convención snc-lavalin, barcelona 14.03.2008

22
Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011 Convención SNC-Lavalin, Barcelona 14.03.2008 Laboratorio Nacional de Fusión CIEMAT Spanish Fusion Programme Strategic view

Upload: fran

Post on 05-Feb-2016

45 views

Category:

Documents


0 download

DESCRIPTION

Spanish Fusion Programme Strategic view. Laboratorio Nacional de Fusión CIEMAT. Convención SNC-Lavalin, Barcelona 14.03.2008. Spanish strategy. TJ-II W7X TJ-II sucessor. Concept improvement. Power Plant. P a r t i c i p a t i o n. DEMO. JET 1983. ITER. EU SAT. JT60. Technology. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011Convención SNC-Lavalin, Barcelona 14.03.2008

Laboratorio Nacional de FusiónCIEMAT

Spanish Fusion Programme

Strategic view

Page 2: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

EU SAT

JET1983

ITER DEMO

Concept improvement

Technology

Spanish strategy

B. Approach (> 40 M€) TechnofusionIFMIF

JT60

Power

Plant

TJ-IIW7XTJ-II sucessor

P a r t i c i p a t i o n

Page 3: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

• Steady state: material fatigue, energy storage, HT superconductors

• High ne low Te operation: fusion power, lower divertor loads, better pellet penetration (also more feasible HFS)

• No large ELMs (tbc): erosion, control coils.

• Low or no CD needs: low recirculating power, avoid, possibly, bulky NBIs

• No disruptions: forces, dust generation, runaway jets, safety case: cost

• Current free: no central solenoid, no need for high power control systems & coils

Stellarator as a Reactor: potential advantages

Issues: concept maturity, coil complexity, exhaust solution, impurity accumulation.

Page 4: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

Stellarator research at CIEMAT: TJ-II (1998)

Page 5: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

TJ-II Helical axis stellarator

The “lithium breakthrough”

TJ-II has produced since its start in 1998 a significant scientific contribution, mainly in the areas of

• Turbulence transport

• Global confinement physics in stellarators, role of magnetic topology

• Plasma wall interaction

• Diagnostics development

• Theory & modelling

Page 6: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011TJ-II results shown at IAEA FEC 2010 summary report

H-mode discovered 30 years ago, not yet a clear explanation for L-H transition-> threshold (ITER)

Contribution to the understanding of the L-H transition mechanism: suppression of ñ precedes onset of Er shear

If zonal flows important: effect of RMP coils on H threshold?

Page 7: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

TJ-II strategy

• Contributions to Tokamak and basic physics derived from the capabilities of TJ-II

• Development of the stellarator concept as a realistic solution for a commercial fusion reactor

• Training, education and mobilization of national resources towards fusion

Small and midsize national devices: • High physics/€€ or training/€€ ratio.• High flexibility and quick reaction time.• Contribute to national support to the EU Fusion Programme

Reducing the programme to the largest machines is not always the most efficient solution.

Page 8: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

TJ-II in the Fac Rev Report

Page 9: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

Stellarator line: Near Future Physics Plans

Progress on stellarator Physics, (in support and complementary to W7X)

• Power & particle exhaust: divertor concept Flux expansion divertors Role of Liquid Li limiters & Li coatings

• Impurity accumulation High density High confinement modes Lithium as plasma facing element (low Z)

• Coil complexity & distance to plasma Relaxing constraints on optimized configurations:

Stability limits (high ) Role of magnetic topology (shear, rationals…)

+ stellarator reactor & power plant studies

Page 10: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

The scientific case for a TJ-III device

• W7X provides the most advanced, reactor relevant configuration. TJ-III would take the basic principle of W7X design: reactor relevant 3D optimisation

• Significant step forward in computer & optimisation resources: allowing for engineering parameters (coil geometry and coil plasma clearance) to be part of the optimization loop

Page 11: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

- Release constraints on stability requirements, magnetic shear and bootstrap current

- Introduce simplified turbulent transport simulations in the optimisation (or full simulations, EUTERPE-like in selected cases)

- Search for alternative divertor solutions (flux expansion, Liquid Li)

- Establish reactor relevance of a down-scaled experiment

• Not a long pulse device (copper coils), size similar to TJ-II

• Using existing building, power supplies and some aux. systems cost could be kept in the order of ~ 50M€

The quest for TJ-III

Page 12: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

The quest for TJ-III

• Stellarator Optimization based on NC, Mercier and Ballooning stability.

• Use of Grid computing (Fusion VO): Huge computing power.

• Distributed Asynchronous Bee algorithm: Evolutionary algorithm that explores the phase space (like bees in nature).

• Example of optimzed 3 period compact shearless quasi-isodynamic stellarator.

• Mercier and Ballooning stable

• NC transport at the level of quasi-symmetric device.

iota

r/a

Page 13: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

TJ-III engineering design

TJ-III construction

Start

2022

TJ-III physics designConfiguration studies

(Reactor relevant)

?

EU prog

2010 2012 2014 2016 2018 2020

TJ-II full performanceEBW, Li, Divertor, HIBP2High , stability , impurity, turbulence transport, magnetic topology

TJ-II gradually reduced effortW7X collab., JT60, EUsatParticipation ITER

Theory developments: numerical tokamak/stellarator

One decade roadmap: plasma physics at CIEMAT

Stellarator reactor , DEMO and power plant studies

Page 14: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

• Materials:

• structural / functional

• plasma facing

• Remote Handling

• Breeding blankets technology

An increased effort in Fusion Technology CIEMAT strategic decision taken in 2006

National grant 2008-12: Dual coolant blanket and auxiliary systems

Collaborators from 12 institutions

Strong effort on

• ODS, W, Eurofer

• SiC/SiC, insulators, W oxide resistant

Page 15: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

• Materials:

• structural / functional

• plasma facing

• Remote Handling

• Breeding blankets technology

An increased effort in Fusion Technology CIEMAT strategic decision taken in 2006

Strong effort on

• ODS, W, Eurofer

• SiC/SiC, insulators, W oxide resistant

Included in national list of priority research infrastructures 2007

Page 16: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

Shared by the facilities review Panel

Page 17: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

Filling the gap until the first IFMIF results

Optimistic scenario: start >2015, finish >2022, first full power irradiations >2024, first irradiation results > 2026

How to progress during the next 15 years with the effects of irradiation:

• Activation

• Dpa´s

• H & He generation

Could be tested with existing fission sources: known Eurofer properties

Very important for mechanical behaviour

Combined effect: requires high energy neutrons (14 Mev). Could simulation only do the job?

Effect can be simulated with accelerators (triple beam)• Same species ( i.e. Fe ) for the dpa´s • He and H beams for implanting the gas

Page 18: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

MIRIAM – Triple beam ion irradiation facility

• Advantages:

Low activation experiment

Adjustable He/dpa and H/dpa ratio

Adjustable wide range of dpa rate

One irradiation takes 2 weeks (comp. with 2 years on IFMIF)

• Disadvantages

Limited range: 20-25 microns depth (but at least a few grains of most of materials of interest)

(MIRIAM: tens of microns –one order of magnitude higher than any other triple beam facility and «quasi-volumetric»)

Mission: • Maximize the possibilities that the first batch of IFMIF tests has the right material• Try to discover early enough any surprises which might arise with our reference materials • Provide experimental validation for multiscale modelling

Parametric studies

Investment ~ 20 M€

Page 19: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

Linear Plasma Device (LP):• Cascade arc, superconducting field (1T)• PILOT-PSI design. Upgrade to larger Beam (FOM Collaboration)• Steady-state, superconductor (commercial available)• UHV pumped (impurity control)• A+M Physics studies and diagnostic development for divertors

Plasma Gun (QSPA):• Compact QSPA type: Development under collaboration with

Kharkov IPP

Interaction Chamber (IC):• Change in impact angle• Cooling. Heating of samples• IR+visible cameras…• Transport of samples under

vacuum?

PILOT PSI-like parameters • Pulsed up to 1.6T (0.4s)• 0.2T in steady-state• 2 roots pumps with total pumping speed 7200 m3/h• Pressure 0.1-1 Pa during plasma operation• Power fluxes > 30 MW/m2• Already achieved ITER-like fluxes, first 5 cm of

ITER target (5mm SOL) can be simulated• + beam expansion by B tailoring: Still high flux

density and large beam

QSPA parameters (MJ/m2 range) • Pulsed duration: < 500 µs• Plasma current: < 650 ka• Ion energy: < 1 keV• Electron density: 1015 – 1016 cm-3

• Electron temperature: 3 – 5 eV (< 100 eV at sample)• Energy density: > 2 MJ/m2

• Magnetic field at sample: 1 T• Repetition period: 1- 3 min

LP

QS

PA

IC

Collinear

PILOT PSIQSPA plasma source

PALOMA: A PWI Facility for Reactor Materials Studies

Synergistic effects of high power & particle irradiation not tested !!

Investment ~ 5 M€

Page 20: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

TechnoFusion: 2010 highlights and present status

• Pre-engineering design of main buildings finished

• Starting engineering design of complex systems (Triple beam and plasma wall facilities) including validation experiments

Present situation:- Recently established the legal consortium structure to launch the projectBudget: Due to constrains in the financial situation the budget for 2011-12 will be around 3-5 M€ (total)- We need to define in more detail the priorities and to start the acquisition of some equipment as well as the engineering design of complex components

Page 21: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

The Technofusion Team

TÉCNICAS DE CARACTERIZACIÓNMaría González Viada (CIEMAT - coordinadora)Jose Ygnacio Pastor Caño (UPM)Miguel Ángel Monge (UC3M)Alejandro Moroñó (CIEMAT)Mercedes Hernández Mayoral (CIEMAT)Pilar Fernández Paredes (CIEMAT)Teresa Hernández Díaz (CIEMAT)Diego Díaz Arroyo (UPM)METALES LÍQUIDOSAlberto Abánades (UPM - coordinador)Antonio Lafuente (UPM)Fernando Sordo (UPM)Natalia Casal (CIEMAT)J. M. Martínez-Val (UPM)Angela García (CIEMAT)INTERACCIÓN PLASMA-PAREDPaco Tabares (Ciemat - coordinador)Emilio Mínguez (UPM)P. Martel (UPM/ULPGC)Jose Ferreira (CIEMAT)Angel Ramos Gallardo (CIEMAT)Eider Oyarzábal (CIEMAT)

PRODUCCIÓN Y PROCESADO DE MATERIALESRamiro Pareja Pareja (UC3M – coordinador)Cristina Arévalo (US)Teresa Hernández Díaz (CIEMAT)Max Victoria (UPM)MANIPULACIÓN REMOTARafael Aracil Satonjo (UPM – coordinador)Ángela García (CIEMAT)Luis Ríos (CIEMAT)Luis Moreno Lorente (UC3M)Vicente M. Queral Mas (CIEMAT)Yuri Herreras Yambanis (UPM)Salvador Domingo Lozano (UPM)Enrique MartínezJosé de No Sánchez (CSIC)Pablo González de Santos (CSIC)Manuel Ferré (UPM)María Dolores Blanco Rojas (UC3M)

SIMULACIÓN COMPUTACIONALJ. Sanz (UNED/UPM – coordinador)Victor Tribaldos (CIEMAT)Patrick Sauvan (UNED/UPM)Mauricio García (UPM)Fernando Sordo (UPM)Yuri Herreras Yambanis (UPM)Salvador Domingo Lozano (UPM)Christophe Ortiz (CIEMAT)Marta Velarde (UPM)Maria José Caturla (UA)Oscar Cabellos (UPM)Max Victoria (UPM)L. Gámez (UPM)Emma Río (UPM)Alicia Mayoral (UNED)

COORDINACIÓN GENERALÁngel Ibarra Sánchez (CIEMAT)Manuel Perlado (UPM)

GESTIÓN (en CIEMAT)Raquel Román ChacónDavid Jiménez ReyIsabel García CortésFernando CarbajoIRRADIACION MATERIALESRafael Vila (CIEMAT - coordinador)Ángel Muñoz Martín (UAM)Fernando Mota García (CIEMAT)Mauricio García (UPM)Jesús Pedro de Vicente Bueno (CIEMAT)Oscar Cabellos de Francisco (UPM)Jose Manuel Arroyo Macías (CIEMAT)F. Ogando (UNED/UPM)Patrick Sauvan (UNED/UPM)Enrique Martínez (UPM)

J. Sanz (UNED/UPM)Jose Luis Albertos (CIEMAT)

> 70 persons (most of them part time)

60% non-CIEMAT

Page 22: Convención SNC-Lavalin, Barcelona 14.03.2008

Spanish Programme Strategy EU Fusion Roadmap Workshop, Garching 13.04.2011

Spanish industry commitment towards the Fusion programme

2007

ENSA Fabrication for TBM components

Iberdrola Welding procedures VV

Elytt He manifold for ITER TF coils

Iberdrola RH test facilities for Fusion

Acciona Concrete structures for Fusion (n shield)

Idom Liquid metal systems for Fusion

2008

Tecnatom Irradiation sensors for ITER

Idom Feasibility of Technofusion triple beam

Elytt Cyclotron for Technofusion triple beam

Elytt Ion source for Technofusion triple beam

2010

SENER Vacuum permeator for T extraction

EEAA T plant control with ECOSIMPRO

SGENIA Magnetic sensors for Fusion

IDOM IFMIF beam dump

IDOM coupling MCNP/ Ansys/Fluent for Fusion

TTI RF for IFMIF

ENSA e- beam welding for fusion components

NATEC Welding characterization for Fusion

components

Mec Buelna First Wall panels for ITER

Acciona Polymer-reinforced concrete for Fusion

GAMC Simulation for Fusion

Ministry of Science R&D grant programme 2007-10: CIEMAT / Industry collaborations

Most companies members of the Spanish Fusion Technology Platform

• Second, (after FR) in number of tenders to F4E calls

• Third, (after IT,FR) in accumulated budget awarded by F4E