conceptual physical science 5e — chapter 6 © 2012 pearson education, inc. conceptual physical...

61
Conceptual Physical Science 5e — Chapter 6 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics 2012 Pearson Education, Inc.

Upload: cameron-cain

Post on 12-Jan-2016

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Conceptual PhysicalScience

5th Edition

Chapter 6:

Thermal Energyand Thermodynamics

© 2012 Pearson Education, Inc.

Page 2: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The kind of molecular motion having most to do with temperature is

A. translational motion.

B. rotational motion.

C. internal vibrational motion.

D. longitudinal motion.

Page 3: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The kind of molecular motion having most to do with temperature is

A. translational motion.

B. rotational motion.

C. internal vibrational motion.

D. longitudinal motion.

Page 4: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Absolute zero corresponds to a temperature of

A. 0 K.

B. –273C.

C. Both of the above.

D. None of the above.

Page 5: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Absolute zero corresponds to a temperature of

A. 0 K.

B. –273C.

C. Both of the above.

D. None of the above.

Comment:

At absolute zero, a substance has no more energy to give up.

0 K = –273C.

Page 6: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

In your room is a table, chair, and you. Which of these has a temperature normally greater than the temperature of the air in the room?

A. Table.

B. Chair.

C. You.

D. All have about the same temperature.

Page 7: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

In your room is a table, chair, and you. Which of these has a temperature normally greater than the temperature of the air in the room?

A. Table.

B. Chair.

C. You.

D. All have about the same temperature.

Page 8: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Heat is simply another word for

A. temperature.

B. thermal energy.

C. thermal energy that flows from hot to cold.

D. radiant energy.

Page 9: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Heat is simply another word for

A. temperature.

B. thermal energy.

C. thermal energy that flows from hot to cold.

D. radiant energy.

Comment:

Be sure to distinguish between temperature, thermal energy, and flowing thermal energy.

Page 10: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Thermal energy is normally measured in units of

A. calories.

B. joules.

C. Both of the above.

D. Neither of the above.

Page 11: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Thermal energy is normally measured in units of

A. calories.

B. joules.

C. Both of the above.

D. Neither of the above.

Explanation:

Calories and joules, like miles and meters, are different units for the same thing. 1 calorie = 4.19 joules.

Page 12: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

If a red hot thumbtack is immersed in warm water, the direction of heat flow will be from the

A. warm water to the red hot thumbtack.

B. red hot thumbtack to the warm water.

C. no heat flow.

D. Not enough information.

Page 13: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

If a red hot thumbtack is immersed in warm water, the direction of heat flow will be from the

A. warm water to the red hot thumbtack.

B. red hot thumbtack to the warm water.

C. no heat flow.

D. Not enough information.

Page 14: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The same quantity of heat is added to different amounts of water in two equal-size containers. The temperature of the smaller amount of water

A. decreases more.

B. increases more.

C. does not change.

D. Not enough information.

Page 15: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The same quantity of heat is added to different amounts of water in two equal-size containers. The temperature of the smaller amount of water

A. decreases more.

B. increases more.

C. does not change.

D. Not enough information.

Page 16: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

You heat a half-cup of tea and its temperature rises by 4C. How much will the temperature rise if you add the same amount of heat to a full cup of tea?

A. 0C.

B. 2C.

C. 4C.

D. 8C.

Page 17: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

You heat a half-cup of tea and its temperature rises by 4C. How much will the temperature rise if you add the same amount of heat to a full cup of tea?

A. 0C.

B. 2C.

C. 4C.

D. 8C.

Page 18: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

There is twice as much molecular kinetic energy in 2 liters of boiling water as in 1 liter of boiling water. Which will be the same for both?

A. Temperature.

B. Thermal energy.

C. Both of the above.

D. None of the above.

Page 19: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

There is twice as much molecular kinetic energy in 2 liters of boiling water as in 1 liter of boiling water. Which will be the same for both?

A. Temperature.

B. Thermal energy.

C. Both of the above.

D. None of the above.

Explanation:

Average kinetic energy of molecules is the same, which means temperature is the same for both.

Page 20: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The first law of thermodynamics is a restatement of the

A. conservation of energy.

B. conservation of momentum.

C. Both of these.

D. None of the above.

Page 21: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The first law of thermodynamics is a restatement of the

A. conservation of energy.

B. conservation of momentum.

C. Both of these.

D. None of the above.

Page 22: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The second law of thermodynamics tells us that the direction of heat flow is normally

A. from hot to cold.

B. from cold to hot.

C. independent of temperature.

D. present with external effort.

Page 23: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The second law of thermodynamics tells us that the direction of heat flow is normally

A. from hot to cold.

B. from cold to hot.

C. independent of temperature.

D. present with external effort.

Page 24: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The third law of thermodynamics has to do with

A. the conservation of energy.

B. the direction of time.

C. energy dissipation.

D. absolute zero.

Page 25: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The third law of thermodynamics has to do with

A. the conservation of energy.

B. the direction of time.

C. energy dissipation.

D. absolute zero.

Page 26: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

When work is done on a system, compressing air in a tire pump, for example, the temperature of the system

A. increases.

B. decreases.

C. remains unchanged.

D. is no longer evident.

Page 27: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

When work is done on a system, compressing air in a tire pump, for example, the temperature of the system

A. increases.

B. decreases.

C. remains unchanged.

D. is no longer evident.

Explanation:

In accord with the first law of thermodynamics, work input increases the energy of the system.

Page 28: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

In nature, high-quality energy tends to transform to

A. lower-quality energy.

B. entropy.

C. time’s arrow.

D. equally useful forms.

Page 29: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

In nature, high-quality energy tends to transform to

A. lower-quality energy.

B. entropy.

C. time’s arrow.

D. equally useful forms.

Page 30: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

To say that water has a high specific heat capacity is to say that water

A. requires a lot of energy in order to increase in temperature.

B. gives off a lot of energy in cooling.

C. has a lot of “thermal inertia.”

D. All of the above.

Page 31: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

To say that water has a high specific heat capacity is to say that water

A. requires a lot of energy in order to increase in temperature.

B. gives off a lot of energy in cooling.

C. has a lot of “thermal inertia.”

D. All of the above.

Page 32: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Hot sand cools off faster at night than plants and vegetation. This indicates the specific heat capacity for sand is

A. less than that of plants.

B. more than that of plants.

C. likely the same as that of plants.

D. unknown, because there is not enough information.

Page 33: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Hot sand cools off faster at night than plants and vegetation. This indicates the specific heat capacity for sand is

A. less than that of plants.

B. more than that of plants.

C. likely the same as that of plants.

D. unknown, because there is not enough information.

Explanation:

Lower specific heat means less resistance to change.

Page 34: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Aluminum has a specific heat capacity more than twice that of copper. If equal amounts of heat are given to equal masses of aluminum and copper, the metal that more rapidly increases in temperature is

A. aluminum.

B. copper.

C. neither—actually, both will increase at the same rate.

D. None of the above.

Page 35: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Aluminum has a specific heat capacity more than twice that of copper. If equal amounts of heat are given to equal masses of aluminum and copper, the metal that more rapidly increases in temperature is

A. aluminum.

B. copper.

C. neither—actually, both will increase at the same rate.

D. None of the above.

Explanation:

Copper has about half the “thermal inertia” of aluminum.

Page 36: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The high specific heat capacity of water has great importance in

A. climates.

B. cooling systems.

C. ocean currents.

D. All of the above.

Page 37: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The high specific heat capacity of water has great importance in

A. climates.

B. cooling systems.

C. ocean currents.

D. All of the above.

Page 38: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Which of these locations tends to have lower extremes in yearly temperature?

A. Dallas, Texas.

B. Sacramento, California.

C. St. Louis, Missouri.

D. Honolulu, Hawaii.

Page 39: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Which of these locations tends to have lower extremes in yearly temperature?

A. Dallas, Texas.

B. Sacramento, California.

C. St. Louis, Missouri.

D. Honolulu, Hawaii.

Comment:

Hawaii is an island where climate is moderate, thanks to water’s high specific heat.

Page 40: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The thermal expansion of steel is about the same as that of

A. water.

B. air.

C. concrete.

D. All of the above.

Page 41: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The thermal expansion of steel is about the same as that of

A. water.

B. air.

C. concrete.

D. All of the above.

Explanation:

This fact is important to civil engineers in the construction of concrete that is reinforced with steel rods.

Page 42: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

When stringing telephone lines between poles in the summer, it is advisable to allow the lines to

A. sag.

B. be taut.

C. be close to the ground.

D. allow ample space for birds.

Page 43: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

When stringing telephone lines between poles in the summer, it is advisable to allow the lines to

A. sag.

B. be taut.

C. be close to the ground.

D. allow ample space for birds.

Explanation:

Telephone lines are longer in a warmer summer and shorter in a cold winter. Hence, they sag more on hot summer days than in winter. If the lines are not strung with enough sag in summer, they might contract too much and snap during the winter—especially when carrying ice.

Page 44: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

A bimetallic strip consists of a strip of metal composed of

A. an alloy of brass and iron.

B. braided brass and iron wires flattened into a strip.

C. a brass strip welded along its length to an iron strip.

D. a strip of metal with brass on one end, iron on the other end.

Page 45: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

A bimetallic strip consists of a strip of metal composed of

A. an alloy of brass and iron.

B. braided brass and iron wires flattened into a strip.

C. a brass strip welded along its length to an iron strip.

D. a strip of metal with brass on one end, iron on the other end.

Page 46: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The fact that gasoline will overflow from an automobile tank on a hot day is evidence that the expansion of gasoline is

A. more than the tank material.

B. about the same as the tank material.

C. less than the tank material.

D. nonexistent.

Page 47: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The fact that gasoline will overflow from an automobile tank on a hot day is evidence that the expansion of gasoline is

A. more than the tank material.

B. about the same as the tank material.

C. less than the tank material.

D. nonexistent.

Page 48: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Microscopic slush in water tends to make the water

A. more dense.

B. less dense.

C. more slippery.

D. warmer.

Page 49: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Microscopic slush in water tends to make the water

A. more dense.

B. less dense.

C. more slippery.

D. warmer.

Page 50: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The greatest expansion of water occurs when

A. it turns to ice.

B. it cools at 4C.

C. it warms at 4C.

D. None of the above.

Page 51: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

The greatest expansion of water occurs when

A. it turns to ice.

B. it cools at 4C.

C. it warms at 4C.

D. None of the above

Comment:

Sure, ice water expands a bit until it reaches 4°C, but the expansion of water when it turns to ice is much greater.

Page 52: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Water at 4C will expand when it is slightly

A. cooled.

B. warmed.

C. Both of the above.

D. None of the above.

Page 53: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Water at 4C will expand when it is slightly

A. cooled.

B. warmed.

C. Both of the above.

D. None of the above.

Comment:

The density of 4C water will also decrease when slightly cooled or warmed.

Page 54: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Water at 4C will sink to the bottom of a pond because

A. of thermal currents.

B. of the absence of thermal currents at low temperatures.

C. like a rock, it is denser than surrounding water.

D. of the presence of microscopic ice crystals.

Page 55: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

Water at 4C will sink to the bottom of a pond because

A. of thermal currents.

B. of the absence of thermal currents at low temperatures.

C. like a rock, it is denser than surrounding water.

D. of the presence of microscopic ice crystals.

Page 56: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

When a sample of 0C water is heated, it first

A. expands.

B. contracts.

C. remains unchanged.

D. Not enough information.

Page 57: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

When a sample of 0C water is heated, it first

A. expands.

B. contracts.

C. remains unchanged.

D. Not enough information.

Explanation:

Water continues to contract until it reaches a temperature of 4C. With further increase in temperature beyond 4C, water then expands.

Page 58: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

When a sample of 4C water is cooled, it

A. expands.

B. contracts.

C. remains unchanged.

D. Not enough information.

Page 59: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

When a sample of 4C water is cooled, it

A. expands.

B. contracts.

C. remains unchanged.

D. Not enough information.

Explanation:

Parts of the water will crystallize and occupy more space.

Page 60: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

A metal ring has a gap in it, looking like the letter C. The ring expands when it is heated. Interestingly, the gap

A. becomes narrower.

B. expands also, as much as if metal filled the gap.

C. expands, but less than if metal filled it.

D. keeps its size, neither expanding or shrinking.

Page 61: Conceptual Physical Science 5e — Chapter 6 © 2012 Pearson Education, Inc. Conceptual Physical Science 5 th Edition Chapter 6: Thermal Energy and Thermodynamics

Conceptual Physical Science 5e — Chapter 6

© 2012 Pearson Education, Inc.

A metal ring has a gap in it, looking like the letter C. The ring expands when it is heated. Interestingly, the gap

A. becomes narrower.

B. expands also, as much as if metal filled the gap.

C. expands, but less than if metal filled it.

D. keeps its size, neither expanding or shrinking.