren diferentes distancias y se desfasan al viajar dentro de la fibra. Por esta razón, la distancia a la que se puede trasmitir está limitada.

Fibra multimodal con índice graduado

En este tipo de fibra óptica el núcleo está hecho de varias capas concéntricas de material óptico con diferentes índices de refracción. En estas fibras el número de rayos ópticos diferentes que viajan es menor y, por lo tanto, sufren menos el severo problema de las multimodales.

Fibra monomodal:

Esta fibra óptica es la de menor diámetro y solamente permite viajar al rayo óptico central. No sufre del efecto de las otras dos pero es más difícil de construir y manipular. Es también más costosa pero permite distancias de transmisión mayores.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

En comparación con el sistema convencional de cables de cobre, donde la atenuación de sus señales es de tal magnitud que requieren de repetidores cada dos kilómetros para regenerar la transmisión, en el sistema de fibra óptica se pueden instalar tramos de hasta 70 Km. sin que haya necesidad de recurrir a repetidores, lo que también hace más económico y de fácil mantenimiento este material.

Page 22: Conceptos de redes

Con un cable de seis fibras se puede transportar la señal de más de cinco mil canales o líneas principales, mientras que se requiere de 10,000 pares de cable de cobre convencional para brindar servicio a ese mismo número de usuarios, con la desventaja que este último medio ocupa un gran espacio en los canales y requiere de grandes volúmenes de material, lo que también eleva los costes.

Originalmente, la fibra óptica fue propuesta como medio de transmisión debido a su enorme ancho de banda; sin embargo, con el tiempo se ha introducido en un amplio rango de aplicaciones además de la telefonía, automatización industrial, computación, sistemas de televisión por cable y transmisión de información de imágenes astronómicas de alta resolución entre otros.

En un sistema de transmisión por fibra óptica existe un transmisor que se encarga de transformar las ondaselectromagnéticas en energía óptica o en luminosa. Por ello se le considera el componente activo de este proceso. Cuando la señal luminosa es transmitida por las pequeñas fibras, en otro extremo del circuito se encuentra un tercer componente al que se le denomina detector óptico o receptor, cuya misiónconsiste en transformar la señal luminosa en energía electromagnética, similar a la señal original. El sistema básico de transmisión se compone en este orden, de señal de entrada, amplificador, fuente de luz, corrector óptico, línea de fibra óptica (primer tramo ), empalme, línea de fibra óptica (segundo tramo), corrector óptico, receptor, amplificador y señal de salida.

Se puede decir que en este proceso de comunicación, la fibra óptica funciona como medio de transportación de la señal luminosa, generado por el transmisor de LED's (diodos emisores de luz) y lasers. Los diodos emisores de luz y los diodos lasers son fuentesadecuadas para la transmisión mediante fibra óptica, debido a que su salida se puede controlar rápidamente por medio de una corriente de polarización. Además su pequeño tamaño, su luminosidad, longitud de onda y el bajo voltaje necesario para manejarlos son características atractivas.

Page 23: Conceptos de redes

Dispositivos de redes

NIC/MAU (Tarjeta de red)"Network Interface Card" (Tarjeta de interfaz de red) o "Medium AccessUnit" (Medio de unidad de acceso). Cada computadora necesita el "hardware" para transmitir y recibir información. Es el dispositivo que conecta la computadorau otro equipo de red con el medio físico. La NICes un tipo de tarjeta de expansión de la computadora y proporciona un puerto en la parte trasera de la PC al cual se conecta el cable de la red. Hoy en día cada vez son más los equipos que disponen de interfaz de red, principalmente Ethernet, incorporadas. A veces, es necesario, además de la tarjeta de red, un transceptor. Este es un dispositivo que se conecta al medio físico y a la tarjeta, bien porque no sea posible la conexión directa (10 base 5) o porque el medio sea distinto del que utiliza la tarjeta.

Hubs (Concentradores)Son equipos que permiten estructurar el cableado de las redes. La variedad de tipos y características de estos equipos es muy grande. En un principio eran solo concentradores de cableado, pero cada vez disponen de mayor número de capacidad de la red, gestión remota, etc. La tendencia es a incorporar más funciones en el concentrador. Existen concentradores para todo tipo de medios físicos.

RepetidoresSon equipos que actúan a nivel físico. Prolongan la longitud de la red uniendo dos segmentos y amplificando la señal, pero junto con ella amplifican también el ruido. La red sigue siendo una sola, con lo cual, siguen siendo válidas las limitaciones en cuanto al número de estaciones que pueden compartir el medio.

"Bridges" (Puentes)Son equipos que unen dos redes actuando sobre los protocolos de bajo nivel, en el nivel de control de acceso al medio. Solo el tráfico de una red que va dirigido a la otra atraviesa el dispositivo. Esto permite a los administradores dividir las redes en segmentos lógicos, descargando de tráfico las interconexiones. Los bridges producen las señales, con lo cual no se transmite ruido a través de ellos.

"Routers" (Encaminadores)Son equipos de interconexión de redes que actúan a nivel de los protocolos de red. Permite utilizar varios sistemas de interconexión mejorando el rendimiento de la transmisión entre redes. Su funcionamiento es más lento que los bridges pero su capacidad es mayor. Permiten, incluso, enlazar dos redes basadas en un protocolo, por medio de otra que utilice un protocolo diferente.

"Gateways"Son equipos para interconectar redes con protocolos y arquitecturas completamente diferentes a todos los niveles de comunicación. La traducción de las unidades de información reduce mucho la velocidad de transmisión a través de estos equipos.ServidoresSon equipos que permiten la conexión a la red de equipos periféricostanto para la entrada como para la salida de datos. Estos dispositivos se ofrecen en la red como recursos compartidos. Así un terminal conectado a uno de estos dispositivos puede establecer sesiones contra varios ordenadores multiusuario disponibles en la red. Igualmente, cualquier sistema de la red puede imprimir en las impresoras conectadas a un servidor.

MódemsSon equipos que permiten a las computadoras comunicarse entre sí a través de líneas telefónicas; modulación y demodulación de señales electrónicas que pueden ser procesadas por computadoras. Los módems pueden ser externos (un dispositivo de comunicación) o interno (dispositivo de comunicación interno o tarjeta de circuitos que se inserta en una de las ranuras de expansión de la computadora).

Page 24: Conceptos de redes

Topologías Lógicas Y Topologías Físicas.

Hay varias maneras de conectar dos o más computadoras en red.

Para ellos se utilizan cuatro elementos fundamentales: servidores de archivos, estaciones de trabajo, tarjetas de red y cables.

A ellos se le suman los elementos propios de cada cableado, así como los manuales y el software de red, a efectos de la instalación y mantenimiento.

Los cables son generalmente de dos tipos: UTP par trenzado y coaxil.

La manera en que están conectadas no es arbitraria, sino que siguen estándares físicos llamados topologías.

Dependiendo de la topología será la distribución física de la red y dispositivos conectados a la misma, así como también las características de ciertos aspectos de la red como: velocidad de transmisión de datos y confiabilidad del conexionado.

TOPOLOGÍA FÍSICAS:Es la forma que adopta un plano esquemático del cableado o estructura física de la red, también hablamos de métodos de control.

TOPOLOGÍA LÓGICAS:Es la forma de cómo la red reconoce a cada conexión de estación de trabajo.

Se clasifican en:

TOPOLOGÍA LINEAL O BUS:

consiste en un solo cable al cual se le conectan todas las estaciones de trabajo.

En este sistema un sola computadora por vez puede mandar datos los cuales son escuchados por todas las computadoras que integran el bus, pero solo el receptor designado los utiliza.

Ventajas: Es la más barata. Apta para oficinas medianas y chicas.

Desventajas:

Si se tienen demasiadas computadoras conectadas a la vez, la eficiencia baja notablemente.

Es posible que dos computadoras intenten transmitir al mismo tiempo provocando lo que se denomina “colisión”, y por lo tanto se produce un reintento de transmisión.

Un corte en cualquier punto del cable interrumpe la red

Page 25: Conceptos de redes

TOPOLOGÍA ESTRELLA:

En este esquema todas las estaciones están conectadas a un concentrador o HUB con cable por computadora.

Para futuras ampliaciones pueden colocarse otros HUBs en cascada dando lugar a la estrella jerárquica.

Por ejemplo en la estructura CLIENTE-SERVIDOR: el servidor está conectado al HUB activo, de este a los pasivos y finalmente a las estaciones de trabajo.

Ventajas:

La ausencia de colisiones en la transmisión y dialogo directo de cada estación con el servidor.

La caída de una estación no anula la red.

Desventajas:

Baja transmisión de datos.

Page 26: Conceptos de redes

TOPOLOGÍA ANILLO(TOKEN RING):

Es un desarrollo de IBM que consiste en conectar cada estación con otra dos formando un anillo.

Los servidores pueden estar en cualquier lugar del anillo y la información es pasada en un único sentido de una a otra estación hasta que alcanza su destino.

Cada estación que recibe el TOKEN regenera la señal y la transmite a la siguiente.

Por ejemplo en esta topología, esta envía una señal por toda la red.

Si la terminal quiere transmitir pide el TOKEN y hasta que lo tiene puede transmitir.

Si no está la señal la pasa a la siguiente en el anillo y sigue circulando hasta que alguna pide permiso para transmitir.

Ventajas:

No existen colisiones, Pues cada paquete tienen una cabecera o TOKEN que identifica al destino.

Desventajas:

La caída de una estación interrumpe toda la red. Actualmente no hay conexiones físicas entre estaciones, sino que existen centrales de cableado o MAU que implementa la lógica de anillo sin que estén conectadas entre si evitando las caídas.

Es cara, llegando a costar una placa de red lo que una estación de trabajo.

Page 27: Conceptos de redes

TOPOLOGÍA ÁRBOL:

En esta topología que es una generalización del tipo bus, el árbol tiene su primer nodo en la raíz y se expande hacia fuera utilizando ramas, en donde se conectan las demás terminales.

Esta topología permite que la red se expanda y al mismo tiempo asegura que nada más existe una ruta de datos entre dos terminales cualesquiera.

TOPOLOGÍA MESH:

Es una combinación de más de una topología, como podría ser un bus combinado con una estrella.

Este tipo de topología es común en lugares en donde tenían una red bus y luego la fueron expandiendo en estrella.

Son complicadas para detectar su conexión por parte del servicio técnico para su reparación.

Dentro de estas topologías encontramos:

1. TOPOLOGÍA ANILLO EN ESTRELLA: se utilizan con el fin de facilitar la administración de la red. Físicamente la red es una estrella centralizada en un concentrador o HUBs, mientras que a nivel lógico la red es un anillo.

2. TOPOLOGÍA BUS EN ESTRELLA: el fin es igual al anterior. En este caso la red es un bus que se cable físicamente como una estrella mediante el uso de*concentradores.

3. TOPOLOGÍA ESTRELLA JERÁRQUICA: esta estructura se utiliza en la mayor parte de las redes locales actuales. Por medio de concentradores dispuestos en cascadas para formar una red jerárquica.

Page 28: Conceptos de redes

*CONCENTRADOR o HUB: son equipos que permiten estructurar el cableado de las redes, la variedad de tipos y características de estos equipos es muy grande. Cada vez disponen de mayor numero de capacidades como aislamiento de tramos de red, capacidad de conmutación de las salidas para aumentar la capacidad de la red, gestión remonta, etc... se tiende a incorporar más funciones en el concentrador.

Métodos De Acceso:

En las topologías anteriores se comparte el medio, por parte de más de una PC, con lo que puede ocurrir que 2 o más PC intenten acceder al medio al mismo tiempo produciéndose una colisión que provocaría errores en los datos enviados a través de medio.

Para evitar estas situaciones o corregirlas se dispone de varios mecanismos de acceso al medio de forma controlada que se basan en la secuencia de bits que habilita el permiso para transmitir por el medio físico.

1. Si existe una estación de trabajo "jefe" que centralice el paso de la señal, los métodos se llaman:

o POLLING: si la topología usada es bus.

o LUP CENTRAL: si la topología usada es de tipo anillo.

2. Si no existe esa estación jefe que controle el paso de la señal o TESTIGO, tenemos los métodos:

o PASO DEL TESTIGO EN ANILLO: usa la topología en anillo.

o TESTIGO EN BUS: usa la topología en bus.

3. Si no utilizamos ningún método de control sobre el medio para habilitar permisos de transmisión de las estaciones tenemos:

o TÉCNICAS DE ACCESO SORDAS: se transmiten sin consultar el medio

previamente, para ver si está libre.

o TÉCNICAS CON ESCUCHAS DEL MEDIO: dan lugar a un control del tipo

aleatorio.

PARA TOPOLOGÍA BUS esta técnica se conoce como CSMA/CD técnica de acceso al medio con escuchas y detección de colisiones.

PARA TOPOLOGÍA ANILLO esta técnica se la conoce como INSERCIÓN DE REGISTROS.

Page 29: Conceptos de redes

Modelo OSI

El modelo de referencia de Interconexión de Sistemas Abiertos (OSI, Open System Interconnection) es el modelo de red descriptivo creado por la Organización Internacional para la Estandarización lanzado en 1984. Es decir, es un marco de referencia para la definición de arquitecturas de interconexión de sistemas de comunicaciones.

Historia

A principios de 1980 el desarrollo de redes sucedió con desorden en muchos sentidos. Se produjo un enorme crecimiento en la cantidad y tamaño de las redes. A medida que las empresas tomaron conciencia de las ventajas de usar tecnologías de conexión, las redes se agregaban o expandían a casi la misma velocidad a la que se introducían las nuevas tecnologías de red.

Para mediados de 1980, estas empresas comenzaron a sufrir las consecuencias de la rápida expansión. De la misma forma en que las personas que no hablan un mismo idioma tienen dificultades para comunicarse, las redes que utilizaban diferentes especificaciones e implementaciones tenían dificultades para intercambiar información. El mismo problema surgía con las empresas que desarrollaban tecnologías de conexiones privadas o propietarias. "Propietario" significa que una sola empresa o un pequeño grupo de empresas controlan todo uso de la tecnología. Las tecnologías de conexión que respetaban reglas propietarias en forma estricta no podían comunicarse con tecnologías que usaban reglas propietarias diferentes.

Para enfrentar el problema de incompatibilidad de redes, la Organización Internacional para la Estandarización (ISO) investigó modelos de conexión como la red de Digital Equipment Corporation (DECnet), la Arquitectura de Sistemas de Red (SNA) y TCP/IP a fin de encontrar un conjunto de reglas aplicables de forma general a todas las redes. Con base en esta

Page 30: Conceptos de redes

investigación, la ISO desarrolló un modelo de red que ayuda a los fabricantes a crear redes que sean compatibles con otras redes.

Modelo de referencia OSI

Siguiendo el esquema de este modelo se crearon numerosos protocolos. El advenimiento de protocolos más flexibles donde las capas no están tan demarcadas y la correspondencia con los niveles no era tan clara puso a este esquema en un segundo plano. Sin embargo es muy usado en la enseñanza como una manera de mostrar cómo puede estructurarse una "pila" de protocolos de comunicaciones.

El modelo especifica el protocolo que debe ser usado en cada capa, y suele hablarse de modelo de referencia ya que es usado como una gran herramienta para la enseñanza de comunicación de redes. Este modelo está dividido en siete capas:

Capa física (Capa 1)

Es la que se encarga de las conexiones físicas de la computadora hacia la red, tanto en lo que se refiere al medio físico como a la forma en la que se transmite la información.

Sus principales funciones se pueden resumir como:

Definir el medio o medios físicos por los que va a viajar la comunicación: cable de pares trenzados (o no, como en RS232/EIA232), coaxial, guías de onda, aire, fibra óptica.

Definir las características materiales (componentes y conectores mecánicos) y eléctricas (niveles de tensión) que se van a usar en la transmisión de los datos por los medios físicos.

Definir las características funcionales de la interfaz (establecimiento, mantenimiento y liberación del enlace físico).

Transmitir el flujo de bits a través del medio.

Manejar las señales eléctricas del medio de transmisión, polos en un enchufe, etc.

Garantizar la conexión (aunque no la fiabilidad de dicha conexión).

Capa de enlace de datos (Capa 2)

Esta capa se ocupa del direccionamiento físico, de la topología de la red, del acceso a la red, de la notificación de errores, de la distribución ordenada de tramas y del control del flujo.

Capa de red (Capa 3)

El objetivo de la capa de red es hacer que los datos lleguen desde el origen al destino, aún cuando ambos no estén conectados directamente. Los dispositivos que facilitan tal tarea se denominan encaminadores, aunque es más frecuente encontrar el nombre inglés routers y, en ocasiones enrutadores. Los routers trabajan en esta capa, aunque pueden actuar como switch de nivel 2 en determinados casos, dependiendo de la función que se le asigne. Los firewalls actúan sobre esta capa principalmente, para descartar direcciones de máquinas.

En este nivel se realiza el direccionamiento lógico y la determinación de la ruta de los datos hasta su receptor final.

Page 31: Conceptos de redes

Capa de transporte (Capa 4)

Capa encargada de efectuar el transporte de los datos (que se encuentran dentro del paquete) de la máquina origen a la de destino, independizándolo del tipo de red física que se esté utilizando. La PDU de la capa 4 se llama Segmento o Datagrama, dependiendo de si corresponde a TCP o UDP. Sus protocolos son TCP y UDP; el primero orientado a conexión y el otro sin conexión.

Capa de sesión (Capa 5)

Esta capa es la que se encarga de mantener y controlar el enlace establecido entre dos computadores que están transmitiendo datos de cualquier índole.

Por lo tanto, el servicio provisto por esta capa es la capacidad de asegurar que, dada una sesión establecida entre dos máquinas, la misma se pueda efectuar para las operaciones definidas de principio a fin, reanudándolas en caso de interrupción. En muchos casos, los servicios de la capa de sesión son parcial o totalmente prescindibles.

Capa de presentación (Capa 6)

El objetivo es encargarse de la representación de la información, de manera que aunque distintos equipos puedan tener diferentes representaciones internas de caracteres los datos lleguen de manera reconocible.

Esta capa es la primera en trabajar más el contenido de la comunicación que el cómo se establece la misma. En ella se tratan aspectos tales como la semántica y la sintaxis de los datos transmitidos, ya que distintas computadoras pueden tener diferentes formas de manejarlas.

Esta capa también permite cifrar los datos y comprimirlos. En pocas palabras es un traductor.

Capa de aplicación (Capa 7)

Ofrece a las aplicaciones la posibilidad de acceder a los servicios de las demás capas y define los protocolos que utilizan las aplicaciones para intercambiar datos, como correo electrónico (POP y SMTP), gestores de bases de datos y servidor de ficheros (FTP). Hay tantos protocolos como aplicaciones distintas y puesto que continuamente se desarrollan nuevas aplicaciones el número de protocolos crece sin parar.

Cabe aclarar que el usuario normalmente no interactúa directamente con el nivel de aplicación. Suele interactuar con programas que a su vez interactúan con el nivel de aplicación pero ocultando la complejidad subyacente.

Page 32: Conceptos de redes

Unidades de datos

El intercambio de información entre dos capas OSI consiste en que cada capa en el sistema fuente le agrega información de control a los datos, y cada capa en el sistema de destino analiza y remueve la información de control de los datos como sigue:

Si un ordenador (host A) desea enviar datos a otro (host B), en primer término los datos deben empaquetarse a través de un proceso denominado encapsulamiento, es decir, a medida que los datos se desplazan a través de las capas del modelo OSI, reciben encabezados, información final y otros tipos de información.

N-PDU (Unidad de datos de protocolo)

Es la información intercambiada entre entidades pares, es decir, dos entidades pertenecientes a la misma capa pero en dos sistemas diferentes, utilizando una conexión (N-1).

Está compuesta por:

N-SDU (Unidad de datos del servicio)

Son los datos que se necesitan la entidades (N) para realizar funciones del servicio pedido por la entidad (N+1).

N-PCI (Información de control del protocolo)

Información intercambiada entre entidades (N) utilizando una conexión (N-1) para coordinar su operación conjunta.

N-IDU (Unidad de datos de interface)

Es la información transferida entre dos niveles adyacentes, es decir, dos capas contiguas.

Está compuesta por:

N-ICI (Información de control del interface)

Información intercambiada entre una entidad (N+1) y una entidad (N) para coordinar su operación conjunta.

Datos de Interface-(N)

Información transferida entre una entidad-(N+1) y una entidad-(N) y que normalmente coincide con la (N+1)-PDU.

Page 33: Conceptos de redes

Transmisión delos datos

La capa de aplicación recibe el mensaje del usuario y le añade una cabecera constituyendo así la PDU de la capa de aplicación. La PDU se transfiere a la capa de aplicación del nodo destino, este elimina la cabecera y entrega el mensaje al usuario.

Para ello ha sido necesario todo este proceso:

1. Ahora hay que entregar la PDU a la capa de presentación para ello hay que añadirle la correspondiente cabecera ICI y transformarla así en una IDU, la cual se transmite a dicha capa.

2. La capa de presentación recibe la IDU, le quita la cabecera y extrae la información, es decir, la SDU, a esta le añade su propia cabecera (PCI) constituyendo así la PDU de la capa de presentación.

3. Esta PDU es transferida a su vez a la capa de sesión mediante el mismo proceso, repitiéndose así para todas las capas.

4. Al llegar al nivel físico se envían los datos que son recibidos por la capa física del receptor.

5. Cada capa del receptor se ocupa de extraer la cabecera, que anteriormente había añadido su capa homóloga, interpretarla y entregar la PDU a la capa superior.

6. Finalmente llegará a la capa de aplicación la cual entregará el mensaje al usuario.

Formato de los datos

Estos datos reciben una serie de nombres y formatos específicos en función de la capa en la que se encuentren, debido a como se describió anteriormente la adhesión de una serie de encabezados e información final. Los formatos de información son los que muestra el gráfico:

Page 34: Conceptos de redes

APDU

Unidad de datos en la capa de aplicación (Capa 7).

PPDU

Unidad de datos en la capa de presentación (Capa 6).

SPDU

Unidad de datos en la capa de sesión (Capa 5).

TPDU

(segmento)

Unidad de datos en la capa de transporte (Capa 4).

Paquete o Datagrama

Unidad de datos en el nivel de red (Capa 3).

Trama

Unidad de datos en la capa de enlace (Capa 2).

Bits

Unidad de datos en la capa física (Capa 1).

Page 35: Conceptos de redes

Modelo TCP/IP

EL MODELO DE ESTRATIFICACIÓN POR CAPAS DE TCP/IP DE INTERNET

El segundo modelo mayor de estratificación por capas no se origina de un comité de estándares, sino que proviene de las investigaciones que se realizan respecto al conjunto de protocolos de TCP/IP. Con un poco de esfuerzo, el modelo ISO puede ampliarse y describir el esquema de estratificación por capas del TCP/IP, pero los presupuestos subyacentes son lo suficientemente distintos para distinguirlos como dos diferentes.

En términos generales, el software TCP/IP está organizado en cuatro capas conceptuales que se construyen sobre una quinta capa de hardware. El siguiente esquema muestra las capas conceptuales así como la forma en que los datos pasan entre ellas.

CAPAS CONCEPTUALES PASO DE OBJETOS ENTR E CAPAS

Capa de aplicación. Es el nivel mas alto, los usuarios llaman a una aplicación que acceda servicios disponibles a través de la red de redes TCP/IP. Una aplicación interactúa con uno de los protocolos de nivel de transporte para enviar o recibir datos. Cada programa de aplicación selecciona el tipo de transporte necesario, el cual puede ser una secuencia de mensajes individuales o un flujo continuo de octetos. El programa de aplicación pasa los datos en la forma requerida hacia el nivel de transporte para su entrega.

Capa de transporte. La principal tarea de la capa de transporte es proporcionar la comunicación entre un programa de aplicación y otro. Este tipo de comunicación se conoce frecuentemente como comunicación punto a punto. La capa de transporte regula el flujo de información. Puede también proporcionar un transporte confiable, asegurando que los datos lleguen sin errores y en secuencia. Para hacer esto, el software de protocolo de transporte tiene el lado de recepción enviando acuses de recibo de retorno y la parte de envío retransmitiendo los paquetes perdidos. El software de transporte divide el flujo de datos que se está enviando en pequeños fragmentos (por lo general conocidos como paquetes) y pasa cada paquete, con una dirección de destino, hacia la siguiente capa de transmisión. Aun cuando en el esquema anterior se utiliza un solo bloque para representar la capa de aplicación, una computadora de propósito general puede tener varios programas de aplicación accesando la red de redes al mismo tiempo. La capa de transporte debe aceptar datos desde varios programas de usuario y enviarlos a la capa del siguiente nivel. Para hacer esto, se añade información adicional a cada paquete, incluyendo códigos que identifican qué programa de aplicación envía y qué programa debe recibir, así como una suma de verificación para verificar que el paquete ha llegado intacto y utiliza el código de destino para identificar el programa de aplicación en el que se debe entregar.

Page 36: Conceptos de redes

Capa Internet. La capa Internet maneja la comunicación de una máquina a otra. Ésta acepta una solicitud para enviar un paquete desde la capa de transporte, junto con una identificación de la máquina, hacia la que se debe enviar el paquete. La capa Internet también maneja la entrada de datagramas, verifica su validez y utiliza un algoritmo de ruteo para decidir si el datagrama debe procesarse de manera local o debe ser transmitido. Para el caso de los datagramas direccionados hacia la máquina local, el software de la capa de red de redes borra el encabezado del datagrama y selecciona, de entre varios protocolos de transporte, un protocolo con el que manejará el paquete. Por último, la capa Internet envía los mensajes ICMP de error y control necesarios y maneja todos los mensajes ICMP entrantes.

Capa de interfaz de red. El software TCP/IP de nivel inferior consta de una capa de interfaz de red responsable de aceptar los datagramas IP y transmitirlos hacia una red específica. Una interfaz de red puede consistir en un dispositivo controlador (por ejemplo, cuando la red es una red de área local a la que las máquinas están conectadas directamente) o un complejo subsistema que utiliza un protocolo de enlace de datos propios (por ejemplo, cuando la red consiste de conmutadores de paquetes que se comunican con anfitriones utilizando HDLC).

EL PRINCIPIO DE LA ESTRATIFICACION POR CAPAS DE PROTOCOLOS

Independientemente del esquema de estratificación por capas que se utilice o de las funciones de las capas, la operación de los protocolos estratificados por capas se basa en una idea fundamental. La idea, conocida como principio de estratificación por capas puede resumirse de la siguiente forma: (imágenes removidas, es necesario bajar el trabajo).

Los protocolos estratificados por capas están diseñados de modo que una capa n en el receptor de destino reciba exactamente el mismo objeto enviado por la correspondiente capa n de la fuente.

El principio de estratificación por capas explica por que la estratificación por capas es una idea poderosa. Esta permite que el diseñador de protocolos enfoque su atención hacia una capa a la vez, sin preocuparse acerca del desempeño de las capas inferiores. Por ejemplo, cuando se construye una aplicación para transferencia de archivos, el diseñador piensa solo en dos copias del programa de aplicación que se correrá en dos máquinas y se concentrará en los mensajes que se necesitan intercambiar para la transferencia de archivos. El diseñador asume que la aplicación en el anfitrión receptor es exactamente la misma que en el anfitrión emisor.

Page 37: Conceptos de redes

ESTRATIFICACIÓN POR CAPAS EN UN AMBIENTE DE INTERNET TCP/IP

Nuestro planteamiento sobre el principio de estratificación por capas es un tanto vago y la ilustración de la figura 11.o toca un tema importante dado que permite distinguir entre la transferencia desde una fuente hasta un destino final y la transferencia a través de varias redes. La figura 11.7. ilustra ladistinción y muestra el trayecto de un mensaje enviado desde un programa de aplicación en un anfitrión hacia la aplicación en otro a través de un ruteador.

Como se muestra en la figura, la entrega del mensaje utiliza dos estructuras de red separadas, una para la transmisión desde el anfitrión A hasta el ruteador R y otra del ruteador R al anfitrión B. El siguiente principio de trabajo de estratificación de capas indica que el marco entregado a R es idéntico al enviado por el anfitrión A. En contraste, las capas de aplicación y transporte cumplen con la condición punto a punto y están diseñados de modo que el software en la fuente se comunique con su par en el destino final. Así, el principio de la estratificación por capas establece que el paquete recibido por la capa de transporte en el destino final es idéntico al paquete enviado por la capa de transporte en la fuente original.

Es fácil entender que, en las capas superiores, el principio de estratificación por capas se aplica a través de la transferencia punto a punto y que en las capas inferiores se aplica en una sola transferencia de máquina. No es tan fácil ver como el principio de estratificación de capas se aplica a la estratificación Internet. Por un lado, hemos dicho que los anfitriones conectados a una red de redes deben considerarse como una gran red virtual, con los datagramas IP que hacen las veces de tramas de red. Desde este punto de vista, los datagramas viajan desde una fuente original hacia un destino final y el principio de la estratificación por capas garantiza que el destino final reciba exactamente el datagrama que envío la fuente. Por otra parte, sabemos que el encabezado "datagram" contiene campos, como "time to live", que cambia cada vez que el "datagram" pasa a través de un ruteador. Así, el destino final no recibirá exactamente el mismo diagrama que envío la fuente. Debemos concluir que, a pesar de que la mayor parte de los datagramas permanecen intactos cuando pasan a través de una red de redes, el principio de estratificación por capas solo se aplica a los datagramas que realizantransferencias de una sola máquina. Para ser precisos, no debemos considerar que las capas de Internet proporcionan un servicio punto a punto.

ESTRATIFICACIÓN POR CAPAS EN PRESENCIA DE UNA SUBESTRUCTURA DE RED

Cuando un ruteador recibe un datagrama, este puede entregar el datagrama en su destino o en la red local, o transferir el datagrama a través de una línea serial hacia otro ruteador. La cuestión es la siguiente: "¿cómo se ajusta el protocolo utilizado en una línea serial con respecto al esquema de estratificación por capas del TCP/IP?" La respuesta depende de como considera el diseñador la interconexión con la línea serial.

Desde la perspectiva del IP, el conjunto de conexiones punto a punto entre ruteadores puede funcionar como un conjunto de redes físicas independientes o funcionar colectivamente como una sola red física. En el primer caso, cada enlace físico es tratado exactamente como cualquier otra red en una red de redes. A esta se le asigna un numero único de red (por lo general de clase C) y los dos anfitriones que comparten el enlace tiene cada uno una dirección única IP asignada para su conexión. Los ruteadores se añaden a la tabla de ruteo IP como lo harían para cualquier otra red. Un nuevo modulo de software se añade en la capa de interfaz de red para controlar el nuevo enlace de hardware, pero no se realizan cambios sustanciales en el esquema de estratificación por capas.

Page 38: Conceptos de redes

La principal desventaja del enfoque de redes independientes es la proliferación de números de redes (uno por cada conexión entre dos maquinas), lo que ocasiona que las tablas de ruteo sean tan grandes como sea necesario. Tanto la línea serial IP (Serial Line IP o SLIP) como el protocolo punto a punto (Point to Point Protocol o PPP) tratan a cada enlace serial como una red separada.

El segundo método para ajustar las conexiones punto a punto evita asignar múltiples direcciones IP al cableado físico. En lugar de ello, se tratan a todas las conexiones colectivamente como una sola red independiente IP con su propio formato de trama, esquema de direccionamiento de hardware y protocolos de enlace de datos. Los ruteadores que emplean el segundo método necesitan solo un numero de red IP para todas las conexiones punto a punto.

Usar el enfoque de una sola red significa extender el esquema de estratificación por capas de protocolos para añadir una nueva capa de ruteo dentro de la red, entre la capa de interfaz de red y los dispositivos de hardware. Para las máquinas con una sola conexión punto a punto, una capa adicional parece innecesaria. La figura 1 1.8 muestra la organización del software de la capa Internet pasa hacia la interfaz de red todos los datagramas que deberá enviarse por cualquier conexión punto a punto. La interfaz los pasa hacia él modulo de ruteo dentro de la red que, además, debe distinguir entre varias conexiones físicas y rutear el datagrama a través de la conexión correcta.

El programador que diseña software de ruteo dentro de la red determina exactamente como selecciona el software un enlace físico. Por lo general, el algoritmo conduce a una tabla de ruteo dentro de la red. La tabla de ruteo dentro de la red es análoga a una tabla de ruteo de una red de redes en la que se especifica una transformación de la dirección de destino hacia la ruta. La tabla contiene pares de enteros, (D, L), donde D es una dirección de destino de un anfitrión y L especifica una de las líneas físicas utilizadas para Ilegar al destino.

Las diferencias entre una tabla de ruteo de red de redes y una tabla de ruteo dentro de la red son que esta ultima, es mucho más pequeña. Contiene solamente información de ruteo para los anfitriones conectados directamente a la red punto a punto. La razón es simple: la capa Internet realiza la transformación de una dirección de destino arbitraria hacia una ruta de dirección especifica antes de pasar el datagrama hacia una interfaz de red. De esta manera, la capa dentro de la red solo debe distinguir entre máquinas en una sola red unto a punto.

LA DESVENTAJA DE LA ESTRATIFICACIÓN POR CAPAS

La estratificación por capas es una idea fundamental que proporciona las bases para el diseño de protocolos. Permite al diseñador dividir un problema complicado en subproblemas y resolver cada parte de manera independiente. Por desgracia, el software resultante de una estratificación por capas estrictas puede ser muy ineficaz. Si se considera el trabajo de la capa de transporte, debe aceptar un flujo de octetos desde un programa de aplicación, dividir el flujo en paquetes y enviar cada paquete a través de la red de redes. Para optimizar la transferencia, la capa de transporte debe seleccionar el tamaño de paquete más grande posible que le permita a un paquete viajar en una trama de red. En particular, si la máquina de destino está conectada a una máquina de la misma red de la fuente, solo la red física se verá involucrada en la transferencia, así, el emisor puede optimizar el tamaño del paquete para esta red. Si el software preserva una estricta estratificación por capas, sin embargo, la capa de transporte no podrá saber como ruteará él modulo de Internet él trafico o que redes están conectadas directamente. Mas aun, la capa de transporte no comprenderá el datagrama o el formato de trama ni será capaz de determinar como deben ser añadidos muchos octetos de encabezado a un paquete.

Page 39: Conceptos de redes

Así, una estratificación por capas estricta impedirá que la capa de transporte optimice la transferencia.

Por lo general, las implantaciones atenúan el esquema estricto de la estratificación por capas cuando construyen software de protocolo. Permiten que información como la selección de ruta y la MTU de red se propaguen hacia arriba. Cuando los buffers realizan el proceso de asignación, generalmente dejan espacio para encabezados que serán añadidos por los protocolos de las capas de bajo nivel y pueden retener encabezados de las tramas entrantes cuando pasan hacia protocolos de capas superiores. Tal optimización puede producir mejoras notables en la eficiencia siempre y cuando conserve laestructura básica en capas.

COMO FUNCIONA TCP/IP

Una red TCP/IP transfiere datos mediante el ensamblaje de bloques de datos en paquetes, cada paquete comienza con una cabecera que contiene información de control; tal como la dirección del destino, seguido de los datos. Cuando se envía un archivo por la red TCP/IP, su contenido se envía utilizando una serie de paquetes diferentes. El Internet protocol (IP), un protocolo de la capa de red, permite a las aplicaciones ejecutarse transparentemente sobre redes interconectadas. Cuando se utiliza IP, no es necesario conocer que hardware se utiliza, por tanto ésta corre en una red de área local.

El Transmissión Control Protocol (TCP); un protocolo de la capa de transporte, asegura que los datos sean entregados, que lo que se recibe, sea lo que se pretendía enviar y que los paquetes que sean recibidos en el orden en que fueron enviados. TCP terminará una conexión si ocurre un error que haga la transmisión fiable imposible.

ADMINISTRACION TCP/IP

TCP/IP es una de las redes más comunes utilizadas para conectar computadoras con sistema UNIX. Las utilidades de red TCP/IP forman parte de la versión 4, muchas facilidades de red como un sistema UUCP, el sistema de correo, RFS y NFS, pueden utilizar una red TCP/CP para comunicarse con otras máquinas.

Para que la red TCP/IP esté activa y funcionado será necesario:

Obtener una dirección Internet.

Instalar las utilidades Internet en el sistema

Configurar la red para TCP/IP

Configurar los guiones de arranque TCP/IP

Identificar otras máquinas ante el sistema

Configurar la base de datos del o y ente de STREAMS

Comenzar a ejecutar TCP/IP.

Page 40: Conceptos de redes

Diferencias entre modelo OSI y TCP/IP

OSI y TCP/IP por capas

El modelo OSI: tiene 7 capas.

El TCP/IP: tiene 4 capas

El modelo OSI no contiene la capa de internet ni la capa de sesión.

Comunicación no orientada/orientada a la conexión

El modelo OSI contiene la comunicación no orientada a la conexión y la orientada a la conexión.

El modelo TCP/IP solo tiene el modo sin conexión pero considera ambos modos en la capa de transporte.

En los protocolos TCP/IP, un protocolo dado puede ser usado por otros protocolos en la misma capa, mientras que en el modelo OSI se definiría dos capas en las mismas circunstancias.

Eficiencia y viabilidad.

Las normas de OSI tienden a ser prescriptivas, mientras que los protocolos TCP/IP tienden a ser descriptivos, y dejan un máximo de libertad a los implementadores. Una de las ventajas del enfoque de TCP/IP es que cada implementación concreta puede explotar características dependientes del sistema, de lo que suele derivarse una mayor eficiencia al mismo tiempo que se asegura la interoperabilidad con otras aplicaciones.

La adopción del TCP/IP no está en conflicto con las normas OSI, debido a que los dos se produjeron de manera concurrente. De alguna manera, el TCP/IP contribuyó al OSI y viceversa. Sin embargo, existen varias diferencias importantes, las cuales surgen de los requerimientos básicos del TCP/IP que son:

Un conjunto común de aplicaciones.

Enrutamiento dinámico.

Protocolos sin conexión en el nivel de red.

Conectividad universal.

Intercambio de paquetes.

Page 41: Conceptos de redes

OSI define claramente las diferencias entre los servicios, las interfaces, y los protocolos.

Servicio: lo que un nivel hace

Interfaz: cómo se pueden accesar los servicios

Protocolo: la implementación de los servicios

TCP/IP no tiene esta clara separación.

Desventajas de OSI

Mala sincronización

Mala tecnología

Malas instrumentaciones

Mala política

Desventajas de TCP/IP

El modelo TCP/IP no distingue con claridad los conceptos de servicio, interfaz y protocolo. Este modelo no es una buena guía para diseñar redes nuevas utilizando tecnologías nuevas.

El modelo no es general en absoluto y no resulta apropiado para describir cualquier pila de protocolos distinta de él mismo.

La capa de nodo a red es en realidad una interfaz entre la red y las capas de enlace de datos.

El modelo TCP/IP no distingue entre la capa física y la de enlace de datos, siendo que un modelo apropiado debería incluir ambas como capas separadas, éste no lo hace.

Page 42: Conceptos de redes

Capa donde se encuentran los dispositivos en OSI

Repetidores: se encuentran dentro de la capa 1.

HUB: se encuentran en la capa 1. Regeneran y envían la señal por medio de un broadcast.

Puente: se encuentra en la capa 2. Conecta los segmentos del LAN. Filtra el trafico de una LAN,permitiendo que el tráfico que se ha dirigido hacia allí se pueda conectar con otras partes.

Switch: se encuentran en la capa 2. Toman decisiones basándose en las direcciones MAC. Las LAN son mas eficientes por dicho motivo.

Router: Se encuentra en la capa 3. Toma decisiones basándose en grupos de direcciones de red a diferencia de las direcciones MAC individuales, que es lo que se hace en la capa 2. Los routers pueden conectar distintas tecnologías de la capa 2 dada su aptitud para enrutar paquetes basándose en la información de la capa3.

Tarjeta de red: situada en la capa 3. Esta capa se ocupa de la transmisión de los datagramas (paquetes) y de encaminar cada uno en la dirección adecuada, tarea esta que puede ser complicada en redes grandes como Internet, pero no se ocupa para nada de los errores o pérdidas de paquetes.

Capa donde se encuentran los dispositivos en tcp/ip

Repetidores: situada en la capa de acceso a red o lo que es decir capa 1 en el modelo tcp/ip.

HUB:situada en la capa de acceso a red también en la capa 1.

Puente:situada en la capa de acceso a red también en la capa 1.

Switch: situada en la capa de acceso de red, también en la capa 1.

Router: situada en la capa de internet. con lo cual la capa 2 del modelo tcp/ip.

Tarjeta de red: situada en la capa de acceso a red, también en la capa 1.

Page 43: Conceptos de redes

Fuentes Bibliográficas

www.google.com.mx (Buscador)

www.yahoo.com (buscador)

www.wikipedia.org

www.monografias.org

www.elrincondelvago.org

www.textoscientificos.com

www.mailxmail.com

www.informatica-es.blogspot.com

www.slideshare.net

OSI Reference Model — The ISO Model of Architecture for Open Systems Interconnection, Hubert Zimmermann, IEEE Transactions on Communications

MODELO DE REFERENCIA OSI - Interconexión de Sistemas Abiertos

http:www.isi.edu/in-notes/rfc1149.txt A Standard for the Transmission of IP Datagrams on Avian Carriers