core loss spectra (eels, xas) kevin jorissen university of washington (usa) wien2k 2013 penn state

35
Core loss spectra Core loss spectra (EELS, XAS) (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

Upload: randolf-hunter

Post on 13-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

Core loss spectraCore loss spectra(EELS, XAS)(EELS, XAS)

Kevin JorissenUniversity of Washington (USA)

WIEN2k 2013 Penn State

Page 2: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

2

1. Concepts

Page 3: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

3

WIEN2k calculates ELNES / XANES

EELS : Electron Energy Loss Spectroscopy

XAS: X-ray Absorption Spectroscopy

EXELFSELNES

Ionization edge

Energy Loss

Page 4: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

5

INTRODUCING EELSElectron Energy Loss Spectroscopy is performed in a Transmission Electron Microscope, using a beam of high-energy electrons as a probe. The energy distribution of the beam gives a loss spectrum similar to XAS. Focussed probes give excellent spatial resolution (~0.5 Å). Energy resolution is improving ( ~ 25meV).

50.0%O-

50.0%Mn

66.7%O-33.3%Mn55.0%O-45.0%Ti

66.7%O-

33.3%Ti66.7%O-

33.3%Ti

Intuitive picture of EELS

EELS spectra of TM oxidesProbes local electronic structure

Electron microscopeequipped withEELS-detector

Page 5: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

6

Terminology for ionization edges

Inner shell ionization.

Page 6: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

7

instrumentation

XAS: synchrotron EELS: microscope

Page 7: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

The transition probabilities are described by Fermi’s golden rule.

V is the interaction potential between the fast beam electron and an electron in the sample.

F, I the sample states, can be taken from electronic structure calculations.

kF and kI the probe states, are typically described as plane waves when Bragg scattering effects are neglected.

In experiment, one usually integrates over a range of scattering angles, due to the beam width and spectrometer aperture. differential cross section :

8

THEORY OF EELS : A double differential scattering cross-section is calculated by summing over all possible transitions between initial and final states.

2

,,

( ; , ) FI F I F

I F I

kE d I k V k F E E

E k

2 2

,

( , ) FI F I F

I F I

kE I k V k F E E

E k

Q

Page 8: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

9

Theory (EELS --------- XAS)

Page 9: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

10

dipole approximation

The polarization vector e in XAS plays the same role as momentum transfer q in ELNES within the dipole approximation.This is why people say “XAS = EELS”.(Beware - there are quite a few differences, too.)

EELSEELS XAS

Probes local, symmetry-selected (lc+1) unoccupied DOS

Page 10: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

11

2. WIEN2k Calculations.

Page 11: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

12

calculation of spectra using WIEN2kcalculation of spectra using WIEN2k

SCF calculation

x qtl -telnes

Prepare case.innes

x telnes3 x xspec

or

Prepare case.inxs

EELS XAS

x broadening

Set up structure and initialize

Page 12: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

13

ELNES workflow

Page 13: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

w2web

14

ELNES input w2web

Page 14: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

ELNES input file (case.innes)

15

Page 15: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

16

Page 16: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

Practical considerations

17

• Spectra usually converge easily with respect to RKMAX, k-mesh, SCF criteria• But you should check anyway (see Cu L3)• Optimizing positions may be necessary• You may need to sum over all “C” atoms in the unit cell. (Especially for

orientation-resolved calculations.)• You probably need to use a “core hole”. This can be a lot of work.• Your results may be wrong even if you do everything right. (But often they

are reasonably good.)• To compare to experiment, you’ll probably fiddle with the broadening,

the onset energy, and the branching ratio (L3/L2)

Page 17: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

18

Convergence of Cu L3 edge with # k-points

Page 18: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

19

Features of WIEN2k Orientation dependence Beyond dipole selection rule Several broadening schemes All-electron

For EELS: Account for collection/convergence angle Output (E) or () Relativistic ELNES ( anisotropic materials)

Page 19: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

20

EELS – Relativistic theory needed for anisotropic materials

2 2

2

2 4,0

4 ' 1( , ) I F

I F

kE I F E E E

E a k Q

Q Q.r

Semi-relativistic theory :

2 22

22,

' 1( , ) .

/z I F

I F

kE I Q F E E E

E k Q E c

zQ r Q e

Fully relativistic theory (P. Schattschneider et al., Phys. Rev. B 2005) :

Geometrical interpretation : in the dipole limit, a relativistic Hamiltonian shrinks the impuls transfer in the direction of propagation. (The general case is more complex.) WIEN2k can also calculate non-dipole relativistic transitions. The equations are so long they make PowerPoint cry.

V=|r-r’|-1m -> mE -> E,rel

Up to leading order in c-2 and using the Lorentz gauge :2

1V emc

0p.v 2 2 2

4 e

q c

0q.v

Page 20: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

21

Beyond the small q approximation

22

2 22.0

2 22 ,

4 .1f i

f ii fi e

kaf e i E E E

E k m cEq c

q r 0v p

21 ; ,z z x yq q q q unchanged

( )flm llm f d u r

5* *

12

* * 02

4

44

3

1 1 1 1 1 1

0 0

flm a

lm a

if i ilm l i l i

lm i e

i i i i i i

i i i i i i

i V f i d Y t i t

l l i v u mi d Y j u u j u u

m m m c r r

l l l l l l l l

m m m m m m m m

q

q

02

81

3

1 1 1 1 1 1

1 1 1 1

i i i ie

i i i i i iil

i i i i i i

i vl m l m

m c

l l l l l l l luj u

m m m m m m m mr

The relativistic DDSCS :

“Dipole” approximation :

More general l,m decomposition :

1ie i q.r q.r

2...i f i f

c

00

q.vr. q v

5* *

12

* * 02

4

44

3

1 1 1 1 1 1

0 0

flm a

lm a

if i ilm l i l i

lm i e

i i i i i i

i i i i i i

i V f i d Y t i t

l l i v u mi d Y j u u j u u

m m m c r r

l l l l l l l l

m m m m m m m m

q

q

02

81

3

1 1 1 1 1 1

1 1 1 1

i i i ie

i i i i i iil

i i i i i i

i vl m l m

m c

l l l l l l l luj u

m m m m m m m mr

Page 21: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

Relativistic spectra

22

Graphite C K for 3 tilt angles. Beam energy 300 keV, collection angle = 2.4mrad.Left: nonrelativistic calculation. Right: relativistic calculation.

Page 22: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

Orientation dependence

23

graphite C K EELS BN B K XAS

Page 23: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

Spectrum as a function of energy loss

24

2

, , ( )E d E f dE E

k' k k' k k

Cr3C2 C K edge

Page 24: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

Spectrum as a function of scattering angle

25

2

1

2

,E

EdE E

E

q q

Right : the As L3 edge of NiAs (1324 eV)Calculated using WIEN2k+TELNES2

Left : L3 edge of Cr3C2

Page 25: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

Just the double-differential CS

26

2

,EE

q

Double differential scattering cross-section (DDSCS)

Page 26: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

27

Warning!

✗ DFT is a ground state theory !

➔ it should fail for the prediction of excited state properties

✔ however: for many systems it works pretty well

Page 27: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

The core hole

ELECTRON MICROSCOPY FOR MATERIALS RESEARCHELECTRON MICROSCOPY FOR MATERIALS RESEARCH

1s

2s2p

EF

E

1s

2s2p

EF

E

1s

2s2p

EF

E

Page 28: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

29

Different ways of treating the core hole within WIEN2kDifferent ways of treating the core hole within WIEN2k

No core hole (= ground state, sudden approximation) Z+1 approximation (eg., replace C by N)

Remove 1 core electron, add 1 electron to conduction band

Remove 1 core electron, add 1 electron as uniform background charge

Fractional core hole: remove between 0 and 1 electron charge (e.g. 0.5)

You may still get a bad result – correct treatment requires a more advanced theory, e.g. BSE treats electron-hole interaction explicitly (gold standard).

Core hole calculations usually require a supercell !!!

Page 29: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

30

Mg-K in MgO

mismatch between experiment and simulation

introduction of core hole or Z+1 approximation does not help

interaction between neighbouring core holes

➔ core hole in a supercell

C. Hébert, J. Luitz, P. SchattschneiderMicron 34, 219 (2003)

Page 30: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

Challenges of WIEN2k

31

1. Basis set only meant for limited energy range :•forget about EXAFS/EXELFS•sometimes adding a LO (case.in1) with a high linearization energy of 2.0 or 3.0improves description of high-energy states.

2. Sometimes Final State Rule (core hole) DFT just isn’t good enough and you need Bethe-Salpeter (BSE) calculations•codes : OCEAN, AI2NBSE, Exc!ting, “BSE”•much more expensive•not as “polished” as DFT•gets L3/L2 ratios right

BSE

reality

single-particle

Page 31: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

Challenges of WIEN2k

32

3. Core hole supercell size can be hard to converge.•size of the cell•how much charge to remove?•optimal treatment can differ between similar materials; or even different edges in same material

S. Lazar, C. Hébert, H. W. ZandbergenUltramicroscopy 98, 2-4, 249 (2004)

above: diamond

GaN N K edge

Page 32: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

Challenges of WIEN2k

33

4. Killing artifacts (unphysical monopoles) by “extending the RMT”

Page 33: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

Documentation

WIEN2k Users Guide! C. Hebert, Practical aspects of

calculating EELS using the WIEN2k code, Ultramicroscopy, 2007

Jorissen, Hebert & Luitz, submitting

(http://leonardo.phys.washington.edu/feff/papers/dissertations/thesis_jorissen.pdf - Kevin’s Ph.D. thesis)

34

Page 34: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

35

3. Hands-on exercises

1. XAS of K edge of Cu.2. averaged EELS of N K edge of GaN.3. orientation sensitive, in-plane and out-

of-plane EELS of N K edge of GaN.4. core hole calculation for Cu K-edge XAS

& compare.5. initialize a 2*2*2 supercell for TiC or TiN

core hole EELS calculation.6. Be K edge. Find the error.

Page 35: Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIEN2k 2013 Penn State

36

Thank you:

C. Hebert, J. Luitz, P. Schattschneider, and the TELNES team

P. Blaha, K. Schwarz, and the WIEN2k team

J. Rehr and the FEFF9 team WIEN2013 organizers