confidential - force.com

90
CONFIDENTIAL Exhibit AG1

Upload: others

Post on 14-May-2022

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CONFIDENTIAL - force.com

 

 

 

 

 

 

 

 

 

 

 

CONFIDENTIAL 

Exhibit AG‐1 

Page 2: CONFIDENTIAL - force.com

 

 

 

 

 

 

 

 

 

 

 

CONFIDENTIAL 

Revised Exhibit AG‐2 

Page 3: CONFIDENTIAL - force.com

MICHIGAN PUBLIC SERVICE COMMISSION Case No: U-20220 Consumers Energy Company Exhibit AG-3 Date: December 18, 2020 CECo response to discovery request U20202 AG-CE-59 Page 1 of 5

Page 4: CONFIDENTIAL - force.com

MICHIGAN PUBLIC SERVICE COMMISSION Case No: U-20220 Consumers Energy Company Exhibit AG-3 Date: December 18, 2020 CECo response to discovery request U20202 AG-CE-59 Page 2 of 5

Page 5: CONFIDENTIAL - force.com

MICHIGAN PUBLIC SERVICE COMMISSION Case No: U-20220 Consumers Energy Company Exhibit AG-3 Date: December 18, 2020 CECo response to discovery request U20202 AG-CE-59 Page 3 of 5

Page 6: CONFIDENTIAL - force.com

MICHIGAN PUBLIC SERVICE COMMISSION Case No: U-20220 Consumers Energy Company Exhibit AG-3 Date: December 18, 2020 CECo response to discovery request U20202 AG-CE-59 Page 4 of 5

Page 7: CONFIDENTIAL - force.com

MICHIGAN PUBLIC SERVICE COMMISSION Case No: U-20220 Consumers Energy Company Exhibit AG-3 Date: December 18, 2020 CECo response to discovery request U20202 AG-CE-88 Page 5 of 5

Page 8: CONFIDENTIAL - force.com

Case No. U-20220 Exhibit AG-4Page 1 of 6

Page 9: CONFIDENTIAL - force.com

J.H. Campbell 

Apparent Cause Evaluation Report 

Incident: 

JH Campbell Unit 2 fluid drive lube oil cooler leaked into the Low pressure cooling water causing oil 

contamination of the ash pit. 

Summary: 

Following PMT testing of the new Fluid drive lube oil pump, the cooler experienced a tube leak.  The 

tube leak resulted in the oil contaminating the water side and resulted in the contamination of the ash 

pit. 

Sequence of events: 

September 2017‐  

Fluid drive lube oil pump was run while isolated.  This caused significant unrepairable damage to the 

pump.  It was decided that a new pump would be ordered and installed.  An identical replacement pump 

was ordered.  Lead time was lengthy. 

January 2018 

New fluid drive lube oil pump was received.   Due to shaft differences (tapered shaft) a new coupling 

was also required. 

April 12 2018  

New fluid drive lube oil pump was installed. 

April 13 2018 

First PMT run‐ The new “B” fluid drive lube oil pump was run for PMT.  Initially, on the B pumps first run, 

pressure would not build enough to feed the system with the A pump running, and the relief valve was 

open and recirculating oil back to the suction side.  The system was noted as running rough.  The check 

valve and the relief valve was inspected and stroked using a jacking device.   

April 16 2018 

Second PMT run‐  System was already running on the A pump.  The A pump had been running since 

previous PMT run.  System was observed to be running very roughly.  The B pump was started and the 

Case No. U-20220Exhibit AG-4Page 2 of 6

Page 10: CONFIDENTIAL - force.com

system continued to run rough.  At this time it was speculated that the pump was cavitating.  Operations 

then reported that the oil level was low and was being topped off.  After filling the fluid drive for some 

time, the system quickly quieted down to a very quiet and smooth condition.  Vibration readings were 

taken and found to be very smooth and well within limits. 

April 16 2018 

Oil Leak discovered‐  An oil leak was discovered at the ashpit.  Investigation by operations and chemistry 

determined the fluid drive lube oil cooler to be the probable source. 

April 17 2018 

Cooler heads were removed and oil was found leaking from the cooler.  Tubes were pressure tested and 

the leaking tubes were plugged.  No additional testing was performed.  Cooler heads were installed.   

April 18 2018  

Cooler was placed into service and again found to be leaking. 

April 24 2018 

The cooler was eddy current tested and several tubes were listed as having potential crack like 

indications.  All tubes with potential indications were plugged and the cooler heads were reinstalled.  

The fluid drive lube oil relief valves were inspected and adjusted to the values listed in the owner’s 

manual and operation manual.  The Tube bundle was then removed and inspected.  Tubes appear to be 

in good condition with no signs of FME or corrosion on the oil side.  No mechanical damage was noted.  

Tube bundle was reinstalled.  Cooler has not been placed back into service. 

Observations: 

Lube Oil cooler‐ Tube leaks were identified and plugged.  This was using air pressure technique.  When 

the cooler was placed back into service additional leaks became apparent.  Eddy current testing was 

completed and several additional tubes that had been damaged were identified.  Several tubes that had 

not yet failed to the point of leakage were also identified.  All tubes with suspected flaws were plugged.  

The tube bundle was removed and the Exterior of tubes were found to be very clean and look to be in 

good condition.  Measurements were taken to see if the flaws identified by the eddy current testing 

lined up with the tube sheets.  This was not the case.  A couple of the flaws lined up with the tube 

sheets but the rest appeared to be at random locations.  Minor rusting of the inside of the cooler shell 

was noted but no corrosion of the tubes was identified.  No signs of tube deformation or implosion due 

to over pressurization of the oil side (shell Side). No FME or signs of FME was found.  Cooler is exact 

replacement of old cooler and had been in‐service for 5 years with no issue.  Lube oil cooler and circuit 

oil cooler were both replaced approximately 5 years ago.  Similar water is present in both coolers.   No 

Case No. U-20220Exhibit AG-4Page 3 of 6

Page 11: CONFIDENTIAL - force.com

issues have been experienced with the circuit oil cooler.   Circuit oil cooler was historically plagued with 

tube leaks.  Design of the cooler with fins on the oil side and the oil on the shell side is the industry 

standard.  This is to facilitate cleaning of the tube side when fouled from less than perfect water 

conditions. 

Lube oil Pump‐ the lube oil pump was an exact replacement to the failed pump.  Both lube oil pumps 

were running in a condition without adequate NPSH.  It is believed that the pumps were sucking air.  

This condition places excessive amounts of stress and intermittent forces (vibrations) and pressure 

spikes on the whole system.  These intermittent forces and pressure spikes are likely the cause of the 

failed tubes.  Both lube oil pumps ran smoothly once proper oil levels were obtained. 

Relief valves‐ Lube oil relief valves relieving higher than it should be. Prior to touching the system, the 

relief valves were relieving at around 180‐190psi.  once the leak was fixed the oil pressure increased to 

210 psi.  This pressure is lower than test pressure of cooler which is 225 psi however pressure spikes due 

to cavitation could be much higher pressure.   Relief valve was adjusted to 175 psi per stamp marks on 

relief valve.    We are not sure if there is a reason for this elevated setting.  The system seems to be 

designed for 150 psi.  Flanges and cooler are rated at 150 psi.  Relief valve settings could be lowered to 

150 psi but it is unknown what this will affect and if the proper oil pressure will still be able to be 

maintained at the fluid drive centerline.  Adjustment of this relief valve and subsequent readjustment of 

Pressure control valves and orifices could identify many issues requiring correction to make the unit 

operable again.   

Update‐ At start up the relief valve pressure was lowered.  The relief valve then starts to chatter and 

vibrations again are transmitted throughout the entire oil skid including the cooler.  These vibrations will 

shorten the life of all components.  The relief pressure was again raised until the system quieted down 

and was left.  Final pressure was around 175‐180psi. 

Timing‐ Oil Leakage occurred following the run of new Lube oil pump and after running pumps in a state 

of sucking air for an extended period of time.  The system has been run in the past with cold oil and cold 

water on turning gear for extended periods of time with no issue.  Cold oil and turning gear are not 

thought to be related to this event. 

Air infiltration‐ Running the pumps with air ingress shook the skid fairly effectively.  Not sure how long 

the skid was run in this condition.  The A pump had been in‐service for quite some time while sucking 

Air.   

Piping scratches‐  Marks at the pipe support are likely from someone sliding the support around and 

also due to painting of the piping.  This is not likely do to piping movement.  The supports are suspended 

from above and will likely move with the pipe before they would slide in the pipe.  These markings are 

unrelated to this incident. 

Cause: 

Case No. U-20220Exhibit AG-4Page 4 of 6

Page 12: CONFIDENTIAL - force.com

The likely cause of the tube leakage is mechanical damage due to the running of the lube oil pump 

without adequate oil level.  The fluid drive had lost oil level due to system leakage which had allowed air 

to make its way to the pump suction.  While the lube oil pumps sucked air the tubes underwent severe 

vibration and mechanical agitation.  This agitation likely caused the tubes to crack and leak at stress 

risers that form during the tube finning process.  Originally the failed tubes were blindly repaired 

without any sort of additional testing that would be capable of finding tubes near failure.  Then the 

system was again placed into service and the tubes that were near failure also failed.  Eddy current 

testing has been performed and all tubes with suspected damage have now been plugged.   

Corrective Actions: 

Oil level has been restored to normal level.  No additional changes to the system are recommended at 

this time.  Reiterate the importance of low oil alarms to operations.  Eddy current inspect tube bundle in 

4 years. 

Relief valve settings set and verified per owner’s manual and operations manual.  Relief valve setting 

could be lowered to 150psi based on system limits.  However this does not appear to be in‐line with past 

practice and adjustments could lead to water fall of additional repairs/ adjustments required to balance 

out the system again.  Update‐ At start up the relief valve pressure was lowered.  The relief valve then 

starts to chatter and vibrations again are transmitted throughout the entire oil skid including the cooler.  

These vibrations will shorten the life of all components.  The relief pressure was again raised until the 

system quieted down and was left.  Final pressure was around 175‐180psi 

Recommendations: 

Recommendations  Assigned  Due Date 

Eddy Current inspect tube bundle during outage of opportunity. 2‐4 years  M. Helms 5/2022 

Obtain Quote for new tube bundle  R. Estabrook 6/10/2018 

Review report with operations  J. DuVall 6/29/2018 

Case No. U-20220Exhibit AG-4Page 5 of 6

Page 13: CONFIDENTIAL - force.com

Attachments: 

None 

Case No. U-20220Exhibit AG-4Page 6 of 6

Page 14: CONFIDENTIAL - force.com

U20220‐AG‐CE‐107 (Supplemental) Page 1 of 1 

Question:   

5. Refer to the page 5, lines 12‐17, of Mr. Kapala’s direct testimony. Please identify what assistance

was requested from the OEM and when it was requested. Provide a copy of all correspondence

or communication with the OEM about this matter.

Response: 

As stated in the Company’s response to discovery request U20220‐AG‐CE‐104, B&W is the OEM for the 

boiler and was  the  integrator of  the package,  the  fluid drive OEM was American Standard.   American 

Standard no longer supplies or supports this equipment.  System knowledge has moved with individuals 

as they went to different supporting companies.  At an EPRI meeting the Company’s Engineering System 

Owner  raised  the  issue  to  a  peer  group  and  found  an  SME  who  had  been  employed  at  American 

Standard.  He now works for Transmission & Bearing Corp (TRI) and has developed a system that would 

potentially solve our heat exchanger and oil pump failures.  The SME was invited to the Campbell site to 

help us work through the details of the problem.   

The Company’s record retention policies for emails do not allow us to keep information for more than a 

year.  The phone and email records no longer exist. 

Supplemental Response: 

The  Company  was  able  to  recover  the  attached  emails  (Attachment  U20220‐AG‐CE‐107_ATT_1 

Supplemental) in subsequent searches.   These emails were between the Company and a representative 

from  TRI.      As  discussed  above,  the  representative  from  TRI  was  previously  employed  by  American 

Standard, the OEM for the fluid drive.   

___________________________   Norman J. Kapala 

  February 16, 2021 

Executive Director‐ Fossil and Renewable Generation 

Case No. U-20220Exhibit AG-5

Page 15: CONFIDENTIAL - force.com

1

From: MATTHEW T. HELMS <[email protected]>Sent: Friday, August 21, 2015 10:13 AMTo: Vladimir Trbulin; Mark E. Wittbrodt; Mark C. Babcock; AMY L. NICKOLAS; Richard L. Estabrook Jr;

Dean A. MoeggenbergSubject: FW: Melbourne GibersonAttachments: Melbourne Giberson.vcf

Talked to this guy at the EPRI vendor fair.  He seemed knowledgeable on fluid drives and even knew of our plant and type of drive we had.  May get a second fluid drive repair quote from him.  Not sure if anyone has had experience with him or his company. Thanks, Matt 

Page 16: CONFIDENTIAL - force.com

1

Full Name: Melbourne GibersonLast Name: GibersonFirst Name: MelbourneJob Title: PresidentCompany: Transmission and Bearing Corp

Business Address: P.O. Box 454212 Welsh Pool RoadLionville, PA 19353-0454

Business: (610) 363-8570Mobile: (610) 283-9077Business Fax: (610) 524-6326

Email: [email protected] Display As: Melbourne Giberson ([email protected])

Web Page: www.turboresearch.com

Page 17: CONFIDENTIAL - force.com

1

From: MATTHEW T. HELMS <[email protected]>Sent: Thursday, April 6, 2017 4:30 PMTo: John R. Hiddema; Kurtis R. StimerSubject: FW: Fluid drive oil level questionsAttachments: Oil Level Detector and SG Assm. TRI Dwg.1D-00538-01.pdf

Lets talk in the morning. 

From: Mel Giberson [mailto:[email protected]] Sent: Thursday, April 6, 2017 4:24 PM To: MATTHEW T. HELMS Cc: 'Mark Simonelli' Subject: RE: Fluid drive oil level questions

EmailsentfromoutsideofCMS/CE.Usecautionbeforeclickinglinks/attachments.

Hello Matt,

Here is a definitive answer for you. This is the oil level detector and sight glass assembly that we use on both of the size 250 Dual Circuit Fluid Drives at Ravenswood 3. These are direct sister units of the one at Campbell 2.

Each of these Ravenswood 3 units has an oil recovery tank. The overflow level in the fluid drive is an open top pipe that is set at 25 inches below the horizontal joint, or 2 inches below the “Nominal Level”.

A 200 gallon swing is over 7 inches in height so going form 30 inches below the joint to the overflow level is 5 inches. There is a small oil pump, gear type, that starts when the oil level hits “ADD OIL”, and runs for a period of time long enough to fill the tank to the overflow level of 25 inches before it stops. Other control techniques can be used.

We can design and make such an assembly for your unit, if you would like. We use heavy duty boiler type sight glasses. The connection points to the tank may be different.

Hope that this helps.

Thank you.

Sincerely yours, TRI Transmission & Bearing Corp.

Mel Melbourne F. Giberson, Ph.D., P.E. TRI President and Sr. Technical Consulting Engineer

Page 18: CONFIDENTIAL - force.com

2

Click here to view TRI Major Product & Service Lines

Email: [email protected] www.turboresearch.com Tel: 610-363-8570 Cell: 610-283-9077 From: MATTHEW T. HELMS [mailto:[email protected]]  Sent: Thursday, April 06, 2017 2:52 PM To: Mel Giberson <[email protected]> Subject: Fluid drive oil level questions  I will try to better explain my my statements/ questions below.  My operations department called today and they say that we have been having the issue that you had described battling the fluid drive oil level for quite some time.  What I was wondering below, is it super critical that the oil be kept at the normal level mark?  The tank protrudes a ways below deck level and looks to contain a fair amount of oil.  Currently the level switch alarms at 2” above normal and 2 “ below normal oil level.  What would be the risk of letting the oil go to say 4” below normal oil level?  Currently my operators run right out when they get the low level alarm and fill the drive.  Then later in the day it ends up being over full and leaks all over the place.  What would I be risking if I told them to not top off the drive as long as it was not more than 4” below the normal level? Thanks for your insight on these questions.  

Matthew Helms Work Phone: 616 738-3557 Cell Phone: 616 437-1420 Email: [email protected]    

From: MATTHEW T. HELMS Sent: Thursday, April 6, 2017 11:56 AM To: Mel Giberson Subject: RE: Proposals for Fluid Drive Upgrades  

Include the quote for the surge tank set up that you were explaining to me. Also how low of an oil level can be run in one of these? How much lower than the normal oil level. Normal being the level dictated in the manual. Thanks. Sent from my Verizon 4G LTE smartphone -------- Original message -------- From: Mel Giberson <[email protected]> Date: 4/6/17 10:58 AM (GMT-05:00) To: "MATTHEW T. HELMS" <[email protected]> Subject: Proposals for Fluid Drive Upgrades

Page 19: CONFIDENTIAL - force.com

3

EmailsentfromoutsideofCMS/CE.Usecautionbeforeclickinglinks/attachments. Hello Matt,   I certainly enjoyed the visit with you last Thursday. I am in the process of developing the proposals for you, though it will take a few days to complete them.     Thank you.   Sincerely yours, TRI Transmission & Bearing Corp.    Mel Melbourne F. Giberson, Ph.D., P.E. TRI President and Sr. Technical Consulting Engineer   Click here to view TRI Major Product & Service Lines    Email: [email protected] 

www.turboresearch.com 

Tel: 610-363-8570 Cell: 610-283-9077     

Page 20: CONFIDENTIAL - force.com

TRI Dwg 1D-00538-01 Oil Level Detector and SIght Glass Assemblyfor Size 250 DC Fluid Drive

Drawn 9-23-1988 CDK

Page 21: CONFIDENTIAL - force.com

1

From: Kurtis R. Stimer <[email protected]>Sent: Friday, April 7, 2017 11:20 AMTo: Aric P. Schwab; BEVERLY A. WINTERS; Brandon J. Schultz; Bryan S. McClain; CHRISTOPHER J. BETHKE;

CHRISTOPHER L. BELASCO; Corey J. Harvey; Dale E. Hill; DANIEL MARTINEZ; David J. Brock; DAVID T. FELLOWS; ERIC L. WIERSMA; JAMES H. SURBER; JAMES MARTIN; JOSEPH D. ALVESTEFFER; KEVIN K. CARNES; Kevin M. Karafa; MICHAEL A. LAKE; Mark A. Rokus; Mitchell R. Atkins; MARTHA K. SMITH; MATTHEW M. TUFTS; Melvin R. Lacy; Nathan B. Adamczyk; NEY G. CAREY; NICHOLAS A. MORSE; PAUL J. SPENGLER III; REUBEN B. MCSPADDEN; Robert D. Van Huis; ROBERT J. ELGERSMA; ROGER T. CLARK; SCOTT A. MIDDLETON; Scott A. Tipton; Stephen B. Stone; Scott A. Hysell; STEVEN L. MCBRIDE; Trenton D. Kasper; TIMOTHY S. VAN DUINEN; Charles E. Poorman; Elvie C. Stein; Jeffrey S. Craigie; JONATHAN W. DUVALL; STEPHEN M. FORBES; Thomas S. Aumick

Cc: MATTHEW T. HELMS; John R. Hiddema; Terry L. Dekker; Vladimir Trbulin; Richard L. Estabrook Jr; STACI L. LEFURGE

Subject: FW: Fluid drive oil level questionsAttachments: Oil Level Detector and SG Assm. TRI Dwg.1D-00538-01.pdf

All‐ 

We are returning the Hydraulic Coupling level sight glass and level switch assembly back to its normal configuration today. We should operate the system as normal, using the alarm on DCS as our cue to fill the system. When we fill the system, we should fill to clear the alarm and not fill further than needed. This should help us to control the amount of oil that we are spilling at various points on the hydraulic coupling. We will need to work through what level is the best to fill to, helping us not leak more than needed and also not running out to fill the coupling constantly. 

What we found through troubleshooting and talking with vendors: 

The Hydraulic Coupling housing is under a slight vacuum .24 ‐ .42 inches vacuum. This is where it should be. The differences in pressures will affect the levels that we see, however they seem to be reading opposite of what you would expect. 

The dipstick level reads the highest, approximately 3‐3.5 inches higher than the sight glass when the magnatrol level switch is plumbed in. When we removed the magnatrol level switch, and put the sight glass directly on the side of the tank, the dipstick read about 2 inches higher than the sight glass. 

Jan’s reading with the IR camera seemed to match the dipstick level. 

We did all this to try to verify where the true level is in the housing while in operation. We believe the true level is somewhere between the dipstick and the sight glass when the magnatrol is removed, or about 1.5‐2 inches above the level in the sight glass when the magnatrol is installed (normal condition of equipment). The dipstick is not part of the original system and was added sometime. 

Information provided to Matt Helms show us that other plants with the same hydraulic coupling are operating with a much larger range for oil level (refer to attachment). We operate in a ~4” range (high to low alarm), whereas the other plants are operating in a 15” range. They also have a system that pumps the oil that overflows back to the housing (this would be nice and Matt is looking into this). We need to extend our operating range in the low level direction, this will allow us more operating time between refilling the coupling. 

Page 22: CONFIDENTIAL - force.com

2

This information, along with modifications to the sight glass and level column assembly is going to the mods committee for changes.  

Any questions, comments, concerns please let me know, 

Kurt 

From: MATTHEW T. HELMS Sent: Thursday, April 6, 2017 4:30 PM To: John R. Hiddema; Kurtis R. Stimer Subject: FW: Fluid drive oil level questions

Lets talk in the morning. 

From: Mel Giberson [mailto:[email protected]] Sent: Thursday, April 6, 2017 4:24 PM To: MATTHEW T. HELMS Cc: 'Mark Simonelli' Subject: RE: Fluid drive oil level questions

EmailsentfromoutsideofCMS/CE.Usecautionbeforeclickinglinks/attachments.

Hello Matt,

Here is a definitive answer for you. This is the oil level detector and sight glass assembly that we use on both of the size 250 Dual Circuit Fluid Drives at Ravenswood 3. These are direct sister units of the one at Campbell 2.

Each of these Ravenswood 3 units has an oil recovery tank. The overflow level in the fluid drive is an open top pipe that is set at 25 inches below the horizontal joint, or 2 inches below the “Nominal Level”.

A 200 gallon swing is over 7 inches in height so going form 30 inches below the joint to the overflow level is 5 inches. There is a small oil pump, gear type, that starts when the oil level hits “ADD OIL”, and runs for a period of time long enough to fill the tank to the overflow level of 25 inches before it stops. Other control techniques can be used.

We can design and make such an assembly for your unit, if you would like. We use heavy duty boiler type sight glasses. The connection points to the tank may be different.

Hope that this helps.

Thank you.

Sincerely yours, TRI Transmission & Bearing Corp.

Mel

Page 23: CONFIDENTIAL - force.com

3

Melbourne F. Giberson, Ph.D., P.E. TRI President and Sr. Technical Consulting Engineer

Click here to view TRI Major Product & Service Lines

Email: [email protected] www.turboresearch.com Tel: 610-363-8570 Cell: 610-283-9077

Email from Jan VanZelfden: 

Below are images of the NE corner of the Fluid drive.

Mike Beavin applied ambient air to the surface for several minutes to drive down surface temperature. Upon removing the forced convection air, the tank surface below the oil level reacted quickly to internal temperature and the air space lags. Captured several infrared images of the thermal transition; I am fairly confident with the result within an inch or so.

If you would like to attempt this again to reconfirm, I would cool with air mover for about an hour and then record the thermal transition with the imager in video mode. The data result could be examined frame by frame.

Page 24: CONFIDENTIAL - force.com

4

Page 25: CONFIDENTIAL - force.com

5

Page 26: CONFIDENTIAL - force.com

6

Page 27: CONFIDENTIAL - force.com

7

Page 28: CONFIDENTIAL - force.com

8

Respectfully, �

Jan A VanZelfden �

Sr Engineering Technical Analyst II Consumers Energy J H Campbell Complex Desk: 616-738-3379 Mobile: 616-836-7115

Page 29: CONFIDENTIAL - force.com

TRI Dwg 1D-00538-01 Oil Level Detector and SIght Glass Assemblyfor Size 250 DC Fluid Drive

Drawn 9-23-1988 CDK

Page 30: CONFIDENTIAL - force.com

1

From: MATTHEW T. HELMS <[email protected]>Sent: Friday, April 7, 2017 12:09 PMTo: Mark E. Wittbrodt; Vladimir TrbulinSubject: FW: Fluid drive oil level questionsAttachments: Oil Level Detector and SG Assm. TRI Dwg.1D-00538-01.pdf

FYI 

From: Kurtis R. Stimer Sent: Friday, April 7, 2017 11:20 AM To: Aric P. Schwab; BEVERLY A. WINTERS; Brandon J. Schultz; Bryan S. McClain; CHRISTOPHER J. BETHKE; CHRISTOPHER L. BELASCO; Corey J. Harvey; Dale E. Hill; DANIEL MARTINEZ; David J. Brock; DAVID T. FELLOWS; ERIC L. WIERSMA; JAMES H. SURBER; JAMES MARTIN; JOSEPH D. ALVESTEFFER; KEVIN K. CARNES; Kevin M. Karafa; MICHAEL A. LAKE; Mark A. Rokus; Mitchell R. Atkins; MARTHA K. SMITH; MATTHEW M. TUFTS; Melvin R. Lacy; Nathan B. Adamczyk; NEY G. CAREY; NICHOLAS A. MORSE; PAUL J. SPENGLER III; REUBEN B. MCSPADDEN; Robert D. Van Huis; ROBERT J. ELGERSMA; ROGER T. CLARK; SCOTT A. MIDDLETON; Scott A. Tipton; Stephen B. Stone; Scott A. Hysell; STEVEN L. MCBRIDE; Trenton D. Kasper; TIMOTHY S. VAN DUINEN; Charles E. Poorman; Elvie C. Stein; Jeffrey S. Craigie; JONATHAN W. DUVALL; STEPHEN M. FORBES; Thomas S. Aumick Cc: MATTHEW T. HELMS; John R. Hiddema; Terry L. Dekker; Vladimir Trbulin; Richard L. Estabrook Jr; STACI L. LEFURGE Subject: FW: Fluid drive oil level questions

All‐ 

We are returning the Hydraulic Coupling level sight glass and level switch assembly back to its normal configuration today. We should operate the system as normal, using the alarm on DCS as our cue to fill the system. When we fill the system, we should fill to clear the alarm and not fill further than needed. This should help us to control the amount of oil that we are spilling at various points on the hydraulic coupling. We will need to work through what level is the best to fill to, helping us not leak more than needed and also not running out to fill the coupling constantly. 

What we found through troubleshooting and talking with vendors: 

The Hydraulic Coupling housing is under a slight vacuum .24 ‐ .42 inches vacuum. This is where it should be. The differences in pressures will affect the levels that we see, however they seem to be reading opposite of what you would expect. 

The dipstick level reads the highest, approximately 3‐3.5 inches higher than the sight glass when the magnatrol level switch is plumbed in. When we removed the magnatrol level switch, and put the sight glass directly on the side of the tank, the dipstick read about 2 inches higher than the sight glass. 

Jan’s reading with the IR camera seemed to match the dipstick level. 

We did all this to try to verify where the true level is in the housing while in operation. We believe the true level is somewhere between the dipstick and the sight glass when the magnatrol is removed, or about 1.5‐2 inches above the level in the sight glass when the magnatrol is installed (normal condition of equipment). The dipstick is not part of the original system and was added sometime. 

Information provided to Matt Helms show us that other plants with the same hydraulic coupling are operating with a much larger range for oil level (refer to attachment). We operate in a ~4” range (high to low alarm), whereas the other 

Page 31: CONFIDENTIAL - force.com

2

plants are operating in a 15” range. They also have a system that pumps the oil that overflows back to the housing (this would be nice and Matt is looking into this). We need to extend our operating range in the low level direction, this will allow us more operating time between refilling the coupling. 

This information, along with modifications to the sight glass and level column assembly is going to the mods committee for changes.  

Any questions, comments, concerns please let me know, 

Kurt 

From: MATTHEW T. HELMS Sent: Thursday, April 6, 2017 4:30 PM To: John R. Hiddema; Kurtis R. Stimer Subject: FW: Fluid drive oil level questions

Lets talk in the morning. 

From: Mel Giberson [mailto:[email protected]] Sent: Thursday, April 6, 2017 4:24 PM To: MATTHEW T. HELMS Cc: 'Mark Simonelli' Subject: RE: Fluid drive oil level questions

EmailsentfromoutsideofCMS/CE.Usecautionbeforeclickinglinks/attachments.

Hello Matt,

Here is a definitive answer for you. This is the oil level detector and sight glass assembly that we use on both of the size 250 Dual Circuit Fluid Drives at Ravenswood 3. These are direct sister units of the one at Campbell 2.

Each of these Ravenswood 3 units has an oil recovery tank. The overflow level in the fluid drive is an open top pipe that is set at 25 inches below the horizontal joint, or 2 inches below the “Nominal Level”.

A 200 gallon swing is over 7 inches in height so going form 30 inches below the joint to the overflow level is 5 inches. There is a small oil pump, gear type, that starts when the oil level hits “ADD OIL”, and runs for a period of time long enough to fill the tank to the overflow level of 25 inches before it stops. Other control techniques can be used.

We can design and make such an assembly for your unit, if you would like. We use heavy duty boiler type sight glasses. The connection points to the tank may be different.

Hope that this helps.

Thank you.

Page 32: CONFIDENTIAL - force.com

3

Sincerely yours, TRI Transmission & Bearing Corp.

Mel Melbourne F. Giberson, Ph.D., P.E. TRI President and Sr. Technical Consulting Engineer

Click here to view TRI Major Product & Service Lines

Email: [email protected] www.turboresearch.com Tel: 610-363-8570 Cell: 610-283-9077

Email from Jan VanZelfden: 

Below are images of the NE corner of the Fluid drive.

Mike Beavin applied ambient air to the surface for several minutes to drive down surface temperature. Upon removing the forced convection air, the tank surface below the oil level reacted quickly to internal temperature and the air space lags. Captured several infrared images of the thermal transition; I am fairly confident with the result within an inch or so.

If you would like to attempt this again to reconfirm, I would cool with air mover for about an hour and then record the thermal transition with the imager in video mode. The data result could be examined frame by frame.

Page 33: CONFIDENTIAL - force.com

4

Page 34: CONFIDENTIAL - force.com

5

Page 35: CONFIDENTIAL - force.com

6

Page 36: CONFIDENTIAL - force.com

7

Page 37: CONFIDENTIAL - force.com

8

Respectfully, �

Jan A VanZelfden �

Sr Engineering Technical Analyst II Consumers Energy J H Campbell Complex Desk: 616-738-3379 Mobile: 616-836-7115

 

Page 38: CONFIDENTIAL - force.com

TRI Dwg 1D-00538-01 Oil Level Detector and SIght Glass Assemblyfor Size 250 DC Fluid Drive

Drawn 9-23-1988 CDK

Page 39: CONFIDENTIAL - force.com

1

From: MATTHEW T. HELMS <[email protected]>Sent: Thursday, April 13, 2017 9:18 AMTo: Richard L. Estabrook Jr; AMY L. NICKOLAS; Vladimir Trbulin; Mark E. Wittbrodt; John R. HiddemaSubject: FW: Information about the workings of Fluid DrivesAttachments: Pump Handbook - Var Spd Fluid Drives-Chap 6 - 20070528.pdf; 1981 Fluid Drive Study - Power

Mag.pdf

Importance: High

Well it wasn’t the quote yet.  Interesting reading though. 

From: Mel Giberson [mailto:[email protected]] Sent: Wednesday, April 12, 2017 6:46 PM To: MATTHEW T. HELMS Cc: 'Mark Simonelli' Subject: Information about the workings of Fluid Drives Importance: High

EmailsentfromoutsideofCMS/CE.Usecautionbeforeclickinglinks/attachments.

Hello Matt,

I have been working on the proposals for you. There are seven for Unit 2 and one for unit 1. I am hoping to send several of them to you tomorrow – before the long weekend.

The two articles on fluid drives that I said that I would send to you are attached. I hope that you find them interesting and valuable for understanding some of the operating characteristics of fluid drives.

Thank you.

Sincerely yours, TRI Transmission & Bearing Corp.

Mel Melbourne F. Giberson, Ph.D., P.E. TRI President and Sr. Technical Consulting Engineer

Click here to view TRI Major Product & Service Lines

Email: [email protected] www.turboresearch.com Tel: 610-363-8570 Cell: 610-283-9077

Page 40: CONFIDENTIAL - force.com

Chapter Six - Variable Speed Fluid Drives

Variable Speed Fluid Drives

Written by: Melbourne F. Giberson, Ph.D.,P.E.

TRI Transmission & Bearing Corp., A Division of Turbo Research, Inc. Lionville, PA 19353

Introduction: In almost all pumping applications, some means is required to provide variable flow and/or variable pressure of a liquid as it leaves a pump and enters a process application. Two alternative approaches exist, either (a) a Variable Speed Drive for a pump, or (b) a Constant Speed Drive for a pump with a discharge control valve that can provide a variable discharge flow to the process application. The primary emphasis of this chapter is to focus on Variable Speed Fluid Drives for pumps such as boiler feed pumps, condensate pumps, and pumps for other fluids and applications. Nevertheless, for completeness, other types of Variable Speed Drives for load equipment are briefly discussed. Types of Variable Speed Drives: Variable Speed Drives that are available today include Fluid Drives, Mechanical Drive Steam Turbines, Electronic Variable Frequency Drives, and Magnetic Drives. In almost all situations, a pump and the associated variable speed drive will be substantially more efficient and more reliable than a constant speed pump with a discharge control valve. The choice of which variable speed drive to use usually depends upon the application, including such characteristics as the environment (temperature, dustiness, remoteness), the expected reliability, the importance of having critical parts not becoming obsolete, maintainability, capital cost, and overall efficiency. Magnetic Drives are discussed elsewhere in this handbook. They have applications up to 300 or 400 hp or perhaps slightly higher. They are limited in power due to the difficulty of dissipating heat losses. Electronic Variable Frequency Drives can be used in a variety of applications. They are very common for low power applications of less than 1000 hp, and in other cases they can be used in applications over 10,000 hp. They can also be used for applications up to several thousand rpm. With gear boxes, they can go to very high speeds or very low speeds. However, these drives consist of very sophisticated solid state electronics to convert incoming 3-phase AC power at constant frequency (50 or 60 hertz) to DC power and then to invert the DC power back to variable frequency 3-phase AC power. It is quite typical for isolation transformers to be used on the incoming power, for substantial air conditioning packages to be used to cool the electronics, and for step up transformers to be used to convert the voltage to suit the

Page 41: CONFIDENTIAL - force.com

motor. For high power applications, the motors are usually made specifically for variable frequency drives in order to be able to handle the very high frequency components that arise in the solid state electronics. A characteristic of these applications that should be addressed is the very high frequency pulsations that are inherent in the inverter process (DC to AC), as these pulsations affect both the electrical system and the mechanical system, and these pulsations are emphasized during rapid changes of the rotational speed of the motor and pump. Mechanical Drive Steam Turbines are used to provide variable speed power to pumps of many different applications, small to very large. In main power plant applications, steam from an extraction port of the main turbine can be used to drive variable speed steam turbines that drive boiler feed pumps. Variable Speed Fluid Drives of the type known as “Hydro-kinetic” are the most important ones for driving larger pumps, and for this reason, they are the focus in this Chapter. This type of fluid drive can be made from a few horsepower to over 40,000 hp. However, today, most Hydro-kinetic fluid drives are made for powers over 300 to 400 hp. For powers under this level, electronic variable frequency drives and the other types of fluid drives are used more often. As an aside, the terms Fluid Coupling and Hydraulic Coupling are sometimes used interchangeably with Fluid Drive. A Hydro-kinetic Variable Speed Fluid Drive usually takes input power from a constant speed power source such as a motor of either induction or synchronous type and delivers variable speed power to a process pump. The fluid drive output shaft speed (pump speed) is controllable in step-less speed changes in a range, typically, from 20% to 97.5% of the input shaft speed. The output shaft speed is extremely smooth, that is, there are no torsional excitation pulsations. An interesting and valuable application for certain main power plants occurs when input power is taken from the main turbine-generator shaft into a fluid drive and the fluid drive delivers variable speed power to a large boiler feed pump. This arrangement is called a “shaft driven fluid drive and boiler feed pump”. It should be noted that every type of variable speed drive can be used with a constant ratio gearbox to achieve the actual speed range desired by the pump application. However, the only type of variable speed drive that includes a gearbox within the drive is the type called “Variable Speed Geared Fluid Drive”.

Page 42: CONFIDENTIAL - force.com

Figure 1. “Hydro-kinetic” Variable Speed Fluid Drive

Figure 2. Sizing Chart for Fluid Drives Hydraulic Diameters are Shown on Diagonal.

For Example, “370” Signifies 37.0 Inches.

Page 43: CONFIDENTIAL - force.com

Design of Hydro-kinetic Variable Speed Fluid Drives: The design of a “Hydro-kinetic” Variable Speed Fluid Drive with an oil conditioning system is shown in Figure 1. The primary mechanical components of a variable speed fluid drive assembly are (a) an outer housing or tank that supports the bearings, holds the oil, and provides a protective cover, (b) an input element comprising an input shaft and coupling hub, an impeller, an intermediate casing, and an outer casing (or scoop tube casing) all attached to each other and rotating together, (c) an output element comprising an output shaft, a coupling hub, and a runner all attached to each other and rotating together, (d) journal and thrust bearings that support each shaft, (e) oil used as a power transmitting medium between the impeller and runner and as a lubricant for the bearings, (f) a moveable scoop tube that slides in and out to control the amount of oil that remains resident in the rotating casings; and (g) an oil conditioning system. The impeller and runner are structures with vanes and pockets between the vanes shaped much like a half of a grapefruit with the linings that separate the fruit intact and the fruit removed. The impeller and a runner face each other with a small gap between them, on the order of 1% of the diameter of the impeller (or runner), but they do not touch each other mechanically. The impeller and the attached rotating casing structure retain the working fluid, usually oil, as shown in Figure 1. The runner is located within the envelope of the rotating input element. The actual mechanism causing the runner to rotate is the kinetic action of the oil: the impeller transmits energy to the oil and the oil transmits energy to the runner, as described below. Fluid Drives of the Variable Speed Fluid Drive type are sized according to the equation: Power (hp) = Factor x Nout^3 x Dia^5 10^14 Where: Factor = approximately 2.1, but depends on many design details such as exact pocket shape, vane angles, and the circuit oil flow rate. N out = 0.975 x N in (rated speed point) (rpm) Dia = Hydraulic diameter of the impeller and runner (inches). Figure 2 is a chart showing power (hp and kw) as a function of speed for various hydraulic diameters. The actual sectors that are applicable for different hydraulic diameters will vary slightly depending upon the many design details of a drive. Consequently, this chart should be considered to represent trends for different fluid drives, but should not be considered to represent a specific fluid drive.

Page 44: CONFIDENTIAL - force.com

A fluid drive of the Hydro-kinetic Variable Speed design operates as follows: The tank contains a level of oil, often described as ISO VG 32, as light turbine oil. An oil pump supplies cooled and filtered “lube oil” to the bearings and “circuit oil” or “working oil” to the “circuit” meaning the cavity comprising the pockets between the vanes of the impeller and runner, as shown in Figure 1. Because the impeller and runner are rotating, the circuit oil is thrown outward under centrifugal force, so that the oil forms a torus in the rotating casing assembly. Because the impeller is being driven by a driver, generally at a fixed speed, the impeller rotates faster than the runner. Consequently, oil that is in the impeller is subject to greater centrifugal acceleration than is oil that is located in the runner pockets. Consequently, a parcel of oil that starts in an impeller pocket moves in a generally circular path (relative to the rotating pocket) to the radially outer portion of that impeller pocket, gaining momentum along the path, and leaves the impeller pocket traveling across the gap with both circumferential and axial velocity components, then the packet of oil enters a runner pocket where because the runner is rotating slower than the impeller, the oil packet hits the wall of that runner pocket, and departs momentum to the runner vane, after which the packet of oil moves radially inward along a generally circular path (relative to the runner pocket) until it leaves the runner pocket in a path with axial and circumferential velocity components, until the packet of oil enters an impeller pocket where because the impeller is rotating faster than the runner, the wall of that impeller pocket hits the packet of oil and imparts momentum to the packet of oil, and then the packet of oil again follows a circular path (relative to the impeller pocket) radially outward within the impeller pocket until it again crosses the gap to enter the runner. The combination of both circular paths within the pockets and a circumferential path of the pockets around the shaft centerline provides a general trajectory of each packet of oil that is a spiral that travels in circles, as shown in Figure 3.

Note that in a Hydro-kinetic Fluid Drive, the energy is transmitted from impeller to runner using the principal of “momentum exchange”: The vane of the impeller hits a packet (mass) of oil and increases its velocity, and then the packet (mass) of oil hits the vane of a runner and the velocity of the oil is reduced, transmitting momentum, and the process continues. Fluid drives are “constant torque” machines, that is, the torque that is absorbed by the impeller from the input shaft to drive the circuit oil equals the torque that the circuit oil imparts to the runner that drives the output shaft and the load, which, in the present case, is a pump.

Page 45: CONFIDENTIAL - force.com

Figure 3. The Trajectory of Each Packet of Oil is a Spiral Through

the Impeller and Runner as They Rotate about the Shaft Centerline.

Page 46: CONFIDENTIAL - force.com

The degree of coupling between the impeller and runner depends upon the level of filling of the impeller and runner chamber, and the level of filling is controlled by the position of the scoop tube tip. The more mass of oil that can traverse the spiral path, the more coupling that exists. The degree of coupling is controlled by the radial position of the scoop tube tip. A scoop tube is a hollow tube with a tip that is shaped to scoop oil from the inside surface of the rotating torus of oil and to drive the oil through the tube so that it exits the rotating fluid drive element.

Figures 4.a and 4.b show two different levels of filling. In Figure 4.a, the scoop tube tip is moved radially outward (away from the shaft centerline) providing a small torus of oil with a small mass of circulating oil between the impeller and runner, with the result of low coupling. In Figure 4.b, the scoop tube is moved radially inward (toward the shaft centerline), providing a large torus of oil with a large mass of circulating oil between the impeller and runner with the result of high coupling. Figure 5 presents a generalized chart that shows the torque transmission of a fluid drive as a function of scoop tube position and output shaft (pump) speed. It is important to realize that the locations of the constant scoop tube position lines vary according to many design details including the pocket shapes in the impeller and runner, as well as vane thicknesses, vane angles, and the circuit oil flow. Consequently, this chart should be considered to represent the generalized trends of variable speed fluid drives and not any particular fluid drive. Fundamental Equations for Fluid Drives: Several fundamental equations for fluid drives are given below: Torque in = Torque out = Torque (lbf-in) Power in = Torque in (lbf-in) x Input Rot’l freq (rad/sec) Power out = Torque out (lbf-in)xOutput Rot’l freq (rad/sec) Power loss = Power in - Power out = Torque (lbf-in)x(Input Rot’l freq - Output Rot’l freq) (rad/sec) Heat power (btu / hr) = Power Loss (hp x 2544 btu/ hp-hr) It is the heat that is generated by the lost power that requires the circuit oil in a fluid drive to be exchanged continuously.

Page 47: CONFIDENTIAL - force.com

Figure 4.a. A Small Torus of Circuit Oil Provides Small Coupling.

Figure 4.b. A Large Torus of Circuit Oil Provides Large Coupling.

Page 48: CONFIDENTIAL - force.com

Certain losses are not included in the above equations. These include bearing power losses and circuit oil handling losses. Bearing losses for the input shaft are constant and for the output shaft increase with increasing speed. Circuit oil handling losses are a function of scoop tube position and circuit oil flow rate. Most fluid drives have a constant, or almost constant, circuit oil flow rate, so the circuit oil handling losses are greatest when the scoop tube tip is at the largest distance from the shaft centerline, which corresponds to minimum output shaft (or pump) speed, and these losses are the least when the scoop tube tip is closest to the shaft centerline, which corresponds to maximum output shaft (or pump) speed. The net result is that the sum of the bearing losses and circuit oil handling losses can be considered to be a constant, typically ranging from 3 % to 4 % of the rated power of the fluid drive. The efficiency of a variable speed fluid drive of the hydro-kinetic type can typically be expressed as Efficiency = Output shaft speed - 3.5 % Input shaft speed It is very common to use a slip speed (Input speed - Output speed) of 2.5% at the design point, though in some applications, the slip speed at the rated operating point is between 2.0 % to over 4 % . Using a slip speed of 2.5% at the design point, the design point efficiency is 100% - 2.5% (slip speed loss) - 3.5% (mechanical losses) = 94% . If a set of gears is included within the fluid drive tank and it is located on the output side of the fluid drive circuit, the runner output shaft and a gear shaft can be combined, eliminating two journal bearings and a pair of thrust bearings. In this case, the power losses will increase by approximately 1.5 %, rather than the normal 2.0 to 2.5 % additional loss when an independent gear box is used between the fluid drive and the pump. Comparison of Efficiencies of Variable Speed Drives: When comparing efficiencies for alternative types of variable speed drives, it is essential to determine the following factors: First, before the efficiency is calculated it is essential to determine if the equipment being evaluated will provide variable speed power under all of the conditions that are required ? Second, determine if the equipment will respond as fast to a change of load as is required or desired ? Third, determine if the efficiency of alternate types of equipment will be evaluated at several operating points from low load, say 20%, to full load being included, or will the evaluation be based on only one operating point, such as full power ? Many types of equipment can be designed to operate well at or near a single operating point such as full load, but they do not perform well when operating away from the design point of full load.

Page 49: CONFIDENTIAL - force.com

Figure 5. Chart of Output Torque Ratio vs. Output Speed Ratio for Different

Scoop Tube Positions.

Page 50: CONFIDENTIAL - force.com

A good way to evaluate alternative forms of variable speed drives is to examine the annual costs for operating each complete drive train at several operating points, giving weight for each load point in proportion to the number of hours that the equipment is expected to operate at each of these points during a year. The reason is that when operating at or near full load, there is high power, there is high efficiency, and there are usually a large number of hours, so the actual costs at this operating point are quite favorable. Then there are times when the drive train and pump will be operating at low load, at which time the efficiency is low, very little power is transmitted, and the number of hours at this point is limited, with the consequence that, when averaged with the high efficiency operating points at high load conditions, the average efficiency is quite satisfactory. When performing these evaluations, it is very critical that an accurate value of the actual power consumption for each evaluation point be obtained and used. This includes such things as (a) for steam turbines, the actual heat rate at “off design” conditions when extraction steam is not available in sufficient quantity and main steam or steam from a “pony boiler” may be needed, and (b) for electronic variable frequency drives, the air conditioning load for the electronics as well as the transformer, wiring, and motor losses, especially the losses due to the very high frequencies. . Construction of Fluid Drives and the Oil Conditioning Systems: Variable speed fluid drives are built by a number of manufacturers around the world. Most manufacturers have developed a range of designs of fluid drives for specific applications, and these that have become “standardized lines” for that manufacturer. Many applications require specialized designs that are not among the standardized designs, due to the environment, power, speed, or turn down conditions, and upon request, manufacturers will often provide those specialized designs. Fluid drives can be made with horizontal shafting or vertical shafting. The materials of construction of fluid drives vary widely. Outer housings and certain bearing housings are usually made of fabricated steel, may be split horizontally or may be stacked from one end, and may be made from thick steel or from thin steel. In certain cases, the outer housings and certain bearing housings may be made of cast iron or cast steel. The impellers and runners may be cast aluminum of a variety of grades and heat treats, cast steel, fabricated steel, or milled from solid forgings of alloy steel. For a fluid drive with a hydraulic diameter of 25 to 27 inches, the impeller and runner pockets are each about 6 inches deep axially and the gap between the impeller and runner faces is on the order of 1/4 inch to 3/8 inch. Pocket sizes and gaps for other fluid drive sizes are larger or smaller in proportion to the size of the fluid drive hydraulic diameter. Shafts and other rotating casings are usually made of carbon steel or alloy steel. Heat treatment may or may not be used. The journal and thrust bearings can be rolling element design or Babbitted bearings, and the choice depends upon the speed, size limitations, operating duty, required life, and

Page 51: CONFIDENTIAL - force.com

price. Rolling element bearings come in a range of duties and L10 (or B10) lives. Babbitted bearings may be made of simple fixed shapes or they can be made with extremely robust tilting pad designs. Flexible coupling types range from gear to diaphragm styles, and they may be supplied by the customer, by the manufacturer, or in some cases, the hubs may be made integral with the shafts. Instrumentation such as thermocouples or resistance temperature devices (RTDs) and vibration pickups, proximity or seismic, may or may not be included. Oil conditioning systems can be extremely simple, comprising one pump, electric or shaft driven, one cooler, one filter, and one sight glass to determine the oil level in the tank. Alternately, they can be quite complex being built according to the highest level of API specifications with duplex AC main oil pumps, a DC emergency pump, duplex oil coolers, duplex filters, all stainless steel piping, various isolation valves, pressure control valves, actuator for the scoop tube, additional lube oil requirements for the main motor and main pump, and with electronic transmitters for pressure, temperature, and oil levels for interfacing with DCS systems. Because there are no industry standards that broadly apply to all fluid drives, it is essential for the user to detail all of the desired features in the purchasing specification. As will be seen below, the heat loss in a fluid drive depends upon the specific operating points in the application, and several operating points should be provided to the manufacturer, including the maximum power and speed point, the minimum power and speed point, and two or three interim operating points, especially the lowest pressure with the maximum flow. The reason for providing such details is that there is no reason to use larger pumps and/or larger heat exchangers than are required to meet the user’s operating conditions and, at the same time, to maintain the maximum oil temperatures below the oxidation limits of the particular oil to be used (generally in the range of 185 degrees F). When gears are included in the mechanical design of the fluid drive, the service factors for gear sets located on the output side of the fluid drive do not need to be so high as when they are located on the input side, particularly when synchronous motors are involved. Because there is such a wide range of design features that can be used in fluid drives, and because the technology content is the principal controller of price, the pricing can vary widely for different fluid drives for the same maximum power and maximum speed. In other words, specifications addressing only the max speed and max power are not sufficient to specify a fluid drive adequately, especially the oil system for a fluid drive, because the most difficult operating points for fluid drives are in the “turn down” operating points when the output shaft speed is in the neighborhood of 2/3 of the input shaft speed. It is extremely helpful to the fluid drive manufacturer/designer if the user actively participates in developing the design details of the equipment. When a Variable Speed Fluid Drive and its mating Oil Conditioning System are properly designed for a given application, they become relatively simple mechanical systems with extremely high reliability and availability. It is quite common for variable speed fluid drives to operate for over ten years without inspection or any maintenance other than changing oil filters. When maintenance of a fluid drive is required, parts can be obtained or can be made

Page 52: CONFIDENTIAL - force.com

as required. It is rare for a fluid drive design to become obsolete, which has been a problem on certain types of electronic variable frequency drives. The speed of the output rotating assembly is controlled by the position of the scoop tube tip which is typically positioned by a scoop tube actuator, being driven by a 4-20 ma signal from the plant control system, such as the central DCS (Distributed Control System), for the entire process unit. It is interesting to note that the Fluid Drive of the Hydro-kinetic design was invented by Dr. Herman Fottinger in Germany in 1905, and fluid drives of this design are now used all over the world. A textbook on Fluid Drives, also called Fluid Couplings, that may be useful to those who have an interest in technical details is entitled Stromungskupplungen und Stromungswandler, Berechnung und Konstruction, by Ing. Maurizio Wolf, Springer-Verlag, Berlin/Gottingen / Heidelberg, 1962. Fluid Drive designs have been tuned and adjusted and adapted to many applications, but the fundamental features, other than instrumentation, have not significantly changed. Power Loss and Temperature Conditions for Variable Speed Fluid Drives. A very simplified approach for evaluating the heat loss of a variable speed drive assumes that the power required by a pump is only proportional to the cube of the pump speed (or output shaft speed). This is correct under certain conditions, but because pumps operate at points on the head-capacity plot that are at some distance from this simplified curve, a more appropriate evaluation of the heat loss of a variable speed fluid drive for boiler feed pump service is given below via a series of head-capacity Charts. In the simplified approach, assume that the power of a pump is proportional to the cube of the pump speed (or fluid drive output shaft speed ): Power out = N out ^ 3 And Torque out = N out^2. Now Torque in = Torque out = Torque, Hence Power in = Torque in x N in Power in = N out^2 x N in Power Loss = Power in - Power out = N out^2 x N in - N out ^ 3 The maximum loss occurs at N out = 2 x Nin 3

Page 53: CONFIDENTIAL - force.com

The maximum loss at this output shaft (pump) speed is approximately 15% of the rated input power. Including bearing and circuit oil handling losses, the maximum loss is on the order of 16% to 17 % of the rated input power. The circuit oil flow pattern within the fluid drive chamber consisting of the impeller pockets and runner pockets and the axial gap between them can be considered to be a spiral in general, Figure 3, but it is extremely turbulent. The turbulence of the circuit oil is affected by the speed difference, the torque transmitted, and the amount of circuit oil in the rotating element. As indicated above, the speed at which the maximum power loss occurs is when the output shaft is at approximately 2/3 of the input shaft speed, which is also the speed at which the greatest turbulence occurs. Thus, for a fluid drive input speed of 3600 rpm, the maximum turbulence occurs when the output shaft speed (pump speed) is in the range of 2400 rpm. It is also important to note that for a given output shaft speed both the turbulence and the power loss increases with increased torque. Five head-capacity charts are provided below that are based on the head-capacity plot for a main boiler feed pump for a 375 MW Turbine-Generator. The head is shown in units of psig because the intent of these charts is to show trends for understanding of the issues at hand rather than to be completely accurate. For specific applications, the grids can be calculated with all of the normal details considered, but it will not change the principles at hand. The grids on the charts are made of constant speed lines (generally horizontal) and constant efficiency lines (generally curving upward). The grids are for the same conditions on all of the charts. Data is presented at certain intersection points of the grids. Figure 6 (Chart 1) presents the shaft power absorbed by the pump (out of the fluid drive). Figure 7 (Chart 2) presents the shaft power absorbed by the fluid drive (out of the motor or Turbine-Generator) at the same intersection points of the same grid. Figure 8 (Chart 3) presents the power lost to the circuit oil in the element (power into the fluid drive minus power out of the fluid drive). Figure 9 (Chart 4) presents the Circuit Oil Discharge temperature that results from the power lost in Chart 3 with the circuit oil input temperature of 120 deg F and a constant circuit oil flow rate of 400 gpm. Figure 10 (Chart 5) presents the circuit oil flow rate (gpm) required to maintain a constant temperature rise of the circuit oil (the difference between the circuit oil temperature entering the fluid drive and the circuit oil discharge (COD) temperature from the fluid drive rotating element. For instance, in Figures 6 through 10 ( Charts 1 through 5), following the constant speed line for 2400 rpm from left to right, it can be seen in these charts that power transmission increases, the torque increases,

Page 54: CONFIDENTIAL - force.com

the power (heat) losses increase, and the circuit oil discharge (COD) temperature rises. All of this is associated with increased circuit oil mass flow and associated increased turbulence of the circuit oil when traversing the constant speed line going from low boiler feed pump flow to higher pump flow.

Constant Throttle Pressure Operation Vs. “Reduced Pressure” or “Sliding Pressure” Operation: In the 1960 era, almost all turbine-generators were originally designed for constant pressure at the throttle, examples being 1800 psig, 2000 psig, 2400 psig, and at super critical pressures above 3600 psig. The corresponding system resistance curve for the boiler feed pump is a line beginning at the rated operating point of 11,066 hp on the 3510 rpm curve on the head capacity chart of Figure 6 (Chart 1) and traverses the chart with a downward slope until it reached the minimum flow point for the pump at 2,929 hp on the 2800 rpm curve. Consequently, the fluid drive of this example would never have to operate below 2700 rpm. The typical operating procedure, at least as anticipated in the design stage, was that the start-up pump would be used to get the unit up to minimum load and full throttle pressure. This process works, and is used for super-critical units which have higher operating pressure than this example, but it is almost never used by plant operators for sub-critical T-G units. As can be seen by inspecting these BFP head-capacity charts, keeping the operating pressure high so that the

Figure 6. (Chart 1) Power Absorbed by the Pump Shaft From the Fluid Drive Output Shaft.

Page 55: CONFIDENTIAL - force.com

Figure 7. (Chart 2) Power Absorbed by the Fluid Drive Input Shaft from the Motor

or Turbine-Generator Output Shaft at the Same Operating Points of the Grid.

Figure 8. (Chart 3) Power Lost to the Circuit Oil in the Fluid Drive Element

(Equals Power into the Fluid Drive Minus Power Out of the Fluid Drive) at the Same Operating Points of the Grid.

Page 56: CONFIDENTIAL - force.com

output shaft speed is always above 2700 rpm has the result that the heat dissipation in the circuit oil is limited to less than approximately 1500 hp, as shown in Figure 8 (Chart 3). Two important consequences are (a) that the heat exchangers do not have to be sized for the higher heat dissipation on the order of 2200 hp that occurs if the fluid drive were to be operated at 2400 rpm and at maximum flow conditions of approximately 2,000,000 lbs/hr at this speed, and (b) the circuit oil pump size can be limited in size for similar reasons, both of which save capital cost, and physical space on the oil conditioning skid. Most operators of sub-critical units operate these units in a different manner, as follows: The typical start-up objective is to get the T-G unit onto the main pump as soon as is practical. The pressure is limited to the “silica” limit, say 1200 psi at first, and the flow would be increased to the maximum possible by operating the throttle valves to the Valves Wide Open condition. Two benefits are achieved by operating in this manner: A greater feed water flow will clear the boiler water faster and, hence, the boiler pressure can be increased more rapidly. The second benefit is that the electrical power generated is maximized during the water clean-up process. The heat dissipated by the fluid drive at 1200 psi discharge and 500,000 lbs/hr is around 1500 hp, similar to the amount of heat dissipated at points along the system resistance curve for the constant throttle pressure application. However, as the flow is increased, the heat dissipated increases, and if the heat exchangers and circuit oil pumps are not adequately sized for “reduced pressure” or “sliding pressure” operation, then the fluid drive circuit oil discharge pressure will get hot, up to the 200 degree F range, as shown on Figure 9 (Chart 4). A reason for limiting the oil temperature to 185 degrees F is that above this temperature, oil in the presence of air will degrade. Another reason for limiting the temperature is that if water enters the oil, then the higher the temperature, the faster sludge will develop, and sludge can centrifuge out in the casings causing unbalanced conditions with associated increased vibration levels. When the fluid drive and the oil system are in the specification and/or design stage, the solution to avoid over-heating conditions involves accounting for the heat to be dissipated and the circuit oil flow rates that should be used to limit oil temperatures to 180 or 185 degrees F at the hot operating conditions that correspond to low speed, high BFP flow, and adjusting the plant cooling water heat balance accordingly. If the fluid drive is already in BFP service for a Turbine-Generator, and there is a desire to operate the unit with “reduced pressure” or “sliding pressure”, then it is necessary to identify the additional heat to be dissipated, and then install additional heat exchanger and circuit oil pumping capacity. The most effective heat exchangers are usually large single pass counter-flow designs. Heat exchangers of this design may not be the lowest cost by themselves, but they will likely obtain the lowest oil temperature leaving the coolers and they will use the least amount of plant cooling water, providing significant economic benefits.

Page 57: CONFIDENTIAL - force.com

Figure 9. (Chart 4) The Circuit Oil Discharge Temperature That Results From the Power Lost per Chart 3 With the Circuit Oil Input Temperature of

120 deg F and a Constant Circuit Oil Flow Rate of 400 gpm.

Figure 10. (Chart 5) Circuit Oil Flow Rate (gpm) Required to Maintain a

Constant Temperature Rise of the Circuit Oil ( The Difference Between the Circuit Oil Temperature Entering the Fluid Drive and the Circuit Oil

Discharge (COD) Temperature From the Fluid Drive Rotating Element.

Page 58: CONFIDENTIAL - force.com

While more heat is lost in a fluid drive on sliding pressure operation than on constant throttle pressure, the amount of power saved in the pumping process and in the reduction of throttling losses in the steam turbine is greater, providing a substantial net improvement in the overall cycle efficiency. For instance, the input power to the fluid drive in Figure 6 at full pressure and 350,000 lbs/hr is 4265 hp, whereas on sliding pressure conditions for the same MW, which uses about the same feed water flow, the input power is about 2500 hp, a savings of 1765 hp, or 1.3 MW, which at $70/ MW represents around $100./hour. This savings is only the reduced power to drive the pump, and does not include reduced throttling losses, and reduced fan airflow and other savings. Sliding pressure operation, including unconditional operation anywhere on the head-capacity map, usually has tremendous economic benefits. In most cases where the process can use these capabilities, the improved operating conditions can pay for the slight increase in capital cost for a heavy duty fluid drive and oil system in a matter of a few months. A reference book for analyzing sliding pressure operation in steam turbines is entitled Evaluating and Improving Steam Turbine Performance, by Ken C. Cotton, Second Edition, published by Cotton Fact in 1998. Use of a Control Valve to Maintain Uniform Circuit Oil Discharge (COD) Temperatures: At very low speed - low BFP flow operation, the minimum speed at low or zero % scoop tube is substantially controlled by the circuit oil flow rate. Control of the pump speed, and hence, the BFP flow is improved by minimizing the circuit oil flow to that required to keep the circuit oil discharge (COD) temperature below approximately 185 degrees F. This suggests that circuit oil flows should be reduced, which is the opposite of the solution for the high heat condition discussed above. The compromising solution to this circuit oil flow issue is to install a circuit oil discharge (COD) temperature control valve that limits the circuit oil flow to the fluid drive in order to maintain a constant circuit oil discharge (COD) temperature. Depending upon the application, this COD temperature set point is set in the neighborhood of 180 degrees F. The results of the use of this COD valve are demonstrated in Chart 5, which is based on the heat dissipated in Chart 3 and upon a constant differential temperature (circuit oil discharge temperature - circuit oil supply temperature) of 70 deg F. In this chart, the COD temperature remains constant and the flow varies, whereas in Chart 4, the circuit oil flow is constant and the COD temperature varies. Additional benefits arise: (1) The circuit oil flow is limited in the low output shaft speed range, and this increases the effectiveness of the scoop tube to control the output shaft/pump speed, reducing the minimum output shaft/pump speed when the scoop tube is at the minimum power position, and yielding greatly improved feed water control throughout the low speed range. (2) The circuit oil pump size can be increased to suit the specific application so that when the fluid drive is operated in the neighborhood of

Page 59: CONFIDENTIAL - force.com

2400 rpm and it is generating a large amount of heat, the circuit oil flow is adequate to limit the maximum temperature of the circuit oil discharging from the fluid drive element to approximately 180 to 185 deg F. (3) The power required to handle the circuit oil is reduced at operating conditions away from the high heat zone, increasing the operating efficiency of the unit. (4) A constant temperature fluid drive maintains uniform elevation height of the input and output shafts and maintains uniform thermal expansion of the housing and all internal parts. This extends the life of the fluid drive by minimizes low cycle stresses, relative movement, or fatigue of the various parts. It should be noted that TRI has been awarded US Patent 5,315,825 regarding the use of a circuit oil flow control valve that is controlled via a feedback from the COD Temperature Instrument, as described above.

Typical Vibrations of High Power Variable Speed Fluid Drive Rotors: In almost every fluid drive, the first critical speed of the input shaft and the first critical speed of the output shaft is each measurably above 3600 rpm (60 hz). The mode of vibration of each shaft in response to unbalance is typically a rigid body conical mode. That is, there is almost no bending of the shaft and the critical speed of each shaft is controlled primarily by the stiffnesses of the oil films of the bearings and the structures that support the bearings for that shaft. Depending upon the condition of the journal bearings, it is possible to experience some sub-synchronous vibration such as “oil whip” which occurs at a fractional frequency, generally below half running speed. This type of vibration should not be confused with a very unique type of vibration that often arises in fluid drives, discussed below: The journal at the input-inboard bearing of a high powered variable speed fluid drive typically has the highest amplitude vibrations because it is this journal that is experiencing the largest vibratory forces, both from the heavy casings of the input rotor and from the unbalance of the turbulent oil contained in these casings. A typical vibration frequency analysis for this input-inboard journal appears is shown in Figure 11. The unique features of this figure are that three vibration components usually appear in this analysis: (a) the synchronous component of the input shaft, which in this case is 60 hz, (b) the output shaft rotational frequency, 39 hz, and (c) a frequency (41 to 44 hz) that is slightly above the output shaft rotational frequency corresponding to the average effective rotational frequency of the circuit oil in the rotating element.

Page 60: CONFIDENTIAL - force.com

Figure 11. A Typical Vibration Frequency Analysis of the Journal at the Input-Inboard Bearing of a High Power Variable Frequency Fluid Drive

Figure 12. Variable Speed Geared Fluid Drive with Parallel Start-up

Capability that is Used to Start a Very Large Motor Which can Then Drive a Very Large Pump, Courtesy, Turbo Research, Inc..

Page 61: CONFIDENTIAL - force.com

Alternate Arrangements of Drivers, Fluid Drives, and Boiler Feed Pumps for Turbine-Generator Service: These days, there is great emphasis of improving the overall efficiency of fossil-fired generating plants. It is very common to design every new plant as if it is going to operate at only one point: full load. However, once built, many have to cycle to a reduced load at night, and this includes those that use fossil fuels. In this case, having the unit designed so that it is relatively efficient at full load as well as over a range of operating points down to low load is more appropriate. To this end, an arrangement that should be considered is one wherein the fluid drive and 100 % capacity boiler feed pump are attached directly to a steam turbine-generator extension shaft, and to have the entire plant designed for sliding pressure at the turbine throttle valve. In the 1960s, many such steam turbine-generators were built this way, that is, with a single 100 % “shaft driven” fluid drive/ boiler feed pump attached to either the turbine or generator extension shaft. A number of these units had heat rates at the design point on the order of 9300 btu /kw-hr. Several were built at the 325 MW range. Ravenswood 3, then owned by Consolidated Edison of New York, Inc., was the first 1000 MW unit in the world and was commissioned in 1965. It was built for sliding pressure and, incidentally, it had coal fired boilers. This is a cross-compound unit, and there are two fluid drive/boiler feed pumps, each rated at 18,000 hp, one set on each end of the HP / IP Turbine / Generator 3600 rpm shaft line. With today’s technology, a single fluid drive / boiler feed pump set on the order of 36,000 hp could be used instead of the two that were used then. Consequently, today, with the availability of three-dimensional computational flow dynamic analyses for steam path design, it should be possible to build large electrical generating plants using similar arrangements and obtain net heat rates measurably below 9000 btu / kw-hr. The primary advantage of the “shaft driven” design is purely to maximize efficiency of the steam power. In the shaft driven arrangement, the steam power is converted to mechanical power at approximately 92 % efficiency. Near the maximum power point, the efficiency of a fluid drive is around 93 % at full load, and it will exceed 70% for the bulk of the hp-hours of operation, though it will drop below that for very low load operation. In comparison, very few mechanical drive steam turbines exceed 70 % efficiency at the best operating points. For a motor driven fluid drive and pump arrangement, the power supply chain is longer and less efficient: The mechanical power at the turbine coupling to the generator is 92 % of the steam power (the same as above), with additional losses of approximately 1.6% for the generator, 1% for

Page 62: CONFIDENTIAL - force.com

the transformer, and perhaps 6% for the motor. The result is that for every MW needed to drive a fluid drive by a motor requires at least 9% more of the power from the turbine shaft. For a 1000 MW T-G that requires 36,000 hp from the turbine to drive a boiler feed pump via the “shaft driven” feature would require 39,234 hp, or an additional 3,234 hp to drive a motor driven boiler feed pump. This is significant in heat rate calculations for a Turbine-Generator of this size. Variable Speed Fluid Drive for Large Synchronous Motors with a Starting Capability: As mentioned above, with today’s technologies, it is possible to build very large 100% boiler feed pumps and comparably large fluid drives for Turbine-Generators on the order of 900 to 1300 MW. Figure 12 presents an example of a fluid drive design that can be used for the unique application of a very large synchronous motor driving a geared fluid drive / large boiler feed pump. This variable speed geared fluid drive has features (a) to start a very large synchronous motor so that this very large motor can be connected to the grid smoothly without a large inrush current, (b) to separate the starting equipment from the gear train, and then (c) to use the large motor to drive a comparably large variable speed pump. This design permits the use of one large motor / fluid drive / boiler feed pump to be used from start-up to full load operation. No start-up boiler is required as is required if a steam turbine driver is used, and no small start-up boiler feed pump is required as is required for a shaft driven fluid drive / boiler feed pump. The consequence is that a wide range of options for driving large boiler feed pumps, and other pumps as well, is now available to system designers. Beyond those fluid drive arrangements discussed here are alternative configurations that can be adapted or developed to meet the needs of these and other applications.

Page 63: CONFIDENTIAL - force.com
Page 64: CONFIDENTIAL - force.com
Page 65: CONFIDENTIAL - force.com
Page 66: CONFIDENTIAL - force.com
Page 67: CONFIDENTIAL - force.com
Page 68: CONFIDENTIAL - force.com
Page 69: CONFIDENTIAL - force.com

1

From: MATTHEW T. HELMS <[email protected]>Sent: Tuesday, April 18, 2017 6:39 PMTo: John R. Hiddema; AMY L. NICKOLAS; Richard L. Estabrook Jr; Vladimir Trbulin; Kurtis R. Stimer;

JONATHAN W. DUVALLSubject: Fwd: 2017 P 26-41 Oil Level Control in 250 DC Fluid DrivesAttachments: 2017 P 26-41 Consumers - JH Campbell 2 - Oil Level Control.pdf

Sent from my Verizon 4G LTE smartphone 

‐‐‐‐‐‐‐‐ Original message ‐‐‐‐‐‐‐‐ From: Mel Giberson <[email protected]>  Date: 4/18/17 6:31 PM (GMT‐05:00)  To: "MATTHEW T. HELMS" <[email protected]> Subject: 2017 P 26‐41 Oil Level Control in 250 DC Fluid Drives  

EmailsentfromoutsideofCMS/CE.Usecautionbeforeclickinglinks/attachments.  

Hello Matt: 

Attached is TRI Proposal 2017-26-41 for Oil Level Control in Size 250 Dual Circuit Fluid Drives. I have supporting documentation regarding the various items described in the proposal that I can provide upon request. 

Please contact me with any questions. 

Thank you. 

Sincerely yours, TRI Transmission & Bearing Corp. 

Mel Melbourne F. Giberson, Ph.D., P.E. TRI President and Sr. Technical Consulting Engineer 

Click here to view TRI Major Product & Service Lines

Email: [email protected] 

www.turboresearch.com 

Tel: 610-363-8570 Cell: 610-283-9077 

Page 70: CONFIDENTIAL - force.com

Engineering Services and Products P.O. Box 454 Lionville, PA Tel:610-363-8570 E-mail: [email protected] for Large Rotating Machinery 212 Welsh Pool Rd. 19353-0454 Fax:610-524-6326 w w w . t u r b o r e s e a r c h . c o m

Mr. Matthew T. Helms April 12, 2017 JH Campbell Generating Station Page 1 of 4 Consumers Energy

Subject: Automatic Oil Level Control: Oil Recovery Piping, Level Detectors, and Reservoir for the Size 250 Dual Circuit Fluid Drive, JH Campbell # 2. TRI Proposal 2017 P 26-41

Dear Matt:

One of the items related to the Size 250 Dual Circuit Fluid Drive that we discussed recently had to do with control of the oil level in the fluid drive. This document addresses TRI improvements that automatically control the oil level in a Fluid Drive within a satisfactory range, thereby minimizing oil leakage. 1. Background:

The oil level in an original fluid drive tank varies throughout the day and night for several reasons, including at least these three:

- To increase the speed of the Boiler Feed Pump, the scoop tubes are moved (in parallel) so the tips of the scoop tubes move in toward the center of the element permitting a thicker layer of oil to exist adjacent to the casing of the element. This process transfers oil from the tank to the element, lowering the level of oil in the tank. On the other hand, to reduce the speed of the pump, the scoop tube tips are moved outward toward the casing and this decreases the amount of circuit oil that stays in the fluid drive element and increases the level of oil in the tank. Note that the oil pumps are positive displacement and provide a constant flow rate (constant gpm).

- During different operating conditions, the circuit oil is heated more or less in the fluid drive process, with the temperature difference being over 40 degrees Fahrenheit. Heating the oil more causes the overall volume of oil in the tank and piping to expand, and the level rises. When the oil cools, the volume of oil shrinks, and the level in the tank drops.

- Another characteristic is that the oil circulates rapidly around the tank and flows along the walls as it goes toward the suction strainer at the bottom of the tank. From there it goes to the suction of the oil pumps and it is pumped back to the fluid drive element. The oil flow pattern in the tank varies depending upon the position of the butt ends of the scoop tubes - from which the circuit oil exits the scoop tubes and jets into the oil in the tank. Because the velocity of the oil flowing past the pipe that goes out to the sight glass controls the static pressure in the pipe, the level of the oil in the sight glass varies according to this velocity.

For an original fluid drive such as the Campbell Unit 2 Fluid Drive, the sight glass has a very limited height range. Because the various influences typically change according to MW generation level, therefore, these influences typically vary according to the time of

Page 71: CONFIDENTIAL - force.com

Mr. Matthew Helms Oil Recovery Piping, Level Detectors, and Reservoir for the JH Campbell Gen Sta. Size 250 Dual Circuit Fluid Drive, JH Campbell # 2. Consumers Energy TRI Proposal 2017 P 26-41 April 12, 2017 Page 2 of 4

day. This then leads operators on one shift to add oil to the tank, and operators on another shift observe oil overflowing and they then drain some oil from the tank, day after day.

2. Method to Control the Level within a Suitable Range:

Many years ago, in the 1980s, TRI designed a system that has proven to be very useful for accommodating the increase or decrease of oil level in the tank over time, usually a daily cycle as the unit goes through the daily generation swing.

The TRI approach to automatically controlling the oil level in the tank within a suitable range uses the following equipment:

2.1. A pipe assembly located within the fluid drive that is known as the "oil recovery overflow pipe assembly". It has an outer vertical "stilling column" that surrounds an internal overflow pipe that drains to the reservoir of Item 2.3. The overflow level is approximately 23 to 25 inches below the horizontal joint of the fluid drive so it is unlikely that the oil level will ever exceed this elevation. This overflow level may have been adjusted slightly over time.

2.2. A vertical sight glass with an adjacent long vertical oil level detector tree is mounted to pipe bosses on the outside of a wall of a fluid drive tank. The vertical length should be as long as possible, approximately 50 inches between pipe mounting bosses for a Size 250 DC Fluid Drive. Using stainless steel tubing internally to the tank, the top boss is connected to the top of the stilling column and the bottom boss is connected to the bottom of the stilling column. Electronic devices, known as Levelite crystals, are installed in the oil level detector tree to detect and provide a digital (on-off) signal when the oil level rises to this elevation.

2.3. A 275-gallon reservoir in a "dry tank" is located on the level below the turbine deck. This reservoir also has Levelite digital level indicators that indicate the oil level within the reservoir. In the steel framework under this reservoir is a small gear pump that transfers oil from this reservoir to the oil system of the fluid drive when the level detectors so indicate. On the top of the reservoir is located an "oil mist eliminator" that pulls a small vacuum, around 1" water, in the reservoir as well as the fluid drive. The dry tank is used to capture any oil that overflows from the reservoir tank.

2.4. Several signal conditioners for the Levelite Detectors are located in a junction box that is not far from the Detectors. These signal conditioners provide signals to the DCS to indicate the operating status of the oil level and when the pump should transfer oil to the fluid drive tank. 3. Installation:

3.1. The bottom of the oil recovery pipe assembly is connected to a pipe boss in the bottom of the tank. In many fluid drive tanks, there are pipe bosses that are blanked but can be used. A large section of this piping assembly can be made before it is installed, but piping sections that connect to the bottom pipe boss and a support plate that mounts to the side wall of the tank are fitted during the installation process.

Page 72: CONFIDENTIAL - force.com

Mr. Matthew Helms Oil Recovery Piping, Level Detectors, and Reservoir for the JH Campbell Gen Sta. Size 250 Dual Circuit Fluid Drive, JH Campbell # 2. Consumers Energy TRI Proposal 2017 P 26-41 April 12, 2017 Page 3 of 4

3.2. A vertical sight glass and an oil level detector tree can be made to suit the existing pipe bosses of the existing sight glass. However, if a vertically longer assembly can be used, it is helpful to do so. If this is possible, then a new connection boss can be installed lower in the tank wall.

3.3. The 275-gallon oil recovery reservoir assembly can be built separately and moved into position before the outage. A pipe section is then installed to connect the pipe boss for the bottom of the overflow pipe assembly to the top of the oil recovery reservoir.

3.4. A junction box that encloses the electronics for the Levelite sensors can be made elsewhere and installed near JHC 2 in the power plant. In addition to the signal conditioners, there are several terminal strips that are used for connections between the Levelite sensors and the signal conditioning instruments, and between these instruments and the DCS or similar equipment that controls the unit. Via the DCS, the Levelite signals control the operation of the gear pump to transfer oil to the fluid drive. 4. Alternative to the Digital Levelite Sensors:

Level transmitters are available today that can easily be used in a column similar to the vertical column of the level detector tree. Sometimes both a level transmitter and digital sensors are used. There are advantages for the transmitters, particularly that the program can easily be changed. 5. Schedules: 5.1. Manufacturing Schedule:

The reservoir and related piping and instrumentation equipment is either purchased when it is available commercially or it is manufactured by TRI. An estimate of the time to purchase parts and to manufacture and to assemble this equipment is 12 weeks. 5.2. Installation Schedule:

The most critical portion of the installation schedule is the time period required to install the overflow recovery pipe assembly and the sight glass and level detector tree. It would be most appropriate to install this equipment in the fluid drive when the rotating element is removed and the central plate is also removed. This gives improved access to the lower section of the tank where various piping and tubing connections are made.

This work might take 2 to 3 days to be installed within the tank depending upon number of shifts per day and the availability of a crane or hoist to lift the piping assembly in and out for fitting. Other work for the electrical/ electronics would not impact the schedule for the tank work or installation of a rotating element, for example.

Page 73: CONFIDENTIAL - force.com

Mr. Matthew Helms Oil Recovery Piping, Level Detectors, and Reservoir for the JH Campbell Gen Sta. Size 250 Dual Circuit Fluid Drive, JH Campbell # 2. Consumers Energy TRI Proposal 2017 P 26-41 April 12, 2017 Page 4 of 4

6. Shipping Terms for Manufactured Products from TRI: Ex-works: TRI Facilities, Lionville, PA (aka for truckers: Exton, PA).

TRI prefers that the customer arrange shipping and pay the shipper directly. TRI will load the products on trucks at no extra charge.

7. Estimated Pricing:

Estimated pricing for the equipment identified above.

7.1. Oil Recovery Overflow Piping Assembly: $ 5,500. 7.2. Vertical Sight glass and Level Detector Tree (No transmitter): $ 4,500. 7.3. Oil Recovery Reservoir and Pumping Assembly: $ 9,500. 7.4. Local Panel with Levelite Equipment: $ 8,500. Estimated Total: $28,000.

8. Pricing for Trips to Site for Technical Direction:

It is anticipated that TRI will provide a Sr. Technical Consulting Engineer to travel to site for this project. Because there are other trips anticipated for other parts of this upgrade project, it may be appropriate to identify the various parts that likely will be selected by Consumers to install, and then address pricing for the unified trip or the individual trips involved.

9. Progress Payments and Invoices:

Fixed Price Work: Progress Payments are planned, to be negotiated at time of order placement. Invoices are to be issued in accordance with Progress Payment schedule.

Invoices for T&M work on site will be issued from time to time, usually every two weeks and at the end of the project.

10. Terms of Payment:

Terms of Payment are to be negotiated at time of order placement.

Should you have any questions, please contact me.

Thank you.

Sincerely yours, TRI Transmission & Bearing Corp.

Mel Giberson Melbourne F. Giberson, Ph.D., P.E. TRI President and Sr. Technical Consulting Engineer email: [email protected] website: www.turboresearch.com tel: 610-363-8570 cell: 610-283-9077

Page 74: CONFIDENTIAL - force.com

1

From: MATTHEW T. HELMS <[email protected]>Sent: Friday, May 12, 2017 11:17 AMTo: Richard L. Estabrook Jr; Vladimir Trbulin; AMY L. NICKOLASSubject: FW: Link to Video for 250 DC Fluid Drive Rotating Element Installation

Importance: High

Yes…. I know, there are a couple of guys not wearing safety glasses.  This drive is similar to JHC2. 

From: Mel Giberson [mailto:[email protected]] Sent: Friday, May 12, 2017 10:05 AM To: MATTHEW T. HELMS Subject: Link to Video for 250 DC Fluid Drive Rotating Element Installation Importance: High

EmailsentfromoutsideofCMS/CE.Usecautionbeforeclickinglinks/attachments.

Hello Matt:

In the process of assembling a spare 250 Dual Circuit Fluid Drive for Ravenswood 3, we made a video of the step of installing the rotating element in the fluid drive outer housing and bearing pedestals. This is the method that we typically use for dual circuit fluid drive elements.

The video has been uploaded to YouTube and stored as a private, unlisted video.

The link is: https://youtu.be/Ep8WZILXkNQ 

Please view the video when you and/or your Consumers associates wish.

Any questions of comments, please contact me.

Thank you.

Sincerely yours, TRI Transmission & Bearing Corp.

Mel Melbourne F. Giberson, Ph.D., P.E. TRI President and Sr. Technical Consulting Engineer

Click here to view TRI Major Product & Service Lines

Email: [email protected] www.turboresearch.com Tel: 610-363-8570

Page 75: CONFIDENTIAL - force.com

2

Cell: 610-283-9077

DISCLAIMER: This e-mail and any attachments to it contain confidential and proprietary material of TRI Transmission and Bearing Corp. and is solely for the use of the intended recipient. Any review, use, disclosure, distribution or copying of this transmittal is prohibited except by or on behalf of the intended recipient.

Page 76: CONFIDENTIAL - force.com

Case No. U-20220Exhibit AG-6

Page 77: CONFIDENTIAL - force.com

Case No. U-20220 Exhibit AG-7Page 1 of 8

Page 78: CONFIDENTIAL - force.com

J.H. Campbell 

Apparent Cause Evaluation Report 

Incident: 

JH Campbell Unit 2 hydraulic coupling lube oil cooler leaked into the low pressure house service water 

causing oil contamination of the ash pit, API, the ash field ditching system, a sheen on the 002A Outfall, 

and the following Bottom Ash Tanks:  A Primary, A Secondary, and B Secondary.  The leak began 

sometime during start up on 4/24‐25/19 and the loss was stopped at 2015 hrs on 4‐25‐19 when cooling 

water to the cooler was secured.  This system must be in service any time the turbine shaft is turning as 

it supplies lube oil to the hydraulic coupling and boiler feed pump; with turning gear in service for at 

least 48 hours once the unit is removed from service.  This results in extending the duration of the loss.  

Summary: 

During start‐up of Unit 2, oil was observed in the API at approximately 0830 hrs on 4‐25‐19.   Site 

Environmental, Site Chemistry, Operations and Maintenance personnel from JHC 1&2 and JHC 3 

responded to the discharge.  Contracted spill response groups were also called in to assist with clean up.  

The vast majority of the discharge was contained on site; however, a sheen was noted down‐stream of 

the weir at Outfall 002A.   

Troubleshooting determined that the Unit 2 hydraulic coupling lube oil cooler was the cause of the oil 

release.  Site mechanical maintenance performed an inspection and identified two tube leaks.  The 

decision was made to send the bundle offsite for further testing.  The leaking bundle was removed and 

sent to National Heat Exchange (NHE) for evaluation and repair.  NHE found 13 failed tubes and 66 

additional tubes having greater than 50% through wall indications and 10 tubes with up to 90% through 

wall damage.  The damaged areas were linear, circumferential cracks caused by excessive vibration of 

the tubes.  Due to the extent of tube damage, the bundle was re‐tubed with non‐finned tubes, with an 

expected heat exchange performance of 60% of a finned bundle.  A longer lead time, finned 

replacement bundle will be purchased for install at the next outage of opportunity.   

The apparent cause of the tube damage is mechanical damage from vibration in the hydraulic coupling 

lube oil system.  This vibration is caused by operation of the lube oil pumps without adequate oil supply 

at the pump inlet.  This condition exists when the sump oil level is too low, causing an oil/foam mixture 

from the sump that supplies suction to the pump(s).  The oil foam is formed as circuit oil exits the 

hydraulic coupling during normal operation.  The presence of the foam at the pump suction causes the 

pump to vibrate violently, similar to cavitation observed in a water pump with inadequate Net Positive 

Suction Head (NPSH).  This pump induced vibration causes the tubes to vibrate, to develop the linear 

Case No. U-20220Exhibit AG-7Page 2 of 8

Page 79: CONFIDENTIAL - force.com

circumferential cracks, and ultimately, to fail.  Since the oil pressure is significantly higher than the low 

pressure house service cooling water, the oil escapes into the cooling water system.   

The risk of a repeat of this failure can be significantly reduced by modification of the hydraulic coupling 

lube oil system as follows: 

1. Source and install a new, finned tube bundle in the hydraulic coupling lube oil cooler.  R.

Estabrook, next outage of opportunity.

2. Install a stilling column inside the sump to measure liquid oil level without the influence and

uncertainty associated with the oil foam.  R. Estabrook, 12/15/2020

3. Install a recovery tank and automated pumps that will collect excess sump oil and then return it

to the sump as operational needs require.  R. Estabrook, 12/15/2020

4. Install shields inside the sump to protect the sight glass and dip stick from oil sprays and oil

foam that can interfere with accurate liquid oil level determination.  R. Estabrook, 12/15/2020

5. Design a redundant hydraulic coupling oil cooler that can be put into service while the

generating unit is still online.  This will allow for maintenance activities on the idle cooler as well

as an emergency back‐up should another tube leak occur.  M. Debo 12/31/2019

6. Install a redundant hydraulic coupling oil cooler. J. Koetje, 12/15/2020

7. Re‐rate the entire system for operation at 175‐190 psi.  This pressure is necessary to provide

adequate oil pressure to the pilot bearing.  The current system is designed for operation at 150

psi.  A. Thelen, 12/15/2019

These recommendations should be entered into the Issues Management Database to assign them to 

individuals responsible for their completion and to track them to completion. 

Case No. U-20220Exhibit AG-7Page 3 of 8

Page 80: CONFIDENTIAL - force.com

Sequence of events: 

4‐24‐19  0100 hrs 

Unit 2 was in start‐up, 2B hydraulic coupling lube oil pump running, sump low level alarm in. 

4‐24‐19  1536 hrs 

Unit 2 MBFP put into service rolled to 600 rpm 

4‐24‐19  2103 hrs 

Unit 2 MBFP speed 750 rpm, 5 MW, began to ramp unit. 

4‐24‐19  2343 hrs 

Unit 2 MBFP speed 2711 rpm, 58 MW, continued with ramp. 

4‐25‐19 0100 hrs 

Low sump oil level alarm cleared, came in and out four times over the next three hours 

4‐25‐19  0345 hrs 

High sump oil level alarm came in and cleared.  Low sump level in and out seven times in next seven 

hours and high sump oil level alarm in and out two more times in same time period. 

4‐25‐19  0800 hrs 

ESOMS log noted that several fills to the hydraulic coupling sump were required on A shift. 

4‐25‐19  0830 

Report of oil in the API, began troubleshooting source. 

4‐25‐19  0905 hrs 

Unit 2 MBFP speed 3053 rpm, 274 MW, unit at full load. 

4‐25‐19  0915 hrs 

Verified no oil visible in unit 2 ash pit which based on last year’s occurrence, was the indicator of the U2 

hydraulic coupling lube oil cooler leak. 

4‐25‐19  0930hrs 

Northern A1 in to pump oil from API 

Case No. U-20220Exhibit AG-7Page 4 of 8

Page 81: CONFIDENTIAL - force.com

4‐25‐19  0915‐1100 hrs 

 Continued troubleshooting (at this time oil was only observed in the API) 

4‐25‐19  1122 hrs 

Hydraulic coupling sump low level alarm came in and did not clear. 

4‐25‐19  1100‐1200 hrs  

Verified no turbine oil over in the ash field ditching system. 

4‐25‐19  1200 hrs 

Oil found in bottom ash tanks A Primary, A Secondary, and B Secondary which are all used for JHC 1&2 

bottom ash. 

4‐25‐19  1200‐1400 hrs 

Continued troubleshooting the source. Oil found from the drain of the outlet of the unit 2 hydraulic 

coupling lube oil cooler on the water side drain of the cooler. 

4‐25‐19  1415 hrs 

Decision made to remove U2 from service 

4‐25‐19  1901 hrs 

Unit 2 off line and MBFP speed 21 rpm. 

4‐25‐19  1915 hrs 

U2 Hyd Coup low level, attempted refill. Both AC/DC oil pumps running and started cavitating and relief 

valves were lifting 

4‐25‐19  1915‐2000 hrs 

Kept oil flowing to coupling and continued to troubleshoot to figure out what was going on. 

4‐25‐19  2015 hrs 

Isolated U2 Hyd Coup L/O cooler water supply 

4‐25‐19  2015 hrs 

Water pressure gauges found pegged out at 100 psi and oil found seeping out of water isolation valves 

stems 

Case No. U-20220Exhibit AG-7Page 5 of 8

Page 82: CONFIDENTIAL - force.com

4‐25‐19  2030 hrs 

Oil found in sumps 3,5,6 and floor trenches 

4‐25‐19  2030 hrs 

Called in support and started clean up and containment 

4‐25‐19  2300 hrs 

Determined that there was no oil in the discharge channel to Outfall 001A. 

4‐26‐19  1000hrs 

Clean up efforts continued and a sheen was observed downstream of the weir at Outfall 002A.  

Notification was made to MI Dept. of EGLE. 

Observations: 

Lube Oil cooler‐ The failed tube bundle was sent to National Heat Exchange (NHE) for evaluation and 

repair.  Several tubes were found to be failed and 66 of the not yet failed tubes had indications of 50 to 

90% through wall cracks.  The decision was made to re‐tube the bundle with non‐finned tubes that NHE 

had in stock.  This will be approximately 60% of the cooling efficiency of a finned tube bundle.  The 

finned tubes were ordered with an approximately 5 week lead time.  The finned bundle will be 

manufactured and held in reserve until an outage of opportunity occurs for it to be installed.   

Due to the need for the lube oil system to be in operation any time the turbine is either on gear or 

online, the recommendation is to design and install a redundant lube oil cooler.  This redundancy would 

allow for maintenance activities and serve as an emergency back‐up cooler should another tube leak 

occur.  This oil spill event was extended due to the need to keep the lube oil flowing to the bearings until 

the unit was taken offline.  The lube oil cooling water was isolated on 4‐25‐19 after the unit was taken 

offline.  The turbine remained on gear until 4‐27‐19 and the lube oil system remained in service, without 

cooling water, until the turbine could be taken off gear.  Operations monitored the bearing 

temperatures during this time to ensure that they did not overheat due to the cooling water being 

isolated.  A back up cooler would have allowed temperature controlled lube oil flow to the hydraulic 

coupling bearings until the turbine was taken off gear. 

The re‐tubed, smooth tube bundle was installed into the shell on 5‐9‐19.  Once install was complete, a 

helium leak check was performed on 5‐10‐19.  The leak indicated a leak in the lantern ring area, which 

seals the tube sheet to shell joint.  The bundle was removed and reinstalled with a new lantern and new 

o‐rings.  The leak indication did not change.  A representative from NHE was onsite on 5‐14‐19.  He 

identified scale on the shell that was removed, the bundle reinstalled, and that leak was resolved.  

During the ensuing leak check, twelve tube to sheet joints were identified as leaking with helium and 

Case No. U-20220Exhibit AG-7Page 6 of 8

Page 83: CONFIDENTIAL - force.com

confirmed with soap solution.  NHE shipped a rolling motor and mandrel so those joints could be re‐

rolled to stop the leaks.  The bundle passed a hydrostat test before leaving the factory; however, helium 

leak testing is more sensitive and was able to identify the small leaks.  NHE does not perform helium 

leak testing.  This process should be repeated when installing the finned bundle later this year. 

Lube oil Pump(s)‐ No issues were observed with the lube oil pumps.  B pump was running for the 

majority of the start‐up.  At approximately 1915 hrs on 4‐25‐19, all three pumps were observed to be 

running.  This was likely caused by auto starting of first, the 2A pump and then the Emergency Lube Oil 

pump as the tubes continued to fail and oil pressure to the coupling decreased.  This event was likely 

made worse since the start of the DC emergency pump would have also triggered the lube oil flow 

control valve to close, blocking the recirculating flow path to the sump and directing all of the flow from 

all three pumps into the cooler and filters to supply bearing lube oil.  Operations personnel reported 

that the pump relief valves were operating as the pumps were cavitating and the system vibrating.   

Timing‐ This event happened during start‐up.  Operations reported to have filled the hydraulic coupling 

sump several times and were unable to get the low level alarm to clear early in the start‐up.  Later in the 

start‐up, the alarm did clear several times.  The sump high level alarm also came in and out several times 

during the event, indicating that oil was in fact being added to the sump.  This is indicated in 

Attachments 4 and 5 which are trends that show the high and low sump level status.  The presence of oil 

foam in the sump makes accurate level determination very difficult with either the dip stick or the sight 

glass.  The level sensor is located in the same vicinity of the sight glass and dip stick, so its’ accuracy is 

not guaranteed.   

Apparent Cause: 

The cause of the tube leakage is mechanical damage due to the running of the lube oil pump(s) without 

adequate oil level.   

The Physical Component of this event is that the pumps will produce damaging vibration in the system 

when operated without adequate liquid oil supply.  This operating condition occurs when the sump oil 

level is inadequate.  The addition of an automated system consisting of an overflow tank and pumps to 

capture excess sump oil and return it to the sump according to the operational needs of the hydraulic 

coupling will eliminate the physical component of this failure. 

The Human Component of this event is that Operations personnel must correct the sump oil level after 

an alarm is annunciated and prior to oil foam getting to the pump inlet.  This is an event that occurs as 

frequent as once per shift and that engineers and operators view as “normal” operation.  Because of the 

tube leak, the frequency of low level alarms was more than normal and the amount of oil needed to 

clear the alarm was more than normal during this event.  This caused operators to make ESOMS notes 

about the low oil level alarms and fills.  Operations personnel consulted with Engineering to review the 

frequent fills and it was judged to be a result of oil over flowing the sump weir to the dirty oil tank and 

not uncommon during a unit start‐up.   The proposed system modifications should lead to infrequent 

Case No. U-20220Exhibit AG-7Page 7 of 8

Page 84: CONFIDENTIAL - force.com

high or low sump oil level alarms.  This reduction in alarms will help engineering and operations 

personnel in their alarm response and troubleshooting for oil leaks which will eliminate the human 

component of this failure. 

The Systemic Component of this event is that the hydraulic coupling lube oil system was designed for 

manual control of the sump oil level.  The accuracy of the tools to monitor sump level (dip stick, sight 

glass, and level switch) is negatively impacted by the design of the sump and the oil foam present during 

operation of the hydraulic coupling.  This causes confusion and frustration for engineering and 

operations personnel when trying to determine the correct oil level for operation of the system.  

Modifications of the sump level detection equipment and automation of sump level control will 

eliminate the systemic component of this failure. 

Corrective Actions: 

1. Install pressure indication on the oil inlet to the hydraulic coupling lube oil cooler to monitor

cooler inlet oil pressure.  Plant I&C, completed 5‐15‐19

2. Install pressure indication on the water inlet to the hydraulic coupling lube oil cooler to monitor

cooler discharge water pressure.  Plant I&C, completed 5‐15‐19

3. Modify the hydraulic coupling sump with a stilling well and shields to increase the accuracy of

liquid oil level measurements.  System Engineering, 12/15/2020

4. Install an automated sump oil level control system.  System Engineering, 12/15/2020

5. Design and install a redundant hydraulic coupling lube oil cooler.  Project Engineering

12/31/2019 & EPM 12/15/2020

6. Re‐rate the system for normal operating pressure.  Design Engineering, 12/15/2019

Attachments: 

Title  Author  Date 

1) Sequence of events N Hoffman  4‐26‐19 

2) Hydraulic Coupling Failure Four Diamond S Reeves  5‐10‐19 

3) Inspection Summary Sheet CSI, Inc.  5‐3‐19 

4) Hydraulic Coupling Lube Oil Trend M Wikman  5‐9‐19 

5) HCLO EDS Trends J Slinkard  5‐9‐19 

6) JHC 2 Apparent Cause Evaluation Report M Helms  5‐23‐18 

   System Engineering   S Reeves 

      5‐16‐2019  

Case No. U-20220Exhibit AG-7Page 8 of 8

Page 85: CONFIDENTIAL - force.com

U20220-AG-CE-108 Page 1 of 1

Question:

6. Refer to the page 10, lines 14-17, of Mr. Kapala’s direct testimony.Please:a. Provide the dates when the decisions were made to discontinue taking deliveries of lower BTU coaland blend the lower BTU coal at the plant site with coal from other mines.b. Why were these decisions not made sooner?

Response:

a. Many decisions were made throughout 2018 as additional generationoperations data became available. The final decision to discontinue use of thelower BTU coal came during the 4th quarter of 2018. A thorough analysisrevealed that the chemical composition of the ash from the low BTU coal wascausing excessive fouling and slagging. The ash composition led to excessive ashaccumulation that could not be removed while the unit was operating.

b. Sufficient data was not available to support an earlier decision.

___________________________Norman J. Kapala February 10, 2021

Executive Director- Fossil and Renewable Generation

Case No. U-20220Exhibit AG-8

Page 86: CONFIDENTIAL - force.com

Case No. U-20220Exhibit AG-9

Page 87: CONFIDENTIAL - force.com

Case No. U-20220Exhibit AG-10Page 1 of 2

Page 88: CONFIDENTIAL - force.com

Case No. U-20220Exhibit AG-10Page 2 of 2

Page 89: CONFIDENTIAL - force.com

Case No. U-20220Exhibit AG-11Page 1 of 2

Page 90: CONFIDENTIAL - force.com

Case No U-20220Exhibit AG-11Page 2 of 2