coping with interconnect
Embed Size (px)
DESCRIPTION
COPING WITH INTERCONNECT. Impact of Interconnect Parasitics. Nature of Interconnect. INTERCONNECT. Capacitance: The Parallel Plate Model. Typical Wiring Capacitance Values. Fringing Capacitance. Fringing Capacitance: Values. How to counter Clock Skew?. Interwire Capacitance. - PowerPoint PPT PresentationTRANSCRIPT

Digital Integrated Circuits © Prentice Hall 1995Interconnect
COPING WITH INTERCONNECT

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Impact of Interconnect Parasitics
• Reduce Reliability
• Affect Performance
Classes of Parasitics
• Capacitive
• Resistive
• Inductive

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Nature of Interconnect
Local Interconnect
Global Interconnect
SLocal = STechnology
SGlobal = SDie

Digital Integrated Circuits © Prentice Hall 1995Interconnect
INTERCONNECT
Dealing with Capacitance

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Capacitance: The Parallel Plate Model
SiO2
Substrate
L
W
H
tox

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Typical Wiring Capacitance Values

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Fringing Capacitance
W - H/2H
+
(a)
(b)

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Fringing Capacitance: Values

Digital Integrated Circuits © Prentice Hall 1995Interconnect
How to counter Clock Skew?
(from [Bakoglu89])

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Interwire Capacitance
Substrate
SiO2
Insulator
Level1
Level2
Creates Cross-talk

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Interwire Capacitance

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Impact of Interwire Capacitance
(from [Bakoglu89])

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Capacitance Crosstalk
VDD
PDN
In1
In2
In3
CX
CXY
X
Y
5V
OV
5x5 m Overlap: 0.35 V Interference

Digital Integrated Circuits © Prentice Hall 1995Interconnect
How to Battle Capacitive Crosstalk
Substrate (GND)
GND
ShieldinglayerVDD
GND
Shieldingwire
• Avoid parallel wires
• Shielding

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Driving Large Capacitances
VDD
Vin Vout
CL
tpHL = CL Vswing/2
Iav
Transistor
Sizing

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Using Cascaded Buffers
C2C1
Ci
CL
1 u u2 uN-1
In Out
uopt = e

Digital Integrated Circuits © Prentice Hall 1995Interconnect
tp in function of u and x
1.0 3.0 5.0 7.0u
0.0
20.0
40.0
60.0
u/l
n(u
)
x=10
x=100
x=1000
x=10,000

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Impact of Cascading Buffers

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Output Driver Design

Digital Integrated Circuits © Prentice Hall 1995Interconnect
How to Design Large Transistors
G(ate)
S(ource)
D(rain)
Multiple
Contacts
S
S
G
D
(a) small transistors in parallel(b) circular transistors

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Bonding Pad Design
Bonding Pad
Out
InVDD GND
100 m
GND
Out

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Reducing the swing
tpHL = CL Vswing/2
Iav
• Reducing the swing potentially yields linear reduction in delay• Also results in reduction in power dissipation• Requires use of “sense amplifier” to restore signal level

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Charge Redistribution Amplifier
M1
M2 M3
Vref
VBVA
CBCA
(a)
0.0 1.00 2.00 3.00time (nsec)
0.0
1.0
2.0
3.0
4.0
5.0
V
VB
VA
Vin
Vref = 3V

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Precharged Bus
In1.f
VDD
In2.f
Bus
CbusM1
M2
VDD
Out
CoutM3
M4f
0 5 10t (nsec)
-1.0
1.0
3.0
5.0
V
Vbus
Vsym
f
Vasym
Cbus =1pF

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Tristate Buffers
In
VDD
En
EnOut
VDD
Out
In
En
En

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Using Bipolar Versus MOS
But: Bipolar does not scale well with voltage!

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Bipolar Versus MOS (cont.)
0 5 10 15 20t (nsec)
0.0
1.0
2.0
3.0
4.0
5.0
Vo
ut
Vin
Vout (bipolar)
Vout (mos)
Driving a 10 pF Capacitance
using Emitter(Source)-Followers

Digital Integrated Circuits © Prentice Hall 1995Interconnect
INTERCONNECT
Dealing with Resistance

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Wire Resistance
W
L
H
R = H W
L
Sheet ResistanceRo
R1 R2

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Interconnect Resistance

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Dealing with Resistance
• Selective Technology Scaling
• Use Better Interconnect Materials
• More Interconnect Layersreduce average wire-length
e.g. silicides, bypasses

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Polycide Gate Mosfet
n+n+
SiO2
PolySilicon
Silicide
p
Silicides: WSi2, TiSi2, PtSi2 and TaSi
Conductivity: 8-10 times better than Poly

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Modern Interconnect

Digital Integrated Circuits © Prentice Hall 1995Interconnect
RI Introduced Noise
VDD
X
I
I
R’
R
VDD - V’
V
V
pre

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Power and Ground Distribution
GND
VDD
Logic
GND
VDD
Logic
GND
VDD
(a) Finger-shaped network (b) Network with multiple supply pins

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Electromigration (1)
Limits dc-current to 1 mA/m

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Electromigration (2)

Digital Integrated Circuits © Prentice Hall 1995Interconnect
RC-Delay

Digital Integrated Circuits © Prentice Hall 1995Interconnect
RC-Models

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Reducing RC-delay
Repeater

Digital Integrated Circuits © Prentice Hall 1995Interconnect
The Ellmore Delay

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Penfield-Rubinstein-Horowitz

Digital Integrated Circuits © Prentice Hall 1995Interconnect
INTERCONNECT
Dealing with Inductance

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Inductive Effects in Integrated Circuits
CoaxialCable
TriplateStrip Line
MicroStrip Wire aboveGround Plane

Digital Integrated Circuits © Prentice Hall 1995Interconnect
L di/dt
VDD
L
L
VoutVin
CL
i(t)

Digital Integrated Circuits © Prentice Hall 1995Interconnect
L di/dt: Simulation
t
t
t
vout
iL
vL
20mA
40mA
5V
0.2V
0.0
1.0
2.0
3.0
4.0
5.0
Vo
ut(
V)
0
10
20
I L (
mA
)
2 4 6 8 10t (nsec)
-0.3
-0.1
0.1
0.3
0.5
VL(V
)
tfall = 0.5 nsec
tfall = 4 nsec
Signals Waveforms for Output Driver connected To Bonding Pads(a) vout; (b) iL and (c) vL.
The Results of an Actual Simulation are Shown on the Right Side.

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Choosing the Right Pin
Chip
MountingCavity
Lead Frame
Bonding Wire
Pin
L
L’
Make Rise- and Fall Times as slow as possible

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Decoupling Capacitors
CHIPSUPPLY
Bonding
WireBoard
Wiring
Cd
Decoupling
Capacitor
+
-

Digital Integrated Circuits © Prentice Hall 1995Interconnect
The Transmission Line
Vin
r l
c
r l
c
r l
c
r l
c
Voutx
g g g g

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Lossless Transmission Line - Parameters
vacuumspeed of light in

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Wave Propagation Speed

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Wave Reflection for Different Terminations

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Transmission Line Response (RL=
0.0
1.0
2.0
3.0
4.0
5.0
V
0.0
1.0
2.0
3.0
4.0
V
0.0 5.0 10.0 15.0t (in tlightf)0.0
2.0
4.0
6.0
8.0
V
RS = 5Z0
RS = Z0
RS = Z0/5
(a)
(b)
(c)
VDest
VSource

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Lattice Diagram
VSource VDest
0.8333 V
1.6666 V
+ 0.8333
+ 0.8333
+ 0.5556
+ 0.5556
+ 0.3704
+ 0.2469
+ 0.3704
+ 0.2469
2.2222 V
3.1482 V
3.7655 V
...
2.7778 V
3.5186 V
4.0124 V
L/
t

Digital Integrated Circuits © Prentice Hall 1995Interconnect
ECL Gate Line Response
Vc c
RC
Vc c
RC
Vref
Vin
IEE
VEE
Vcc
VEE
RB
Vcc
RC
IEEV
EE
RB
Z0= 100
L=2cm
(a)
0 0.5 1.0 1.5 2.00t (nsec)
-2.0
-1.5
-1.0
-0.5
Vo
ut
10k
100

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Output Buffer Model
VDD
L = 10nH
L = 10nH
Vin L = 5nH
CL= 5pF
Z0 = 100
CL RL
Vout
(a)
VDD
Clamping
Diodes
8 43 224 900
20 106 562 1500

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Output Buffer - Response
-5.0
0.0
5.0
10.0
Vo
ut
-2.0
0.0
2.0
4.0
Vo
ut
0 20 40 60t (nsec)-2.0
0.0
2.0
4.0
Vo
ut
CL = 25pFRL = 100
CL = 5pFRL = 100
CL = 5pFRL = 10k
Unclamped
Clamped
(b)
Vin

Digital Integrated Circuits © Prentice Hall 1995Interconnect
When to Consider Transmission Line Effects?

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Packaging
Requirements
• Electrical: Low parasitics
• Mechanical: Reliable and Robust
• Thermal: Efficient Heat Removal
• Economical: Cheap

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Bonding Techniques
Lead Frame
Substrate
Die
Pad
Wire Bonding

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Tape-Automated Bonding (TAB)
(a) Polymer Tape with imprinted
(b) Die attachment using solder bumps.
wiring pattern.
Substrate
Die
Solder BumpFilm + Pattern
Sprockethole
Polymer film
Leadframe
Testpads

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Flip-Chip Bonding
Solder bumps
Substrate
Die
Interconnect
layers

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Package-to-Board Interconnect
(a) Through-Hole Mounting (b) Surface Mount

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Package Types

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Package Parameters

Digital Integrated Circuits © Prentice Hall 1995Interconnect
Multi-Chip Modules