conformal dynamics from lhc to cosmologypyweb.swan.ac.uk/~pybl/largentalks/sannino.pdfprogress in...

111
Francesco Sannino Swansea 2009 C P 3 - O r i g i n s Particle Physics & Origins of Mass Conformal Dynamics from LHC to Cosmology

Upload: others

Post on 20-Feb-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

  • Francesco Sannino

    Swansea 2009

    C P 3 - O r i g i n s

    Particle Physics & Origins of Mass

    Conformal Dynamics from LHC to Cosmology

  • Dynamical Electroweak Symmetry Breaking

    Unparticle Physics

    .....

  • Natural Asymmetric Dark Matter*

    Electroweak Baryogenesis

    * Decaying, Composite, ...

  • We can probe the dynamics of our extensions

  • Technicolor

  • Dynamical EW Breaking

  • Dynamical EW Breaking

    L(H)→ −14F aµνF aµν + i Q̄γ

    µDµQ + · · ·

  • Dynamical EW Breaking

    Dots are partially fixed by Anomalies as well as other principles

    L(H)→ −14F aµνF aµν + i Q̄γ

    µDµQ + · · ·

  • Dynamical EW Breaking

    Dots are partially fixed by Anomalies as well as other principles

    L(H)→ −14F aµνF aµν + i Q̄γ

    µDµQ + · · ·

    · · · → L(New SM Fermions)

  • Technicolor

    New Strong Interactions at ~ 250 GeV [Weinberg, Susskind]

  • Technicolor

    New Strong Interactions at ~ 250 GeV [Weinberg, Susskind]

    Natural to use QCD-like dynamics.

  • Technicolor

    New Strong Interactions at ~ 250 GeV [Weinberg, Susskind]

    Natural to use QCD-like dynamics.

  • Technicolor

    New Strong Interactions at ~ 250 GeV [Weinberg, Susskind]

    Natural to use QCD-like dynamics.

  • Large & Positive S from QCD-like Technicolor

    1 TeV

    SU(3) + 1 Fund. Doublet

    S

    T

    Kennedy-Lynn, Peskin-Takeuchi, Altarelli-Barbieri, Bertolini- Sirlin, Marciano-Rosner

    Weinberg, Susskind

  • Walking versus Running

  • Near Conformal Properties

  • Near Conformal Properties

  • Near Conformal Properties

  • Near Conformal Properties

    Appelquist, Bowick, Chivukula, Cohen, Eichten, Georgi, Hill, Holdom, Karabali, Lane, Mahanta, Miransky, Shrock, Simmons, Terning, Wijewardhana, Yamawaki

  • S in Walking Technicolor

  • S in Walking Technicolor

    Appelquist, F.S.SWTC < STC

  • S in Walking Technicolor

    We will take as an estimate:

    Appelquist, F.S.SWTC < STC

  • S in Walking Technicolor

    We will take as an estimate:

    Appelquist, F.S.SWTC < STC

    SWTC ≈ Snaive =16π

    Nf2

    d(R)

  • Rule:

    Find Walking Theories with EW embedding minimizing S

  • Viable Models

    (Ultra) Minimal Walking Technicolor (MWT)

    Higher Dimensional Representations

    Beyond Minimal Walking Technicolor

    Partially EW Gauged Technicolor

    Split Technicolor

    Additional Fermions in SM

    Custodial TC

  • Dark Matter

    ΩDMΩB

    ∼ 5

  • Technicolor is a natural example(TIMP)

  • Technibarion is similar to the nucleon

    Technicolor is a natural example(TIMP)

  • Technibarion is similar to the nucleon

    TB number like the B number

    Technicolor is a natural example(TIMP)

  • Technibarion is similar to the nucleon

    TB number like the B number

    At most EW-type cross sections

    Technicolor is a natural example(TIMP)

  • Technibarion is similar to the nucleon

    TB number like the B number

    At most EW-type cross sections

    EW scale and interactions built in

    Technicolor is a natural example(TIMP)

  • Technibarion is similar to the nucleon

    TB number like the B number

    At most EW-type cross sections

    EW scale and interactions built in

    Technicolor is a natural example(TIMP)

    Nussinov, 86Barr - Chivukula - Farhi 90Sarkar 96Gudnason - Kouvaris - F.S. 06

  • Technibarion is similar to the nucleon

    TB number like the B number

    At most EW-type cross sections

    EW scale and interactions built in

    Technicolor is a natural example(TIMP)

    Nussinov, 86Barr - Chivukula - Farhi 90Sarkar 96Gudnason - Kouvaris - F.S. 06

    Ultra Minimal Technicolor is the first physical realization Ryttov - F.S. 08

    PAMELA/ATIC Decaying Dark Matter + Unification, Nardi, F.S., Strumia, 08.

  • Plus sign minus signCDMS II Ge CombinedXENON10 2007 Projected superCDMS

    Foadi, Frandsen, F.S. 08

    (GeV)

    10 50 100 500 1000 5000 1! 10410"45

    10"44

    10"43

    10"42

    10"41MΦ

    Σnucleon!cm"

    2 "

    σnucleon =µ2

    [Z

    A

    8π α dBΛ2

    +dM fmNM2HMφ

    ]2

    µ = MφmN/(Mφ + mN )

    MH = 300 GeV

    dB = ±1Λ =3 TeV

    dM = 1

    Earth Based Constraints

  • Asymmetric DM Relic Density

    mTBmp

    ≈ 1 TeV1 GeV

    = 103

  • Asymmetric DM Relic Density

    mTBmp

    ≈ 1 TeV1 GeV

    = 103

    TB

    B∝ exp

    [−mTB(T

    ∗)T ∗

    ]∼ 10−3

  • Asymmetric DM Relic Density

    mTBmp

    ≈ 1 TeV1 GeV

    = 103

    TB

    B∝ exp

    [−mTB(T

    ∗)T ∗

    ]∼ 10−3 T ∗ ∼ 200 GeV

  • Asymmetric DM Relic Density

    mTBmp

    ≈ 1 TeV1 GeV

    = 103

    TB

    B∝ exp

    [−mTB(T

    ∗)T ∗

    ]∼ 10−3 T ∗ ∼ 200 GeV

    ΩTBΩB

    =TB

    B

    mTBmp

    ∼ O(1)

  • Strong Dynamics

  • Gauge Theory Knobs

  • Gauge Theory Knobs

    Gauge Group, i.e. SU, SO, SP

  • Gauge Theory Knobs

    Gauge Group, i.e. SU, SO, SP

    Matter Representation

  • Gauge Theory Knobs

    Gauge Group, i.e. SU, SO, SP

    Matter Representation

    # of Flavors per Representation

  • Gauge Theory Knobs

    Gauge Group, i.e. SU, SO, SP

    Matter Representation

    # of Flavors per Representation

    Temperature

  • Gauge Theory Knobs

    Gauge Group, i.e. SU, SO, SP

    Matter Representation

    # of Flavors per Representation

    Matter Density (i.e. Chemical Potential)

    Temperature

  • Progress in Strong Dynamics

  • Progress in Strong Dynamics

    Analytically observed a universal picture

  • Progress in Strong Dynamics

    F.S. and Tuominen 04Dietrich, F.S. 06

    Ryttov, F.S. 07 Phase Diagrams for any representation

    SU(N), SO(N) and Sp(2N)

    F.S. 09

    Analytically observed a universal picture

  • Progress in Strong Dynamics

    F.S. and Tuominen 04Dietrich, F.S. 06

    Ryttov, F.S. 07 Phase Diagrams for any representation

    SU(N), SO(N) and Sp(2N)

    F.S. 09

    Analytically observed a universal picture

    Chiral Gauge Theories

    Georgi Glashow & Bars YankielowiczAppelquist, Duan, F.S. 99

  • Analytic methods

  • Analytic methods

    Truncated Schwinger - Dyson (SD)(Higher Dim. Rep.)

    F.S. and TuominenDietrich, F.S.

  • Analytic methods

    SD for the Fund. Rep.

    Appelquist, Chivukula, Cohen, Georgi, Holdom, KarabaliMahanta, Miransky, Terning, Wijewardhana, Yamawaki.

    Truncated Schwinger - Dyson (SD)(Higher Dim. Rep.)

    F.S. and TuominenDietrich, F.S.

  • Analytic methods

    Conjectured all-orders beta function Ryttov, F.S.

    SD for the Fund. Rep.

    Appelquist, Chivukula, Cohen, Georgi, Holdom, KarabaliMahanta, Miransky, Terning, Wijewardhana, Yamawaki.

    Truncated Schwinger - Dyson (SD)(Higher Dim. Rep.)

    F.S. and TuominenDietrich, F.S.

  • Thermal Degree of Freedom Appelquist, Cohen, Schmaltz

  • Novel ‘t Hooft anomaly matching result.

    Identified a potential QCD DualF.S. posted on the arXiv yesterday

    Thermal Degree of Freedom Appelquist, Cohen, Schmaltz

  • Method Fund-Rep Higher Rep. Multiple Rep. γ Susy‘t Hooft AMC

    BF + + + + + +

    SD + + - + - -

    Thermal + - - - + -

    Applicability

  • Method Fund-Rep Higher Rep. Multiple Rep. γ Susy‘t Hooft AMC

    BF + + + + + +

    SD + + - + - -

    Thermal + - - - + -

    Note:

    SU(2) Fund.Thermal prediction is not close to SD F.S. 09

    Applicability

  • Progress in Strong Dynamics II:

  • Progress in Strong Dynamics II:

    Lattice

  • Progress in Strong Dynamics II:

    Lattice

    Any Rep.

  • Progress in Strong Dynamics II:

    Lattice

    Any Rep. Fund. Rep

  • Progress in Strong Dynamics II:

    Catterall, F.S. 07Catterall, Giedt, F.S., Schneible 08Del Debbio, Frandsen, Panagopoulos, F.S. 08Del Debbio, Patella, Pica. 08Hietanen, Rantaharju, Rummukainen, Tuominen 08DeGrand, Shamir, Svetitsky, 08Del Debbio, Patella, Pica, 08

    Lattice

    Any Rep. Fund. Rep

  • Progress in Strong Dynamics II:

    Catterall, F.S. 07Catterall, Giedt, F.S., Schneible 08Del Debbio, Frandsen, Panagopoulos, F.S. 08Del Debbio, Patella, Pica. 08Hietanen, Rantaharju, Rummukainen, Tuominen 08DeGrand, Shamir, Svetitsky, 08Del Debbio, Patella, Pica, 08

    Lattice

    Appelquist, Fleming, Neil 07 Deuzman, Lombardo, Pallante 08Fodor, Holland, Kuti, Nogradi, Schroeder, 08

    Any Rep. Fund. Rep

  • Universal Picture

  • Fund

    2A

    2S Adj

    Ladder

    SU(N) Phase Diagram

    Ryttov and F.S. 07All Orders Beta Function

  • Fund

    2A

    2S Adj

    Ladder

    γ = 1

    SU(N) Phase Diagram

    Ryttov and F.S. 07All Orders Beta Function

  • Fund

    2A

    2S Adj

    Ladder

    γ = 1 γ = 2

    SU(N) Phase Diagram

    Ryttov and F.S. 07All Orders Beta Function

  • Fund

    2A

    2S Adj

    LadderIwasaki et al.

    γ = 1 γ = 2

    SU(N) Phase Diagram

    Ryttov and F.S. 07All Orders Beta Function

  • Fund

    2A

    2S Adj

    LadderIwasaki et al.

    Appelquist, Fleming, NeilDeuzeman, Lombardo, Pallante

    γ = 1 γ = 2

    SU(N) Phase Diagram

    Ryttov and F.S. 07All Orders Beta Function

  • Fund

    2A

    2S Adj

    LadderIwasaki et al.

    Appelquist, Fleming, NeilDeuzeman, Lombardo, Pallante

    γ = 1 γ = 2

    SU(N) Phase Diagram

    Ryttov and F.S. 07All Orders Beta Function

  • Fund

    2A

    2S Adj

    Ladder

    Catterall, SanninoDel Debbio, Patella,PicaCatterall, Giedt, Sannino, Schneible

    Iwasaki et al.

    Appelquist, Fleming, NeilDeuzeman, Lombardo, Pallante

    γ = 1 γ = 2

    SU(N) Phase Diagram

    Ryttov and F.S. 07All Orders Beta Function

  • Fund

    2A

    2S Adj

    Ladder

    Catterall, SanninoDel Debbio, Patella,PicaCatterall, Giedt, Sannino, Schneible

    Iwasaki et al.

    Appelquist, Fleming, NeilDeuzeman, Lombardo, Pallante

    ×

    ×

    γ = 1 γ = 2

    SU(N) Phase Diagram

    Ryttov and F.S. 07All Orders Beta Function

  • Fund

    2A

    2S Adj

    Ladder

    Catterall, SanninoDel Debbio, Patella,PicaCatterall, Giedt, Sannino, Schneible

    Iwasaki et al.

    Appelquist, Fleming, NeilDeuzeman, Lombardo, Pallante

    ×

    ×

    γ = 1 γ = 2

    Shamir, Svetitsky, DeGrand

    SU(N) Phase Diagram

    Ryttov and F.S. 07All Orders Beta Function

  • 5 6 7 8 9 100

    5

    10

    15

    20

    N

    Nf

    A.F.B.F. & γ= 2 SD

    SO(N)

    SO(N) Phase Diagram

    F.S. 09All Orders Beta Function

  • Sp(2N) Phase Diagram

    F.S. 09All Orders Beta Function2 3 4 5 60

    5

    10

    15

    20

    25

    30

    35

    N

    N Wf

    A.F. B.F. & γ= 2 SD

    SP(2N)

  • Sensible Models of DEWSB

  • Minimal Walking Technicolor

  • SU(3)

    SU(2)

    U(1)

    F.S. + Tuominen 04Dietrich, F.S., Tuominen 05

  • SU(3)

    SU(2)

    U(1)

    U

    D

    Gt-up

    t-down

    t-glue SU(2)

    NExtraNeutrino

    EExtra Electron

    U and D: Adj of SU(2)

    F.S. + Tuominen 04Dietrich, F.S., Tuominen 05

  • MWT Features

  • The most economical WT theory

    MWT Features

  • The most economical WT theory

    Compatible with precision measurements

    MWT Features

  • The most economical WT theory

    Compatible with precision measurements

    Possible DM candidates and nice Unification

    MWT Features

  • The most economical WT theory

    Compatible with precision measurements

    Possible DM candidates and nice Unification

    Can support 1st order Electroweak Phase Transition

    MWT Features

  • The most economical WT theory

    Compatible with precision measurements

    Possible DM candidates and nice Unification

    Can support 1st order Electroweak Phase Transition

    Can support exotic electric charges

    MWT Features

  • The most economical WT theory

    Compatible with precision measurements

    Possible DM candidates and nice Unification

    Can support 1st order Electroweak Phase Transition

    Can support exotic electric charges

    Lattice studies have begun

    MWT Features

  • MWT effective lagrangian

    L(Composites) + L(Mixing with SM) + L(New Leptons) + L(SM−Higgs)

    R. Foadi, M. T. Frandsen, Ryttov, F.S. 07

    Appelquist, F.S. 99

  • MWT effective lagrangian

    L(Composites) + L(Mixing with SM) + L(New Leptons) + L(SM−Higgs)

    R. Foadi, M. T. Frandsen, Ryttov, F.S. 07

    Appelquist, F.S. 99

  • Drell-Yan production of heavy vectors

    Vector Boson Fusion production of heavy vectors

    Light Composite Higgs can be studied via HW and HZ production

    MWT effective lagrangian

    L(Composites) + L(Mixing with SM) + L(New Leptons) + L(SM−Higgs)

    LHC - Signals

    A. Belyaev, R. Foadi, M. T. Frandsen, M. O. Jarvinen, A. Pukhov, F.S. 08

    R. Foadi, M. T. Frandsen, Ryttov, F.S. 07

    Appelquist, F.S. 99

  • Ultra Minimal Walking Technicolor

  • SU(3)

    SU(2)

    U(1)

    Ryttov and F.S. 08

  • SU(3)

    SU(2)

    U(1)

    U

    D

    Gt-up

    t-down

    t-glue SU(2)

    λ2λ1t-lambda

    U and D: Fund of SU(2)

    t-lambdas: Adj of SU(2) Singlet of SM

    Weyl FermionsRyttov and F.S. 08

  • UMT Features

  • The most economical “2 rep” WT theory

    UMT Features

  • The most economical “2 rep” WT theory

    Smallest naive S-parameter & # of fermions

    UMT Features

  • The most economical “2 rep” WT theory

    Smallest naive S-parameter & # of fermions

    Asymmetric DM candidate visible at the LHC

    UMT Features

  • The most economical “2 rep” WT theory

    Smallest naive S-parameter & # of fermions

    Asymmetric DM candidate visible at the LHC

    Extra Electroweak PT (very exciting)

    UMT Features

  • The most economical “2 rep” WT theory

    Smallest naive S-parameter & # of fermions

    Asymmetric DM candidate visible at the LHC

    Extra Electroweak PT (very exciting)

    Rich unexplored Collider Phenomenology

    UMT Features

  • Summary

  • • DEWSB is very much alive

    Summary

  • • DEWSB is very much alive

    • DEWSB Cosmology is exciting

    Summary

  • • DEWSB is very much alive

    • DEWSB Cosmology is exciting

    • 4D Non-SUSY CFT

    Summary

  • Besides

  • Besides

    S = S(W )TC + SNS

  • Besides

    S = S(W )TC + SNS

  • Besides

    S = S(W )TC + SNS

    Offset the first term

  • Besides

    S = S(W )TC + SNS

    Offset the first term

    SLeptons =16π

    [1− 2Y ln

    (M1M2

    )2+

    1 + 8Y20

    (mZM1

    )2+

    1− 8Y20

    (mZM2

    )2+ O

    (m4ZM4i

    )]