cookie monster meets the fibonacci numbers. mmmmmm … · 2010. 5. 29. · introduction review...

50
Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs Cookie Monster Meets the Fibonacci Numbers. Mmmmmm – Theorems! Steven J Miller, Williams College [email protected] http://www.williams.edu/go/math/sjmiller CANT 2010, CUNY, May 29, 2010 1

Upload: others

Post on 07-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Cookie Monster Meets the FibonacciNumbers. Mmmmmm – Theorems!

Steven J Miller, Williams College

[email protected]://www.williams.edu/go/math/sjmiller

CANT 2010, CUNY, May 29, 2010

1

Page 2: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Summary / Acknowledgements

Previous results: Zeckendorf’s and Lekkerkerker’stheorems.

New approach: View as combinatorial problem.

Thanks: Ed Burger and SMALL REU students.2

Page 3: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Special Thanks

Special thanks go to Cameron and Kayla Millerfor playing quietly while key details were worked outand for suggesting which colors to use and where!

We’re ready for yellow now – hope you are too!3

Page 4: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;F1 = 1, F2 = 2, F3 = 3, F4 = 5 . . . .

4

Page 5: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;F1 = 1, F2 = 2, F3 = 3, F4 = 5 . . . .

Zeckendorf’s TheoremEvery positive integer can be written in a unique way as asum of non-consecutive Fibonacci numbers.

5

Page 6: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;F1 = 1, F2 = 2, F3 = 3, F4 = 5 . . . .

Zeckendorf’s TheoremEvery positive integer can be written in a unique way as asum of non-consecutive Fibonacci numbers.

Example: 2010 = 1597+377+34+2 = F16 + F13 + F8 + F2.

6

Page 7: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;F1 = 1, F2 = 2, F3 = 3, F4 = 5 . . . .

Zeckendorf’s TheoremEvery positive integer can be written in a unique way as asum of non-consecutive Fibonacci numbers.

Example: 2010 = 1597+377+34+2 = F16 + F13 + F8 + F2.

Lekkerkerker’s TheoremThe average number of non-consecutive Fibonaccisummands in the Zeckendorf decomposition for integersin [Fn,Fn+1) tends to n

'2+1 ≈ .276n, where ' = 1+√

52 is the

golden mean.

7

Page 8: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Main Results

Lemma: Application of Cookie Counting

The ‘probability’ (ie, percentage of the time) an integer in[Fn,Fn+1) has exactly k + 1 non-consecutive Fibonaccisummands is

(n−1−kk

)

/Fn−1.

8

Page 9: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Main Results

Lemma: Application of Cookie Counting

The ‘probability’ (ie, percentage of the time) an integer in[Fn,Fn+1) has exactly k + 1 non-consecutive Fibonaccisummands is

(n−1−kk

)

/Fn−1.

The above lemma yields Zeckendorf’s Theorem,Lekkerkerker’s Theorem, and will (hopefully) yield

An Erdos-Kac Type Theorem: SMALL 2010As n → ∞, the distribution of the number ofnon-consecutive Fibonacci summands in the Zeckendorfdecomposition for integers in [Fn,Fn+1) is Gaussian.

9

Page 10: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Properties of Fibonacci Numbersand needed Combinatorial Results

10

Page 11: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Binet’s Formula

Binet’s Formula

Fn =1√5

(

1 +√

52

)n+1

− 1√5

(

1 −√

52

)n+1

.

11

Page 12: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Binet’s Formula

Binet’s Formula

Fn =1√5

(

1 +√

52

)n+1

− 1√5

(

1 −√

52

)n+1

.

Proof: Fn+1 = Fn + Fn−1.

Guess Fn = nr : rn+1 = rn + rn−1 or r2 = r + 1.

Roots r = (1 ±√

5)/2.

General solution: Fn = c1rn1 + c2rn

2 , solve for ci ’s. □

12

Page 13: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Combinatorial Review

The Cookie ProblemThe number of ways of dividing C identical cookiesamong P distinct people is

(C+P−1P−1

)

.

13

Page 14: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Combinatorial Review

The Cookie ProblemThe number of ways of dividing C identical cookiesamong P distinct people is

(C+P−1P−1

)

.

Proof: Consider C + P − 1 cookies in a line.

14

Page 15: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Combinatorial Review

The Cookie ProblemThe number of ways of dividing C identical cookiesamong P distinct people is

(C+P−1P−1

)

.

Proof: Consider C + P − 1 cookies in a line.

Cookie Monster eats P − 1 cookies:(C+P−1

P−1

)

ways to do.

15

Page 16: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Combinatorial Review

The Cookie ProblemThe number of ways of dividing C identical cookiesamong P distinct people is

(C+P−1P−1

)

.

Proof: Consider C + P − 1 cookies in a line.

Cookie Monster eats P − 1 cookies:(C+P−1

P−1

)

ways to do.

Divides the cookies into P sets. □

16

Page 17: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Combinatorial Review

The Cookie ProblemThe number of ways of dividing C identical cookiesamong P distinct people is

(C+P−1P−1

)

.

Proof: Consider C + P − 1 cookies in a line.

Cookie Monster eats P − 1 cookies:(C+P−1

P−1

)

ways to do.

Divides the cookies into P sets. □

Example: 10 cookies and 5 people:⊙⊙⊗⊗⊙⊙⊗⊙⊙⊙⊙⊙⊗⊙

17

Page 18: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + ⋅ ⋅ ⋅+ xP = C with xi anon-negative integer is

(C+P−1P−1

)

.

18

Page 19: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + ⋅ ⋅ ⋅+ xP = C with xi anon-negative integer is

(C+P−1P−1

)

.

Generalization: If have constraints xi ≥ ci , then number ofsolutions is

(C−∑

i ci+P−1P−1

)

.

19

Page 20: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + ⋅ ⋅ ⋅+ xP = C with xi anon-negative integer is

(C+P−1P−1

)

.

Generalization: If have constraints xi ≥ ci , then number ofsolutions is

(C−∑

i ci+P−1P−1

)

.

This follows by setting xi = yi + ci with yi a non-negativeinteger.

20

Page 21: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Zeckendorf’s Theorem

21

Page 22: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Proof of Zeckendorf’s Theorem

Uniqueness: Same standard argument (induction).

22

Page 23: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Proof of Zeckendorf’s Theorem

Uniqueness: Same standard argument (induction).

Existence: Consider all sums of non-consecutiveFibonacci numbers equaling an m ∈ [Fn,Fn+1); note thereare Fn+1 − Fn = Fn−1 such integers.

23

Page 24: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Proof of Zeckendorf’s Theorem

Uniqueness: Same standard argument (induction).

Existence: Consider all sums of non-consecutiveFibonacci numbers equaling an m ∈ [Fn,Fn+1); note thereare Fn+1 − Fn = Fn−1 such integers.

Must have Fn one of the summands, must not have Fn−1.

24

Page 25: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Proof of Zeckendorf’s Theorem

Uniqueness: Same standard argument (induction).

Existence: Consider all sums of non-consecutiveFibonacci numbers equaling an m ∈ [Fn,Fn+1); note thereare Fn+1 − Fn = Fn−1 such integers.

Must have Fn one of the summands, must not have Fn−1.

For each Fibonacci number from F1 to Fn−1 we eitherinclude or not, cannot have two consecutive, must endwith a non-taken number.

25

Page 26: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Proof of Zeckendorf’s Theorem (continued)

Consider all subsets of k + 1 non-consecutive Fibonaccisfrom {F1, . . . ,Fn} where Fn is taken. Let y0 be number ofFibonaccis not taken until first one taken, and then yi

(1 ≤ i ≤ k ) be the number not taken between two taken.

26

Page 27: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Proof of Zeckendorf’s Theorem (continued)

Consider all subsets of k + 1 non-consecutive Fibonaccisfrom {F1, . . . ,Fn} where Fn is taken. Let y0 be number ofFibonaccis not taken until first one taken, and then yi

(1 ≤ i ≤ k ) be the number not taken between two taken.

Example: 2010 = 1597+377+34+2 = F16 + F13 + F8 + F2,so n = 16, k + 1 = 4, y0 = 1, y1 = 5, y2 = 4, y3 = 2.

Equivalently: y0 + y1 + ⋅ ⋅ ⋅+ yk + k = n − 1, yi ≥ 1 if i ≥ 1.

27

Page 28: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Proof of Zeckendorf’s Theorem (continued)

Consider all subsets of k + 1 non-consecutive Fibonaccisfrom {F1, . . . ,Fn} where Fn is taken. Let y0 be number ofFibonaccis not taken until first one taken, and then yi

(1 ≤ i ≤ k ) be the number not taken between two taken.

Example: 2010 = 1597+377+34+2 = F16 + F13 + F8 + F2,so n = 16, k + 1 = 4, y0 = 1, y1 = 5, y2 = 4, y3 = 2.

Equivalently: y0 + y1 + ⋅ ⋅ ⋅+ yk + k = n − 1, yi ≥ 1 if i ≥ 1.

Equivalently: x0 + ⋅ ⋅ ⋅+ xk + 2k = n − 1, xi ≥ 0. Number ofsolutions is

(n−1−kk

)

.

28

Page 29: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Proof of Zeckendorf’s Theorem (continued)

Consider all subsets of k + 1 non-consecutive Fibonaccisfrom {F1, . . . ,Fn} where Fn is taken. Let y0 be number ofFibonaccis not taken until first one taken, and then yi

(1 ≤ i ≤ k ) be the number not taken between two taken.

Example: 2010 = 1597+377+34+2 = F16 + F13 + F8 + F2,so n = 16, k + 1 = 4, y0 = 1, y1 = 5, y2 = 4, y3 = 2.

Equivalently: y0 + y1 + ⋅ ⋅ ⋅+ yk + k = n − 1, yi ≥ 1 if i ≥ 1.

Equivalently: x0 + ⋅ ⋅ ⋅+ xk + 2k = n − 1, xi ≥ 0. Number ofsolutions is

(n−1−kk

)

.

Obtain∑⌊ n−1

2 ⌋k=0

(n−1−kk

)

= Fn−1 integers in [Fn,Fn+1); as alldistinct and this many integers in interval, done. □

29

Page 30: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Lekkerkerker’s Theorem

30

Page 31: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Preliminaries

ℰ(n) :=

⌊ n−12 ⌋∑

k=0

k(

n − 1 − kk

)

.

31

Page 32: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Preliminaries

ℰ(n) :=

⌊ n−12 ⌋∑

k=0

k(

n − 1 − kk

)

.

Average number of summands in [Fn,Fn+1) is

ℰ(n)Fn−1

+ 1.

32

Page 33: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Preliminaries

ℰ(n) :=

⌊ n−12 ⌋∑

k=0

k(

n − 1 − kk

)

.

Average number of summands in [Fn,Fn+1) is

ℰ(n)Fn−1

+ 1.

Recurrence Relation for ℰ(n)

ℰ(n) + ℰ(n − 2) = (n − 2)Fn−3.

33

Page 34: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Recurrence Relation

Recurrence Relation for ℰ(n)

ℰ(n) + ℰ(n − 2) = (n − 2)Fn−3.

Proof by algebra (details in appendix):

ℰ(n) =

⌊ n−12 ⌋∑

k=0

k(

n − 1 − kk

)

= (n − 2)⌊ n−3

2 ⌋∑

ℓ=0

(

n − 3 − ℓ

)

−⌊ n−3

2 ⌋∑

ℓ=0

(

n − 3 − ℓ

)

= (n − 2)Fn−3 − ℰ(n − 2).

34

Page 35: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Solving Recurrence Relation

Formula for ℰ(n) (i.e., Lekkerkerker’s Theorem)

ℰ(n) =nFn−1

'2 + 1+ O(Fn−2).

⌊ n−32 ⌋∑

ℓ=0

(−1)ℓ (ℰ(n − 2ℓ) + ℰ(n − 2(ℓ + 1)))

=

⌊ n−32 ⌋∑

ℓ=0

(−1)ℓ(n − 2 − 2ℓ)Fn−3−2ℓ.

Result follows from Binet’s formula, the geometric seriesformula, and differentiating identities:

∑mj=0 jx j =

x (m+1)xm(x−1)−(xm+1−1)(x−1)2 . Details in appendix.

35

Page 36: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

An Erdos-Kac Type Theorem

36

Page 37: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Generalizing Lekkerkerker

Theorem (SMALL 2010)As n → ∞, the distribution of the number of summands inZeckendorf’s Theorem is a Gaussian.

Proof should follow from Markov’s Method of Moments,Binet’s formula for the Fibonacci numbers, and thendifferentiating identities to evaluate sums of the form∑

j jmxm.

37

Page 38: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Generalizing Lekkerkerker

Theorem (SMALL 2010)As n → ∞, the distribution of the number of summands inZeckendorf’s Theorem is a Gaussian.

1000 1050 1100 1150 1200

0.005

0.010

0.015

0.020

Figure: Number of summands in [F2010,F2011)38

Page 39: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Generalizing Lekkerkerker

Theorem (SMALL 2010)As n → ∞, the distribution of the number of summands inZeckendorf’s Theorem is a Gaussian.

Numerics: At F100,000: Ratio of 2mth moment �2m to(2m − 1)!!�m

2 is between .999955 and 1 for 2m ≤ 10.

39

Page 40: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Conclusion

40

Page 41: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Conclusion

Re-derive Zeckendorf and Lekkerkerker’s resultsthrough combinatorics.

Method should yield an Erdos-Kac type result onGaussian behavior of the number of summands.

Method should be applicable to other, relatedquestions.

NOTE: These and similar questions will be studied by thestudents at the 2010 SMALL REU at Williams College; weexpect to be able to provide papers and proofs by the endof the summer.

41

Page 42: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Appendix:Details of Computations

42

Page 43: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Needed Binomial Identity

Binomial identity involving Fibonacci Numbers

Let Fm denote the mth Fibonacci number, with F1 = 1, F2 = 2, F3 = 3, F4 = 5 and so on. Then

⌊ n−12 ⌋

k=0

(

n − 1 − k

k

)

= Fn−1.

Proof by induction: The base case is trivially verified. Assume our claim holds for n and show that it holds for n + 1.

We may extend the sum to n − 1, as(

n−1−kk

)

= 0 whenever k > ⌊ n−12 ⌋. Using the standard identity that

(

m

)

+

(

m

ℓ + 1

)

=

(

m + 1

ℓ + 1

)

,

and the convention that(

mℓ

)

= 0 if ℓ is a negative integer, we find

n∑

k=0

(

n − k

k

)

=n

k=0

[(

n − 1 − k

k − 1

)

+

(

n − 1 − k

k

)]

=n

k=1

(

n − 1 − k

k − 1

)

+n

k=0

(

n − 1 − k

k

)

=n

k=1

(

n − 2 − (k − 1)

k − 1

)

+n

k=0

(

n − 1 − k

k

)

= Fn−2 + Fn−1

by the inductive assumption; noting Fn−2 + Fn−1 = Fn completes the proof. □

43

Page 44: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Derivation of Recurrence Relation for ℰ(n)

ℰ(n) =

⌊ n−12 ⌋

k=0

k(

n − 1 − k

k

)

=

⌊ n−12 ⌋

k=1

k(n − 1 − k)!

k !(n − 1 − 2k)!

=

⌊ n−12 ⌋

k=1

(n − 1 − k)(n − 2 − k)!

(k − 1)!(n − 1 − 2k)!

=

⌊ n−12 ⌋

k=1

(n − 2 − (k − 1))(n − 3 − (k − 1)!

(k − 1)!(n − 3 − 2(k − 1))!

=

⌊ n−32 ⌋

ℓ=0

(n − 2 − ℓ)

(

n − 3 − ℓ

)

= (n − 2)

⌊ n−32 ⌋

ℓ=0

(

n − 3 − ℓ

)

−⌊ n−3

2 ⌋∑

ℓ=0

(

n − 3 − ℓ

)

= (n − 2)Fn−3 − ℰ(n − 2),

which proves the claim (note we used the binomial identity to replace the sum of binomial coefficients with aFibonacci number).

44

Page 45: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Formula for ℰ(n)

Formula for ℰ(n)

ℰ(n) =nFn−1

'2 + 1+ O(Fn−2).

Proof: The proof follows from using telescoping sums to get an expression for ℰ(n), which is then evaluated byinputting Binet’s formula and differentiating identities. Explicitly, consider

⌊ n−32 ⌋

ℓ=0

(−1)ℓ (ℰ(n − 2ℓ) + ℰ(n − 2(ℓ + 1))) =

⌊ n−32 ⌋

ℓ=0

(−1)ℓ(n − 2 − 2ℓ)Fn−3−2ℓ

=

⌊ n−32 ⌋

ℓ=0

(−1)ℓ(n − 3 − 2ℓ)Fn−3−2ℓ +

⌊ n−32 ⌋

ℓ=0

(−1)ℓ(2ℓ)Fn−3−2ℓ

=

⌊ n−32 ⌋

ℓ=0

(−1)ℓ(n − 3 − 2ℓ)Fn−3−2ℓ + O(Fn−2);

while we could evaluate the last sum exactly, trivially estimating it suffices to obtain the main term (as we have a sumof every other Fibonacci number, the sum is at most the next Fibonacci number after the largest one in our sum).

45

Page 46: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Formula for ℰ(n) (continued)

We now use Binet’s formula to convert the sum into a geometric series. Letting ' = 1+√

52 be the golden mean, we

have

Fn ='√

5⋅ 'n −

1 − '√

5⋅ (1 − ')

n

(our constants are because our counting has F1 = 1, F2 = 2 and so on). As ∣1 − '∣ < 1, the error from droppingthe (1 − ')n term is O(

ℓ≤n n) = O(n2) = o(Fn−2), and may thus safely be absorbed in our error term. Wethus find

ℰ(n) ='√

5

⌊ n−32 ⌋

ℓ=0

(n − 3 − 2ℓ)(−1)ℓ'n−3−2ℓ+ O(Fn−2)

='n−2

√5

(n − 3)

⌊ n−32 ⌋

ℓ=0

(−'−2

)ℓ − 2

⌊ n−32 ⌋

ℓ=0

ℓ(−'−2

)ℓ

+ O(Fn−2).

46

Page 47: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Formula for ℰ(n) (continued)

We use the geometric series formula to evaluate the first term. We drop the upper boundary term of

(−'−1)⌊ n−3

2 ⌋ , as this term is negligible since ' > 1. We may also move the 3 from the n − 3 into the errorterm, and are left with

ℰ(n) ='n−2

√5

n

1 + '−2− 2

⌊ n−32 ⌋

ℓ=0

ℓ(−'−2

)ℓ

+ O(Fn−2)

='n−2

√5

[

n

1 + '−2− 2S

(

⌊ n − 3

2

,−'−2

)]

+ O(Fn−2),

where

S(m, x) =m∑

j=0

jx j.

There is a simple formula for S(m, x). Asm∑

j=0

x j=

xm+1 − 1

x − 1,

applying the operator x ddx gives

S(m, x) =m∑

j=0

jx j= x

(m + 1)xm(x − 1) − (xm+1 − 1)

(x − 1)2=

mxm+2 − (m + 1)xm+1 + x

(x − 1)2.

47

Page 48: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

Formula for ℰ(n) (continued)

Taking x = −'−2, we see that the contribution from this piece may safely be absorbed into the error termO(Fn−2), leaving us with

ℰ(n) =n'n−2

√5(1 + '−2)

+ O(Fn−2) =n'n

√5('2 + 1)

+ O(Fn−2).

Noting that for large n we have Fn−1 = 'n√

5+ O(1), we finally obtain

ℰ(n) =nFn−1

'2 + 1+ O(Fn−2).□

A similar calculation should yield the higher moments; thiswill be done by the students of the 2010 SMALL REU atWilliams College.

48

Page 49: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

References

49

Page 50: Cookie Monster Meets the Fibonacci Numbers. Mmmmmm … · 2010. 5. 29. · Introduction Review Zeckendorf’s Thm Lekkerkerker’sThm Erdos-Kac Type Theorem Conclusion Appendix Refs

Introduction Review Zeckendorf’s Thm Lekkerkerker’s Thm Erdos-Kac Type Theorem Conclusion Appendix Refs

D. E. Daykin, Representation of natural numbers as sums ofgeneralized Fibonacci numbers, J. London Mathematical Society35 (1960), 143–160.

C. G. Lekkerkerker, Voorstelling van natuurlyke getallen door eensom van getallen van Fibonacci, Simon Stevin 29 (1951-1952),190–195.

SMALL REU (2010, Williams College), preprint.

50