coprecipitation: an excellent tool for the synthesis of

19
1 Coprecipitation: An excellent tool for the synthesis of supported metal catalysts ‐ From the understanding of the well known recipes to new materials M. Behrens 1,2 * 1 FritzHaberInstitut der MaxPlanckGesellschaft. Department of Inorganic Chemistry. Faradayweg 46, 14195 Berlin, Germany 2 University of DuisburgEssen, Faculty of Chemistry and Center for Nanointegration DuisburgEssen (CENIDE), Universitätsstr. 7, 45141 Essen, Germany (*) malte.behrens@uni‐due.de Keywords: Coprecipitation, precursor chemistry, supported metal nanoparticles, Cu/ZnO Abstract: Constant‐pH co‐precipitation is a standard synthesis technique for catalyst precursors. The general steps of this synthesis route are described in this work using the successfully applied industrial synthesis of the Cu/ZnO/(Al 2 O 3 ) catalyst for methanol synthesis as an example. Therein, co‐precipitation leads to well‐defined and crystalline precursor compound with a mixed cationic lattice that contains all metal species of the final catalyst. The anions are thermally decomposed to give the mixed oxides and the noblest component, in this current case copper, finally segregates on a nano‐metric level to yield supported and uniform metal nanoparticles. Recent examples of the application of this synthesis concept for supported catalysts are reported with an emphasis on the layered double hydroxide precursor (Cu,Zn,Al; Ni,Mg,Al; Pd,Mg,Al; Pd,Mg,Ga). This precursor material is very versatile and can lead to highly loaded base metal as well as to mono‐ and bi‐metallic highly dispersed noble metal catalysts. Keywords: Catalyst synthesis, Co‐precipitation, Cu/ZnO, Layered double hydroxide

Upload: others

Post on 30-Apr-2022

19 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Coprecipitation: An excellent tool for the synthesis of

1

Coprecipitation:Anexcellenttoolforthesynthesisofsupported

metalcatalysts‐Fromtheunderstandingofthewellknown

recipestonewmaterials

M.Behrens1,2*

1Fritz‐Haber‐InstitutderMax‐Planck‐Gesellschaft.DepartmentofInorganicChemistry.

Faradayweg4‐6,14195Berlin,Germany

2UniversityofDuisburg‐Essen,FacultyofChemistryandCenterforNanointegration

Duisburg‐Essen(CENIDE),Universitätsstr.7,45141Essen,Germany

(*)malte.behrens@uni‐due.de

Keywords:Co‐precipitation,precursorchemistry,supportedmetalnanoparticles,Cu/ZnO

Abstract:

Constant‐pHco‐precipitationisastandardsynthesistechniqueforcatalystprecursors.

Thegeneralstepsofthissynthesisroutearedescribedinthisworkusingthe

successfullyappliedindustrialsynthesisoftheCu/ZnO/(Al2O3)catalystformethanol

synthesisasanexample.Therein,co‐precipitationleadstowell‐definedandcrystalline

precursorcompoundwithamixedcationiclatticethatcontainsallmetalspeciesofthe

finalcatalyst.Theanionsarethermallydecomposedtogivethemixedoxidesandthe

noblestcomponent,inthiscurrentcasecopper,finallysegregatesonanano‐metriclevel

toyieldsupportedanduniformmetalnanoparticles.Recentexamplesoftheapplication

ofthissynthesisconceptforsupportedcatalystsarereportedwithanemphasisonthe

layereddoublehydroxideprecursor(Cu,Zn,Al;Ni,Mg,Al;Pd,Mg,Al;Pd,Mg,Ga).This

precursormaterialisveryversatileandcanleadtohighlyloadedbasemetalaswellas

tomono‐andbi‐metallichighlydispersednoblemetalcatalysts.

Keywords:Catalystsynthesis,Co‐precipitation,Cu/ZnO,Layereddoublehydroxide

Page 2: Coprecipitation: An excellent tool for the synthesis of

2

1.Introduction:

Constant‐pHco‐precipitationisastandardsynthesistechniqueforcatalystprecursors

[1]andreferredtoasthemethodoflowsupersaturation[2].Byproperadjustmentof

theprecipitationparametersthehomogeneousdistributionofdifferentmetalcationsin

amixedsolutioncanbecarriedovertoamultinarycatalystprecursorbyrapid

solidification.Contrarilytothealsocommonlyusedimpregnationmethodsforpre‐

formedsupports,thesematerialscontaintheprecursorspeciesforthesupportandfor

theactivecomponentsinthesamematerial[3].Highlydispersed,wellinter‐mixedand

uniformsupportedmetal/oxidecatalystscanbeobtainedfromsuchprecursorsby

decomposition(typicallycalcination)and/orreduction.However,thechemistrybehind

themanysynthesisstepsandtheirinterplayarecomplexandinvolved.Forapplied

systems,theempiricalsynthesisoptimizationisoftenfarmoreadvancedthantheexact

knowledgeoftheunder‐lyingchemistry.Thus,theevolutionofmanyappliedcatalyst

synthesesisusuallyacontinuouslong‐termprocessthattoalargeextentisbasedonthe

experienceofthemanufacturerandtheiraccumulatedknowledgeoftenleadsto

complexrecipes.Thiscomplexityissometimesgeneralizedasthe“blackmagic”of

catalystsynthesis.

Inthissituation,theretrospectiveinvestigationofaknownindustriallyapplied

synthesisprocedureisanidealstartingpointforreconstructingthechemistryof

catalystsynthesis.Onecanbesurethatthecriticaldetailsofallunitoperationshave

beentestedforrelevanceandaredirectlyimperativeforthebestfinalresult:ahighly

active,selectiveandstablematerialsuitableforindustrialapplication.Thegoalofsuch

studiesthusmustbetoupgradeempiricalsynthesisparameter‐functionrelationshipsto

synthesisparameter‐structure‐functionrelationshipsthatallowsforanunderstanding

andhopefullyamorerationalfurtheroptimizationofthecatalyst.

Aprominentexampleistheco‐precipitationofmixedCu,Zn,Alhydroxycarbonatesas

precursormaterialforCu/ZnO/Al2O3catalystswhichareemployedfortheindustrial

synthesisofmethanol[4‐6].Herein,therecentprogressthathasbeenmadeinanalyzing

andunderstandingthewell‐documentedindustrialsynthesisofthisimportantcatalyst

isbrieflyreviewed.Foramoredetailedtreatment,thereaderisreferredtorecent

reviews[7‐9].Thekeystepsofthesynthesisrecipeofthisparticularcatalystandthe

chemicalconceptbehindthe“blackmagic”areidentified,generalizedandtransferredto

othercatalystsystems.Herein,itisshownhowthelessonslearnedfromtheindustrial

Page 3: Coprecipitation: An excellent tool for the synthesis of

3

recipecanbeappliedtosynthesizenewmaterialsthroughco‐precipitationofdifferent

precursorcompoundinvariouscatalystsystems.Thisworkreviewsourrecentresults

obtainedonCu/ZnO‐basedcatalysts[10‐13]aswellassupportedPd[14],intermetallic

Pd2Ga[15‐17]andNi[18]catalystswithafocusonco‐precipitatedlayereddouble

hydroxide(LDH)precursors.

2.Results&Discussion:

2.1.Synthesisoftechnicalmethanolsynthesiscatalysts

Cu/ZnO‐basedcatalystsareindustriallyemployedinmethanolsynthesisfromsyngas.

TheroleofCudefectsanddisorder[19‐20]andofthe“synergetic”roleofZnO[21‐22],

whichexceedsthefunctionofamerephysicalstabilizerarevividlydebatedsincemany

years,butbeyondthescopeofthepresentpaper.Thesynthesisof(Al2O3‐promoted)

Cu/ZnOcatalystisanalyzedhereassumingthatthecoppernanoparticlesmustfulfill

threerequirementsforhighcatalyticperformance[23]:1.)exposealargecopper

surfacearea(SACu),2.)containsurfacedefectsand,3.)exhibitmanyreactive

(“synergetic”)interfacestoZnO.Theserequirementsareelegantlyrealizedbythenano‐

structuredandporousCu/ZnOarrangementshownintheTEMimageinFigure1that

resultsfromtheindustrialsynthesisrecipe.TheAl2O3promoterisusuallyaddedinlow

amountstoincreasethestabilityofthecatalyst,notasaclassicalaluminasupport.

Preparationofthisunique,butfragilemicrostructurerequiresahomogeneousand

maximizedintermixingoftheCuandZnspeciesinordertogenerateandstabilizethe

alternatingarrangementofsmallCuandZnOnanoparticles.Thus,themaingoalofthis

catalystsynthesisistocarryoverandmaintaintoamaximalextenttheperfectly

homogeneouscationdistributioninthestartingmixedsolutiontothefinalcatalyst.

Page 4: Coprecipitation: An excellent tool for the synthesis of

4

Figure1:SchematicrepresentationofthemajorstepsoftheICIrecipeforCu/ZnO

catalystsynthesis.Favorableconditionsthatleadtohigh‐performancecatalystsare

indicatedintheFigure(takenfrom[7]).

Incaseofthemethanolsynthesiscatalyst,amultistepsynthesisroutetowardsCu/ZnO

catalystsintroducedbyICIinthe1960sachievesthisinaveryefficientmanner[4].Itis

schematicallyshowninFigure1anditcomprisesco‐precipitation[24]andageing[25‐

26]ofamixedCu,Zn,(Al)hydroxy‐carbonateprecursormaterial[27],thermal

decompositionyieldinganintimatemixtureoftheoxidesandfinallyactivationofthe

catalystbyreductionoftheCucomponent[28].Themajortrickofthissynthesisisthat

underbeneficialconditionstheco‐precipitatedprecursormaterialcanbesynthesizedas

asinglehomogeneousandwell‐definedprecursorphase,zincianmalachite

(Cu,Zn)2(OH)2CO3,withamixedcationicsub‐latticethatcontainsallcomponentsofthe

catalystandcanevenaccommodatesmallamountsoftheAl3+promoter[29]inasolid

solution.ThisperfectdistributionleadstoaneffectivedilutionoftheactiveCu

componentandisthebasisforasuccessfulnano‐structuringoftheprecursorupon

decompositionintoCuO/ZnOandforthehighCu/ZnO‐interdispersioninthefinal

reducedcatalyst.ThisconceptisschematicallyshowninFigure2.Consideringthe

synthesisofamaximallysubstitutedandsinglephasezincianmalachiteprecursor

materialastheprimarygoaloftheearlysynthesissteps,manydetailsofthesynthesis

recipeandparameterslikeCu:Znratio,pHandtemperatureduringprecipitationand

ageingcanindeedbeunderstood[7,24,26].

Inturn,theseconsiderationsprovideageneralguideforthesynthesisofcatalystsin

othersystemsorthroughotherprecursorphase:Toobtainuniformandhighly

Page 5: Coprecipitation: An excellent tool for the synthesis of

5

interdispersedmaterialsoneshouldseeksynthesisparametersthatfavorthe

crystallizationofamixedcationiclatticeofallcomponentsofthecatalystwiththermo‐

labileanionslikehydroxide,carbonate,formate,oxalate,formate,acetate,etc.Thereby,

thesubstitutionshouldbesuchthatamaximalmixingofthecomponentscanbe

achievedwhilesegregationofotherphasesduringprecursorsynthesisisavoided.

Fig.2:Schematicrepresentationandelectronmicroscopyimagesofthemicrostructural

evolutionofanindustrialCu/ZnOcatalystsynthesizedbytherecipeshowninFigure1.

Theco‐precipitate(a)crystallizesyieldingzincianmalachiteneedles(b).During

calcinationtheindividualneedlesdecomposeintonanostructuredCuO/ZnO(c).Finally,

theCuOcomponentisreducedinhydrogenyieldingtheactivestateofthecatalystwith

auniquemicrostructureexhibitinghighporosityandhighCudispersion(takenfrom

[7])

2.2.AlternativeprecursorsfornewCu/ZnO‐basedcatalysts

Thisconceptthatthesolidstatechemistryoftheprecursordeterminesthesuccessof

thecatalystsynthesiscanbeusedtoexploreothermixedCu,Znprecursorcompounds

thanzincianmalachite.Forexample,theprinciplesshowninFigure2havebeen

transferredtoamixedCu,Znbasicformatesystem,(Cu1‐xZnx)2(OH)3HCO2[10].After

determiningtheproperco‐precipitationconditionsbymeansoftitrationexperiments,a

seriesofsolidsolutionswithvaryingxwaspreparedandstructurallycharacterized.The

systemshowedinterestingparallelswiththezincianmalachiteroute.Similartothe

Page 6: Coprecipitation: An excellent tool for the synthesis of

6

malachitecase,ananisotropicchangeoftheunitcellparameterswasobservedasa

functionofZncontentthatallowedfindingacriticalcompositionatx=0.21beyond

whichsegregationofby‐phaseswasdetected.Needle‐likeparticleshavebeenobtained

asshowninFigure3a.Thesuccessfulnano‐structuringofthishomogeneousprecursor

compounduponthermaldecompositionandthegenerationofporescanbeseenin

Figure3bshowingtheCuO/ZnOpre‐catalystcalcinedinoxygenat200°C.Theabsolute

performanceofthisnoveltypeofCu/ZnOcatalystswascomparabletoabinaryzincian

malachitederivedbenchmarkofthesamecomposition,whilethepromotedindustrial

catalystsstillperformedsignificantlybetter[10].

Fig.3:Scanningelectronmicrographsofthe(Cu1‐xZnx)2(OH)3HCO2needles(Cu:Zn=

78:22)before(a)andafter(b)calcinationinO2at200°C(takenfrom[7])

Anotherexample,well‐knownincatalystsynthesisscience,arelayereddouble

hydroxide(LDH)materials,MIIxMIII1‐x(OH)2(CO3)x/2∙mH2O.Thesematerialscrystallize

inalayeredstructurederivedfromthemineralbrucite,Mg(OH)2.Themetalcationsare

coordinatedbysixOHgroupsforminglayersofedge‐sharingoctahedra.IncaseofLDH,

sometrivalentcationsarealsopresentwithintheselayersandtheresultingpositive

excesschargeiscompensatedbyinter‐layeranions,typicallycarbonate(Fig.4a).LDHs

offerawidesubstitutionchemistryontheMIIandMIIIpositionsincludingCu,ZnandAl.

Allthreemetalspeciessharethesixfoldcoordinatedsitesinalayeredstructure,which

iscomposedofedge‐sharingoctahedra.Thus,theyareevenlydistributedonanatomic

levelwithinasinglephase.Hence,formationofcatalystsofahomogeneous

microstructurewithhighdispersionofthemetalspeciesandenhancedmetal‐oxide

interactioncanbeexpectedafterreduction.TheapplicationofLDHprecursorsfor

catalysishasbeencomprehensivelyreviewed[2]andmanyexamplescanbefoundin

theliterature.

Page 7: Coprecipitation: An excellent tool for the synthesis of

7

SynthesisofCu,Zn,AlLDHinsteadofthezincianmalachiteprecursorrequires

adjustmentoftheco‐precipitationconditions[11]:ahigherAlcontentof30‐40%to

obtainphasepureLDHmaterialcomparedtotypicallylessthan15%,theuseofa

mixtureofNaOHandNa2CO3asprecipitatingagentinsteadofpureNa2CO3toavoid

formationofcarbonate‐richerphaseslikemalachite,anincreaseoftheprecipitationpH

fromca.7to8tofavorformationofthehydroxide‐richLDHphaseandalowerreaction

temperaturetoavoidoxolationofCuhydroxidespeciestoCuOatthishigherpH.

Cu,Zn,AlLDHwereobtainedwithaCucontentupto50mol%[11].Atthiscomposition

theZn:Alratiowascloseto1:2andtheoxidematrixtendedtoformZnAl2O4[13].The

resultingcatalystshowedadifferentmicrostructurethanthezincianmalachite‐derived

industrialCu/ZnO/(Al2O3)catalyst[11].DuetothelayeredstructureLDHprecursors

exhibitaplatelet‐likemorphology.ThelateralsizeoftheCu,Zn,AlLDHplateletsranged

frommorethan100downtoafewtensofnanometers,whiletheplateletthicknesswas

betweenapproximately20andlessthan5nm(Fig.4b).EDXmappingconfirmedthe

homogenouselementdistributionintheLDHmaterial.Theplatelet‐likemorphology

wasmaintainedinthefinalcatalystuponthermaltreatment.Comparedtoex‐zincian

malachitecatalysts,asmalleraverageCuparticlesizewasobservedintheseex‐LDH

platelets,whichisaresultofthelowertotalCucontent.However,theaccessibleCu

surfaceareawasconsiderablylower,aroundonly10m2g‐1comparedto20or30m2g‐1

determinedfortypicalindustrialCu/Zn/Al2O3catalystsusingtheN2Ochemisorption

method.Thisisaresultofthemuchstrongerembedmentofthesmallmetalparticlesin

theZnAl2O4matrix.Themajorchallengeinthepreparationofsuchex‐LDHCu/ZnAl2O4

catalystisthustooptimizethis“nuts‐in‐chocolate”‐likemorphologybyadjustingthe

LDHparticlesize,e.g.theprecursorplateletthickness,toaffectthedegreeof

embedmentandincreaseporosityinordertofindthebestcompromisebetweenCu

metal‐oxideinteractionsandexposedSACu.AstheLDH‐derivedcatalystsexhibithigher

thermalstability,increaseincalcinationtemperaturecanbeeffectiveinthisway[30].

Alsoamicroemulsionapproachfortheprecipitationoftheprecursorto“nano‐cast”the

plateletmorphologyoftheLDHphasewasshowntoincreaseSACuby75%comparedto

aconventionallyco‐precipitatedex‐LDHCu/ZnAl2O4catalyst(Cu:Zn:Al=50:17:33)[12]

(Tab.1).ItisinterestingtonotethatdespitethelowertotalSACu,theactivityperunit

areawasfoundtobehigherinthesesystemscomparedtomanyconventionalcatalysts.

Page 8: Coprecipitation: An excellent tool for the synthesis of

8

a)

b)

Figure4:IdealizedgeneralrepresentationoftheLDHcrystalstructure(a).Cross‐section

TEMofanaggregateofCu,Zn,AlLDHprecursorplatelets(b).Themicroscopysample

waspreparedbyembeddingthepowderinepoxyfollowedbymechanicalandAr‐ion

beamthinning.Thecross‐sectionofmanyplateletsappearsasneedles.TheEDX

Cu

Al

Zn

Page 9: Coprecipitation: An excellent tool for the synthesis of

9

mappingshowstheuniformelementdistributionintheLDHprecursor(adoptedfrom

[11]).

2.3.SupportedNicatalysts

Thepeculiarmicrostructureofthereducedex‐LDHcatalystswithhighlyembedded

metalnanoparticlesisbeneficialnotonlyforenhancedmetal‐oxideinteraction,butalso

foranimprovedthermalstabilityofthecatalystagainstsintering.Thisfeaturewas

expoitedinthesynthesisofhighlystableNinanoparticlesfortheapplicationinthedry

reformingofmethaneathightemperatures.Forthisreaction,hightemperaturesare

favorable,becausethereactionishighlyendothermicandanincreaseintemperature

willincreasetheproductyield.Also,theoperationathightemperature

thermodynamicallysuppressestheexothermicBoudouardside‐reaction,whichistoa

largeextentresponsibleforundesiredcarbonfilamentgrowth[31‐32].Asimilar

syntheticapproachtostabilizeNinanoparticlesathightemperaturesagainstsintering

byincorporationintoastableoxidematrixwaspreviouslyalsoappliedforNi‐containing

perovskites[33]andspinels[34].AlsoLDHprecursorshavebeenalreadyappliedto

synthesizeNi‐basedcatalystsfordryreformingofmethane[35‐36].

Inourwork,LDHsofthenominalcompositionNixMg0.67‐xAl0.33(OH)2(CO3)0.17∙mH2O,

with0≤x≤0.5weresynthesizedbypH‐controlledco‐precipitationaccordingtothe

recipeintroducedabovefortheCu,Zn,Alsystem[18].ThehighestNicontentof50mol%

(metalbase)correspondstoa55wt.‐%Niloadingintheresultingcatalyst.Asdescribed

aboveforCu/ZnAl2O4,the1:2ratioofMgandAlisexpectedtoleadtospinelformation,

MgAl2O4‐asintering‐stableceramiccompound.Inaddition,beneficialeffectsonthe

cokingbehaviorofNicatalystshavebeenreportedonalumina,magnesiaandspinel

supports[37].

Thecharacterizationresultsshow,similartotheCu,Zn,Alcasedescribedabove,thata

phasepureLDHprecursorwiththetypicalplatelet‐likemorphologywasobtained.Upon

calcination,theLDHstructureiscompletelydecomposedat600°Cyieldingapoorly

crystallineoxidepre‐catalyst.Afterthisrelativelymildcalcination,noindicationfor

segregationofindividualspecieswasfoundandtheplateletshapeoftheparticleswas

maintained.Thus,thecalcinationproductisanamorphous,mixedNi,Mg,Aloxide,whose

Page 10: Coprecipitation: An excellent tool for the synthesis of

10

homogenousdistributionofthemetalspecieshasbeenlargelyconservedduring

decompositionoftheLDHprecursor(Fig.5a).

Afterreductionofthecalcinedmaterialinhydrogenat800°C,electronmicroscopy

revealedthattheplatelet‐likemorphologyoftheLDHprecursorisstillpresent

indicatingastrongresistivityofthematerialagainstreconstructionsathigh

temperatures(Fig5b).Inaddition,brightdotscanbeobservedintheSEMmicrographs

homogeneouslydistributedovertheplateletsconfirmingthatananoscopicsegregation

ofthecomponentshastakenplace.

Figure5:SEMimagesoftheprecursormaterial(a)andthecatalystafterreductionat

800°C(b)andTEMmicrographsofthefreshNi/MgAl2O4catalystwith50mol.%Ni(x=

0.5;55wt.%)afterreductionat800(c)and1000°C(d,adoptedfrom[18]).

Indeed,XRDofthecatalystswithx=0.5clearlyconfirmedthepresenceofmetallicNi.

Theoxidiccomponentisstillonlypoorlycrystallineandnosharppeaksofspinelwere

detected.TEManalysisofindividualplateletsinthereducedmaterialrevealedan

averageparticlesizeofNiaround10nm,despitethehighreductiontemperatureand

thehighoverallloadingof55wt.%Ni(Fig.5c).TheNisurfaceareawasdeterminedby

hydrogenpulsechemisorptionandfoundtobe22m2gcat‐1ataBETsurfaceareaof226

m2g‐1afterreduction(Tab.1).Interestingly,atthesehighreductiontemperatures,there

wasnocleareffectoftheNiloadingontheNiparticlesizeandapproximately10nm

werealsoobservedforx=0.05.Evenanincreaseofthereductiontemperatureto900°C

didnotsignificantlyinfluencetheNiparticlesizeprovingthehighthermalstabilityof

a) b)

c) d)

Page 11: Coprecipitation: An excellent tool for the synthesis of

11

thiscompositematerial.Onlyafterreductionat1000°C,asubstantialparticlegrowthto

19nmwasobserved(Fig.5d,Tab.1).Duetothishighlystablemicrostructure,whose

originistheprecursor‐inducedembedmentoftheNiparticlesintheceramicmatrix,the

catalystcanbeemployedatareactiontemperatureof900°Canditshoweda

remarkablestabilityover100hours[18].Itwasshownrecentlythatthecatalystloses

itsbeneficialmicrostructureinheritedfromtheLDHprecursoruponrepeatedTPR‐O

cyclesleadingtoanincreaseinNiparticlesizeto21nmafter21cycles[38].These

experimentsshowthegenerallimitoftheprecursorapproaches.Thecompositesystem

isonlykineticallytrappedinafavorable,butlabilemicrostructurewithfinitestability,

whichwasinheritedbythestructuralandmorphologicalpropertiesoftheprecursor.As

thesystemrelaxesathighertemperaturesoruponlongoperationtime,theseproperties

orthe“chemicalmemory”ofthecatalystmightalsoslowlyvanish.

2.4.Supportednoblemetalcatalysts:Palladium

ThesamesynthesisapproachviaLDHprecursorscanalsobeusedfornoblemetalslike

Pd.ItisnotedthatPd2+isnoteasilyincorporatedintheLDHlayersduetoitslargerionic

sizecomparedtoMg2+,whichexceedstheempiricallimitofapproximately0.80Åforthe

incorporationintoLDH[39].Furthermore,Pd2+inaqueoussolutionsexhibitsatendency

towardsfour‐foldsquare‐planarcoordinationinsteadofanoctahedraloneasrequired

inLDH.ThereforeonlysmallamountsofPd2+canbeincorporatedintheLDHprecursor

andasecondbivalentcationasdiluent,likeMg2+,isneededtoachievecrystallizationof

allPdionsinasingleLDHphase.Astypicalloadingsofnoblemetalcatalystsareanyway

lowercomparedtobasemetalsforcostreasons,thelimitedsolubilityofPd2+inLDHis

usuallynotagreatproblem.

Pd,Mg,AlLDHprecursorsweresynthesizedunderslightlyadjustedconditionswitha

Pd:Mg:Alatomicratioofx:0.7‐x:0.3(0.001≤x≤0.025)[14].Theprecursorwasreduced

in5%H2inargonat500°Cwithoutpriorcalcination.Theresultingseriesof

Pd/MgO/MgAl2O4catalystshasbeencharacterizedandwasfoundtocontainPd

nanoparticles(Fig.6),whosesizecanbecontrolledtosomeextentbetween<1.9and

3.5nmbyadjustingthePdcontentduringsynthesis(Fig.7,Tab.1).Thesamplewiththe

lowestPdloadingof0.33wt‐%(0.1mol.%,x=0.001)showedamuchgreaterPd

dispersioncomparedtothosesampleswithPdcontentsbetween1.5and8wt.%(0.5–

Page 12: Coprecipitation: An excellent tool for the synthesis of

12

2.5mol.%,0.005≤x≤0.025)makingthisseriesofcatalystsasuitablematerialsbasisfor

studyingparticlesizeeffectsinhydrocarbonactivation[40].

a) b)

Fig.6:SEMofthetypicalLDHmorphologyofthePd,Mg,Alprecursor(a)andTEMofthe

catalystobtainedafterreductionwithsmallPdnanoparticles(darkdots)formed

throughouttheoxideplatelets(adoptedfrom[14]).

Fig.7:DependencyofthePdnanoparticlesizedistributionontheloadingofPd2+inthe

LDHprecursorafterreductionat550°C(A:0.5%;B:1.0%;C:1.5%;D:2.5%,givenas

mol%ofmetalcationsubsititonintheLDH,takenfrom[14]).

TheseriesofLDH‐derivedPdcatalystswasstudiedinmethanechemisorption.The

adsorptioncapacityofthesecatalystswasgenerallyveryhighcomparedtoPdsamples

preparedbyothermethods[14].Inparticular,anextraordinaryhighcapacitywas

observedforthesamplewiththelowestloadingof0.33wt.%(0.1mol.%,x=0.001).Its

Page 13: Coprecipitation: An excellent tool for the synthesis of

13

particlesdisplayedasignificantlyhigherintrinsicmethaneadsorptioncapacitythan

othermembersoftheseries,whoseintrinsiccapacitieswerecomparable(Fig.8).This

observationindicatestheexistenceofasizeeffectinPdnanoparticlesfortheadsorption

ofmethaneandconfirmsthestructure‐sensitivtyofthisreaction.Theex‐LDHsamples

haveshownthatacriticalPdclustersizebelow1.9nmisrequiredfortheenhanced

adsorptiontotakeplace.

Fig.8:Pdmass‐normalizedmethanechemisorptioncapacityat200and400°Coftheex‐

LDHPdcatalystsasafunctionofPdloading.Thefoursampleswithhighloading

correspondtothecatalystsshowninFigure7,thePdparticlesofthelowestloaded

catalystsweretoosmalltobecharacterizedbyTEM(takenfrom[14])

2.5.Supportedintermetalliccatalysts:Pd2Ga

Orderedintermetalliccompounds(IMCs)arediscussedasinterestingcatalyticmaterials

formanyreactions[41].Forexample,intheIMCPd2Gawasinvestigatedinselective

hydrogenationofacetylene[42].Forcatalyticapplications,suchIMCsshouldbepresent

informofnanoparticlessupportedonahighsurfaceareamaterial[43].

AfeasiblesynthesisroutetosupportedPd2Gananoparticlesistheabove‐described

approachthroughaco‐precipitatedPd,Mg,GaLDHprecursortoevenlydistributethe

constituentelementsoftheintermetalliccompoundaswellasofthesupportinasingle

precursorphase[15].SimilartothemonometallicPdcatalystswithAlinsteadofGa

Page 14: Coprecipitation: An excellent tool for the synthesis of

14

introducedintheprevioussection,Pdnanoparticlesareformedintheinitialreduction

stepfromsuchaprecursorunderreducingconditions.Uponfurtherincreaseofthe

reductiontemperature,partialreductionofthegalliumspeciesbyspilloverofatomic

hydrogenfromthemetallicPdsurface[44]setsinleadingtotheformationoftheIMC

[45],whileunreducedcomponentsoftheprecursorconstitutetheoxidesupport.Like

thissupportedanddispersedIMCsaregeneratedbyreactionbetweennoblemetaland

thereducibleoxidesupportinafeasibleandreproduciblemanner.Thehomogeneous

distributionandthelowamountofPdintheLDHprecursorhelptheformationofvery

smallandreactivePd0particles[14].ThesinglephaseLDHprecursorisexpectedto

favortheformationofuniformandnano‐sizedPd2GaIMCbecauseitprovidesa

homogenousmicrostructureconcerningPdparticlesizeandPdmetal‐oxide

interactions.

APd,Mg,GaLDHprecursorwithx=0.025(molarratio2.5:67.5:30)wassynthesizedby

controlledco‐precipitationatpH=8.5and55°Cbyco‐feedingappropriateamountsof

mixedaqueousmetalnitrateandsodiumcarbonatesolutionasprecipitatingagent.The

precursorwasreducedin5%H2inargonat550°CtoobtainthesupportedPd2Ga

intermetalliccompound.ThereductionprocessoftheGa‐specieswasmonitoredbyin‐

situPdK‐edgeXANES(Fig.9)showingtheformationofmono‐metallicPdatlowand

IMCformationathigherreductiontemperature.HighresolutionTEMofthereduced

catalystsalsoshowsthatthePd2Gaphasewassuccessfullyformedwithintheoxidic

plateletsandthattheaverageparticlesizewasbelow5nm(Fig.10,Tab.1).

Fig.9:IMCformationfromPd,Mg,GaLDHprecursorsuponreductionmonitoredbyin‐

siteuXANES(takenfrom[17])

Page 15: Coprecipitation: An excellent tool for the synthesis of

15

Fig.10:TEMandHRTEMimagesofthereducedPd,Mg,GaLDHprecursorshowingthe

plateletmorphology(a),thepresenceofmetalnanoparticles(b)andevidenceforthe

formationofthePd2Gaphase(c,d,takenfrom[17])

3.Conclusion

RecentexamplesofsynthesisofsupportedcatalystsderivedfromLDHprecursorsand

theirapplicationshavebeendescribed.Anoverviewandselectedpropertiesare

summarizedinTable1.Thisprecursormaterialisveryversatileandcanleadtohighly

loadedbasemetalaswellastomono‐andbi‐metallichighlydispersednoblemetal

catalystswithanincreasedthermalstability.Thegeneralstepsofthissynthesisroute

areanalogoustothosesuccessfullyappliedintheindustrialsynthesisofmethanol

synthesiscatalysts.Co‐precipitationleadstowell‐definedandcrystallineprecursor

compoundswithamixedcationiclatticethatcontainsallcomponentsofthefinal

catalyst.Theanionsarethermallydecomposedtogivethemixedoxidesandthenoblest

componentsfinallysegregateonanano‐metricleveltoyielduniform

metal/intermetallicnanoparticles.

Page 16: Coprecipitation: An excellent tool for the synthesis of

16

Tab.1:OverviewontheLDH‐derivedcatalystsreviewedinthisarticlewithselected

propertiesandthereactionsystemsapplied.

Cations Composition

/mol.%

TReduction

/°C

SAMetal/

m2gcat‐1,or

dispersiona

Metalparticle

sizeb/nm

Reactionc,

remarks

reference

Cu,Zn,Al 50/17/33 300 8.3 7.7 MSR[12],MS

[46]

13.8 7.8 MSR,micro‐

emulsion

[12]

Ni,Mg,Al 50/17/33 800 22 10.4 DRM

[18,47]900 19 8.9

1000 6 19.4

5/62/33 1000 3 9.3

Pd,Mg,Al 0.1/69.9/30 550 67% n.d. CH4chem.

[14]0.5/69.5/30 17% 1.9

1.0/69.0/30 25% 2.2

1.5/68.5/30 14% 3.5

2.5/67.5/30 16% 3.3

Pd,Mg,Ga 2.5/67.5/30 n.d. 4.8(Pd2Ga) Sel.Hydr.

[15,17]adeterminedusingN2O(Cu),H2(Ni)orCO(Pd)asprobemolecules.

bdeterminedbyTEM.

cMSR=methanolsteamreforming,MS=methanolsynthesis,DRM=dryreformingofmethanol,CH4chem.=

methanechemisorption,Sel.Hydr.=selectivehydrogenationofacetylene.

Acknowledgements

ThethoroughexperimentalworkofmygroupmembersattheFritz‐Haber‐Instituteis

greatlyacknowledged.IalsothankRobertSchlöglforhiscontinuoussupportandfor

fruitfuldiscussionsduringmytimeinBerlin.

Page 17: Coprecipitation: An excellent tool for the synthesis of

17

References

1. Schüth,F.,M.Hesse,andK.K.Unger,PrecipitationandCoprecipitation,inHandbookofHeterogeneousCatalysis.2008,Wiley‐VCHVerlagGmbH&Co.KGaA.

2. Cavani,F.,F.Trifirò,andA.Vaccari,Hydrotalcite‐typeanionicclays:Preparation,propertiesandapplications.CatalysisToday,1991.11(2):p.173‐301.

3. SynthesisofSolidCatalysts,ed.K.P.d.Jong.2009:Wiley‐VCHVerlagGmbH&Co.KGaA.I‐XX.

4. Waller,D.,etal.,Copper‐zincoxidecatalysts.Activityinrelationtoprecursorstructureandmorphology.FaradayDiscussionsoftheChemicalSociety,1989.87:p.107‐120.

5. Baltes,C.,S.Vukojevic,andF.Schuth,Correlationsbetweensynthesis,precursor,andcatalyststructureandactivityofalargesetofCuO/ZnO/Al2O3catalystsformethanolsynthesis.JournalofCatalysis,2008.258(2):p.334‐344.

6. Li,J.L.andT.Inui,Characterizationofprecursorsofmethanolsynthesiscatalysts,copperzincaluminumoxides,precipitatedatdifferentpHsandtemperatures.AppliedCatalysisa‐General,1996.137(1):p.105‐117.

7. Behrens,M.andR.Schlögl,HowtoPrepareaGoodCu/ZnOCatalystortheRoleofSolidStateChemistryfortheSynthesisofNanostructuredCatalysts.ZeitschriftfüranorganischeundallgemeineChemie,2013.639(15):p.2683‐2695.

8. Behrens,M.,MethanolSteamReforming,inCatalysisforalternativeenergygeneration(eds:L.Guczi,A.Erdohelyi),M.Armbruster,Editor.2012,Springer.

9. Behrens,M.andE.Kunkes,MethanolChemistry,inChemicalEnergyStorage,R.Schlögl,Editor.2012,WalterdeGruyter:Berlin.p.413‐442.

10. Behrens,M.,etal.,Knowledge‐baseddevelopmentofanitrate‐freesynthesisrouteforCu/ZnOmethanolsynthesiscatalystsviaformateprecursors.ChemicalCommunications,2011.47(6):p.1701‐1703.

11. Behrens,M.,etal.,Phase‐PureCu,Zn,AlHydrotalcite‐likeMaterialsasPrecursorsforCopperrichCu/ZnO/Al2O3Catalysts.ChemistryofMaterials,2009.22(2):p.386‐397.

12. Kuhl,S.,etal.,Cu,Zn,Allayereddoublehydroxidesasprecursorsforcoppercatalystsinmethanolsteamreforming‐pH‐controlledsynthesisbymicroemulsiontechnique.JournalofMaterialsChemistry,2012.22(19):p.9632‐9638.

13. Kühl,S.,etal.,Cu‐BasedCatalystResultingfromaCu,Zn,AlHydrotalcite‐LikeCompound:AMicrostructural,Thermoanalytical,andIn SituXASStudy.Chemistry–AEuropeanJournal,2014.20(13):p.3782‐3792.

14. Ota,A.,etal.,Particlesizeeffectinmethaneactivationoversupportedpalladiumnanoparticles.AppliedCatalysisA:General,2013.452(0):p.203‐213.

15. Ota,A.,etal.,IntermetallicCompoundPd2GaasaSelectiveCatalystfortheSemi‐HydrogenationofAcetylene:FromModeltoHighPerformanceSystems†.TheJournalofPhysicalChemistryC,2010.115(4):p.1368‐1374.

16. Ota,A.,etal.,Comparativestudyofhydrotalcite‐derivedsupportedPd2GaandPdZnintermetallicnanoparticlesasmethanolsynthesisandmethanolsteamreformingcatalysts.JournalofCatalysis,2012.293(0):p.27‐38.

17. Ota,A.,etal.,DynamicSurfaceProcessesofNanostructuredPd2GaCatalystsDerivedfromHydrotalcite‐LikePrecursors.ACSCatalysis,2014:p.2048‐2059.

18. Mette,K.,etal.,StablePerformanceofNiCatalystsintheDryReformingofMethaneatHighTemperaturesfortheEfficientConversionofCO2intoSyngas.ChemCatChem,2014.6(1):p.100‐104.

Page 18: Coprecipitation: An excellent tool for the synthesis of

18

19. Behrens,M.,etal.,TheActiveSiteofMethanolSynthesisoverCu/ZnO/Al2O3IndustrialCatalysts.Science,2012.336(6083):p.893‐897.

20. Gunter,M.M.,etal.,ImplicationofthemicrostructureofbinaryCu/ZnOcatalystsfortheircatalyticactivityinmethanolsynthesis.CatalysisLetters,2001.71(1‐2):p.37‐44.

21. Fujitani,T.,etal.,ThekineticsandmechanismofmethanolsynthesisbyhydrogenationofCO2overaZn‐depositedCu(111)surface.SurfaceScience,1997.383(2–3):p.285‐298.

22. Nakamura,J.,Y.Choi,andT.Fujitani,OntheissueoftheactivesiteandtheroleofZnOinCu/ZnOmethanolsynthesiscatalysts.TopicsinCatalysis,2003.22(3‐4):p.277‐285.

23. Zander,S.,etal.,TheRoleoftheOxideComponentintheDevelopmentofCopperCompositeCatalystsforMethanolSynthesis.AngewandteChemieInternationalEdition,2013.52(25):p.6536‐6540.

24. Behrens,M.,etal.,Understandingthecomplexityofacatalystsynthesis:Co‐precipitationofmixedCu,Zn,AlhydroxycarbonateprecursorsforCu/ZnO/Al(2)O(3)catalystsinvestigatedbytitrationexperiments.AppliedCatalysisa‐General,2011.392(1‐2):p.93‐102.

25. Kniep,B.L.,etal.,Rationaldesignofnanostructuredcopper‐zincoxidecatalystsforthesteamreformingofmethanol.AngewandteChemie‐InternationalEdition,2004.43(1):p.112‐115.

26. Zander,S.,B.Seidlhofer,andM.Behrens,InsituEDXRDstudyofthechemistryofagingofco‐precipitatedmixedCu,Znhydroxycarbonates‐consequencesforthepreparationofCu/ZnOcatalysts.DaltonTransactions,2012.41(43):p.13413‐13422.

27. Behrens,M.andF.Girgsdies,StructuralEffectsofCu/ZnSubstitutionintheMalachite–RosasiteSystemZeitschriftfüranorganischeundallgemeineChemie,2010.636(6):p.919‐927.

28. Behrens,M.,Meso‐andnano‐structuringofindustrialCu/ZnO/(Al(2)O(3))catalysts.JournalofCatalysis,2009.267(1):p.24‐29.

29. Behrens,M.,etal.,PerformanceImprovementofNanocatalystsbyPromoter‐InducedDefectsintheSupportMaterial:MethanolSynthesisoverCu/ZnO:Al.JournaloftheAmericanChemicalSociety,2013.135(16):p.6061‐6068.

30. Tang,Y.,etal.,High‐performanceHTLcs‐derivedCuZnAlcatalystsforhydrogenproductionviamethanolsteamreforming.AIChEJournal,2009.55(5):p.1217‐1228.

31. Swaan,H.M.,etal.,Deactivationofsupportednickelcatalystsduringthereformingofmethanebycarbondioxide.CatalysisToday,1994.21(2–3):p.571‐578.

32. Tsipouriari,V.A.,etal.,ReformingofmethanewithcarbondioxidetosynthesisgasoversupportedRhcatalysts.CatalysisToday,1994.21(2–3):p.579‐587.

33. Choudhary,V.R.,B.S.Uphade,andA.A.Belhekar,OxidativeConversionofMethanetoSyngasoverLaNiO3PerovskitewithorwithoutSimultaneousSteamandCO2ReformingReactions:InfluenceofPartialSubstitutionofLaandNi.JournalofCatalysis,1996.163(2):p.312‐318.

34. Guo,J.,etal.,Dryreformingofmethaneovernickelcatalystssupportedonmagnesiumaluminatespinels.AppliedCatalysisA:General,2004.273(1–2):p.75‐82.

35. Tsyganok,A.I.,etal.,Dryreformingofmethaneovercatalystsderivedfromnickel‐containingMg–Allayereddoublehydroxides.JournalofCatalysis,2003.213(2):p.191‐203.

Page 19: Coprecipitation: An excellent tool for the synthesis of

19

36. Perez‐Lopez,O.W.,etal.,EffectofcompositionandthermalpretreatmentonpropertiesofNi–Mg–AlcatalystsforCO2reformingofmethane.AppliedCatalysisA:General,2006.303(2):p.234‐244.

37. Chen,Y.‐g.andJ.Ren,Conversionofmethaneandcarbondioxideintosynthesisgasoveralumina‐supportednickelcatalysts.EffectofNi‐Al2O3interactions.CatalysisLetters,1994.29(1‐2):p.39‐48.

38. Mette,K.,etal.,RedoxDynamicsofNiCatalystsinCO2ReformingofMethane.CatalysisToday,2014.submitted.

39. DeRoy,A.,LamellarDoubleHydroxides.MolecularCrystalsandLiquidCrystalsScienceandTechnology.SectionA.MolecularCrystalsandLiquidCrystals,1998.311:p.173‐193.

40. Klier,K.,J.S.Hess,andR.G.Herman,Structuresensitivityofmethanedissociationonpalladiumsinglecrystalsurfaces.TheJournalofChemicalPhysics,1997.107(10):p.4033‐4043.

41. Studt,F.,etal.,DiscoveryofaNi‐Gacatalystforcarbondioxidereductiontomethanol.NatChem,2014.6(4):p.320‐324.

42. Armbrüster,M.,etal.,Pd−GaIntermetallicCompoundsasHighlySelectiveSemihydrogenationCatalysts.JournaloftheAmericanChemicalSociety,2010.132(42):p.14745‐14747.

43. He,Y.,etal.,PartialhydrogenationofacetyleneusinghighlystabledispersedbimetallicPd–Ga/MgO–Al2O3catalyst.JournalofCatalysis,2014.309(0):p.166‐173.

44. Collins,S.E.,etal.,Gallium‐HydrogenBondFormationonGalliumandGallium‐PalladiumSilica‐SupportedCatalysts.JournalofCatalysis,2002.211(1):p.252‐264.

45. Penner,S.,etal.,Pd/Ga2O3methanolsteamreformingcatalysts:PartI.Morphology,compositionandstructuralaspects.AppliedCatalysisA:General,2009.358(2):p.193‐202.

46. Kühl,S.,etal.,TernaryandquaternaryCrorGa‐containgex‐LDHcatalysts‐influenceoftheadditionaloxidesontothemicrostructureandactivityofCu/ZnAl2O4catalysts.CatalysisToday,2014.submitted.

47. Düdder,H.,etal.,RoleofcarbonaceousdepositsintheactivityandstabilityofNi‐basedcatalystsappliedinthedryreformingofmethane.Catal.Sci.Technol.,2014.accepted.