condensed cdio syllabus v2.0 doris brodeur · 2017-02-02 · 2 condensed cdio syllabus v2.0–doris...

94
1 Condensed CDIO Syllabus v2.0Doris Brodeur UNAL Julio 2011 Condensed CDIO Syllabus v2.0 June 2011 Doris Brodeur 1. DISCIPLINARY KNOWLEDGE AND REASONING 1.1 KNOWLEDGE OF UNDERLYING MATHEMATICS AND SCIENCES 1.2 CORE ENGINEERING FUNDAMENTAL KNOWLEDGE 1.3 ADVANCED ENGINEERING FUNDAMENTAL KNOWLEDGE, METHODS AND TOOLS 2 PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES 2.1 ANALYTICAL REASONING AND PROBLEM SOLVING 2.1.1Problem Identification and Formulation 2.1.2Modeling 2.1.3Estimation and Qualitative Analysis 2.1.4Analysis With Uncertainty 2.1.5Solution and Recommendation 2.2 EXPERIMENTATION, INVESTIGATION AND KNOWLEDGE DISCOVERY 2.2.1Hypothesis Formulation 2.2.2Survey of Print and Electronic Literature 2.2.3Experimental Inquiry 2.2.4Hypothesis Test and Defense 2.3 SYSTEM THINKING 2.3.1Thinking Holistically 2.3.2Emergence and Interactions in Systems 2.3.3Prioritization and Focus 2.3.4Trade-offs, Judgment and Balance in Resolution 2.4 ATTITUDES, THOUGHT AND LEARNING 2.4.1Initiative and the Willingness to Make Decisions in the Face of Uncertainty 2.4.2Perseverance, Urgency and Will to Deliver, Resourcefulness and Flexibility 2.4.3Creative Thinking 2.4.4Critical Thinking

Upload: others

Post on 21-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

1

Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011

Condensed CDIO Syllabus v2.0

June 2011

Doris Brodeur

1. DISCIPLINARY KNOWLEDGE AND REASONING 1.1 KNOWLEDGE OF UNDERLYING MATHEMATICS AND SCIENCES 1.2 CORE ENGINEERING FUNDAMENTAL KNOWLEDGE 1.3 ADVANCED ENGINEERING FUNDAMENTAL KNOWLEDGE, METHODS

AND TOOLS

2 PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES 2.1 ANALYTICAL REASONING AND PROBLEM SOLVING

2.1.1 Problem Identification and Formulation 2.1.2 Modeling 2.1.3 Estimation and Qualitative Analysis 2.1.4 Analysis With Uncertainty 2.1.5 Solution and Recommendation

2.2 EXPERIMENTATION, INVESTIGATION AND KNOWLEDGE DISCOVERY

2.2.1 Hypothesis Formulation 2.2.2 Survey of Print and Electronic Literature 2.2.3 Experimental Inquiry 2.2.4 Hypothesis Test and Defense

2.3 SYSTEM THINKING

2.3.1 Thinking Holistically 2.3.2 Emergence and Interactions in Systems 2.3.3 Prioritization and Focus 2.3.4 Trade-offs, Judgment and Balance in Resolution

2.4 ATTITUDES, THOUGHT AND LEARNING

2.4.1 Initiative and the Willingness to Make Decisions in the Face of Uncertainty 2.4.2 Perseverance, Urgency and Will to Deliver, Resourcefulness and Flexibility 2.4.3 Creative Thinking 2.4.4 Critical Thinking

Page 2: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

2

Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011

2.4.5 Self-awareness, Metacognition and Knowledge Integration 2.4.6 Lifelong Learning and Educating 2.4.7 Time and Resource Management

2.5 ETHICS, EQUITY AND OTHER RESPONSIBILITIES

2.5.1 Ethics, Integrity and Social Responsibility 2.5.2 Professional Behavior 2.5.3 Proactive Vision and Intention in Life 2.5.4 Staying Current on the World of Engineering 2.5.5 Equity and Diversity 2.5.6 Trust and Loyalty

3 INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION

3.1 TEAMWORK

3.1.1 Forming Effective Teams 3.1.2 Team Operation 3.1.3 Team Growth and Evolution 3.1.4 Team Leadership 3.1.5 Technical and Multidisciplinary Teaming

3.2 COMMUNICATIONS

3.2.1 Communications Strategy 3.2.2 Communications Structure 3.2.3 Written Communication 3.2.4 Electronic/Multimedia Communication 3.2.5 Graphical Communication 3.2.6 Oral Presentation 3.2.7 Inquiry, Listening and Dialog 3.2.8 Negotiation, Compromise and Conflict Resolution 3.2.9 Advocacy 3.2.10 Establishing Diverse Connections and Networking

3.3 COMMUNICATIONS IN FOREIGN LANGUAGES

3.3.1 Communications in English 3.3.2 Communications in Languages of Regional Nations 3.3.3 Communications in Other Languages

4 CONCEIVING, DESIGNING, IMPLEMENTING, AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT – THE INNOVATION PROCESS

Page 3: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

3

Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011

4.1 EXTERNAL, SOCIETAL, AND ENVIRONMENTAL CONTEXT 4.1.1 Roles and Responsibility of Engineers 4.1.2 The Impact of Engineering on Society and the Environment 4.1.3 Society’s Regulation of Engineering 4.1.4 The Historical and Cultural Context 4.1.5 Contemporary Issues and Values 4.1.6 Developing a Global Perspective 4.1.7 Sustainability and the Need for Sustainable Development

4.2 ENTERPRISE AND BUSINESS CONTEXT 4.2.1 Appreciating Different Enterprise Cultures 4.2.2 Enterprise Stakeholders, Strategy and Goals 4.2.3 Technical Entrepreneurship 4.2.4 Working in Organizations 4.2.5 Working in International Organizations 4.2.6 New Technology Development and Assessment 4.2.7 Engineering Project Finance and Economics

4.3 CONCEIVING, SYSTEMS ENGINEERING AND MANAGEMENT 4.3.1 Understanding Needs and Setting Goals 4.3.2 Defining Function, Concept and Architecture 4.3.3 System Engineering, Modeling and Interfaces 4.3.4 Development Project Management

4.4 DESIGNING 4.4.1 The Design Process 4.4.2 The Design Process Phasing and Approaches 4.4.3 Utilization of Knowledge in Design 4.4.4 Disciplinary Design 4.4.5 Multidisciplinary Design 4.4.6 Design for Sustainability, Safety, Aesthetics, Operability and other Objectives

4.5 IMPLEMENTING 4.5.1 Designing a Sustainable Implementation Process 4.5.2 Hardware Manufacturing Process 4.5.3 Software Implementing Process 4.5.4 Hardware Software Integration 4.5.5 Test, Verification, Validation, and Certification 4.5.6 Implementation Management

4.6 OPERATING 4.6.1 Designing and Optimizing Sustainable and Safe Operations 4.6.2 Training and Operations

Page 4: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

4

Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011

4.6.3 Supporting the System Life Cycle 4.6.4 System Improvement and Evolution 4.6.5 Disposal and Life-End Issues 4.6.6 Operations Management

CONDENSED EXTENDED CDIO SYLLABUS:

LEADERSHIP AND ENTREPRENEURSHIP

4.7 LEADING ENGINEERING ENDEAVORS Creating a Purposeful Vision

4.7.1 Identifying the Issue, Problem or Paradox 4.7.2 Thinking Creatively and Communicating Possibilities 4.7.3 Defining the Solution 4.7.4 Creating New Solution Concepts Delivering on the Vision

4.7.5 Building and Leading an Organization and Extended Organization 4.7.6 Planning and Managing a Project to Completion 4.7.7 Exercising Project/Solution Judgment and Critical Reasoning 4.7.8 Innovation – the Conception, Design and Introduction of New Goods and Services 4.7.9 Invention – the Development of New Devices, Materials or Processes that Enable New

Goods and Services 4.7.10 Implementation and Operation – the Creation and Operation of the Goods and

Services that will Deliver Value

4.8 ENTREPRENEURSHIP

4.8.1 Company Founding, Formulation, Leadership and Organization 4.8.2 Business Plan Development 4.8.3 Company Capitalization and Finances 4.8.4 Innovative Product Marketing 4.8.5 Conceiving Products and Services around New Technologies 4.8.6 The Innovation System, Networks, Infrastructure and Services 4.8.7 Building the Team and Initiating Engineering Processes 4.8.8 Managing Intellectual Property

Page 5: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

1

Instructor Reflective Memo –Doris Brodeur – UNAL – Julio 2011

Instructor Reflective Memo

Doris Brodeur1

Course _______________________________________ Semester _______________

Instructor(s) ____________________________________________________________

Intended Learning Outcomes

1. What are the intended learning outcomes for this course?

2. To what extent were you able to integrate the learning outcomes specified for this course in the

overall integrated curriculum plan for this program?

Teaching and Assessment Methods

3. What teaching and assessment methods did you use and what evidence indicates these methods

were successful or not?

Student Learning Assessment

4. How well did the students perform on each of the intended learning outcomes for this course?

(Where possible, make reference to specific data to support your conclusion.)

Continuous Improvement

5. What actions did you take this semester to improve the course as a result of previous reflections

or input from students or colleagues?

6. What did you learn about your teaching and assessment methods this semester?

7. What actions do you recommend to improve this course in the future?

1Directora de Proyectos Espaciales de Educación en Ingeniería del Instituto Tecnológico de Massachusetts (MIT)

Page 6: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

2

Instructor Reflective Memo –Doris Brodeur – UNAL – Julio 2011

Information Sharing

8. With whom have you shared this reflective memo?

Attachments

Please attach the course syllabus and samples of student work, if possible.

Rev. 06/27/11 – Doris R. Brodeur, Ph.D. - [email protected]

Page 7: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

1

Designing Student-Centered Courses – Doris Brodeur – UNAL – Julio 2011

Designing Student-Centered Courses

Selected References

Doris Brodeur1

Course Design

Hansen, E. J. (2011). Idea-based learning: A course design process to promote conceptual understanding.

Herndon,VA: Stylus. (Amazon, $25 USD)

O’Brien, J. G., Millis, B.J., & Cohen, M. W. (2008). The course syllabus: A learning-centered approach. San

Francisco, CA: Jossey-Bass. (Amazon, $22 USD)

Learning Principles

Ambrose, S. A., Bridges, M.W., DiPietro, M., Lovett, M. C., & Norman, M. K. (2010). How learning

works: Seven research-based principles for smart teaching. San Francisco: Jossey-Bass. (Amazon, $29

USD)

Conceptual Understanding

Novak, J. D. (rev. 2008). The theory underlying concept maps and how to construct them. Available at

http://www.msu.edu/~luckie/ctools. Accessed 06/20/11.

Wiggins, G., & McTighe, J. (2005). Understanding by design, exp. 2nd ed. Upper Saddle River, NJ:

Prentice Hall. (Amazon, $28 USD)

Zeilik, M. (2000). Concept mapping. Available at http://www.flaguide.org. Accessed 06/20/11.

Learning Outcomes

Gronlund, N. E., & Brookhart, S. M. (2008). Gronlund’s writing instructional objectives, 8th ed.

Upper Saddle River, NJ: Prentice Hall. (Amazon, $29 USD)

1Directora de Proyectos Espaciales de Educación en Ingeniería del Instituto Tecnológico de Massachusetts (MIT)

Page 8: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

2

Designing Student-Centered Courses – Doris Brodeur – UNAL – Julio 2011

Active and Experiential Learning

Beard, C., Wilson, J. P., & Wilson, J. P. (2006). Experiential learning: A best practice handbook for educators

and trainers, 2nd ed. London: Kogan Page. (Amazon, $36 USD)

Barkley, E. F. (2009). Student engagement techniques: A handbook for college faculty. San Francisco, CA:

Jossey-Bass. (Amazon, $30 USD)

Barkley, E. F., Cross, K. P., & Major, C.H. (2004). Collaborative learning techniques: A handbook for college

faculty. San Francisco, CA: Jossey-Bass. (Amazon, $29 USD)

Biggs, J. B. (2007). Teaching for quality learning at university, 3rd ed. Buckingham, England: Open

University Press. (Amazon, $50 USD)

Felder, R. M., & Brent, R. (2005). Understanding student differences. Journal of Engineering Education,

94 (1), 57-72.

Grow, G. (1991). Teaching learners to be self-directed, Adult Education Quarterly, 41(3), Spring, 125-

149. Available at: http://www.longleaf.net/ggrow. Accessed 06/20/11.

Mazur, E. (1996). Peer instruction: A user’s manual. Upper Saddle River, NJ: Prentice-Hall. (Amazon,

$43 USD)

Smith, K. A., Sheppard, S. D., Johnson, D. W., & Johnson, R. T. (2005). Pedagogies of engagement:

Classroom-based practices. Journal of Engineering Education, 94 (1), 1-15.

Project-Based Learning

Knowlton, D. S., & Sharp, D. C. (Eds.). (2003). Problem-based learning in the information age. New

Directions for Teaching and Learning, No. 95. San Francisco, CA: Jossey-Bass. (Amazon, $29

USD)

Savin-Baden, M., & Major, C. H. (2004). Foundations of problem-based learning.. Berkshire, England:

Society for Research into Higher Education and Open University Press. (used from $35 USD)

Student Learning Assessment

Angelo, T. A., & Cross, P. K. (1993). Classroom assessment techniques: A handbook for college teachers, 2d ed.

San Francisco, CA: Jossey-Bass. (Amazon, $36 USD)

Page 9: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

3

Designing Student-Centered Courses – Doris Brodeur – UNAL – Julio 2011

Ebert-May, D. Scoring rubrics. Available at http://www.flaguide.org. Accessed 06/20/11.

Field-tested learning assessment guide. Available at http://www.flaguide.org. Accessed 06/20/11.

Huba, M. E., & Freed, J. E. (1999). Learner-centered assessment on college campuses. Boston, MA: Allyn

and Bacon. (Amazon, $39 USD)

Stevens, D. D., & Levi, A. (2005). Introduction to rubrics: An assessment tool to save grading time, convey

effective feedback, and promote student learning. Sterling, VA: Stylus. (Amazon, $22 USD)

Stiggins, R., & Chappuis, J. (2011). An introduction to student-involved assessment for learning, 6th ed. Boston:

Addison-Wesley. (Amazon, $71 USD)

Engineering Education

Crawley, E. F., Malmqvist, J., Ostlund, S., & Brodeur, D. R. (2007). Rethinking engineering education: The

CDIO approach. New York: Springer. (Amazon, $95 USD, sometimes used copies are available for

< $10 USD)

Heywood, J. (2005). Engineering education: Research and development in curriculum and instruction. Hoboken,

NJ: Wiley and Piscataway, NJ: IEEE Press. (Amazon, $141 USD)

Page 10: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

1

Rubric for Assessing Projects – Doris Brodeur – UNAL – Julio 2011

Rubric for Assessing Projects

Doris Brodeur1

Student Name: ______________________ Date:_____________

Evaluator(s):__________________

Course Number and Name______________________ Team:________________________

The student demonstrated the following knowledge, skills, and attitudes:

Not at

All

To a

Limited

Extent

To a

Moderat

e Extent

To a

Great

Extent

To a

Very

Great

Extent

Knowledge of Underlying Sciences

(CDIO 1.1)

Applies mathematics to the analysis of final

design. Applies knowledge of science (physics,

biology, and/or chemistry) to the analysis of

final design.

1Directora de Proyectos Espaciales de Educación en Ingeniería del Instituto Tecnológico de Massachusetts (MIT)

Page 11: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

2

Rubric for Assessing Projects – Doris Brodeur – UNAL – Julio 2011

Engineering Reasoning and Problem

Solving (CDIO 2.1)

Applies logic in solving problems and analyzes

problems from different points of view.

Translates theory into practical applications

using appropriate technical techniques,

processes, and tools.

Experimentation and Knowledge Discovery

(CDIO 2.2)

Uses computer-based and other resources

effectively thus acquiring information from

multiple sources. Organizes and interprets data

appropriately. Designs and conducts

experiments to validate theories

System Thinking (CDIO 2.3)

Understands how events interrelate and

demonstrates an ability to take new information

and integrate it with past knowledge from

various courses, to solve technical problems.

Page 12: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

3

Rubric for Assessing Projects – Doris Brodeur – UNAL – Julio 2011

Creative Thinking (CDIO 2.4.3)

Suggests new approaches and challenges the

way things are normally done. Develops many

potential solutions to problems while

discouraging others from rushing to premature

conclusions.

Lifelong Learning (CDIO 2.4.6)

Learns independently and continuously seeks to

acquire new knowledge. Exceeds basic

requirements of an assignment and brings in

relevant outside experiences to provide

advanced solutions to the problems at hand.

Teamwork (CDIO 3.1)

Contributes a fair share to the completion of

the project. Participates, listens, and cooperates

with other team members. Shares information

and helps reconcile differences of opinions

when they occur.

Communication (CDIO 3.2)

Articulates ideas in a clear and concise fashion

and uses facts to reinforce points.. Plans and

delivers oral presentations effectively. Uses

technology and graphics to support ideas and

decisions. Addresses questions and issues raised

during the oral presentation. Written materials

flow logically and are grammatically correct

Conceiving (CDIO 4.3)

Sets system goals and requirements. Defines

function, concept, and architecture. Develops a

Page 13: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

4

Rubric for Assessing Projects – Doris Brodeur – UNAL – Julio 2011

realistic cost estimate to implement the design,

Uses rational, objective reasoning to arrive at

final design among alternatives.

Project Management (CDIO 4.3.4)

Sets goals, prioritizes tasks and meets project

milestones. Seeks clarification of task

requirements and takes corrective action based

upon feedback from others. Creates action

plans and timetables to complete assigned work.

Designing (CDIO 4.4)

Substantiates performance of final design and

its elements in an objective manner and does

not make unsubstantiated claims. Assesses the

environmental impacts of the final design in a

realistic manner. Assesses economic, social and

political impact of the final design. Suggests

ways to extend and improve design

Comments:

Based on the work of McGourty, J., Sebastian, C., & Steward, W., Gateway Coalition Freshman Design Project Faculty Review – Final Report. See http://www.gateway.org Adapted for The CDIO Initiative by D. R. Brodeur, [email protected], March 1, 2006.

Page 14: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

1

Rubric for Written Reports and Research Papers – Doris R. Brodeur – UNAL – Julio 2011

Rubric for Written Reports and Research Papers

Name _____________________________________ Date ______________________________

Course Number and Name ________________________________________________________

Needs Improvement

Acceptable

Good

Very Good

Main objective is easily identified and supported by the content.

Content, structure, and language are

geared to the intended audience.

Main points are emphasized and the

relationship between ideas is clear.

Arguments are clearly supported and in

sufficient detail.

Content is properly footnoted.

Page 15: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

2

Rubric for Written Reports and Research Papers – Doris R. Brodeur – UNAL – Julio 2011

Conclusions are valid and reasonable.

Significance and implications are clearly

addressed.

Writing is clear, organized, and coherent.

A sufficient number of appropriate

sources are cited.

Attention is given to grammar,

punctuation, spelling, and formatting.

OVERALL COMMENTS:

(Rev. 01/30/10 – Doris R. Brodeur – [email protected])

Page 16: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

1

Assessment of Class Presentation – Doris R. Brodeu – UNAL – Julio 2011

Assessment of Class Presentation Presenter _______________________________ Date _____________________________ Course Number and Name ______________________________________________________ Evaluator ___________________________________________________________________

Needs Improvement

Satisfactory

Good

Very Good

PRESENTATION QUALITY

Main objective of presentation is clearly stated.

Presenter maintains good eye contact with the audience.

Presenter effectively engages the audience.

Instructional media are used effectively (slides, posters, objects).

Appropriate materials are provided (outlines, discussion questions, bibliographies).

Presenter is poised and professional (appearance, voice, posture, gestures).

Presentation and interactions are well paced within the time limits.

Comments on presentation skills

INFORMATION

Information is accurate and substantive.

Main points are emphasized and the relationship between ideas is clear.

Ideas are supported with sufficient details.

Visuals and/or demonstrations support the main ideas.

Questions are answered accurately and concisely.

Page 17: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

2

Assessment of Class Presentation – Doris R. Brodeu – UNAL – Julio 2011

Comments on knowledge competence

OVERALL COMMENTS (continue on reverse side of form) Rev. 01/18/10

Page 18: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

1

Rubric for Assessing Teamwork – Doris R. Brodeur – UNAL – Julio 2011

Rubric for Assessing Teamwork Name ___________________________ Course __________________________ Date _______________ Using separate forms for each individual, rate yourself and each of your teammates.

Technical Contributions

Rarely

Sometimes

Often

Always

Has requisite technical knowledge

Pays attention to accuracy of details

Contributes good ideas

Understands the overall project

Effectively troubleshoots problems

Knows how to find answers

Collaboration

Rarely

Sometimes

Often

Always

Attends team meetings

Produces work on schedule

Effectively takes charge of tasks

Willing to take on tasks

Willing to help others

Communicates clearly with team

Informs other teams of progress

Listens to other points of view

Accepts advice about his/her work

Gives criticism constructively

Describe your colleague's major technical contributions to the project: Identify your colleague's major strength(s) as a team member Suggest one or two areas that need improvement Overall rating of collaboration (circle one): Poor Fair Good Excellent Rev. 05/28/10 -- Doris R. Brodeur -- [email protected]

Page 19: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

1

Rubric for Assessing Reflective Journals – Doris R. Brodeur – UNAL – Julio 2011

Rubric for Assessing Reflective Journals

3

Required entries are included, Entries are dated and identified, Observations are descriptive and detailed, Interpretations are reasonable and based on evidence, Shows an understanding of the engineering process Attention to format, grammar, and spelling

2

Most required entries are included, Entries are dated or identified, Observations are descriptive, Some reflection is evident, Interpretations are reasonable, Shows a basic awareness of the engineering process. Attention to format, grammar, and spelling

1

More than one required entry is missing, Entries are dated or identified, Observations are included, Reflection is insufficient or superficial, Inadequate attention to format, grammar, and spelling

0

Little or no basis for judgment

(Rev.05/28/10 – Doris R. Brodeur, Ph.D. – [email protected])

Page 20: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

1

Rubric for Assessing Portfolios – Doris Brodeur – UNAL – Julio 2011

Rubric for Assessing Portfolios

Doris Brodeur1

Task Description

1. Assemble your homework exercises, problem sets, readings, projects, lab reports, and other

classroom activities from this course into a folder or binder or other appropriate

display/presentation medium. You may create a digital portfolio and submit your work on a

CD.

2. Select those entries you feel show your progress toward the achievement of the course

learning outcomes and of your own personal expectations for this semester. Organize them

by learning outcome or expectation.

3. Use the template provided as the lead-in to each section of the portfolio. (available in a

separate package)

4. In a brief statement, explain why you selected each entry in your portfolio.

5. Provide a summary reflection that traces your progress during this semester, your evaluation

of your present competence level in this subject area, and your plans for continued

professional development in this area.

Assessment Criteria

Clearly stated course and personal learning outcomes

Sufficient and relevant entries that demonstrate each learning outcome

Organization by learning outcome

Clear statements of the rationale for each selection

1Directora de Proyectos Especiales de Educación en Ingeniería del Instituto Tecnológico de Massachusetts (MIT).

Page 21: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

2

Rubric for Assessing Portfolios – Doris Brodeur – UNAL – Julio 2011

Summary reflection that includes three required parts

Professional presentation

Holistic Rubric

A

Entries address at least five outcomes, clear statements of learning and

application, clear reasons for selection of entries, coherent and complete

summary reflection, good organization, professional presentation

B

Entries address at least five outcomes, one or more elements missing,

some organization, presentation is adequate

C

Entries are incomplete, little attention to organization or presentation

F

Incomplete or missing

(Rev. 05/28/10 – Doris R. Brodeur, Ph.D. – [email protected])

Page 22: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

1

Instructor Reflective Memo – Doris Brodeur – UNAL – Julio 2011

Instructor Reflective Memo

Doris Brodeur1

Course_______________________________________ Semester _______________

Instructor(s) ____________________________________________________________

Intended Learning Outcomes

1. What are the intended learning outcomes for this course?

2. To what extent were you able to integrate the learning outcomes specified for this course in the

overall integrated curriculum plan for this program?

Teaching and Assessment Methods

3. What teaching and assessment methods did you use and what evidence indicates these methods

were successful or not?

Student Learning Assessment

4. How well did the students perform on each of the intended learning outcomes for this course?

(Where possible, make reference to specific data to support your conclusion.)

Continuous Improvement

5. What actions did you take this semester to improve the course as a result of previous reflections

or input from students or colleagues?

1Directora de Proyectos Especiales de Educación en Ingeniería del Instituto Tecnológico de Massachusetts (MIT).

Page 23: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

2

Instructor Reflective Memo – Doris Brodeur – UNAL – Julio 2011

6. What did you learn about your teaching and assessment methods this semester?

7. What actions do you recommend to improve this course in the future?

Information Sharing

8. With whom have you shared this reflective memo?

Attachments

Please attach the course syllabus and samples of student work, if possible.

Rev. 06/27/11

Page 24: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

1

STUDENT COURSE EVALUATION – Doris Brodeur – UNAL – Julio 2011

Student Course Evaluation

The Blessed Edmund Rice School for Pastoral Ministry

in cooperation with Barry University

and the Diocese of Venice, Florida

M.A. in Pastoral Theology

Doris Brodeur1

________________________________ ____________ ______________________

Course Number and Title Semester/Year Instructor’s Name

SD = Strongly Disagree D = Disagree N = Neutral A = Agree SA = Strongly Agree

The Course

S

SD

g

D

N

N

A

A

S

SA

The learning objectives were clearly stated.

The course was well organized.

The course helped to broaden my understanding.

The course stimulated my interest to learn more.

The course provided elements of spiritual enrichment.

Assigned readings effectively supplemented lectures.

Textbooks were helpful resources.

I completed the assigned readings for each class.

1Directora de Proyectos Especiales de Educación en Ingeniería del Instituto Tecnológico de Massachusetts (MIT).

Page 25: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

2

STUDENT COURSE EVALUATION – Doris Brodeur – UNAL – Julio 2011

The physical environment was conducive to learning.

The social environment was conducive to learning.

Feedback about my work was helpful.

Grading criteria were clearly explained.

I achieved the course learning objectives.

Overall, this was a good course.

The Instructor . . .

S

SD

D

D

N

N

A

A

S

SA

gave clear explanations.

used relevant examples and illustrations.

made connections with other courses and experiences.

maintained a pace appropriate to my learning level.

encouraged me to take an active part in my own

learning.

was available outside of class to answer questions.

Overall, the instructor contributed to my learning.

How many classes did you attend?

_____ All _____ All but 1 _____ All but 2 _____ Absent 3 or more

Page 26: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

3

STUDENT COURSE EVALUATION – Doris Brodeur – UNAL – Julio 2011

How effective were these teaching, learning, and assessment strategies in helping you to achieve the

learning objectives in this course? (If the strategy was not used in the course, or if you did not

participate, check Not Applicable.)

Teaching, Learning, and

Assessment Strategies

Not at all

Effective

Generally

Ineffective

Generally

Effective

Very

Effective

Not

Applicable

Class lectures

Small-group discussions

Student presentations

Reflection papers

Journals

Semester projects

Research papers

Oral exams

Written exams (in class)

Take-home exams

What were the best parts of the course?

What would improve the course?

Other comments:

How many courses have you completed toward your M.A. in Pastoral Theology? ______

(Rev. 02-11-10)

Page 27: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

1

El programa de estudio CDIOE– Doris Brodeur – UNAL – Julio 2011

El programa de Estudio CDIO

4° Nivel de detalle

Doris Brodeur

1 CONOCIMIENTO TÉCNICO Y RAZONAMIENTO 1.1 CONOCIMIENTO DE CIENCIAS SUBYACENTES 1.1.1 (Definido por el programa) 1.2 CONOCIMIENTO DE INGENIERÍA BÁSICA FUNDAMENTAL 1.2.1 (Definido por el programa) 1.3 CONOCIMIENTO DE INGENIERÍA BÁSICA AVANZADA 1.3.1 (Definido por el programa) 2 HABILIDADES Y ATRIBUTOS PERSONALES Y PROFESIONALES 2.1 ANALIZAR Y RESOLVER PROBLEMAS DE INGENIERÍA 2.1.1 Identificación y formulación de problemas Evaluar datos y síntomas Analizar suposiciones y fuentes de sesgo Demostrar fijación de prioridades de temas en el contexto de los objetivos generales Formular un plan de ataque (incorporando soluciones modelo, analíticas y numéricas, análisis cuantitativo, experimentación y consideración de la incertidumbre) 2.1.2 Modelos Emplear suposiciones para simplificar sistemas y entornos complejos Escoger y aplicar modelos conceptuales y cualitativos Escoger y aplicar modelos cuantitativos y simulaciones 2.1.3 Valoración y análisis cuantitativo Calcular órdenes de magnitud, límites y tendencias Aplicar pruebas de coherencia y errores (límites, unidades, etc.) Demostrar la generalización de soluciones analíticas 2.1.4 Análisis bajo condiciones de incertidumbre Extraer información incompleta y ambigua Aplicar modelos de probabilidades y estadísticos de eventos y secuencias Practicar análisis de costo-beneficio y riesgos de ingeniería Discutir análisis de decisiones Listar márgenes y reservas

Page 28: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

2

El programa de estudio CDIOE– Doris Brodeur – UNAL – Julio 2011

2.1.5 Resolución de problemas y recomendaciones Sintetizar soluciones de problemas Analizar resultados esenciales de soluciones y someter datos a prueba1 Analizar y reconciliar divergencias en resultados Formular un resumen de recomendaciones Evaluar posibles mejoras del proceso de resolución de problemas 2.2 EXPERIMENTACIÓN Y DESCUBRIMIENTO DE CONOCIMIENTO 2.2.1 Formulación de hipótesis Elegir cuestiones críticas a ser examinadas Formular hipótesis que se pondrán a prueba Discutir controles y grupos de control 2.2.2 Estudio de materiales impresos y electrónicos Escoger estrategia de investigación de materiales impresos Demostrar capacidad de búsqueda e identificación de información empleando herramientas de biblioteca (catálogos en línea, bases de datos, motores de búsqueda) Demostrar capacidad de clasificar información primaria Cuestionar la calidad y la fiabilidad de la información Identificar los elementos esenciales y las innovaciones contenidos en la información Identificar interrogantes de investigación que no han sido respondidos Listar citas de materiales de consulta 2.2.3 Indagación experimental Formular el concepto y la estrategia experimental Discutir las precauciones cuando se emplean seres humanos en experimentos Ejecutar el diseño del experimento Ejecutar los protocolos de prueba y los procedimientos experimentales Ejecutar mediciones experimentales Analizar e informar datos experimentales Comparar datos experimentales con los modelos disponibles 2.2.4 Prueba y defensa de hipótesis Discutir la validez estadística de los datos Discutir las limitaciones de los datos empleados Preparar conclusiones apoyadas por datos, necesidades y valores Evaluar posibles mejoras del proceso de descubrimiento de conocimiento 2.3 PENSAMIENTO SISTEMICO 2.3.1 Pensar holísticamente Identificar y definir un sistema, su conducta y sus elementos Emplear métodos interdisciplinarios que aseguren que se entienda el sistema desde todas las perspectivas pertinentes Identificar el contexto social, empresarial y técnico del sistema Identificar las interacciones externas del sistema y el impacto de la conducta sobre el sistema

Page 29: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

3

El programa de estudio CDIOE– Doris Brodeur – UNAL – Julio 2011

2.3.2 Interacciones en sistemas Discutir las abstracciones necesarias para definir y hacer un modelo de un sistema Identificar las propiedades de conducta y funcionales (intencionales y no intencionales) que surjan del sistema Identificar las interfaces importantes entre los elementos Reconocer la adaptación evolutiva a lo largo del tiempo 2.3.3 Establecer prioridades y concentración Ubicar y clasificar todos los factores que sean pertinentes al sistema como un todo Identificar los factores que impulsan desde el todo Explicar adjudicaciones de recursos para resolver temas de impulso 2.3.4 Compensaciones, decisiones y equilibrio en la resolución Identificar tensiones y factores para resolver mediante compensaciones Escoger y emplear soluciones que equilibren diversos factores, resuelvan tensiones y optimicen el sistema como un todo Describir soluciones flexibles comparadas con óptimas a lo largo de la vida útil del sistema Evaluar posibles mejoras de la manera en que se pensó sobre el sistema 2.4 DESTREZAS Y ACTITUDES PERSONALES 2.4.1 Iniciativa y disposición a asumir riesgos Identificar las necesidades y oportunidades de iniciativa Discutir los posibles riesgos y beneficios de una acción Explicar los métodos y los tiempos de la iniciación de un proyecto Demostrar liderazgo en nuevos emprendimientos, con un sesgo hacia la acción apropiada Practicar acción definitiva, entrega de resultados e informar sobre las acciones 2.4.2 Perseverancia y flexibilidad Demostrar confianza en sí mismo, entusiasmo y pasión Demostrar la importancia de la ardua labor, de la intensidad y de prestar atención a los detalles Demostrar adaptación al cambio Demostrar disposición a y habilidad de trabajar independientemente Demostrar disposición a trabajar con otros y a considerar y aceptar diferentes puntos de vista Demostrar aceptación de las críticas y reacción positiva Discutir el equilibrio entre la vida personal y profesional 2.4.3 Pensamiento creativo Demostrar conceptualización y abstracción Demostrar síntesis y generalización Ejecutar el proceso de invención Discutir el papel de la creatividad en el arte, la ciencia, las humanidades y la tecnología 2.4.4 Pensamiento crítico Analizar el enunciado del problema Escoger soluciones y argumentos lógicos Evaluar las pruebas que apoyen Ubicar perspectivas, teorías y hechos contradictorios Identificar falacias lógicas

Page 30: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

4

El programa de estudio CDIOE– Doris Brodeur – UNAL – Julio 2011

Poner a prueba hipótesis y conclusiones 2.4.5 Conciencia de los conocimientos, las destrezas y las actitudes personales Describir las destrezas, los intereses, los puntos fuertes y las actitudes personales Discutir la extensión de las habilidades personales y la responsabilidad personal de mejorarse a si mismo para sobreponerse a puntos débiles importantes Discutir la importancia de la profundidad y la amplitud del conocimiento 2.4.6 Curiosidad y aprendizaje continuo Discutir la motivación para la autoeducación continua Demostrar destrezas de autoeducación Discutir el estilo de aprendizaje personal Discutir la formación de relaciones con mentores 2.4.7 Gestión del tiempo y los recursos Discutir la fijación de prioridades de las tareas Explicar la importancia y/o la urgencia de las tareas Explicar la ejecución eficiente de las tareas 2.5 DESTREZAS Y ACTITUDES PROFESIONALES 2.5.1 Ética, integridad, responsabilidad y rendición de cuentas Demostrar las normas y los principios éticos personales Demostrar el coraje de actuar conforme a los principios a pesar de la adversidad Identificar la posibilidad de conflicto entre los imperativos profesionalmente éticos Demostrar comprensión de que es aceptable cometer errores, pero que es necesario asumir la responsabilidad de los mismos Practicar adjudicación debida de crédito a los colaboradores Demostrar dedicación a servir 2.5.2 Conducta profesional Discutir lo que representa una presencia profesional Explicar la cortesía profesional Identificar costumbres y normas internacionales de contacto interpersonal 2.5.3 Planificación proactiva de la carrera personal Discutir la visión del futuro personal Explicar redes con profesionales Identificar la cartera propia de destrezas profesionales 2.5.4 Actualidad de conocimiento en el campo de la ingeniería Discutir el impacto que pueden tener los nuevos descubrimientos científicos Describir el impacto social y técnico de nuevas tecnologías e innovaciones Discutir la familiaridad con las prácticas y la tecnología actuales en el ámbito de la ingeniería Explicar los vínculos entre la teoría y la práctica de la ingeniería 3 DESTREZAS INTERPERSONALES: TRABAJO EN QUIPO Y COMUNICACIÓN 3.1 TRABAJO EN EQUIPO 3.1.1 Formación de equipos efectivos

Page 31: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

5

El programa de estudio CDIOE– Doris Brodeur – UNAL – Julio 2011

Identificar las etapas de la formación y el ciclo de vida de los equipos Interpretar tareas y procesos de equipos Identificar papeles y responsabilidades de los equipos Analizar los objetivos, las necesidades y las características (estilos de trabajo, diferencias culturales) de los miembros del equipo Analizar los puntos fuertes y débiles del equipo Discutir las reglas de confidencialidad, rendición de cuentas e iniciativa del equipo 3.1.2 Operación de equipos Escoger metas y fechas Ejecutar la planificación y la facilitación de reuniones efectivas Aplicar las reglas del equipo Practicar comunicación efectiva (escuchar activamente, colaborar, proporcionar y obtener información) Demostrar poder hacer comentarios positivos y efectivos Practicar la planificación, programación y ejecución de un proyecto Formular soluciones de problemas (creatividad y toma de decisiones) Practicar negociación y resolución de conflictos 3.1.3 Expansión y evolución del equipo Discutir estrategias de reflexión, evaluación y autoevaluación Identificar destrezas para el mantenimiento y el progreso del equipo Identificar destrezas para el progreso individual dentro del equipo Explicar estrategias para la comunicación del equipo y la preparación de materiales escritos 3.1.4 Liderazgo Explicar las metas y los objetivos del equipo Practicar la gestión del proceso del equipo Practicar estilos de liderazgo y de facilitación (dirigir, capacitar, apoyar, delegar) Explicar métodos de motivación (incentivo, ejemplos, reconocimiento, etc.) Practicar representar el equipo a terceros Describir el papel de mentores y asesores 3.1.5 Formación de equipos técnicos Describir el trabajo en diferentes tipos de equipos Equipos con disciplinas mixtas (incluyendo no de ingeniería) Equipos pequeños comparados con equipos grandes Distancia, distribuidos y entornos electrónicos Demostrar colaboración técnica con los miembros del equipo 3.2 COMUNICACIÓN EFECTIVA 3.2.1 Estrategia de comunicación Analizar la situación de comunicación Escoger objetivos de comunicaciones Analizar las necesidades y la composición del público Analizar el contexto de la comunicación Escoger una estrategia de comunicación

Page 32: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

6

El programa de estudio CDIOE– Doris Brodeur – UNAL – Julio 2011

Escoger la combinación apropiada de medios Escoger un estilo de comunicación (proponer, repasar, colaborar, documentar, enseñar) Seleccionar el contexto y la organización 3.2.2 Estructura de comunicación Formular argumentos lógicos y persuasivos Formular una estructura apropiada y una relación entre ideas Escoger pruebas de apoyo pertinentes, dignas de credibilidad y correctas Practicar concisión, nitidez, precisión y claridad del lenguaje Analizar factores retóricos (tales como el sesgo del público) Identificar comunicaciones entre disciplinas y culturas 3.2.3 Comunicación por escrito Demostrar coherencia y flujo al redactar Practicar escribir con ortografía, puntuación y gramática correctas Demostrar diagramación del documento Demostrar redacción técnica Aplicar diferentes estilos de redacción (informal, memorandos formales, informes, etc.) 3.2.4 Comunicación electrónica y multimedia Demostrar preparación de presentaciones electrónicas Identificar las normas vinculadas al uso de correo electrónico, correo de voz y conferencias por video Aplicar diferentes estilos electrónicos (tablas, red, etc.) 3.2.5 Comunicación gráfica Demostrar trazado de esquemas y dibujo Demostrar construcción de tablas y gráficos Interpretar versiones y dibujos técnicos 3.2.6 Presentación oral y comunicación interpersonal Practicar preparar presentaciones y medios de apoyo con lenguaje, estilo, tiempos y flujo apropiados Uso apropiado de comunicaciones no verbales (gestos, contacto ocular, aplomo) Demostrar capacidad de contestar preguntas de manera efectiva 3.3 COMUNICACIÓN EN IDIOMAS EXTRANJEROS 3.3.1 Inglés 3.3.2 Idiomas de países industriales regionales 3.3.3 Otros idiomas 4 CONCEBIR, DISEÑAR, IMPLEMENTAR Y OPERAR SISTEMAS EN EL CONTEXTO EMPRESARIAL Y SOCIAL 4.1 CONTEXTO EXTERNO Y SOCIAL 4.1.1 Roles y responsabilidades de los ingenieros Aceptación de los objetivos y los roles de la profesión de ingeniería Aceptación de la responsabilidad de los ingenieros hacia la sociedad

Page 33: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

7

El programa de estudio CDIOE– Doris Brodeur – UNAL – Julio 2011

4.1.2 El impacto de la ingeniería en la sociedad Explicar el impacto de la ingeniería sobre la sociedad, los conocimientos y los sistemas económicos en la cultura moderna 4.1.3 Forma en que la sociedad reglamenta la ingeniería Aceptación del rol de la sociedad y de sus agentes en la reglamentación de la ingeniería Reconocer la manera en que los sistemas legales y políticos reglamentan la ingeniería y ejercen influencia sobre ella Describir la manera en que las sociedades profesionales otorgan permisos y fijan normas Describir cómo se crea, utiliza y defiende la propiedad intelectual 4.1.4 El contexto histórico y cultural Describir la índole y la historia diversa de las sociedades humanas, así como sus tradiciones literarias, filosóficas y artísticas Describir la exposición y el análisis apropiado del lenguaje, el pensamiento y los valores 4.1.5 Temas y valores contemporáneos Describir los asuntos y valores políticos, sociales, legales y ambientales importantes Definir el proceso mediante el que se fijan los valores contemporáneos y el rol personal en esos procesos Definir los mecanismos para la expansión y la difusión del conocimiento 4.1.6 Desarrollo de una perspectiva global Describir la internacionalización de la actividad humana Reconocer las similitudes y las diferencias en las normas políticas, sociales, económicas, comerciales y técnicas de diversas culturas Reconocer inter-empresas internacionales y los acuerdos y alianzas intergubernamentales 4.2 EMPRESAS Y CONTEXTO COMERCIAL 4.2.1 Apreciación de las diferentes culturas de las empresas Reconocer las diferencias en los procesos, las culturas y las mediciones del éxito entre diversas culturas empresariales: Corporaciones comparadas con empresas académicas, gubernamentales, sin ánimo de lucro u ONGs Impulsadas por el mercado o por normas Grandes o pequeñas Centralizadas o distribuidas Investigación y desarrollo u operaciones Maduras o en fase de crecimiento comparadas con de emprendimiento Ciclos de desarrollo más prolongados o más veloces Con o sin participación de mano de obra organizada 4.2.2 Estrategia, objetivos y planificación de las empresas Expresar la misión y el alcance de la empresa Reconocer la competencia y los mercados principales de una empresa Reconocer el proceso de investigación y tecnología Reconocer las alianzas más importantes y las relaciones con abastecedores Hacer una lista de los objetivos y las mediciones financieras y administrativas

Page 34: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

8

El programa de estudio CDIOE– Doris Brodeur – UNAL – Julio 2011

Reconocer la planificación y el control de las finanzas Describir las relaciones con interesados (con propietarios, empleados, clientes, etc.) 4.2.3 Emprendimiento técnico Reconocer oportunidades de emprendimiento que puedan ser aprovechadas con tecnología Reconocer tecnologías que puedan crear nuevos productos y sistemas Describir las finanzas y la organización de un emprendimiento 4.2.4 Trabajar exitosamente en organizaciones Definir la función de la gerencia Describir los diversos roles y responsabilidades en una organización Describir los roles de las organizaciones funcionales y de programas Describir cómo se puede trabajar efectivamente dentro de la jerarquía y las organizaciones Describir los cambios, la dinámica y la evolución de las organizaciones 4.3 CONCEPCIÓN E INGENIERÍA DE SISTEMAS 4.3.1 Fijación de los objetivos y requisitos de los sistemas Identificar las necesidades y las oportunidades de los mercados Conocer e interpretar las necesidades de los clientes Identificar oportunidades que deriven de nuevas tecnologías o de necesidades latentes Explicar factores que fijen el contexto de las necesidades Identificar las metas, estrategias, capacidades y alianzas de la empresa Ubicar y clasificar a los competidores y fijar puntos de referencia de información Interpretar influencias éticas, sociales, ambientales, legales y normativas Explicar la probabilidad de cambio en factores que influyan sobre el sistema, sus metas y los recursos disponibles Interpretar las metas y las necesidades del sistema Identificar el lenguaje y el formato de las metas y las necesidades Interpretar los objetivos iniciales (según las necesidades, las oportunidades y otras influencias) Explicar los sistemas y las mediciones de desempeño Interpretar la medida en que las necesidades se completan y la coherencia con que lo hacen 4.3.2 Definición de la función, el concepto y la arquitectura Identificar las funciones necesarias de los sistemas (y las especificaciones de conducta) Seleccionar conceptos de sistemas Identificar el nivel de tecnología apropiado Analizar las compensaciones entre y la recombinación de conceptos Identificar la forma y la estructura arquitectónica de alto nivel Discutir el desglose de la forma en elementos, la asignación de función a los elementos y la definición de interfaces 4.3.3 Crear modelos de sistemas y asegurar que se puedan alcanzar los objetivos Ubicar modelos apropiados de desempeño técnico Discutir el concepto de aplicación y operaciones Discutir el valor y los costos del ciclo de vida útil (diseño, implementación, operaciones, oportunidad, etc.) Discutir compensaciones entre diversos objetivos, funciones, conceptos y estructuras e iteración

Page 35: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

9

El programa de estudio CDIOE– Doris Brodeur – UNAL – Julio 2011

hasta alcanzar la convergencia 4.3.4 Desarrollo de gestión de proyectos Describir el control de costos, el desempeño y la programación del proyecto Explicar los puntos de transición apropiados y las revisiones Explicar la gestión de la configuración y la documentación Interpretar el desempeño comparado con la línea base Definir el proceso de valor ganado Discutir el cálculo y la adjudicación de recursos Identificar riesgos y alternativas Describir las posibles mejoras del proceso de desarrollo {a-S2} 4.4 DISEÑO 4.4.1 El proceso de diseño Escoger requisitos de cada elemento o componente derivado de metas y requisitos del sistema Analizar diseños alternativos Seleccionar el diseño inicial Emplear prototipos y someter a prueba artículos en el desarrollo del sistema Ejecutar optimización apropiada en presencia de restricciones Demostrar iteración hasta convergencia Sintetizar el diseño final Demostrar adaptación a los requisitos cambiantes 4.4.2 Las etapas y los enfoques del diseño Explicar las actividades en las etapas del diseño del sistema (tales como diseño conceptual, preliminar y detallado) Discutir modelos de procesos apropiados para proyectos específicos de desarrollo (en cascada, espiral, concurrente, etc.) Discutir el proceso de productos únicos, de plataforma y derivados 4.4.3 Utilización del conocimiento en el diseño Emplear conocimientos técnicos y científicos Practicar pensamiento creativo y crítico y resolución de problemas Discutir trabajo anterior en la práctica, normalización y volver e emplear diseños (incluyendo emplear ingeniería reversa y volver a diseñar) Discutir captura de conocimiento de diseño 4.4.4 Diseño disciplinario Escoger técnicas, herramientas y procesos apropiados Explicar la calibración y validación de la herramienta de diseño Practicar análisis cuantitativo de alternativas Practicar creación de modelos, simulaciones y puestas a prueba Discutir el refinamiento analítico del diseño 4.4.5 Diseño multidisciplinario Identificar las interacciones entre disciplinas Identificar convencionalismos y suposiciones disímiles Explicar diferencias en la madurez de modelos disciplinarios

Page 36: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

10

El programa de estudio CDIOE– Doris Brodeur – UNAL – Julio 2011

Explicar entornos de diseño multidisciplinario Explicar el diseño multidisciplinario 4.4.6 Diseño con objetivos múltiples (DFX) Demostrar diseño relativo: Al desempeño, al costo del ciclo de vida útil y al valor A la estética y a factores humanos A la implementación, verificación, puesta a prueba y sustentabilidad ambiental Operación Mantenimiento, fiabilidad y seguridad Durabilidad, evolución, mejoramiento y retiro del producto 4.5 IMPLEMENTACIÓN 4.5.1 El diseño del proceso de implementación Expresar los objetivos y las mediciones del desempeño de aplicación, el costo y la calidad Reconocer el diseño del sistema de aplicación: Adjudicación de tareas y trazado de células o unidades Flujo de trabajo Consideraciones relativas a usuarios y operadores humanos 4.5.2 El proceso de fabricación de hardware Describir la fabricación de piezas Describir el ensamblaje de piezas en montajes de mayor tamaño Definir tolerancias, variabilidad, características principales y control del proceso estadístico 4.5.3 El proceso de la implementación del software Explicar el desglose de los componentes de alto nivel en diseños modulares (incluyendo algoritmos y estructuras de datos) Discutir algoritmos (estructuras de datos, flujo de control, flujo de datos) Describir el lenguaje de programación Ejecutar el diseño de bajo nivel (codificación) Describir la construcción del sistema 4.5.4 Integración de hardware y software Describir la integración del software al hardware (tamaño del procesador, las comunicaciones, etc.) Describir la integración del software con sensores, accionadores y hardware mecánico Describir la función y la seguridad del hardware y el software 4.5.5 Puesta a prueba, verificación, validación y certificación Discutir procedimientos de pruebas y análisis (hardware o. software, aceptación o cualificación) Discutir la verificación del desempeño en función de las necesidades del sistema Discutir la validación del desempeño en función de las necesidades del cliente Explicar las normas de certificación 4.5.6 Gestión de la implementación Describir la organización y la estructura de implementación Discutir fuentes de materiales, asociaciones y cadenas de abastecimiento Reconocer el control de los costos de implementación, desempeño y programación

Page 37: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

11

El programa de estudio CDIOE– Doris Brodeur – UNAL – Julio 2011

Describir la garantía de calidad y seguridad Describir las posibles mejoras del proceso de implementación 4.6 OPERACIÓN 4.6.1 Diseñar y optimizar las operaciones Interpretar los objetivos y las mediciones del desempeño, el costo y el valor de la operación Explicar la arquitectura y el desarrollo del proceso de la operación Explicar el análisis y el modelo (y la misión) de la operación 4.6.2 Capacitación y operación Describir la capacitación para las operaciones profesionales: Simulación Instrucción y programas Procedimientos Reconocer la enseñanza del funcionamiento a los consumidores Describir los procesos de funcionamiento Reconocer las interacciones en el proceso de funcionamiento 4.6.3 Apoyo del ciclo de vida útil Explicar el mantenimiento y la logística Describir el desempeño y la fiabilidad en el ciclo de vida útil Describir el valor y los costos del ciclo de vida útil Explicar los comentarios para facilitar el mejoramiento del sistema 4.6.4 Mejoramiento y evolución de los sistemas Definir mejoras del producto planificadas con anterioridad Reconocer mejoras basadas en necesidades observadas en el funcionamiento Reconocer mejoras evolutivas del sistema Reconocer mejoras y soluciones contingentes resultantes de necesidades de funcionamiento 4.6.5 Desechar y asuntos vinculados al final de la vida útil Definir temas del final de la vida útil Listar opciones para desechar Definir el valor residual al final de la vida útil Listar las consideraciones ambientales para desechar 4.6.6 Gestión de las operaciones Describir la organización y la estructura de las operaciones Reconocer asociaciones y alianzas Reconocer el control del costo, el desempeño y la Programación de las operaciones Describir la garantía de calidad y seguridad Definir la gestión del ciclo de vida útil Reconocer posibles mejoras del proceso de las operaciones

Page 38: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

THE CDIO APPROACH

TO ENGINEERING

EDUCATION

Program Evaluation and the

CDIO Standards v2.0

Universidad Nacionale, Bogota, Colombia

13 July 2011

Doris R. Brodeur, Ph.D.

Massachusetts Institute of Technology

[email protected]

Page 39: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

2

Session Objectives

Briefly describe the CDIO

Standards

Evaluate your programs

using the CDIO Standards

v2.0

Create a plan of action to

advance your curriculum

reform efforts

Page 40: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

3

Advice for

Implementation

Evaluate your program. What are your strengths

and weaknesses with respect to the CDIO

Standards?

Identify some early successes

Generate buy-in from faculty

Be ready to assess changes

Identify resources needed before you embark on

large changes -- especially for design-implement

experiences

Page 41: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

4

The CDIO Standards

1. The Context

2. Learning Outcomes

3. Integrated Curriculum

4. Introduction to

Engineering

5. Design-Implement

Experiences

6. Engineering

Workspaces

7. Integrated Learning Experiences

8. Active Learning

9. Enhancement of Faculty Skills Competence

10. Enhancement of Faculty Teaching Competence

11. Learning Assessment

12. Program Evaluation

(See The CDIO Standards v 2.0)

Page 42: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

5

CDIO Self-Evaluation Template --

Compliance with the CDIO Standards v2.0

CDIO STANDARD

EVIDE NCE OF COMPLIANCE

RATING

ACTIONS

1 CDIO as Context

Adoption of the principle that product and

system lifecycle development and deployment

Ğ Conceiving, Designing, Implementing and

Operating - are the context for engineering

educat ion

2 CDIO Syllabus Outcomes

Specific, detailed learning outcomes for

personal, interpersonal and product and system

building skills, consistent with program goals

and validated by program stakeholders

3 Integrated Curriculum

A curriculum designed with mutually

support ing disciplinary subjects, with an

explicit plan to integrate personal,

interpersonal and product and system building

skills

4 Introduction to Engineering

An introductory course that provides the

framework for engineering practice in product

and system building, and introduces essent ial

personal and interpersonal skills

(See CDIO Self-Evaluation Template)

Page 43: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

6

General Rubric

(See The CDIO Standards v 2.0)

5 Evidence related to the standard is regularly reviewed and used to make

improvements.

4 There is documented evidence of the full implementation and impact of the

standard across program components and constituents.

3 Implementation of the plan to address the standard is underway across the

program components and constituents.

2 There is a plan in place to address the standard.

1 There is an awareness of need to adopt the standard and a process in place to

address it.

0 There is no documented plan or activity related to the standard.

Scale Criteria

Page 44: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

7

Sample Specific Rubric --

Standard 3 - Integrated Curriculum

(See The CDIO Standards v 2.0)

5 Stakeholders regularly review the integrated curriculum and make

recommendations and adjustments as needed.

4 There is evidence that personal, interpersonal, product, process, and system

building skills are addressed in all courses responsible for their implementation.

3 Personal, interpersonal, product, process, and system building skills are

integrated into one or more years in the curriculum.

2 A curriculum plan that integrates disciplinary learning, personal, interpersonal,

product, process, and system building skills is approved by appropriate groups.

1 The need to analyze the curriculum is recognized and initial mapping of

disciplinary and skills learning outcomes underway.

0 There is no integration of skills or mutually supporting disciplines in the

program.

Scale Criteria

Page 45: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

8

CDIO Standard 1 -- The Context

Adoption of the principle that product, process, and

system lifecycle development and deployment --

Conceiving, Designing, Implementing, Operating -- are

the context for engineering education

•Replicates what engineers do

•Provides the framework for teaching skills

•Promotes deeper learning of the fundamentals

•Helps to attract, motivate, and retain students

(See The CDIO Standards v 2.0)

Page 46: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

9

CDIO Standard 2 -- Learning Outcomes

Specific, detailed learning outcomes for personal and

interpersonal skills, and product, process, and system

building skills, as well as disciplinary knowledge,

consistent with program goals and validated by program

stakeholders

•Organizes the framework for curriculum design

•Serves as the basis of student learning assessment

(See The CDIO Standards v 2.0)

Page 47: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

10

CDIO Standard 3 --

Integrated Curriculum

A curriculum designed with mutually supporting

disciplinary courses, with an explicit plan to integrate

personal, interpersonal, and product, process, and

system building skills

•Disciplinary courses or modules make explicit connections among

related and supporting content and learning outcomes

•Explicit plan identifies ways in which the integration of engineering

skills and multidisciplinary connections are to be made

(See The CDIO Standards v 2.0)

Page 48: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

11

Examples Of Evidence of Compliance

with the CDIO Standards v2.0

1. The Context

Mission statement

Faculty and students who can

articulate mission

2. Learning Outcomes

Program learning outcomes

Validation for content and

proficiency levels with key

stakeholders

3. Integrated Curriculum

Document plan integrating

personal and professional skills

Inclusion of personal and

professional skills in courses

Student acquisition of essential

skills

Two or more project-based

courses in the curriculum

Co-curricular opportunities

Page 49: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

12

CDIO Standard 4:

Introduction to Engineering

An introductory course that provides the framework for engineering practice in product, process, and system building, and introduces essential personal and interpersonal skills

Stimulates students' interest in engineering

Strengthens student motivation

Provides an early start to the development of the essential skills described in the CDIO Syllabus.

(See The CDIO Standards v 2.0)

Page 50: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

13

CDIO Standard 5 --

Design-Implement Experiences

A curriculum that includes two or more design-

implement experiences, including one at a basic

level and one at an advanced level

•Add realism to the curriculum

•Illustrate connections between engineering disciplines

•Foster students’ creative abilities

•Are motivating for students

(See The CDIO Standards v 2.0)

Page 51: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

14

CDIO Standard 6 --

Engineering Workspaces

Workspaces and laboratories that support and

encourage hands-on learning of product,

process, and system building, disciplinary

knowledge, and social learning

•Students are directly engaged in their own learning

•Settings where students learn from each other

•Newly created or remodeled from existing spaces

(See The CDIO Standards v 2.0)

Page 52: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

15

Examples Of Evidence of Compliance

with the CDIO Standards v2.0

4. Introduction to Engineering

Student acquisition of

essential CDIO skills

High student interest in

engineering

5. Design-Implement Experiences

Two or more design-build

courses in curriculum

Co-curricular opportunities

6. Engineering Workspaces

Adequate spaces and engineering tools

High levels of satisfaction with workspaces

Page 53: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

16

CDIO Standard 7 --

Integrated Learning Experiences

Integrated learning experiences that lead to the

acquisition of disciplinary knowledge, as well as

personal and interpersonal skills, and product, process,

and system building skills

•Curriculum design and learning outcomes can be realized only if the

teaching and learning experiences make dual use of student learning

time

•Faculty serve as role models in teaching product, process, and

system building skills at the same time as engineering principles and

theory.

(See The CDIO Standards v 2.0)

Page 54: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

17

CDIO Standard 8 --

Active Learning

Teaching and learning based on active experiential learning methods

Active learning engages students directly in thinking and problem solving activities.

Students take on roles that simulate professional engineering practice, for example, with simulations and case studies

(See The CDIO Standards v 2.0)

Page 55: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

18

CDIO Standard 11 --

Learning Assessment

Assessment of student learning in personal and interpersonal skills, and product, process, and system building skills, as well as in disciplinary knowledge

Measure of the extent to which a student has achieved specified learning outcomes

Faculty usually conduct this assessment within their respective courses

Uses a variety of methods matched appropriately to learning outcomes

(See The CDIO Standards v 2.0)

Page 56: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

19

Examples Of Evidence of Compliance

with the CDIO Standards v2.0

7. Integrated Learning Experiences

Evidence of CDIO skills and disciplinary skills in learning experiences

Involvement of key stakeholders

8. Active Learning

Evidence of personal and professional skills and disciplinary skills in learning experiences

Successful implementation of active learning methods

High levels of student achievement and satisfaction

11. Learning Assessment

Assessment methods

matched to learning

outcomes

Successful

implementation of

assessment methods

Page 57: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

20

CDIO Standard 9 --

Enhancement Of Faculty Competence

Actions that enhance faculty competence in personal, interpersonal, and product and system building skills

Faculty develop these skills best in contexts of professional engineering practice

Nature and scope of faculty development vary with the resources and intentions of different programs and institutions

(See The CDIO Standards v 2.0)

Page 58: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

21

CDIO Standard 10 --

Enhancement Of Faculty

Teaching Competence

Actions that enhance faculty competence in providing integrated learning experiences, in using active experiential learning methods, and in assessing student learning

CDIO programs provide support for faculty to improve their teaching and assessment methods

The nature and scope of faculty development practices vary with programs and institutions

(See The CDIO Standards v 2.0)

Page 59: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

22

CDIO Standard 12 --

Program Evaluation

A system that evaluates programs against these twelve standards, and provides feedback to students, faculty, and other stakeholders for the purposes of continuous improvement

Judgment of the overall value of a program based on evidence of a program’s progress toward attaining its goals

Feedback of the results form the basis of decisions about plans for continuous improvement

(See The CDIO Standards v 2.0)

Page 60: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

23

Examples Of Evidence of Compliance

with the CDIO Standards v 2.0

9 - 10. Enhancement of Faculty

Competence

Commitment of resources to

faculty development

Majority of faculty with

competence in personal and

professional skills

Majority of faculty with

competence in teaching and

assessment methods

12. Program Evaluation

Documented continuous

improvement process

Evidence of data-driven

changes

Page 61: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

24

CDIO Collaborators -- as of 1 May 2011

(N = 60)

4

11

1

1

3

14

8

4

1

3

4

5

1

Page 62: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

25

For more information about

• Visit the CDIO website, http://www.cdio.org

• Read Rethinking Engineering Education: The CDIO Approach (E.

F. Crawley, Johan Malmqvist, Sören Östlund, Doris R. Brodeur,

New York: Springer, 2007)

• Participate in an Introductory CDIO Workshop at a regional or

international meeting

• Attend the annual international conference in June

• Contact a CDIO university in your country or region

Page 63: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

1

CDIO Self- Evaluation Template– Doris R. Brodeur – UNAL – Julio 2011

CDIO Self-Evaluation Template

Compliance with CDIO Standards

Institution:

Program:

Evaluators:

Date:

CDIO STANDARD

EVIDENCE OF COMPLIANCE

RATING

ACTIONS

1 CDIO as Context

Adoption of the principle that product and

system lifecycle development and deployment

– Conceiving, Designing, Implementing and

Operating - are the context for engineering

education

Page 64: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

2

CDIO Self- Evaluation Template– Doris R. Brodeur – UNAL – Julio 2011

2 CDIO Syllabus Outcomes

Specific, detailed learning outcomes for

personal, interpersonal and product and system

building skills, consistent with program goals

and validated by program stakeholders

3 Integrated Curriculum

A curriculum designed with mutually

supporting disciplinary subjects, with an

explicit plan to integrate personal,

interpersonal and product and system building

skills

4 Introduction to Engineering

An introductory course that provides the

framework for engineering practice in product

and system building, and introduces essential

personal and interpersonal skills

5 Design-Build Experiences

A curriculum that includes two or more design-

build experiences, including one at a basic

Page 65: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

3

CDIO Self- Evaluation Template– Doris R. Brodeur – UNAL – Julio 2011

level and one at an advanced level

6 CDIO Workspaces

Workspaces and laboratories that support and

encourage hands-on learning of product and

system building, disciplinary knowledge, and

social learning

7 Integrated Learning Experiences

Integrated learning experiences that lead to the

acquisition of disciplinary knowledge, as well

as personal, interpersonal and product and

system building skills

8 Active Learning

Teaching and learning based on active,

experiential learning methods

9 Enhancement of Faculty CDIO Skills

Actions that enhance faculty competence in

personal, interpersonal and product and system

building skills

10 Enhancement of Faculty Teaching Skills

Actions that enhance faculty competence in

providing integrated learning experiences, in

Page 66: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

4

CDIO Self- Evaluation Template– Doris R. Brodeur – UNAL – Julio 2011

using active experiential learning methods, and

in assessing student learning

11 CDIO Skills Assessment

Assessment of student learning in personal,

interpersonal and product and system building

skills, as well as in disciplinary knowledge

12 CDIO Program Evaluation

A system that evaluates programs against these

twelve standards and provides feedback to

students, faculty, and other stakeholders for the

purposes of continuous improvement

Page 67: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

1

Reforma de la enseñanza de la Ingeniería– CDIO – UNAL – Julio 2011

Reforma de la Enseñanza de Ingeniería

La Iniciativa CDIO

Conceive Design Implement Operate

LA INICIATIVA CDIO

CDIO es la abreviatura de Concebir – Diseñar – Implementar – Operar. Es un marco

educativo innovador dirigido a producir la próxima generación de líderes de ingeniería. La industria

se beneficia de la Iniciativa CDIO porque produce ingenieros con los conocimientos, el talento y la

experiencia que necesita específicamente. Los educadores se interesan porque el programa de

estudios de la Iniciativa CDIO sienta las bases de una planificación curricular y de resultados basados

en evaluaciones que se pueden adaptar a todas las escuelas de ingeniería. Los estudiantes son

entusiastas porque se gradúan con una gama de experiencias personales, interpersonales y de

formación de sistemas sin paralelo que les permite sobresalir en equipos reales de ingeniería y

producir nuevos productos y sistemas.

LA VISIÓN

La tarea del sector académico es producir ingenieros expertos en el aspecto técnico,

conscientes de la sociedad y astutos en el aspecto empresarial. Estas cualidades son esenciales para

sustentar la productividad, la innovación y la calidad en un entorno basado cada vez más en sistemas

tecnológicamente complejos. En años recientes han surgido conflictos entre la pedagogía de la

enseñanza de la ingeniería y las exigencias que impone el mundo real a los nuevos ingenieros. A fin

de resolver esos conflictos en la educación contemporánea de la ingeniería debemos conceptualizar y

elaborar una nueva visión.

La Iniciativa CDIO prevé una educación que imparte los conocimientos fundamentales en un

contexto de Concebir - Diseñar – Implementar – Operar sistemas y productos. Sin embargo, además

de impartirles los aspectos técnicos fundamentales, debe preparar a los estudiantes para que

Page 68: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

2

Reforma de la enseñanza de la Ingeniería– CDIO – UNAL – Julio 2011

desempeñen papeles exitosos en el desarrollo de sistemas y productos. Su currículo está organizado

alrededor de las disciplinas, pero con numerosas actividades CDIO incorporadas al currículo.

Las disciplinas interactúan y se apoyan entre sí. El programa debe ser rico en proyectos

estudiantiles suplementados por pasantías en la industria y contar con aprendizaje activo, práctico y

en grupo tanto en el salón de clase como en un espacio de trabajo y laboratorios modernos y

conectados con el mundo exterior. Se mejora continuamente mediante un proceso de evaluación

integral.

La diferencia que desde una determinada perspectiva se puede plantear entre el éxito y la

excelencia, tema que desde hace años ha sido objeto de mi atención, nos obliga a hablar sobre la

mediocridad y también sobre una que otra tentación que debe enfrentar el ser humano. Este tema,

no sólo es de interés para los estudiantes universitarios, en especial para aquellos que se acercan a su

graduación, sino también para los profesores responsables del ejercicio de la docencia1.

LA NECESIDAD DE LA INICIATIVA CDIO

Durante una gran parte del siglo XX, la enseñanza de la ingeniería en las universidades ofrecía

una exposición efectiva a la práctica. Era enseñada por ingenieros que estaban ejerciendo su

profesión y se concentraba en la resolución de problemas tangibles mientras que los estudiantes

aprendían a conceptualizar y diseñar productos y sistemas. Pero la rápida expansión del

conocimiento científico y técnico ocurrida a fines de la década de los 1990 causó que la enseñanza de

la ingeniería se convirtiera en la enseñanza de la ciencia de la ingeniería, con menor concentración en

la práctica.

Estudiantes de ingeniería refinan sus destrezas prácticas en la década de los 1940.

Page 69: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

3

Reforma de la enseñanza de la Ingeniería– CDIO – UNAL – Julio 2011

Los líderes de la industria empezaron a hallar que los estudiantes que se graduaban, si bien

tenían una sólida capacitación técnica, carecían de muchas de las habilidades requeridas en las

situaciones de ingeniería del mundo real. Para delinear sus necesidades, algunas grandes empresas

crearon listas de las habilidades que deseaban que poseyeran sus ingenieros. Para estimular a las

instituciones educativas a que cumplieran con las necesidades del mundo real y rediseñaran sus

métodos de instrucción, la Junta de Acreditación de Ingeniería y Tecnología elaboró una lista de sus

expectativas para los nuevos ingenieros. Esas listas identificaban el destino; era la tarea de los

educadores planificar la ruta.

Conscientes de la creciente tensión entre las exigencias científicas y prácticas, un grupo de

catedráticos de ingeniería adoptó el reto de reformar la enseñanza de la ingeniería. El resultado de esa

tarea es la Iniciativa CDIO.

DETERMINACIÓN DE HABILIDADES, OBJETIVOS, COMPETENCIAS

La primera tarea que emprendimos para convertir nuestra visión en un programa modelo fue

elaborar y codificar una comprensión integral de las habilidades con que necesitaban contar los

ingenieros contemporáneos. Esta tarea se logró realizar mediante el uso de grupos de enfoque de

interesados formados por profesores de ingeniería, estudiantes, representantes de la industria,

comités de revisiones universitarias, ex alumnos y catedráticos destacados. Se preguntó a los grupos

de enfoque: ―¿Qué conocimientos, destrezas y actitudes deben poseer los estudiantes de ingeniería al

graduarse? Las respuestas de los grupos se registraron gráficamente.

Después organizamos los resultados de los grupos de enfoque, junto con los tópicos

mencionados anteriormente que habíamos extraído de los puntos de vista de la industria, el gobierno

y el sector académico de EE UU sobre lo que se esperaba de los graduados de ingeniería. Todo ese

material se reunió en un programa de estudios preliminar que contenía la primera organización del

contenido en cuatro niveles.

Los cuatro niveles superiores del contenido de nuestro programa de estudios se

correlacionarían directamente con nuestros cuatro objetivos principales: educar a estudiantes que

entendieran cómo concebir-diseñar-implementar-operar (Nivel 4 – CDIO) sistemas de ingeniería

complejos con valor agregado (Nivel 1 – Técnico) en un entorno de ingeniería moderno en el que se

Page 70: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

4

Reforma de la enseñanza de la Ingeniería– CDIO – UNAL – Julio 2011

trabajara en equipo (Nivel 3 – Interpersonal) y que demás fueran individuos maduros y reflexivos

(Nivel 2 – Personal).

Este esquema preliminar fue evaluado mediante una encuesta de líderes destacados de la

industria y la docencia, así como de ex alumnos de EE UU. Los comentarios cualitativos de la

encuesta fueron incorporados, lo que mejoró la organización, la claridad y la cobertura del programa

de estudios.

Todas las partes del segundo nivel (X.X) del programa de estudios fueron examinadas por

expertos en la materia. Combinando los resultados de ese examen de pares y una verificación de

otras fuentes completamos la versión preliminar de los tópicos del programa de estudios. Para

asegurar que contáramos con un programa de estudios completo y facilitar la comparación, el

contenido del programa de estudios fue correlacionado explícitamente con los documentos integrales

fuente.

Determinamos que los atributos que debe tener un graduado de ingeniería incluyen entender

las materias fundamentales, entender el proceso de diseño y fabricación y poseer una perspectiva

multidisciplinaria, así como buenas destrezas de comunicación y normas éticas elevadas.

Para convertir nuestra lista de temas y destrezas en objetivos de aprendizaje, necesitábamos

contar con un proceso que nos permitiera determinar el nivel de competencia sobre cada tópico del

programa de estudios que se esperaba de los estudiantes de ingeniería. Este proceso requirió incluir

comentarios de interesados y estimular el consenso. Ello se logró creando una encuesta bien

formulada, realizando las encuestas en grupos de interesados apropiados y reflejando los resultados.

REFORMA DEL PROGRAMA DE ESTUDIOS

Para alcanzar nuestro objetivos de aprendizaje debemos mejorar nuestros currículos. El reto es

encontrar maneras innovadoras de profundizar el conocimiento de los aspectos técnicos básicos y, a

la vez, aprender destrezas CDIO. Eso requiere cambios en la estructura curricular, aprovechar el

aprendizaje extracurricular y las oportunidades de aprendizaje fuera del campus, y elaborar nuevos

materiales de enseñanza.

Page 71: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

5

Reforma de la enseñanza de la Ingeniería– CDIO – UNAL – Julio 2011

Desde el principio del currículo CDIO los estudiantes de ingeniería están expuestos a experiencias de ingeniería y se les da la oportunidad de

construir cosas.

Debemos diseñar un nuevo currículo. Eso requiere que primero se fijen puntos de referencia

en el currículo existente desde la perspectiva del programa de estudios CDIO. Para subsanar las

deficiencias identificadas se prevén tres estructuras curriculares innovadoras. La primera es una

introducción a la experiencia de la ingeniería, que motiva a los estudiantes a ser ingenieros, los

expone a destrezas iniciales esenciales y posteriormente les permite construir algo. A este proceso lo

llamamos la piedra angular.

Las disciplinas convencionales se pueden coordinar mejor y vincularse para demostrar que la

ingeniería requiere esfuerzos interdisciplinarios. Finalmente, la piedra superior se modifica para que

incluya una experiencia sustancial en la que los estudiantes diseñen, construyan y operen un producto

o sistema. Una vez que existen esas nuevas estructuras se puede elaborar un plan para superponer las

destrezas en el programa de estudios CDIO. Estimular y facilitar el aprendizaje extracurricular en la

forma de proyectos estudiantiles puede expandir significativamente el tiempo disponible para

aprender destrezas CDIO, y las pasantías y cooperativas pueden pasar a ser extensiones diseñadas

más integradas de la experiencia general de aprendizaje.

REFORMA DE LA ENSEÑANZA Y EL APRENDIZAJE

Tras habernos dirigido a qué enseñamos y dónde enseñamos, debemos considerar el aspecto

pedagógico de cómo enseñamos y de cómo aprenden los estudiantes.

Para entender las mejoras pedagógicas de la Iniciativa CDIO tenemos que considerar qué

sabemos sobre la experiencia de los estudiantes y su efecto sobre el aprendizaje. Los estudiantes de

ingeniería tienden a aprender de lo concreto a lo abstracto. Sin embargo, los estudiantes de hoy en

Page 72: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

6

Reforma de la enseñanza de la Ingeniería– CDIO – UNAL – Julio 2011

día no llegan a las universidades con experiencias prácticas de haber jugueteado con automóviles o

construido radios. Tienen pocas bases de experiencia personal para apoyar la teoría que intentarán

aprender.

Para dirigirse a estas necesidades de aprendizaje y a otras, la Iniciativa CDIO recomienda

mejoras en cuatro ámbitos básicos: aumentar la enseñanza activa y práctica, hacer hincapié en la

formulación y resolución de problemas, hacer hincapié en el aprendizaje de conceptos y reforzar los

mecanismos de reacción al aprendizaje.

La investigación educativa confirma que las técnicas de aprendizaje activo mejoran

significativamente el aprendizaje de los estudiantes. El énfasis de la Iniciativa CDIO en el aprendizaje

activo estimula a los estudiantes a desempeñar papeles más activos en su propio aprendizaje. El

aprendizaje práctico y en equipo son ejemplos importantes del aprendizaje activo, pero estas técnicas

se pueden emplear para incrementar la actividad de los estudiantes incluso en entornos de clases

tradicionales.

La resolución de problemas es la destreza esencial de la ingeniería. La Iniciativa CDIO apoya

el aprendizaje de formulación de problemas, valoración, creación de modelos y soluciones. Parte de

la enseñanza está organizada en un formato modificado de aprendizaje de resolución de problemas,

pero siempre con un fuerte énfasis en lo básico. Un esfuerzo afín en el aprendizaje de conceptos

funciona para asegurar que los estudiantes dominen las herramientas y las técnicas de la ingeniería, así

como los conceptos subyacentes más profundos.

Como parte integral del proceso de participación activa, los docentes deben sondear el

aprendizaje, para determinar si cumple con los objetivos de aprendizaje establecidos. Un elemento

fundamental de la Iniciativa CDIO es encontrar nuevas maneras de obtener las reacciones de los

estudiantes, que comprenden desde respuestas electrónicas en tiempo real en salones de clase hasta

sistemas de respuesta ―entre clases‖.

ESPACIOS DE TRABAJO Y LABORATORIOS

Page 73: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

7

Reforma de la enseñanza de la Ingeniería– CDIO – UNAL – Julio 2011

El entorno de aprendizaje de ingeniería debe incluir espacios en que los que puedan hacer funcionar sus propios experimentos.

Los ingenieros diseñan y construyen productos y sistemas. Al proporcionar a los estudiantes

experiencias repetidas de diseñar y construir, desarrollan y refuerzan conocimientos prácticos sólidos

de las materias fundamentales y obtienen las destrezas necesarias para diseñar y crear nuevos

productos y sistemas. En la Iniciativa CDIO se diseñan cursos que refuerzan este aprendizaje de la

teoría a la práctica.

Experiencias de concebir, diseñar, implementar y operar se entretejen en el currículo

especialmente en el curso final introductorio y en el curso terminal. El curso terminal se expande

potencialmente en una experiencia de varios semestres, más estrechamente vinculada a disciplinas,

que resulta en que los estudiantes diseñen, construyan y hagan funcionar un producto. Con el

desarrollo de la teoría junto con la aplicación práctica, los estudiantes aprenden la aplicabilidad y las

limitaciones de la teoría.

Para permitir que nuestros estudiantes entiendan que concebir-diseñar-implementar-operar es

el contexto de la educación, es recomendable que construyamos espacios de trabajo y laboratorios

que apoyen a y estén organizados alrededor de C, D, I y O.

Concebir espacios estimula la interacción con seres humanos para entender las necesidades e

incluye espacios para equipos y personales dirigidos a estimular la reflexión y el desarrollo

conceptual. Son en gran medida zonas libres de tecnología.

Debe haber instalaciones que permitan que se presenten a los estudiantes los paradigmas

modernos del diseño colaborativo realzado digitalmente, así como de la fabricación moderna y la

integración del hardware y software. El funcionamiento es difícil de enseñar en un entorno

Page 74: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

8

Reforma de la enseñanza de la Ingeniería– CDIO – UNAL – Julio 2011

académico, pero los estudiantes pueden aprender a hacer funcionar sus experimentos, así como los

experimentos en clase de los docentes.

Las simulaciones de operaciones reales, así como los vínculos electrónicos a entornos de

operaciones reales suplementan la experiencia directa de los estudiantes. El entorno de aprendizaje

de ingeniería debe incluir espacios en que los estudiantes puedan hacer funcionar sus propios

experimentos.

Los espacios de trabajo y los laboratorios también deben apoyar otras formas de aprendizaje

activo y práctico, incluyendo experimentación, laboratorios de diversas disciplinas e interacción

social. El espacio debe facilitar y estimular la formación de equipos y las actividades en equipo.

EVALUACIÓN

La Iniciativa CDIO es un proceso de mejoramiento que requiere una evaluación rigurosa que

orienta el proceso de reforma educativa. El elemento de evaluación desarrollado como parte de la

Iniciativa CDIO evalúa el aprendizaje individual del estudiante y el impacto general de la iniciativa

educativa.

La evaluación se basa en objetivos. Los análisis confirman que muchos objetivos educativos

contemporáneos son vagos y relativamente imposibles de medir. Las prácticas integrales de la

Iniciativa CDIO se basan en taxonomías educativas de aceptación general que garantizan enunciados

de evaluacion claras y posibles de medir de todos los objetivos educativos.

El programa de estudios de la Iniciativa CDIO codifica cerca de 80 atributos identificables

que han sido identificados como importantes para los estudiantes que se gradúan de ingenieros.

Debido a que es imposible evaluar activamente cada uno de ellos, ciertos procedimientos permiten la

evaluación de conjuntos representativos de atributos de desempeño CDIO. El hecho de que varias

universidades han implementado la Iniciativa CDIO permite realizar controles cruzados pedagógicos

y curriculares, así como comparaciones programáticas importantes.

La Iniciativa CDIO adopta herramientas de evaluación, como carteras y análisis de diseños, de

otros profesionales que adoptan la creatividad, el diseño y el espíritu empresarial. Los estudiantes

pasan a ser responsables no sólo por el aprendizaje, sino también por la autoevaluación y la

evaluación de sus compañeros. Se evalúan los cambios de actitud y la progresión de las destrezas.

Page 75: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

9

Reforma de la enseñanza de la Ingeniería– CDIO – UNAL – Julio 2011

Además de evaluar el desempeño pedagógico, la Iniciativa CDIO evalúa la eficiencia de los

cambios curriculares y reconoce su impacto. En efecto, los elementes de evaluación integral de la

Iniciativa CDIO proporcionan un proceso completo que cuantifica la efectividad del programa en

una multitud de planos.

BENEFICIOS Y ARQUITECTURA ABIERTA

Mediante su concepto y las reformas afines del currículo y la pedagogía, la creación de

espacios de trabajo, las actividades y el proceso de evaluación, la Iniciativa CDIO resuelve el

conflicto en la enseñanza de la ingeniería entre el aprendizaje de la parte teórica y la adquisición de

otras destrezas importantes.

La Iniciativa CDIO beneficia a los estudiantes, a sus futuros empleadores y a nuestra sociedad.

Los estudiantes están mejor equipados para entrar a la industria y para diseñar y construir nuevos

productos y sistemas que beneficien a la humanidad, para ventaja competitiva de sus empresas. Para

entregar este beneficio, la Iniciativa CDIO debe tener un impacto sobre los programas educativos y

los estudiantes. La Iniciativa CDIO es un enfoque generalizable de la reforma de la enseñanza de la

ingeniería que ha sido puesto en práctica en la enseñanza de ingeniería aeroespacial, mecánica y

electrónica en universidades estadounidenses y europeas, así como en programas de física aplicada.

La Iniciativa CDIO es un emprendimiento de arquitectura abierta. Está diseñada

específicamente para, y se ofrece a, todos los programas universitarios de ingeniería para que la

adapten a sus necesidades específicas. Es un esfuerzo en desarrollo constante. Las universidades

participantes elaborarán materiales y metodologías para compartirlos con otras. Muchas ya tienen

capacidades únicas que pueden enriquecer otros programas. Por lo tanto, estamos desarrollando una

arquitectura abierta y accesible de los materiales del programa, con miras a diseminar e intercambiar

recursos.

LOS COLABORADORES

La Iniciativa CDIO fue concebida en el Massachusetts Institute of Technology (MIT) a fines

de la década de los 1990. En 2000 — con financiamiento de la Wallenberg Foundation — Chalmers

Page 76: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

10

Reforma de la enseñanza de la Ingeniería– CDIO – UNAL – Julio 2011

Institute of Technology, Linköping University y Royal Institute of Technology, todos de Suecia,

colaboraron con MIT para formar la Iniciativa CDIO.

Desde entonces, Queen’s University de Irlanda del Norte, Technical University de Dinamarca,

la Academia Naval de Estados Unidos y la University of Pretoria se han unido a la Iniciativa, la

última como el Centro CDIO para el Sur de África. Otras universidades de EE UU, Canadá, Europa

y Asia están participando en actividades CDIO y se espera que pasen a ser colaboradoras oficiales en

el futuro cercano. De hecho, la Iniciativa CDIO se ha convertido en un emprendimiento mundial.

Esta expansión permite que los colaboradores de la Iniciativa compartan y unan recursos y

experiencias y adapten el programa de estudios CDIO a la creciente variedad de disciplinas de

ingeniería.

Al diseñar y administrar la Iniciativa CDIO, nos extendimos más allá de los muros

tradicionales de las instituciones de ingeniería para formar un grupo sin paralelo de expertos en

diseño de currículos, enseñanza y evaluación del aprendizaje, diseño y construcción y profesionales

de comunicación. Está disponible para proporcionar información y asistir a otros que deseen

explorar la adopción de la Iniciativa CDIO en sus instituciones. Hay disponible una gran cantidad de

material de desarrollo, que abarca desde encuestas de modelos hasta herramientas de evaluación e

informes de instituciones que pusieron en práctica la Iniciativa CDIO. Para ponerse en contacto con

el equipo CDIO, envíe un mensaje por correo electrónico a [email protected] o llame por teléfono al

director de comunicaciones de la Iniciativa CDIO, al (617) 253 –1564. Para más información sobre la

Iniciativa CDIO, visite http://www.cdio.org.

El Programa de Estudios CDIO (Condensado) 1 CONOCIMIENTO TÉCNICO Y RAZONAMIENTO

1.1. CONOCIMIENTO DE CIENCIAS SUBYACENTES

Page 77: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

11

Reforma de la enseñanza de la Ingeniería– CDIO – UNAL – Julio 2011

1.2. CONOCIMIENTO DE INGENIERÍA BÁSICA FUNDAMENTAL 1.3. CONOCIMIENTO DE INGENIERÍA BÁSICA AVANZADA 2 DESTREZAS Y ATRIBUTOS PERSONALES Y PROFESIONALES 2.1. RAZONAMIENTO Y RESOLUCIÓN DE PROBLEMAS DE INGENIERÍA 2.1.1. Identificación y formulación de problemas 2.1.2. Modelos 2.1.3. Valoración y análisis cuantitativo 2.1.4. Análisis con incertidumbre 2.1.5. Solución y recomendación 2.2. EXPERIMENTACIÓN y DESCUBRIMIENTO DE CONOCIMIENTO 2.2.1 Formulación de hipótesis 2.2.2 Estudio de materiales impresos y Electrónicos 2.2.3. Indagación experimental 2.2.4. Prueba y defensa de hipótesis 2.3. PENSAR EN SISTEMAS 2.3.1. Pensar holísticamente 2.3.2. Interacciones en sistemas 2.3.3. Sentar prioridades y concentración 2.3.4. Compensaciones, decisiones y equilibrio en la resolución 2.4. DESTREZAS Y ACTITUDES PERSONALES 2.4.1. Iniciativa y disposición a asumir riesgos 2.4.2. Perseverancia y flexibilidad 2.4.3. Pensamiento creativo 2.4.4. Pensamiento crítico 2.4.5. Toma de conciencia de los conocimientos, las destrezas y las actitudes personales 2.4.6. Curiosidad y aprendizaje vitalicio 2.4.7. Gestión del tiempo y los recursos 2.5. DESTREZAS Y ACTITUDES PROFESIONALES 2.5.1. Ética, integridad, responsabilidad y rendición de cuentas profesional 2.5.2. Conducta profesional 2.5.3. Planificación proactiva de la carrera personal

2.5.4. Permanecer actualizado sobre el mundo de la ingeniería 3 DESTREZAS INTERPERSONALES: TRABAJO EN EQUIPO Y COMUNICACIÓN 3.1. TRABAJO EN EQUIPO 3.1.1. Formación de equipos efectivos 3.1.2. Operación de equipos 3.1.3. Expansión y evolución del equipo 3.1.4. Liderazgo 3.1.5. Formación de equipos técnicos 3.2. COMUNICACIÓN 3.2.1. Estrategia de comunicación 3.2.2. Estructura de comunicación 3.2.3. Comunicación por escrito 3.2.4. Comunicación electrónica y multimedios 3.2.5. Comunicación gráfica 3.2.6. Presentación oral y comunicación Interpersonal 3.3. COMUNICACIÓN EN IDIOMAS EXTRANJEROS 3.3.1. Inglés 3.3.2. Idiomas en la Unión Europea 3.3.3. Idiomas fuera de la Unión Europea 4 CONCEBIR, DISEÑAR, IMPLEMENTAR Y OPERAR SISTEMAS EN EL CONTEXTO EMPRESARIAL Y SOCIAL 4.1. CONTEXTO EXTERNO Y SOCIAL 4.1.1. Roles y responsabilidades de los ingenieros 4.1.2. El impacto de la ingeniería en la sociedad 4.1.3. Forma en que la sociedad reglamenta la Ingeniería 4.1.4. El contexto histórico y cultural 4.1.5. Temas y valores contemporáneos 4.1.6. Desarrollo de una perspectiva global 4.2. EMPRESAS Y CONTEXTO COMERCIAL 4.2.1. Apreciación de las diferentes culturas de las empresas 4.2.2. Estrategia, objetivos y planificación de las empresas 4.2.3. Emprendimiento técnico

Page 78: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

12

Reforma de la enseñanza de la Ingeniería– CDIO – UNAL – Julio 2011

4.2.4. Trabajar exitosamente en organizaciones 4.3. CONCEPCIÓN E INGENIERÍA DE SISTEMAS 4.3.1. Fijación de los objetivos y requisitos de los sistemas 4.3.2. Definición de la función, el concepto y la arquitectura 4.3.3. Crear modelos de sistemas y asegurar que se puedan alcanzar los objetivos 4.3.4. Desarrollo de gestión de proyectos 4.4. DISEÑO 4.4.1. El proceso de diseño 4.4.1. Las etapas y los enfoques del diseño 4.4.2. Utilización del conocimiento en el diseño 4.4.3. Diseño disciplinario 4.4.4. Diseño multidisciplinario 4.4.5. Diseño con objetivos múltiples

4.5. IMPLEMENTACIÓN 4.5.1. El diseño del proceso de implementación 4.5.2. El proceso de la fabricación de hardware 4.5.3. El proceso de la implementación de software 4.5.4. Integración de hardware y software 4.5.5. Puesta a prueba, verificación, validación y certificación 4.5.6. Gestión de la implementación 4.6. OPERACIÓN 4.6.1. Diseñar y optimizar las operaciones 4.6.2. Capacitación y operaciones 4.6.3. Apoyo del ciclo de vida útil 4.6.4. Mejoramiento y evolución de los sistemas 4.6.5. Desechos y asuntos vinculados al final de la vida útil 4.6.6. Gestión de las operaciones

Page 79: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

1

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

The Cdio Standards V 2.0

(with customized rubrics)

8 December 2010

Background

A major international project to reform undergraduate engineering education was launched in

October 2000. This project, called The CDIO Initiative, has expanded to include engineering programs

worldwide. The vision of the project is to provide students with an education that stresses

engineering fundamentals set in the context of Conceiving--Designing--Implementing--Operating

real-world systems, processes, and products. The CDIO Initiative has three overall goals – to

educate students who are able to:

1. Master a deep working knowledge of technical fundamentals

2. Lead in the creation and operation of new products and systems

3. Understand the importance and strategic impact of research and technological

development on society

The CDIO Initiative creates a range of resources that can be adapted and implemented by

individual programs to meet these goals. These resources support a curriculum organized around

mutually supporting disciplines, interwoven with learning experiences related to personal and

interpersonal skills, and product, process, and system building skills. Students receive an education

rich in design-implement experiences and active and experiential learning, set in both the classroom

and modern learning workspaces. One of these resources, the CDIO Standards, is provided in this

document. For more information about the CDIO Initiative, visit http://www.cdio.org

The CDIO Standards

In January 2004, the CDIO Initiative adopted 12 standards to describe CDIO programs.

These guiding principles were developed in response to program leaders, alumni, and industrial

Page 80: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

2

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

partners who wanted to know how they would recognize CDIO programs and their graduates. As a

result, these CDIO Standards define the distinguishing features of a CDIO program, serve as

guidelines for educational program reform and evaluation, create benchmarks and goals with

worldwide application, and provide a framework for continuous improvement. The standards may

also be used as a framework for certification purposes.

The 12 CDIO Standards address program philosophy (Standard 1), curriculum development

(Standards 2, 3 and 4), design-implement experiences and workspaces (Standards 5 and 6), methods

of teaching and learning (Standards 7 and 8), faculty development (Standards 9 and 10), and

assessment and evaluation (Standards 11 and 12).

Each standard is presented here with a description, a rationale, and a rubric.

Description. The description elaborates the statement of the standard, explaining its

meaning. It defines significant terms and provides background information.

Rationale. The rationale highlights reasons for the adoption of the standard. Reasons are

based on educational research and best practices in engineering and higher education. The rationale

explains ways in which the standard distinguishes the CDIO approach from other educational

reform efforts.

Rubric. A rubric is a scoring guide that seeks to evaluate levels of performance. The rubric

of the CDIO Standards is a six-point rating scale for assessing levels of compliance with the

standard. Criteria for each level are based on the description and rationale of the standard. The rubric

highlights the nature of the evidence that indicates compliance at each level. The rubrics in this

document are hierarchical, that is, each successive level includes those at lower levels. For example,

Level 5 that addresses continuous process improvement presumes that Level 4 has been attained.

Self-Assessment of Compliance

The assessment of compliance with the CDIO Standards is a self-report process. An

engineering program gathers its own evidence and uses the rubrics to rate its status with respect to

each of the 12 CDIO Standards. While the rubrics are customized to each CDIO Standard, they

follow the pattern of this general rubric.

General Rubric:

Scale Criteria

5 Evidence related to the standard is regularly reviewed and used to make

improvements.

Page 81: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

3

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

4 There is documented evidence of the full implementation and impact of the

standard across program components and constituents.

3 Implementation of the plan to address the standard is underway across the program

components and constituents.

2 There is a plan in place to address the standard.

1 There is an awareness of need to adopt the standard and a process is in place to

address it.

0 There is no documented plan or activity related to the standard.

An accompanying document gives examples of evidence for different levels of compliance

for each CDIO Standard, as reported by CDIO programs in 2005 and 2008.

Standard 1 – The Context

Adoption of the principle that product, process, and system lifecycle development and

deployment -- Conceiving, Designing, Implementing and Operating -- are the context for

engineering education

Description: A CDIO program is based on the principle that product, process, and system

lifecycle development and deployment are the appropriate context for engineering education.

Conceiving--Designing--Implementing--Operating is a model of the entire product, process, and system

lifecycle. The Conceive stage includes defining customer needs; considering technology, enterprise

strategy, and regulations; and, developing conceptual, technical, and business plans. The Design stage

focuses on creating the design, that is, the plans, drawings, and algorithms that describe what will be

implemented. The Implement stage refers to the transformation of the design into the product,

process, or system, including manufacturing, coding, testing and validation. The final stage, Operate,

uses the implemented product or process to deliver the intended value, including maintaining,

evolving and retiring the system.

The product, process, and system lifecycle is considered the context for engineering

education in that it is part of the cultural framework, or environment, in which technical knowledge

and other skills are taught, practiced and learned. The principle is adopted by a program when there

is explicit agreement of faculty to transition to a CDIO program, and support from program leaders

to sustain reform initiatives.

Page 82: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

4

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

Rationale: Beginning engineers should be able to Conceive--Design--Implement--Operate

complex value-added engineering products, processes, and systems in modern team-based

environments. They should be able to participate in engineering processes, contribute to the

development of engineering products, and do so while working to professional standards in any

organization. This is the essence of the engineering profession.

Rubric:

Scale Criteria

5 Evaluation groups recognize that CDIO is the context of the engineering program

and use this principle as a guide for continuous improvement.

4 There is documented evidence that the CDIO principle is the context of the

engineering program and is fully implemented.

3 CDIO is adopted as the context for the engineering program and is implemented

in one or more years of the program.

2 There is an explicit plan to transition to a CDIO context for the engineering

program.

1 The need to adopt the principle that CDIO is the context of engineering education

is recognized and a process to address it has been initiated.

0 There is no plan to adopt the principle that CDIO is the context of engineering

education for the program.

Standard 2 – Learning Outcomes

Specific, detailed learning outcomes for personal and interpersonal skills, and product,

process, and system building skills, as well as disciplinary knowledge, consistent with

program goals and validated by program stakeholders

Description: The knowledge, skills, and attitudes intended as a result of engineering education,

that is, the learning outcomes, are codified in the CDIO Syllabus. These learning outcomes detail

what students should know and be able to do at the conclusion of their engineering programs. In

addition to learning outcomes for technical disciplinary knowledge (Section 1), the CDIO Syllabus

specifies learning outcomes as personal and interpersonal skills, and product, process, and system

building. Personal learning outcomes (Section 2) focus on individual students' cognitive and affective

Page 83: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

5

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

development, for example, engineering reasoning and problem solving, experimentation and

knowledge discovery, system thinking, creative thinking, critical thinking, and professional ethics.

Interpersonal learning outcomes (Section 3) focus on individual and group interactions, such as,

teamwork, leadership, communication, and communication in foreign languages. Product, process,

and system building skills (Section 4) focus on conceiving, designing, implementing, and operating

systems in enterprise, business, and societal contexts.

Learning outcomes are reviewed and validated by key stakeholders, that is, groups who share

an interest in the graduates of engineering programs, for consistency with program goals and

relevance to engineering practice. Programs are encouraged to customize the CDIO Syllabus to their

respective programs. In addition, stakeholders help to determine the expected level of proficiency, or

standard of achievement, for each learning outcome.

Rationale: Setting specific learning outcomes helps to ensure that students acquire the

appropriate foundation for their future. Professional engineering organizations and industry

representatives identified key attributes of beginning engineers both in technical and professional

areas. Moreover, many evaluation and accreditation bodies expect engineering programs to identify

program outcomes in terms of their graduates' knowledge, skills, and attitudes.

Rubric:

Scale Criteria

5 Evaluation groups regularly review and revise program learning outcomes, based on

changes in stakeholder needs.

4 Program learning outcomes are aligned with institutional vision and mission, and

levels of proficiency are set for each outcome.

3 Program learning outcomes are validated with key program stakeholders, including

faculty, students, alumni, and industry representatives.

2 A plan to incorporate explicit statements of program learning outcomes is

established.

1 The need to create or modify program learning outcomes is recognized and such a

process has been initiated.

0 There are no explicit program learning outcomes that cover knowledge, personal

and interpersonal skills, and product, process and system building skills.

Page 84: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

6

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

Standard 3 -- Integrated Curriculum

A curriculum designed with mutually supporting disciplinary courses, with an explicit plan

to integrate personal and interpersonal skills, and product, process, and system building

skills

Description: An integrated curriculum includes learning experiences that lead to the acquisition

of personal and interpersonal skills, and product, process, and system building skills (Standard 2),

interwoven with the learning of disciplinary knowledge and its application in professional

engineering. Disciplinary courses are mutually supporting when they make explicit connections

among related and supporting content and learning outcomes. An explicit plan identifies ways in

which the integration of skills and multidisciplinary connections are to be made, for example, by

mapping the specified learning outcomes to courses and co-curricular activities that make up the

curriculum.

Rationale: The teaching of personal, interpersonal, and professional skills, and product,

process, and system building skills should not be considered an addition to an already full

curriculum, but an integral part of it. To reach the intended learning outcomes in disciplinary

knowledge and skills, the curriculum and learning experiences have to make dual use of available

time. Faculty play an active role in designing the integrated curriculum by suggesting appropriate

disciplinary linkages, as well as opportunities to address specific skills in their respective teaching

areas.

Rubric:

Scale Criteria

5 Stakeholders regularly review the integrated curriculum and make recommendations

and adjustments as needed.

4 There is evidence that personal, interpersonal, product, process, and system

building skills are addressed in all courses responsible for their implementation.

3 Personal, interpersonal, product, process, and system building skills are integrated

into one or more years in the curriculum.

2 A curriculum plan that integrates disciplinary learning, personal, interpersonal,

product, process, and system building skills is approved by appropriate groups.

1 The need to analyze the curriculum is recognized and initial mapping of disciplinary

Page 85: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

7

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

and skills learning outcomes is underway.

0 There is no integration of skills or mutually supporting disciplines in the program.

Standard 4 -- Introduction to Engineering

An introductory course that provides the framework for engineering practice in product,

process, and system building, and introduces essential personal and interpersonal skills

Description: The introductory course, usually one of the first required courses in a program,

provides a framework for the practice of engineering. This framework is a broad outline of the tasks

and responsibilities of an engineer, and the use of disciplinary knowledge in executing those tasks.

Students engage in the practice of engineering through problem solving and simple design exercises,

individually and in teams. The course also includes personal and interpersonal skills knowledge, skills,

and attitudes that are essential at the start of a program to prepare students for more advanced

product, process, and system building experiences. For example, students can participate in small

team exercises to prepare them for larger development teams.

Rationale: Introductory courses aim to stimulate students' interest in, and strengthen their

motivation for, the field of engineering by focusing on the application of relevant core engineering

disciplines. Students usually select engineering programs because they want to build things, and

introductory courses can capitalize on this interest. In addition, introductory courses provide an early

start to the development of the essential skills described in the CDIO Syllabus.

Rubric:

Scale Criteria

5 The introductory course is regularly evaluated and revised, based on feedback from

students, instructors, and other stakeholders.

4 There is documented evidence that students have achieved the intended learning

outcomes of the introductory engineering course.

3 An introductory course that includes engineering learning experiences and

introduces essential personal and interpersonal skills has been implemented.

2 A plan for an introductory engineering course introducing a framework for practice

has been approved.

Page 86: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

8

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

1 The need for an introductory course that provides the framework for engineering

practice is recognized and a process to address that need has been initiated.

0 There is no introductory engineering course that provides a framework for practice

and introduces key skills.

Standard 5 -- Design-Implement Experiences

A curriculum that includes two or more design-implement experiences, including one at a

basic level and one at an advanced level

Description: The term design-implement experience denotes a range of engineering activities central

to the process of developing new products and systems. Included are all of the activities described in

Standard One at the Design and Implement stages, plus appropriate aspects of conceptual design

from the Conceive stage. Students develop product, process, and system building skills, as well as the

ability to apply engineering science, in design-implement experiences integrated into the curriculum.

Design-implement experiences are considered basic or advanced in terms of their scope, complexity,

and sequence in the program. For example, simpler products and systems are included earlier in the

program, while more complex design-implement experiences appear in later courses designed to help

students integrate knowledge and skills acquired in preceding courses and learning activities.

Opportunities to conceive, design, implement, and operate products, processes, and systems may

also be included in required co-curricular activities, for example, undergraduate research projects and

internships.

Rationale: Design-implement experiences are structured and sequenced to promote early

success in engineering practice. Iteration of design-implement experiences and increasing levels of

design complexity reinforce students' understanding of the product, process, and system

development process. Design-implement experiences also provide a solid foundation upon which to

build deeper conceptual understanding of disciplinary skills. The emphasis on building products and

implementing processes in real-world contexts gives students opportunities to make connections

between the technical content they are learning and their professional and career interests.

Rubric:

Scale Criteria

5 The design-implement experiences are regularly evaluated and revised, based on

feedback from students, instructors, and other stakeholders.

Page 87: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

9

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

4 There is documented evidence that students have achieved the intended learning

outcomes of the design-implement experiences.

3 At least two design-implement experiences of increasing complexity are being

implemented.

2 There is a plan to develop a design-implement experience at a basic and advanced

level.

1 A needs analysis has been conducted to identify opportunities to include design-

implement experiences in the curriculum.

0 There are no design-implement experiences in the engineering program.

Standard 6 -- Engineering Workspaces

Engineering workspaces and laboratories that support and encourage hands-on learning of

product, process, and system building, disciplinary knowledge, and social learning

Description: The physical learning environment includes traditional learning spaces, for

example, classrooms, lecture halls, and seminar rooms, as well as engineering workspaces and

laboratories. Workspaces and laboratories support the learning of product, process, and system

building skills concurrently with disciplinary knowledge. They emphasize hands-on learning in which

students are directly engaged in their own learning, and provide opportunities for social learning, that

is, settings where students can learn from each other and interact with several groups. The creation

of new workspaces, or remodeling of existing laboratories, will vary with the size of the program and

resources of the institution.

Rationale: Workspaces and other learning environments that support hands-on learning are

fundamental resources for learning to design, implement, and operate products, processes, and

systems. Students who have access to modern engineering tools, software, and laboratories have

opportunities to develop the knowledge, skills, and attitudes that support product, process, and

system building competencies. These competencies are best developed in workspaces that are

student-centered, user-friendly, accessible, and interactive.

Rubric:

Scale Criteria

Page 88: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

10

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

5 Evaluation groups regularly review the impact and effectiveness of workspaces on

learning and provide recommendations for improving them.

4 Engineering workspaces fully support all components of hands-on, knowledge, and

skills learning.

3 Plans are being implemented and some new or remodeled spaces are in use.

2 Plans to remodel or build additional engineering workspaces have been approved

by the appropriate bodies.

1 The need for engineering workspaces to support hands-on, knowledge, and skills

activities is recognized and a process to address the need has been initiated.

0 Engineering workspaces are inadequate or inappropriate to support and encourage

hands-on skills, knowledge, and social learning.

Standard 7 -- Integrated Learning Experiences

Integrated learning experiences that lead to the acquisition of disciplinary knowledge, as

well as personal and interpersonal skills, and product, process, and system building skills

Description: Integrated learning experiences are pedagogical approaches that foster the learning

of disciplinary knowledge simultaneously with personal and interpersonal skills, and product,

process, and system building skills. They incorporate professional engineering issues in contexts

where they coexist with disciplinary issues. For example, students might consider the analysis of a

product, the design of the product, and the social responsibility of the designer of the product, all in

one exercise. Industrial partners, alumni, and other key stakeholders are often helpful in providing

examples of such exercises.

Rationale: The curriculum design and learning outcomes, prescribed in Standards 2 and 3

respectively, can be realized only if there are corresponding pedagogical approaches that make dual

use of student learning time. Furthermore, it is important that students recognize engineering faculty

as role models of professional engineers, instructing them in disciplinary knowledge, personal and

interpersonal skills, and product, process, and system building skills. With integrated learning

experiences, faculty can be more effective in helping students apply disciplinary knowledge to

engineering practice and better prepare them to meet the demands of the engineering profession.

Page 89: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

11

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

Rubric:

Scale Criteria

5 Courses are regularly evaluated and revised regarding their integration of learning

outcomes and activities.

4 There is evidence of the impact of integrated learning experiences across the

curriculum.

3 Integrated learning experiences are implemented in courses across the curriculum.

2 Course plans with learning outcomes and activities that integrate personal and

interpersonal skills with disciplinary knowledge has been approved.

1 Course plans have been benchmarked with respect to the integrated curriculum

plan.

0 There is no evidence of integrated learning of disciplines and skills.

Standard 8 -- Active Learning

Teaching and learning based on active experiential learning methods

Description: Active learning methods engage students directly in thinking and problem solving

activities. There is less emphasis on passive transmission of information, and more on engaging

students in manipulating, applying, analyzing, and evaluating ideas. Active learning in lecture-based

courses can include such methods as partner and small-group discussions, demonstrations, debates,

concept questions, and feedback from students about what they are learning. Active learning is

considered experiential when students take on roles that simulate professional engineering practice,

for example, design-implement projects, simulations, and case studies.

Rationale: By engaging students in thinking about concepts, particularly new ideas, and

requiring them to make an overt response, students not only learn more, they recognize for

themselves what and how they learn. This process helps to increase students' motivation to achieve

program learning outcomes and form habits of lifelong learning. With active learning methods,

instructors can help students make connections among key concepts and facilitate the application of

this knowledge to new settings.

Rubric:

Page 90: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

12

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

Scale Criteria

5 Evaluation groups regularly review the impact of active learning methods and make

recommendations for continuous improvement.

4 There is documented evidence of the impact of active learning methods on student

learning.

3 Active learning methods are being implemented across the curriculum.

2 There is a plan to include active learning methods in courses across the curriculum.

1 There is an awareness of the benefits of active learning, and benchmarking of active

learning methods in the curriculum is in process.

0 There is no evidence of active experiential learning methods.

Standard 9 -- Enhancement of Faculty Competence

Actions that enhance faculty competence in personal and interpersonal skills, and product,

process, and system building skills

Description: CDIO programs provide support for the collective engineering faculty to

improve its competence in the personal and interpersonal skills, and product, process, and system

building skills described in Standard 2. These skills are developed best in contexts of professional

engineering practice. The nature and scope of faculty development vary with the resources and

intentions of different programs and institutions. Examples of actions that enhance faculty

competence include: professional leave to work in industry, partnerships with industry colleagues in

research and education projects, inclusion of engineering practice as a criterion for hiring and

promotion, and appropriate professional development experiences at the university.

Rationale: If engineering faculty are expected to teach a curriculum of personal and

interpersonal skills, and product, process, and system building skills integrated with disciplinary

knowledge, as described in Standards 3, 4, 5, and 7, they as a group need to be competent in those

skills. Engineering professors tend to be experts in the research and knowledge base of their

respective disciplines, with only limited experience in the practice of engineering in business and

industrial settings. Moreover, the rapid pace of technological innovation requires continuous

updating of engineering skills. The collective faculty needs to enhance its engineering knowledge and

skills so that it can provide relevant examples to students and also serve as individual role models of

contemporary engineers.

Page 91: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

13

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

Rubric:

Scale Criteria

5 Faculty competence in personal, interpersonal, product, process, and system

building skills is regularly evaluated and updated where appropriate.

4 There is evidence that the collective faculty is competent in personal, interpersonal,

product, process, and system building skills.

3 The collective faculty participates in faculty development in personal, interpersonal,

product, process, and system building skills.

2 There is a systematic plan of faculty development in personal, interpersonal,

product, process, and system building skills.

1 A benchmarking study and needs analysis of faculty competence has been

conducted.

0 There are no programs or practices to enhance faculty competence in personal,

interpersonal, product, process, and system building skills.

Standard 10 -- Enhancement of Faculty Teaching Competence

Actions that enhance faculty competence in providing integrated learning experiences, in

using active experiential learning methods, and in assessing student learning

Description: A CDIO program provides support for faculty to improve their competence in

integrated learning experiences (Standard 7), active and experiential learning (Standard 8), and

assessing student learning (Standard 11). The nature and scope of faculty development practices will

vary with programs and institutions. Examples of actions that enhance faculty competence include:

support for faculty participation in university and external faculty development programs, forums for

sharing ideas and best practices, and emphasis in performance reviews and hiring on effective

teaching methods.

Rationale: If faculty members are expected to teach and assess in new ways, as described in

Standards 7, 8, and 11, they need opportunities to develop and improve these competencies. Many

universities have faculty development programs and services that might be eager to collaborate with

faculty in CDIO programs. In addition, if CDIO programs want to emphasize the importance of

Page 92: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

14

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

teaching, learning, and assessment, they must commit adequate resources for faculty development in

these areas.

Rubric:

Scale Criteria

5 Faculty competence in teaching, learning, and assessment methods is regularly

evaluated and updated where appropriate.

4 There is evidence that the collective faculty is competent in teaching, learning, and

assessment methods.

3 Faculty members participate in faculty development in teaching, learning, and

assessment methods.

2 There is a systematic plan of faculty development in teaching, learning, and

assessment methods.

1 A benchmarking study and needs analysis of faculty teaching competence has been

conducted.

0 There are no programs or practices to enhance faculty teaching competence.

Standard 11 -- Learning Assessment

Assessment of student learning in personal and interpersonal skills, and product, process,

and system building skills, as well as in disciplinary knowledge

Description: Assessment of student learning is the measure of the extent to which each student

achieves specified learning outcomes. Instructors usually conduct this assessment within their

respective courses. Effective learning assessment uses a variety of methods matched appropriately to

learning outcomes that address disciplinary knowledge, as well as personal and interpersonal skills,

and product, process, and system building skills, as described in Standard 2. These methods may

include written and oral tests, observations of student performance, rating scales, student reflections,

journals, portfolios, and peer and self-assessment.

Rationale: If we value personal and interpersonal skills, and product, process, and system

building skills, and incorporate them into curriculum and learning experiences, then we must have

effective assessment processes for measuring them. Different categories of learning outcomes

Page 93: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

15

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

require different assessment methods. For example, learning outcomes related to disciplinary

knowledge may be assessed with oral and written tests, while those related to design-implement skills

may be better measured with recorded observations. Using a variety of assessment methods

accommodates a broader range of learning styles, and increases the reliability and validity of the

assessment data. As a result, determinations of students' achievement of the intended learning

outcomes can be made with greater confidence.

Rubric:

Scale Criteria

5 Evaluation groups regularly review the use of learning assessment methods and

make recommendations for continuous improvement.

4 Learning assessment methods are used effectively in courses across the curriculum.

3 Learning assessment methods are implemented across the curriculum.

2 There is a plan to incorporate learning assessment methods across the curriculum.

1 The need for the improvement of learning assessment methods is recognized and

benchmarking of their current use is in process.

0 Learning assessment methods are inadequate or inappropriate.

Standard 12 -- Program Evaluation

A system that evaluates programs against these twelve standards, and provides feedback to

students, faculty, and other stakeholders for the purposes of continuous improvement

Description: Program evaluation is a judgment of the overall value of a program based on

evidence of a program's progress toward attaining its goals. A CDIO program should be evaluated

relative to these 12 CDIO Standards. Evidence of overall program value can be collected with course

evaluations, instructor reflections, entry and exit interviews, reports of external reviewers, and

follow-up studies with graduates and employers. The evidence can be regularly reported back to

instructors, students, program administrators, alumni, and other key stakeholders. This feedback

forms the basis of decisions about the program and its plans for continuous improvement.

Page 94: Condensed CDIO Syllabus v2.0 Doris Brodeur · 2017-02-02 · 2 Condensed CDIO Syllabus v2.0–Doris Brodeur – UNAL – Julio 2011 2.4.5Self-awareness, Metacognition and Knowledge

16

The CDIO Standars– Doris R. Brodeur – UNAL – Julio 2011

Rationale: A key function of program evaluation is to determine the program's effectiveness

and efficiency in reaching its intended goals. Evidence collected during the program evaluation

process also serves as the basis of continuous program improvement. For example, if in an exit

interview, a majority of students reported that they were not able to meet some specific learning

outcome, a plan could be initiated to identify root causes and implement changes. Moreover, many

external evaluators and accreditation bodies require regular and consistent program evaluation.

Rubric:

5 Systematic and continuous improvement is based on program evaluation results

from multiple sources and gathered by multiple methods.

4 Program evaluation methods are being used effectively with all stakeholder groups.

3 Program evaluation methods are being implemented across the program to gather

data from students, faculty, program leaders, alumni, and other stakeholders.

2 A program evaluation plan exists.

1 The need for program evaluation is recognized and benchmarking of evaluation

methods is in process.

0 Program evaluation is inadequate or inconsistent.