condensed matter physics 2016physics.gu.se/~tfkhj/161124.pdfcondensed matter physics 2016...

13
Condensed Matter Physics 2016 preliminary planning 24/11 – 15/12 24/11 Phonons 25/11 Electron-phonon interaction 29/11 Temperature-dependent transport 2/12 Superconductivity: BCS theory 6/12 Superconductivity: Ginzburg-Landau theory 8/12 Quasicrystals (Stellan Östlund) 9/12 Topological superconductors (Jan Budich) 13/12 Phase transitions and broken symmetries 15/12 Magnetism (note: 4 hours) All lectures start 13:15. See TIME EDIT for lecture room.

Upload: others

Post on 27-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Condensed Matter Physics 2016physics.gu.se/~tfkhj/161124.pdfCondensed Matter Physics 2016 preliminary planning 24/11 – 15/12 24/11 Phonons 25/11 Electron-phonon interaction 29/11

Condensed Matter Physics 2016 preliminary planning 24/11 – 15/12

24/11 Phonons 25/11 Electron-phonon interaction 29/11 Temperature-dependent transport 2/12 Superconductivity: BCS theory 6/12 Superconductivity: Ginzburg-Landau theory 8/12 Quasicrystals (Stellan Östlund) 9/12 Topological superconductors (Jan Budich) 13/12 Phase transitions and broken symmetries 15/12 Magnetism (note: 4 hours)

All lectures start 13:15. See TIME EDIT for lecture room.

Page 2: Condensed Matter Physics 2016physics.gu.se/~tfkhj/161124.pdfCondensed Matter Physics 2016 preliminary planning 24/11 – 15/12 24/11 Phonons 25/11 Electron-phonon interaction 29/11

Condensed Matter Physics 2016 Lecture 24/11: Phonons

1. Lattice dynamics 2. Quantization: Phonons 3. Phonon band structure 4. Density of states 5. Heat capacity 6. Phonon interactions

References: Ashcroft & Mermin, 22, 23 Taylor & Heinonen, 3.5-3.9 Mahan*, 7.1-7.4

* Condensed Matter in a Nutshell (Princeton University Press, 2011)

Page 3: Condensed Matter Physics 2016physics.gu.se/~tfkhj/161124.pdfCondensed Matter Physics 2016 preliminary planning 24/11 – 15/12 24/11 Phonons 25/11 Electron-phonon interaction 29/11

1. Lattice dynamics Crystal Hamiltonian

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

pn2

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

Recall the Born-Oppenheimer approximation, treating the cores as fixed(providing a static periodic potential in which the electrons move).We shall now remove this simplifying assumption, and study the effect of including also the dynamics of the cores.

Page 4: Condensed Matter Physics 2016physics.gu.se/~tfkhj/161124.pdfCondensed Matter Physics 2016 preliminary planning 24/11 – 15/12 24/11 Phonons 25/11 Electron-phonon interaction 29/11

Template: 1D monatomic lattice

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

⇤harmonic approximation, Fourier transformed collective variables

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

yq, pq

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

yq, pq

H =X

q

✓1

2Mpqp

†q +

1

2M!2

qyqy†q

◆, !q =

qVq/M

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

⇤ blackboard

Page 5: Condensed Matter Physics 2016physics.gu.se/~tfkhj/161124.pdfCondensed Matter Physics 2016 preliminary planning 24/11 – 15/12 24/11 Phonons 25/11 Electron-phonon interaction 29/11

2. Quantization: phonons

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

yq, pq

H =X

q

✓1

2Mpqp

†q +

1

2M!2

qyqy†q

◆, !q =

qVq/M

X

q

~!q(a†qaq +

1

2)

a 2a = b

M1 M2

aq =1p

2M~!q(M!qyq + ip†q) (3)

a†q =1p

2M~!q(M!qy

†q � ipq) (4)

Introduce bosonic annihilation and creation operators (1D monatomic lattice)

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

yq, pq

H =X

q

✓1

2Mpqp

†q +

1

2M!2

qyqy†q

◆, !q =

qVq/M

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

yq, pq

H =X

q

✓1

2Mpqp

†q +

1

2M!2

qyqy†q

◆, !q =

qVq/M

X

q

~!q(a†qaq +

1

2)

a 2a = b

M1 M2

aq =1p

2M~!q(M!qyq + ip†q) (3)

a†q =1p

2M~!q(M!qy

†q � ipq) (4)

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

yq, pq

H =X

q

✓1

2Mpqp

†q +

1

2M!2

qyqy†q

◆, !q =

qVq/M

X

q

~!q(a†qaq +

1

2)

a 2a = b

M1 M2

aq =1p

2M~!q(M!qyq + ip†q) (3)

a†q =1p

2M~!q(M!qy

†q � ipq) (4)

state with nq phonons with wave number q

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

yq, pq

H =X

q

✓1

2Mpqp

†q +

1

2M!2

qyqy†q

◆, !q =

qVq/M

X

q

~!q(a†qaq +

1

2)

a 2a = b

M1 M2

aq =1p

2M~!q(M!qyq + ip†q) (3)

a†q =1p

2M~!q(M!qy

†q � ipq) (4)

(a†q)nq |0i = p

nq|nqi

Eq = ~!q(nq +1

2)

1

H = He +Hc +Hec

Hc = K + U (1)

=

X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =

X

j

p2j2M

+ V (y1, y2, ..., yN )

yq, pq

H =

X

q

✓1

2Mpqp

†q +

1

2

M!2qyqy

†q

◆, !q =

qVq/M

X

q

~!q(a†qaq +

1

2

)

a 2a = b

M1 M2

aq =

1p2M~!q

(M!qyq + ip†q) (3)

a†q =

1p2M~!q

(M!qy†q � ipq) (4)

(a†q)nq |0i =

pnq!|nqi

Page 6: Condensed Matter Physics 2016physics.gu.se/~tfkhj/161124.pdfCondensed Matter Physics 2016 preliminary planning 24/11 – 15/12 24/11 Phonons 25/11 Electron-phonon interaction 29/11

3. Phonon bandstructure

1

H = He +Hc +Hec

Hc = K + U (1)

=

X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =

X

j

p2j2M

+ V (y1, y2, ..., yN )

yq, pq

H =

X

q

✓1

2Mpqp

†q +

1

2

M!2qyqy

†q

◆, !q =

qVq/M

X

q

~!q(a†qaq +

1

2

)

a 2a = b

M1 M2

aq =

1p2M~!q

(M!qyq + ip†q) (3)

a†q =

1p2M~!q

(M!qy†q � ipq) (4)

(a†q)nq |0i = p

nq|nqi

Page 7: Condensed Matter Physics 2016physics.gu.se/~tfkhj/161124.pdfCondensed Matter Physics 2016 preliminary planning 24/11 – 15/12 24/11 Phonons 25/11 Electron-phonon interaction 29/11

1D phonon bands

Page 8: Condensed Matter Physics 2016physics.gu.se/~tfkhj/161124.pdfCondensed Matter Physics 2016 preliminary planning 24/11 – 15/12 24/11 Phonons 25/11 Electron-phonon interaction 29/11

1D phonon bands

Diatomic chain with different masses (and ”spring constant” )

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

yq, pq

H =X

q

✓1

2Mpqp

†q +

1

2M!2

qyqy†q

◆, !q =

qVq/M

a 2a = b

M1 M2

Page 9: Condensed Matter Physics 2016physics.gu.se/~tfkhj/161124.pdfCondensed Matter Physics 2016 preliminary planning 24/11 – 15/12 24/11 Phonons 25/11 Electron-phonon interaction 29/11

Phonons in 2D, 3D lattices

2

Eq = ~!q(nq +1

2)

l = n1l1 + n2l2 + n3l3

V ⇡1

2

X

l,l0;i,j

yilyj

l0V ij

l,l0

V ijq =

X

l,l0eiq·(l�l0)V ij

ll0

Vq

q

2

Eq = ~!q(nq +1

2)

l = n1l1 + n2l2 + n3l3

V ⇡1

2

X

l,l0;i,j

yilyj

l0V ij

l,l0

V ijq =

X

l,l0eiq·(l�l0)V ij

ll0

Vq

q

3D Bravais lattice

2

Eq = ~!q(nq +1

2)

l = n1l1 + n2l2 + n3l3

V ⇡1

2

X

l,l0;i,j

yilyj

l0V ij

l,l0

V ijq =

X

l,l0eiq·(l�l0)V ij

ll0

Vq

q

Harmonic approximation: (monatomic lattice)

Dynamical matrix elements:

2

Eq = ~!q(nq +1

2)

l = n1l1 + n2l2 + n3l3

V ⇡1

2

X

l,l0;i,j

yilyj

l0V ij

l,l0

V ijq =

X

l,l0eiq·(l�l0)V ij

ll0

Vq

q

Diagonalize the dynamical matrix !(2x2 in D=2, 3x3 in D=3)

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

Page 10: Condensed Matter Physics 2016physics.gu.se/~tfkhj/161124.pdfCondensed Matter Physics 2016 preliminary planning 24/11 – 15/12 24/11 Phonons 25/11 Electron-phonon interaction 29/11

Phonons in 2D, 3D lattices with a p-basis

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

D acoustic branches

D(p-1) optical branches

2

Eq = ~!q(nq +1

2)

l = n1l1 + n2l2 + n3l3

V ⇡1

2

X

l,l0;i,j

yilyj

l0V ij

l,l0

V ijq =

X

l,l0eiq·(l�l0)V ij

ll0

Vq

q

!(q)q

2

Eq = ~!q(nq +1

2)

l = n1l1 + n2l2 + n3l3

V ⇡1

2

X

l,l0;i,j

yilyj

l0V ij

l,l0

V ijq =

X

l,l0eiq·(l�l0)V ij

ll0

Vq

q

!(q)q

D=3, p=2

Page 11: Condensed Matter Physics 2016physics.gu.se/~tfkhj/161124.pdfCondensed Matter Physics 2016 preliminary planning 24/11 – 15/12 24/11 Phonons 25/11 Electron-phonon interaction 29/11

4. Phonon density of states

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

DOS for Al

DOS, diatomic chain

2

Eq = ~!q(nq +1

2

)

l = n1l1 + n2l2 + n3l3

V ⇡1

2

X

l,l0;i,j

yilyj

l0V ij

l,l0

V ijq =

X

l,l0eiq·(l�l0)V ij

ll0

Vq

q

!(q)q

D(!) ⌘X

�,q�(! � !�,q)

D2D,⌘(!) =!

2⇡v2⌘, ⌘ = LA, TA

!D(⌘) = v⌘qD, ⇡q2D = area of 1BZ

2

Eq = ~!q(nq +1

2

)

l = n1l1 + n2l2 + n3l3

V ⇡1

2

X

l,l0;i,j

yilyj

l0V ij

l,l0

V ijq =

X

l,l0eiq·(l�l0)V ij

ll0

Vq

q

!(q)q

D(!) ⌘X

�,q�(! � !�,q)

D2D,⌘(!) =!

2⇡v2⌘, ⌘ = LA, TA

!D(⌘) = v⌘qD, ⇡q2D = area of 1BZ

2

Eq = ~!q(nq +1

2

)

l = n1l1 + n2l2 + n3l3

V ⇡1

2

X

l,l0;i,j

yilyj

l0V ij

l,l0

V ijq =

X

l,l0eiq·(l�l0)V ij

ll0

Vq

q

!(q)q

D(!) ⌘X

�,q�(! � !�,q)

D2D,⌘(!) =!

2⇡v2⌘, ⌘ = LA, TA

!D(⌘) = v⌘qD, ⇡q2D = area of 1BZ

2

Eq = ~!q(nq +1

2

)

l = n1l1 + n2l2 + n3l3

V ⇡1

2

X

l,l0;i,j

yilyj

l0V ij

l,l0

V ijq =

X

l,l0eiq·(l�l0)V ij

ll0

Vq

q

!(q)q

D(!) ⌘X

�,q�(! � !�,q)

D2D,⌘(!) =!

2⇡v2⌘, ⌘ = LA, TA

!D(⌘) = v⌘qD, ⇡q2D = area of 1BZ

Debye approximation (2D)

van Hove singularities

Page 12: Condensed Matter Physics 2016physics.gu.se/~tfkhj/161124.pdfCondensed Matter Physics 2016 preliminary planning 24/11 – 15/12 24/11 Phonons 25/11 Electron-phonon interaction 29/11

5. Phonon heat capacity

1

H = He +Hc +Hec

Hc = K + U (1)

=X

n

p2n

2Mn+

1

2

X

n,n0

ZnZn0e2

|rn � rn0 | = K + U (2)

xj = x0,j + yj

1 N j

H =X

j

p2j2M

+ V (y1, y2, ..., yN )

2

Eq = ~!q(nq +1

2

)

l = n1l1 + n2l2 + n3l3

V ⇡1

2

X

l,l0;i,j

yilyj

l0V ij

l,l0

V ijq =

X

l,l0eiq·(l�l0)V ij

ll0

Vq

q

!(q)q

D(!) ⌘X

�,q�(! � !�,q)

D2D,⌘(!) =!

2⇡v2⌘, ⌘ = LA, TA

!D(⌘) = v⌘qD, ⇡q2D = area of 1BZ

CV (T ) ⇡ 3R, kBT � ~!

CV (T ) ⇡ constT 3

2

Eq = ~!q(nq +1

2

)

l = n1l1 + n2l2 + n3l3

V ⇡1

2

X

l,l0;i,j

yilyj

l0V ij

l,l0

V ijq =

X

l,l0eiq·(l�l0)V ij

ll0

Vq

q

!(q)q

D(!) ⌘X

�,q�(! � !�,q)

D2D,⌘(!) =!

2⇡v2⌘, ⌘ = LA, TA

!D(⌘) = v⌘qD, ⇡q2D = area of 1BZ

CV (T ) ⇡ 3R, kBT � ~!

CV (T ) ⇡ constT 3

(Dulong-Petit)

(Debye)

Page 13: Condensed Matter Physics 2016physics.gu.se/~tfkhj/161124.pdfCondensed Matter Physics 2016 preliminary planning 24/11 – 15/12 24/11 Phonons 25/11 Electron-phonon interaction 29/11

6. Phonon interactions

To correctly predict the thermal expansion or heat conductance of a solid, one must take into account the interaction between phonons. For this, one has to go beyond the harmonic approximation (somewhat cumbersome…).