correlations between dnom characteristics and key ...folk.uio.no/rvogt/cv/presentations/11th int...

29
1 Correlations between DNOM characteristics and key descriptive parameters of the watershed Rolf D. Vogt, Dag Olav Andersen, Tone Gadmar, Egil Gjessing, Gudrun Abbt-Braun, Jarkko Akkanen, Jim Alberts, Peter Blaser, Jussi Kukkonen, Jörg Luster, Andrea Paul, Stephan Pflugmacher, Christian Steinberg, Monika Takacs and Ádám Zsolnay Funded by

Upload: hoangthien

Post on 08-Apr-2019

219 views

Category:

Documents


0 download

TRANSCRIPT

1

Correlations between DNOM characteristics and key descriptive

parameters of the watershed

Rolf D. Vogt, Dag Olav Andersen, Tone Gadmar, Egil Gjessing, Gudrun Abbt-Braun, Jarkko Akkanen, Jim Alberts, Peter Blaser, Jussi Kukkonen, Jörg Luster, Andrea Paul,

Stephan Pflugmacher, Christian Steinberg, Monika Takacs and Ádám Zsolnay

Funded by

2

Parameter interpretation

Functional characteristics are not intuitively deduced from simple bulk chemical and structural parameters Lack of comparable data due to:

Large number of Isolation techniques Sample collection and pre-treatment alter DNOM's bio-physico-chemical characteristics

Conditional K’ rather than K

Temporal and spatial variation

Approach: Provide a set of DNOM material, isolated in the same way, to the scientific community and compile their data

3

DNOM material:Reverse Osmosis (RO) isolation

Methods

Isolated 500 - 1100L spring and fall surface water sample

Ionexchanged Me2+ for Na+

Up concentrated to 25LRota-Evaporated Freeze dried

Recovery of 85-90%

Represent a non-labile DNOM material enabling multi-dimensional characterisation and thereby parameter comparison

4

Site characteristicsSpan a large range in anthropogenic deposition, climate and size

All sites are similar in that they are dominated by:

Unmanaged coniferous forests (Norway spruce or Pine) with heather on

Podzolic soils & Histosols on

Gneiss or granite bedrock

Parameter Min Max

Tot S (g S/m2/y) 0.3 0.9Latitude 58.23 63.10Growing season (days) 102 180Precipitation (mm) 592 2500Size (ha) 6.2 464Volume (106 m3) 0 2.9Retention time (yr) 0 1.5Peat (%) 17 35

5

Water chemistryLarge span in water chemistry

All low ionic strength and oligothrophic

Parameter min max

H+ (µM) 0.38 37.0

Ca2+ (µeq/L) 9.1 118TOC (mg C/L) 3.6 19Total Al (µM) 0.5 15Si (µM) 13.6 92Conductivity (mS/m) 1.48 3.74

6

Methods

sUVa & SAR

SAR

468

101214161820

0.1 1 10 100 1000

mg C/L

Abs

254

/600

sUVa

3

4

5

6

7

0.1 1 10 100 1000

mg C /L

Abs

254

/ mg

C

cmEcmE

SARnm

nm

600

254

=

mmgL

LCmg

cmE

sUVanm

=⋅

=100254

sUVa: UV-adsorbing functional groups relative to total carbon SAR: UV-adsorbing functional groups relative to large coloured NOM compounds

UV adsorbing functional groups: Aromatic, Carbonylic and Carboxylic

Parameters varies with concentration..

7

Fluorescence emission spectrum (FES) – acidification effect

Parameter value at pH 2- pH2

Humification Index (RkH / RkL)HIX

effect of pH change to pH2(pH)

Relative fluor. emission in redderregion, more condensed material

RkH

Relative fluor. emission in bluer region, less condensed material

RkL

Fluorescence Efficiency (AU cm)SFE

relative fluor. emissionRkSF

Description

A. Zsolnay

8

2D-Total Luminescence spectra (TLS)

Methods

Relative fluorenscingIntensities (RFI) of peaks give the proportion of compounds

RFI-ASimple phenolic compounds

Phenolic

CAromatic

A

HumifiedB

RFI-CHighly conjugated aromatic compounds

RFI-BHumified material

Jörg Luster and Monika Takacs

9

Electron spin resonance (ESR)

Methods

g valuesFulvic acids: 2.0043Humic acids : 2.0035

∆B [mT]Spectral linewith

SpinsRelative to the IHSS published value of 0,64·1017 spins/(g HA)High spin densities indicate high degrees of aromatisation and a low amount of carboxyl groups

0 100 200 300 400 500 314 316 318 320 322 324

0 100 200 300 400 500 314 316 318 320 322 324

Hiet00

Hiet00

Fe(III) g=2,47 reference

B [mT]

Hiet99

C-radical reference

B [mT]

Hiet99

Andrea Paul

10

13C-Nuclear Magnetic Resonance (NMR)

The main difference between the sites lie in the relative amounts of Carbohydrates and Aromatic compounds

Carbonyl: 228 – 190ppmCarboxyl: 190 – 155ppmAromatic: 155 – 99ppmCarbohyd.: 99 – 64ppmAliphatic: 64 – 5ppm

11

Methods

Amino acids

0

10

20

30

40

50

60

Fall

Spr

ing

Fall

Spr

ing

Fall

Spr

ing

Fall

Spr

ing

Fall

Spr

ing

Hietajärvi Valkea-Kotinen

Svartberget Birkenes Skjervatern

µg A

A/ m

g DO

C

Amino acids after acid hydrolysis.

Gudrun Abbt-Braun

12

Methods

DOC fractions

0%

25%

50%

75%

100%

Bir

Fall

Sprin

g

Val

Fal

l

Sprin

g

Hie

Fal

l

Sprin

g

Sva

Fal

l

Sprin

g

Skj

Fall

Sprin

g

HPI-N

HPI-B

HPI-A

HPO-Ph

HPO-N

HPO-B

HPO-A

Fractionation into Hydrophobic and Hydrophilic -acid, -bases, -neutrals and -phenolic fractions

Large variation between seasons and sites

13

Grans plot titrations; Weak Acid density

Methods

-5.5

-5

-4.5

-4

-3.5

-30 10 20 30 40 50 60

mg C/L TOC

log

buff

er c

apac

ety/

mg

C HellerudmyraHietajarvi

Svartberget

• An inverse correlation between the total TOC level and weak acids per mg C

Different site density at different [DOC]!

14

Partitioning coefficients (KD)of micro pollutants

Methods

B(a)Ppartition coefficients for benzo[a]pyrene

TCBpartition coefficients for 3,3’,4,4’-tetrachlorobiphenyl

Pyrenepartition coefficients for pyrene

0

1

2

3

4

5

6

Fall Spring Fall Spring Fall Spring Fall Spring Fall Spring

Hietajärvi Valkea-Kotinen

Svartberget Birkenes Skjervatjern

KDO

C x

10E

-4

0510152025303540

KDO

C x

10E

-4 B

(a)P

Pyrene

TCB

B[a]P

Jarkko Akkanen and Jussi Kukkonen

15

Methods

Algae response

PS; Photosynthetic oxygen production

Low PS indicate that the plant has serious stress

POD; Peroxidase, ROS enzyme

High POD indicate that the plant has to deal with reactive oxygen species, which might be a by-product of de-toxicationmetabolism. ROS can make serious damages e.g. to DNA

Christian Steinberg and

Stephan Pflugmacher

16

Results

Disclaimer

Correlation Does Not Imply CausationCorrelations may

be fortuitous due to the limited number (N=10) of samples be due to a co-variation with a third parameter

This is especially the case regarding the site characteristics, as many of these parameters are inherently correlated

This presentation therefore only suggests possible conceptual links between correlated parameters

17

Water quality vs. DNOM characteristics

Results

Increased Nitrate correlated with more aromatisation (ESR spin)

Water chemistry

NOM characteristics r

Conductivity SpinsESR -0.870PODAlgal respons -0.810g-valueESR -0.810

Ca2+ Density -0.822HPI-N 0.935SpinsESR 0.836

total Al RFI-ATLS 0.925HPI-A 0.805RkH-pH2FES 0.940psESR -0.940AliphaticNMR -0.875WA density -0.910

H+

NO3--RO

Silicate

18

Water quality vs. DNOM characteristics

Results

Increased Nitrate correlated with more aromatisation (ESR spin) Increase in the Phenolic peak intensity (RFI-A) with increased Al is characteristic for the formation of Al complexes with DNOMLuster et al.1996

Water chemistry

NOM characteristics r

Conductivity SpinsESR -0.870PODAlgal respons -0.810g-valueESR -0.810

Ca2+ Density -0.822HPI-N 0.935SpinsESR 0.836

total Al RFI-ATLS 0.925HPI-A 0.805RkH-pH2FES 0.940psESR -0.940AliphaticNMR -0.875WA density -0.910

H+

NO3--RO

Silicate

19

Water quality vs. DNOM characteristics

Results

Increased Nitrate correlated with more aromatisation (ESR spin) Increase in the Phenolic peak intensity (RFI-A) with increased Al is characteristic for the formation of Al complexes with DNOMLuster et al.1996

Several DNOM characteristics are correlated to Silicate, possiblyreflecting the influence of a oligothrophic/dystrophic gradient of the water source.

Water chemistry

NOM characteristics r

Conductivity SpinsESR -0.870PODAlgal respons -0.810g-valueESR -0.810

Ca2+ Density -0.822HPI-N 0.935SpinsESR 0.836

total Al RFI-ATLS 0.925HPI-A 0.805RkH-pH2FES 0.940psESR -0.940AliphaticNMR -0.875WA density -0.910

H+

NO3--RO

Silicate

20

Results

Collective properties vs. Structural characteristics

rHIX-pH2FES 0.925SFE(pH)FES -0.806

Abs254nm TOC 0.975PyreneKD -0.929SFEFES 0.844RkL-pH2FES -0.837∆B[mT]ESR 0.881SFEFES -0.821RFI-ATLS 0.871WA density 0.837

RkH(pH)FES WA density 0.815C:N SFE-pH2FES -0.847

RkL-pH2FES 0.844Aminoacid 0.830

HPI-B SpinsESR 0.811HPO-A RkL(pH)FES 0.819HPO-B RkL-pH2FES -0.900HPO-Ph RkL(pH)FES -0.901WA density %C -0.802RFI-BTLS SFEFES 0.826RkL-pH2FES Aminoacid 0.813

Ko/w

UV Abs(pH)

NOM characteristics

H+-RO

sUVa

SAR-RORelative more Humified material (HIX) appears to generate a more acid solution(H+-RO)

21

Results

Collective properties vs. Structural characteristics

rHIX-pH2FES 0.925SFE(pH)FES -0.806

Abs254nm TOC 0.975PyreneKD -0.929SFEFES 0.844RkL-pH2FES -0.837∆B[mT]ESR 0.881SFEFES -0.821RFI-ATLS 0.871WA density 0.837

RkH(pH)FES WA density 0.815C:N SFE-pH2FES -0.847

RkL-pH2FES 0.844Aminoacid 0.830

HPI-B SpinsESR 0.811HPO-A RkL(pH)FES 0.819HPO-B RkL-pH2FES -0.900HPO-Ph RkL(pH)FES -0.901WA density %C -0.802RFI-BTLS SFEFES 0.826RkL-pH2FES Aminoacid 0.813

Ko/w

UV Abs(pH)

NOM characteristics

H+-RO

sUVa

SAR-RORelative more Humified material (HIX) appears to generate a more acid solution(H+-RO)The less UV-absorbing functional groups compared to the coloured ones (SAR), the greater the materials ability is to bind PAH

22

Results

Collective properties vs. Structural characteristics

rHIX-pH2FES 0.925SFE(pH)FES -0.806

Abs254nm TOC 0.975PyreneKD -0.929SFEFES 0.844RkL-pH2FES -0.837∆B[mT]ESR 0.881SFEFES -0.821RFI-ATLS 0.871WA density 0.837

RkH(pH)FES WA density 0.815C:N SFE-pH2FES -0.847

RkL-pH2FES 0.844Aminoacid 0.830

HPI-B SpinsESR 0.811HPO-A RkL(pH)FES 0.819HPO-B RkL-pH2FES -0.900HPO-Ph RkL(pH)FES -0.901WA density %C -0.802RFI-BTLS SFEFES 0.826RkL-pH2FES Aminoacid 0.813

Ko/w

UV Abs(pH)

NOM characteristics

H+-RO

sUVa

SAR-RORelative more Humified material (HIX) appears to generate a more acid solution(H+-RO)The less UV-absorbing functional groups compared to the coloured ones (SAR), the greater the materials ability is to bind PAHsUVa is negatively related to relative less condensed material (RkL)

23

Results

Collective properties vs. Structural characteristics

rHIX-pH2FES 0.925SFE(pH)FES -0.806

Abs254nm TOC 0.975PyreneKD -0.929SFEFES 0.844RkL-pH2FES -0.837∆B[mT]ESR 0.881SFEFES -0.821RFI-ATLS 0.871WA density 0.837

RkH(pH)FES WA density 0.815C:N SFE-pH2FES -0.847

RkL-pH2FES 0.844Aminoacid 0.830

HPI-B SpinsESR 0.811HPO-A RkL(pH)FES 0.819HPO-B RkL-pH2FES -0.900HPO-Ph RkL(pH)FES -0.901WA density %C -0.802RFI-BTLS SFEFES 0.826RkL-pH2FES Aminoacid 0.813

Ko/w

UV Abs(pH)

NOM characteristics

H+-RO

sUVa

SAR-RORelative more Humified material (HIX) appears to generate a more acid solution(H+-RO)The less UV-absorbing functional groups compared to the coloured ones (SAR), the greater the materials ability is to bind PAHsUVa is negatively related to relative less condensed material (RkL)pH effect on UV absorbance and on the relative condensity (RkH(pH)) is positively related to Weak Acid site density (WA density)

24

Results

Collective properties vs. Structural characteristics

rHIX-pH2FES 0.925SFE(pH)FES -0.806

Abs254nm TOC 0.975PyreneKD -0.929SFEFES 0.844RkL-pH2FES -0.837∆B[mT]ESR 0.881SFEFES -0.821RFI-ATLS 0.871WA density 0.837

RkH(pH)FES WA density 0.815C:N SFE-pH2FES -0.847

RkL-pH2FES 0.844Aminoacid 0.830

HPI-B SpinsESR 0.811HPO-A RkL(pH)FES 0.819HPO-B RkL-pH2FES -0.900HPO-Ph RkL(pH)FES -0.901WA density %C -0.802RFI-BTLS SFEFES 0.826RkL-pH2FES Aminoacid 0.813

Ko/w

UV Abs(pH)

NOM characteristics

H+-RO

sUVa

SAR-RORelative more Humified material (HIX) appears to generate a more acid solution(H+-RO)The less UV-absorbing functional groups compared to the coloured ones (SAR), the greater the materials ability is to bind PAHsUVa is negatively related to relative less condensed material (RkL)pH effect on UV absorbance and on the relative condensity (RkH(pH)) is positively related to Weak Acid site density (WA density)The less condensed (RkL) the more Lipophilic (Ko/w)

25

Site vs. DNOM characteristics

Results

Site characteristics

NOM characteristics rC:N -0.840PyreneKD -0.834SAR-RO 0.859SFEFES 0.856

Latitude RFI-ATLS -0.813Growing season RFI-CTLS 0.817Retention time RFI-CTLS -0.959Precipitation PODAlgae response -0.812Log catchm. size g-valueESR 0.841Lake Volume SpinsESR 0.942Log volume Ko/w 0.803% Peat SpinESR 0.943

WA density 0.818RFI-ATLS 0.925

Tot S deposition

% Rock

The less S deposition - the lower is the N-content of the DNOM

- more coloured DOM - the better carriers of PAH

26

Site vs. DNOM characteristics

Results

Site characteristics

NOM characteristics rC:N -0.840PyreneKD -0.834SAR-RO 0.859SFEFES 0.856

Latitude RFI-ATLS -0.813Growing season RFI-CTLS 0.817Retention time RFI-CTLS -0.959Precipitation PODAlgae response -0.812Log catchm. size g-valueESR 0.841Lake Volume SpinsESR 0.942Log volume Ko/w 0.803% Peat SpinESR 0.943

WA density 0.818RFI-ATLS 0.925

Tot S deposition

% Rock

The less S deposition - the lower is the N-content of the DNOM

- more coloured DOM - the better carriers of PAHThe proportion of Phenolicsdecrease further northThe proportion of Humicsincrease with increasing length of summer and retention time

27

Site vs. DNOM characteristics

Results

Site characteristics

NOM characteristics rC:N -0.840PyreneKD -0.834SAR-RO 0.859SFEFES 0.856

Latitude RFI-ATLS -0.813Growing season RFI-CTLS 0.817Retention time RFI-CTLS -0.959Precipitation PODAlgae response -0.812Log catchm. size g-valueESR 0.841Lake Volume SpinsESR 0.942Log volume Ko/w 0.803% Peat SpinESR 0.943

WA density 0.818RFI-ATLS 0.925

Tot S deposition

% Rock

The less S deposition - the lower is the N-content of the DNOM

- more coloured DOM - the better carriers of PAHThe proportion of Phenolicsincrease further northThe proportion of Humicsincrease with increasing length of summer and retention timeWeak acid site density higher in sites with shallow soils

28

PCA on combined dataset

• 8+10 RO isolates from Gjessing et al. and Vogt et al.NOM-typing NOMiNiC

• Main PC describe the differences in the two datasets• Possibly due to differences in

elevation and the % lake of total catchment area

• Second PC describe the content of DNOM

• Sites are clustered• Small seasonal effects

29

ConclusionsThese correlations indicate that:

Many spectral properties may serve as proxies for functional characteristicsAs the S-deposition decreases we may find

More coloured DNOM that isbetter to adsorb micro-pollutants

TOC concentration is a key chemical parameter in describing several DNOM characteristics

Possibly concentration artefact on quality parameters

Comparison of data express a need for conformity assessment