cosmology nature of dark matter cosmic geometry large scale structure

64
Decade 90% of the matter in the universe can only be seen via x- ray observations main science themes and the role of x- ray observations • Cosmology nature of dark matter cosmic geometry large scale structure Galaxy formation and evolution- Extreme environments of astrophysics massive black holes end stages of stellar evolution •Amount of and distribution of dark matter in “spherical systems” •How do AGN influence their galaxy and how does this change with cosmic time •direct observation of star formation rates, chemical abundances and galactic winds over a wide range of redshifts •How does accretion work, physics of black holes and neutron stars s to : C. Done, Y. Ueda, T. Boller, J. Tueller

Upload: ansel

Post on 30-Jan-2016

41 views

Category:

Documents


0 download

DESCRIPTION

X-ray Astronomy in the Next Decade 90% of the matter in the universe can only be seen via x-ray observations main science themes and the role of x-ray observations. Cosmology nature of dark matter cosmic geometry large scale structure Galaxy formation and evolution- - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Cosmology nature of dark matter  cosmic geometry large scale structure

X-ray Astronomy in the Next Decade90% of the matter in the universe can only be seen via x-ray observations main science themes and the role of x-ray observations• Cosmology

nature of dark matter

cosmic geometry

large scale structure

• Galaxy formation and evolution-

• Extreme environments of astrophysics

massive black holes

end stages of stellar evolution

•Amount of and distribution of dark matter in “spherical systems”

•How do AGN influence their galaxy and how does this change with cosmic time•direct observation of star formation rates, chemical abundances and galactic winds over a wide range of redshifts

•How does accretion work, physics of black holes and neutron stars

Thanks to : C. Done, Y. Ueda, T. Boller, J. Tueller

Page 2: Cosmology nature of dark matter  cosmic geometry large scale structure

Meeting Summary - AGN

• It is not possible to properly review the wide variety of observations, theory and instrumental technique

• I will focus on what are ( I believe) are the important science problems and

“Forget the technology”

I will not give specific numbers (e.g. energy resolution, spatial resolution, sensitivity) this has been well covered in the talks on specific missions

I personally believe that we have the technology to make major steps forward

As Suzaku has shown even ‘small’ improvements can have major science implications

Direct evidence for AGN influence on cluster scales

Chandra Obs of Hydra-A

Page 3: Cosmology nature of dark matter  cosmic geometry large scale structure

Properties of active galaxies

• Energy due to accretion onto a Massive Black Hole (but other processes may be at work) exact mechanism which produces radiation is not known

• strong dynamical evidence for MBH from optical velocity data and x-ray timing data

mass estimates are accurate to ~ 2-4.

• Strong connections between the host galaxy and MBH masses

• The Eddington ratio ranges from <10-7 to >1

• Relativistic effects very important in radio loud AGN -what is the role of jets in the energy budget of the sources ?

Page 4: Cosmology nature of dark matter  cosmic geometry large scale structure

4 Main areas of AGN research

• What is nature of the source of energy

– Accretion

– Spin

– ?

• Physics of matter close to a black hole (e.g. strong gravity)

• Affect of AGN on formation and structure of the universe

• physics of the radiation- what produces the photons (thermal, non-thermal, relativistic phenomena)

Major issue : how to we communicate to our colleagues the importance of high energy Major issue : how to we communicate to our colleagues the importance of high energy astrophysics. astrophysics.

I think that our theme should be I think that our theme should be

How the universe came to be the way it isHow the universe came to be the way it is

“Without x-rays life itself would be impossible”

Page 5: Cosmology nature of dark matter  cosmic geometry large scale structure

What are the fundamental questions?

• 1) How do AGN "work"- e.g. how is energy produced/extracted and transformed into radiation. What is the role of relativistic effects

• 2) How is the MBH connected to host galaxy

– how do they form and affect the galaxy – how do they affect the formation and structure of the universe

• 3) What is the origin of the wide range of apparent types?- what causes the difference (Unified Models)

• 4) How do they evolve with cosmic time? (Mass, luminosity, number)

• 5) What can we learn about strong gravity ?

• 6) What is the nature/geometry of the central regions ? (winds, disks, torus, jets)

• 7) What is the source of the material responsible for accretion and how does it accrete

Page 6: Cosmology nature of dark matter  cosmic geometry large scale structure

Big questions: strong gravity

• Accreting BH: huge X-ray luminosity close to event horizon

• Bright emission from region of strong spacetime curvature

• Spectral distortions depend on velocity, geometry and GR

• Observational constraints on strong gravity if we know velocity/geometry!

• Need to understand accretion!

Page 7: Cosmology nature of dark matter  cosmic geometry large scale structure

The sensitivity of missions circa 1980

• For AGN Chandra,XMM are well matched to Hubble and Spitzer for imaging but not for spectroscopy

• For next generation (JWST, ALMA, TMT) x-ray astronomy needs much better sensitivity

Page 8: Cosmology nature of dark matter  cosmic geometry large scale structure

Active Galaxies in the post XMM/Chandra EraWhy are active galaxies interesting in the x-ray?• AGN - most numerous class of extragalactic x-ray source (above F(x)>10-14

ergs/cm2/sec) - can be seen out to z~6 by XMM and Chandra

• "x-ray" (0.1-100 keV) band has ~0.05-0.3 (1.0?) of the total energy

• x-rays originate very close to the supermassive black hole (MBH) - x-ray band most "rapidly" variable of all wavelength bands x-ray band

• x-ray band has the only spectral signature that originates close to MBH

– the "Fe K" line • X-ray band is the most efficient way of finding AGN

– Many/most x-ray selected AGN cannot be detected by optical techniques

• Significant x-ray radiation from jets (in plane of sky and in "Blazars" )• All types of AGN are luminous x-ray sources

(Bl Lac, Quasar, Seyfert I/II, LINER, NLAGN. BLRG......) – Intrinsic luminosity covers an extremely wide range <1040 ergs/sec (Ho et al

2001)- 1047 ergs/sec (Fabian et al 1997)

Page 9: Cosmology nature of dark matter  cosmic geometry large scale structure

The last 6 years - XMM and Chandra • Vast improvement in

• grasp

• high spectral resolution

• multiwavelength capability

• angular resolution

• sensitivity

XMM/Chandra are ideally suited for

• extending previous studies to fainter, higher redshift, higher

– and lower luminosity systems

• detailed studies of many bright low redshift objects.

• critical progress in the temporal/spectral domain

Combined with other facilities

• building up a complete picture of the multiwavelength spectrum of active

galaxies as a function of redshift, type and luminosity probing the evolution of

quasars over the lifetime of the Universe.

• examine structure of the central engine in Seyfert galaxies via observations of their multiwavelength spectral properties and time dependent spectral signatures

Page 10: Cosmology nature of dark matter  cosmic geometry large scale structure

Some of the new unexpected results (a biased list)

• narrow absorption lines are strongest features in grating obs of Seyfert I galaxies-– total opacity dominated by edges-low E emission lines are weak

• Almost certainly due to winds carrying significant energy/momentum • Extended line emission from OVII and Fe K (NGC4151, Circinus)

– Extended soft x-ray regions (NGC4945,Circinus etc) Chandra images. • Fe K lines are very complex- lots of velocity structure • Narrow +broad Fe K lines are common- but not ubiquitous • ionized Fe K lines detected -Chandra grating obs. • Seyfert II galaxies are photoionization dominated--grating observations • Majority of AGN in the universe do not have strong optical lines or bright optical nuclei-

– XMM and Chandra deep fields • Serious difference between optical and x-ray classification schemes

(SAX, XMM and Chandra serendipitous sources) • X-ray selected AGN evolve very differently than optically selected objects

peaking at z~1• Direct x-ray detection of cold material via resonance absorption • lack of strong absorption features in Bl Lacs- grating• first features in power density spectra (XTE and XMM) -lack of simple correlation

between UV and X-ray • "real" soft excess have been detected XMM-EPIC

Page 11: Cosmology nature of dark matter  cosmic geometry large scale structure

What have been the new exciting observations?(Suzaku additions )

• Reality of reflection and broad lines - broad band spectra allow ‘unique’ deconvolution of continuum

No simple relation between reflection and Fe K lines • Confirmation of Complex time variability across wide energy range

• Confirmation of complex shape of Fe K lines

Iron line Profile of MCG -5-23-16

Ratio to =1.8 PL

EPIC-PN Suzaku XIS

Fe K Core (peak energy at 6.397 keV - within 10eV for PN and XIS)

Fe K (at 7.06 keV)

Fe K edge (at 7.1 keV)

Red-wing

Simultaneous Suzaku and XMM Observation- notice the excellent

agreement on Fe K line shape

Page 12: Cosmology nature of dark matter  cosmic geometry large scale structure

Black Hole Finder?

The present paradigm for AGN consists of a black hole, accretion disk, and a physically thick region of obscuration (“the torus”)

Most lines of sight to the AGN are “blocked” by the torii which has an effective column density >1023atms/cm2,The torii are optically thick in the near-IR,optical, UV and soft x-ray band

A detection in the hard x-ray band of a source with Lx>1040.5. ergs/s

is a direct indictor of a AGN

AGN viewed edge-on through the optically

thick torusThe Seyfert II Galaxy NGC 4945

Energy (keV)

Ph

oton

s/cm

s2 k

eV

Ginga

AXAF/XMM energy band

ASCA

Black hole finder energy band

Chandra results show that many AGN lie in the nuclei of optically normal galaxies

Page 13: Cosmology nature of dark matter  cosmic geometry large scale structure

What is required to make progress ??

The requirements to answer the major questions are NOT THE SAME- thus requiring either several missions or a wide range of capabilities

• The evolution of AGN and the x-ray background– Chandra and XMM have probed the

z=0.5-3.0 universe in the restframe 1-20 keV band- however models of the x-ray background indicate that they may have missed up to 50% of the sources

– Need the 15-50 kev band at z<1• Many AGN have high absorbing

columns• I.e. they can be “hidden” from line of

sight in optical, UV, soft X-ray• Hard X-ray band (> 15 keV) is one

window where opacity is lowneeded to make a census of AGN

Relation of soft to hard x-ray flux

Models of XRB background highly sensitive to spectral assumptions(Ueda) -2 models that accurately predict 2-10 kev Log N-Log S have factor of 2 difference in 20-100 kev band

Page 14: Cosmology nature of dark matter  cosmic geometry large scale structure

Luminosity Function in 20-200 Compared to 2-10 kev

• See systematic trend of more sources at lower luminosity in 20-200 keV survey -e.g. 2-10 keV survey miss a large fraction of sources at L<1043 ergs/sec at z=0

2-10 keV

20-200 keV

Hard x-ray survey reaching to z~1 is crucial for AGN evolution and luminosity function . R

atio

of

20-1

00/2

-10

lum

i no s

i ty

func

tio n

2

4

6

8

Page 15: Cosmology nature of dark matter  cosmic geometry large scale structure

Nature of Hard X-ray selected sources

• Followed up Swift BAT selected sources with XMM, Suzaku and XRT

• Wide range of x-ray spectra

• Many of the Ids have

– no optical evidence for activity in literature even though they are very low z bright galaxies

Obvious why soft and hard x-ray band are uncorrelated

Page 16: Cosmology nature of dark matter  cosmic geometry large scale structure

What is Needed

ACCURATE MEASURE OF OBSCURATION:ACCURATE MEASURE OF OBSCURATION:

Required in order to accurately determine the AGN contribution to the energetics Required in order to accurately determine the AGN contribution to the energetics of the host galaxy emissionof the host galaxy emission

Properly calculate the obscured:unobscured AGN ratio vs X-ray luminosity-true Properly calculate the obscured:unobscured AGN ratio vs X-ray luminosity-true census of AGN in universe census of AGN in universe

PROPERTIES OF THE CENTRAL ENGINE:PROPERTIES OF THE CENTRAL ENGINE:

Study high accretion rate processes (many luminous sources are likely to be Study high accretion rate processes (many luminous sources are likely to be growing their black holes at close to the Eddington limit)growing their black holes at close to the Eddington limit)

Compare the accretion and obscuration properties of obscured and unobscured Compare the accretion and obscuration properties of obscured and unobscured AGNAGN

Constrain relativistic vs ‘thermal’ processes Constrain relativistic vs ‘thermal’ processes

AGN FEEDBACK IN THE FORMATION OF MASSIVE GALAXIES:AGN FEEDBACK IN THE FORMATION OF MASSIVE GALAXIES:

Measure the properties of outflowing gas and estimate their effect on the Measure the properties of outflowing gas and estimate their effect on the formation of massive galaxies and the enrichment of the intra-galactic mediumformation of massive galaxies and the enrichment of the intra-galactic medium

Observe the direct effects of relativistic particles Observe the direct effects of relativistic particles

““TRACING THE BLACK-HOLE GROWTH OF MASSIVE GALAXIES”TRACING THE BLACK-HOLE GROWTH OF MASSIVE GALAXIES”

Page 17: Cosmology nature of dark matter  cosmic geometry large scale structure

Origin of X-ray Background

• Pre-Chandra results indicate that the background was made up of the superposition of a huge number of very faint sources-

• by 1980 it was clear that the number of objects required to make up the XRB exceeded (in surface density) that of known AGN by >10

• However the x-ray spectra of the objects detected (clusters of galaxies, active galaxies, blazars etc) showed that none had the spectrum of the x-ray background out to 200 keV (!)-

– this is the so-called "spectral paradox"

Spectrum of bright sources from Swift ------------

E-2

200 keVBAT UL

Page 18: Cosmology nature of dark matter  cosmic geometry large scale structure

A possible answer

• The main assumption - most of the flux is produced by supermassive black holes in the center of galaxies containing large amounts of dust and gas and thus having x-ray spectra dominated, at low energies, by photoelectric absorption.

• Suitable algebraic superposition- just the right number of objects, evolving the right way with redshift, with the right distribution of column densities can produce the volume emissivity, log N-log S and the x-ray spectrum.

• Such models are remarkably flexible. (Ueda)

Spectrum of individual objects sums to XRB spectrum

Page 19: Cosmology nature of dark matter  cosmic geometry large scale structure

AGN Evolution

• Strong selection effects- low luminosity sources more absorbed than high luminosity sources

• Differential evolution of low vs high z sources

N(H

)

L(x) 20-100 kevZ=1

Z=0.6

Z=0.25

UN

-Abs

orbe

d fr

acti

on0.

1

1

1

1

•Probable evolution of N(H)/L distribution with redshift- numbers are very uncertain •z~1 is where ‘most’ of XRB originates• to get to Log L(x)=43 at z=1 requires a sensitivity of ~2x10-15 ergs/cm2/sec in 20-200 keV band •NEED HARD X-RAY Imaging Log L(x) 2-10 kev

42 43 44 45 46

Radio loudBlazarCompton thick

Swift BAT and Integral sources

Page 20: Cosmology nature of dark matter  cosmic geometry large scale structure

NeXT Has the capability to resolve ~50% of XRB in 20-40 keV band

• With ~100 srcs/deg^2 - 2-4 sources per NeXT field of view at 3x10-14 ergs/cm2/sec

– Need ~100 fields to perform survey with exposure of 100ks per field to ‘solve’ XRB

NeXT limit~40-50% XRB

2-8 keV Survey

10-30 keV Survey

Fraction of Compton thick AGNsUeda+ 03

BAT

NeXT

Page 21: Cosmology nature of dark matter  cosmic geometry large scale structure

How the Observable Universe Came to Be

• Dark matter evolution in the universe now understood

– it is not at all understood how ‘baryonic structures’ (galaxies, groups, clusters) form.

• For models to fit the data additional physics (beyond gravity and hydrodynamics) is required (heating, cooling, mass and metal injection, gas motions etc)

• Up until now this has been parameterized in ‘semi-analytic’ models - just so stories

• The critical problem in all of astrophysics The critical problem in all of astrophysics is to put physics into these storiesis to put physics into these stories

• Ideas and material stolen from M.Begelman, TJ Cox, D. Croton, T. DiMatteo, I. George, C. Martin, J. Ostriker, V. Springel, C. Steidel, S. White…

Semi-analytic modeling

Page 22: Cosmology nature of dark matter  cosmic geometry large scale structure

Formation of Large Scale structure

The standard theory of the formation of structure by the evolution of dark matter halos has been remarkably successful

But it has several “missing pieces”/problems

•How does gas become galaxies, clusters and groups?•What is the origin of the “feedback” process that controls efficiency of conversion of gas in to stars and governs the star formation rate in the universe?•Do galaxies actually form via cooling and what is the interaction with star formation ?•How is the chemical evolution of galaxies connected with their formation ?

Growth of galaxy mass vs redshift 50% of mass created at z<1 (Drory et al 2004, astro-ph 412167)

1/2 stars formed

z

Page 23: Cosmology nature of dark matter  cosmic geometry large scale structure

Strong relation of Galaxy to Black hole and SF to BH Growth

Star forming history vs Star forming history vs accretion historyaccretion historyMarconi+ 04Marconi+ 04

Black holes create and are influenced by their environment

Page 24: Cosmology nature of dark matter  cosmic geometry large scale structure

How the universe came to be How the universe came to be the way it isthe way it is

What has changed in the last 4 years• We now know (Barger et al 2004, Heavens

et al 2004, Conselice et al 2004, lots more) that

– at z>1.5 the universe is very different from today

– Most stars in the universe formed from 0.3<z<1.5

– The epoch of black holes is z~1– Cluster evolution is doing

something quite interesting at z~1• We need to study the z~1 universe (AGN,

clusters and galaxy/star formation) in great detail

• Only x-ray astronomy can measure how, where and when most of the energy that controlled how universe formed was produced

Ettori et al 2004

Barger et al 2005

Page 25: Cosmology nature of dark matter  cosmic geometry large scale structure

When did the stars form?

• Recent work (e.g Bell et al 2004, Heavens et al 2004, Rudnick et al 2003) shows that ~1/2 of all stars form at z<1

• Integration of the SFR rate would give the 1/2 mass redshift at z~1.5

• This agrees with the new x-ray data for AGN reinforcing the co-evolution of black holes and galaxies

Ste

llar

mas

s de

nsit

yS

tell

ar m

ass

dens

ity/

year

Page 26: Cosmology nature of dark matter  cosmic geometry large scale structure

The AGN History of Universe- X-ray Selected AGN

• Even including upper limits there is less energy emitting per unit volume at z>1

type I AGN, all objectsOpen box- assigning all objects without a redshift to to redshift bin

Barger et al 2005

X-ray selected AGN have a similar evolution to total star formation rate at z<2

X-r

ay lu

min

osit

y de

nsit

y/se

c

Page 27: Cosmology nature of dark matter  cosmic geometry large scale structure

Marconi et al 2004

Comparison of Energy Densities and Evolution

• Optical samples miss most of the energy radiated by BHs at z< 2

• Most of the AGN luminosity is due to M~10 7+/-1 M objects

• The x-ray data show that lower mass black holes evolve later and grow more than more massive objects.

Energy densities from AGN from Optical (---) x-ray (-------) surveys

5x

When BHs get their mass

Acc

reti

on r

ate

per

unit

tim

e

Each line is the growth of a Massive BH vs z

z

Page 28: Cosmology nature of dark matter  cosmic geometry large scale structure

Formation of structure in the Universe

• Detailed numerical calculations of the formation of structure via the collapse of gravitational perturbations in a CDM universe (Springel et al 2003, White et al 2004) cannot ‘produce’ the present day universe without invoking ‘feedback’ (the injection of energy, heat momentum)

• Similar results are obtained in analytic work (Ostriker and colleagues)

• The nature of the feedback is not clear, but must be related to star formation and AGN - the only possible sources with sufficient energy

Page 29: Cosmology nature of dark matter  cosmic geometry large scale structure

Calculation of K band galaxy luminosity function in N body simulation

Gravity+ hydrodynamics only- get it all wrong- low luminosity, slope, high luminosity slope and number and mass in galaxies

Gravity+ hydrodynamics +AGN+ starburst+ reionization - get it all ‘right’

Gravity+ hydrodynamics no AGN+ starburst+ reionization - get low luminosity range ‘right’

Thanks to V. Springel and S. White

Blue lines are data-black models

Page 30: Cosmology nature of dark matter  cosmic geometry large scale structure

Springel 2004

Page 31: Cosmology nature of dark matter  cosmic geometry large scale structure

AGN Heating and Groups• the x-ray luminosity and

entropy profiles (Lapi et al, Dave et al, Borgani et al) cannot be produced by pure gravitational effects

• - the effects of star formation and cooling are not sufficient to produce the observed entropy profiles

• AGN heating (both internal and pre-heating) of same order to solve the galaxy formation problem ‘works’ to solve entropy problem - may not solve cooling flow problem

• ------------ just hydro

• ------------ star formation

• ------------ AGN +SFR

L(X) entr

opy

entr

opy

L(X)

Page 32: Cosmology nature of dark matter  cosmic geometry large scale structure

The first black holes

Page 33: Cosmology nature of dark matter  cosmic geometry large scale structure

Winds In AGN

• This maybe the This maybe the mechanism by which mechanism by which AGN ‘heat’ the AGN ‘heat’ the universeuniverse

• In >1/2 of all high S/N Chandra/XMM observations of AGN one detects ouflowing winds

• In deep fields ~15% of luminous galaxies are x-ray sources (high duty cycle)

• V~500-2000km/sec• Mass and energy flux in wind is rather

uncertain (Chelouche 2005) but may reach Lwind~0.1Lradiation

• Maybe more mass/momentum at higher ionization states

Log

N(H

)Log ionization

Kaastra et al 2003

Need to obtain time resolved, high resolution spectra for a large number of objects to get accurate estimates of mass and energy flux in wind and dependence on AGN parameters

Page 34: Cosmology nature of dark matter  cosmic geometry large scale structure

What is needed?

• High resolution spectra of objects to understand the winds, the evolution and total energy - only x-ray spectra can determine whether AGN can influence structure formation in the universe

• High resolution at E= 6 kev in the rest frame to detect the momentum majority of the wind.

• High resolution spectra for extended sources to see the velocity structure in clusters and groups and determine the relative importance of winds or jets Courtesy Ian George

Mass outflow from high resolution spectra

Page 35: Cosmology nature of dark matter  cosmic geometry large scale structure

What are the spectral signatures- Very High Velocity Outflows Very High Velocity Outflows

• In several objects outflowvelocities of ~0.1c aredetected (Hasinger et al2003, Pounds et al 2002,Reeves et al 2003) implyingvery high energy and massloss rates.

• These high velocities areonly seen in the Fe K lines

• Its possible that suchfeatures are common buthard to see in CCD spectra

QuickTime™ and aTIFF (PackBits) decompressorare needed to see this picture.

PG1211- blue shifted resonance Fe absorptionfeature V~0.08c (Reeves et al 2003)

Need high spectral resolution at E~6 keV

Page 36: Cosmology nature of dark matter  cosmic geometry large scale structure

How Do the AGN Influence their environment?

• Radio jets/double sources • Mechanical winds• Radiation • Each one of these has

visible and testable effects

• radiation effects have to occur (Sazonov et al 2004) and can photo-ionize and Compton heat the gas in the host galaxy to kT~2x107k- almost exactly what is needed for the ‘entropy’ problem.

• However the gas is only heated at R< 0.5-10 kpc and thus can strongly effect spheroid evolution but not groups or clusters.

R(kpc)

M=108

M=109

Page 37: Cosmology nature of dark matter  cosmic geometry large scale structure

Direct Evidence From Chandra Images of Influence of Black holes on their Environment- the effect of relativistic particles

• Chandra x-ray image of Cygnus-A Cluster of Galaxies with AGN in center (Wilson et al 2002)- notice the structure related to the radio source

Fabian et al. 2003

X-ray temperature Map of Perseus cluster- AGN at the center

131 kpc

Page 38: Cosmology nature of dark matter  cosmic geometry large scale structure

Observable consequences of AGN heating in a gaseous environment

• Turbulence/velocity shear from line shapes

• transport properties/dissipation

• Precise abundances• Radiative energy of nucleus • magnetic field from IC

scattering ( hard emission)• Thermal state of the gas• Optical depth of gas

(resonance scattering) allows details of velocity

A3667 (z = 0.055)

1000 km/s

A2256 (z = 0.058)1000 km/s

Astro_E2 simulations of cluster velocity field

Page 39: Cosmology nature of dark matter  cosmic geometry large scale structure

How Can We Tell is the Fe Line is really broad• In NGC3783 (Reeves et al ) the XMM long look data

do not have a “need” for a broad Fe K line but apparently require a complex highly ionized absorber.

• Such absorption components must contain features due to Fe K shell transitions

seen as a “sea” of Fe resonance absorption lines from a variety of ionization states

Such features are diagnostic and remove the ambiguity from cold or ionized absorbers or reflection features

XRS

Page 40: Cosmology nature of dark matter  cosmic geometry large scale structure

Physics of the Central Region

• Only x-ray astronomy has the diagnostics to determine what is occurring near the Black hole

• Need

– broad band pass,

– high signal to noise

– High spectral resolution

Page 41: Cosmology nature of dark matter  cosmic geometry large scale structure

Probing the Central Regions of Black Holes

• The x-ray spectral features due to reprocessing (Fe-K line complex, Compton reflector) are probes of the matter distribution near the black hole (Reynolds and Novak 2003)

Theoretical spectra from an ionized accretion disk Ballantyne et al High spectral resolution at high S/N is crucial

Possible geometries near the black hole

Page 42: Cosmology nature of dark matter  cosmic geometry large scale structure

Components of the X-ray AGN Spectrum

• The high energy cutoff and power law slope contains information on the nature of the continuum and its origin (Comptonization??

• The origin of the ‘soft excess’ is not clear- it is due to reprocessing, absorption by a relativistic wind, or is it a continuum component

• The ‘Compton hump” and Fe K line come from reprocessing of the x-rays by ‘cold’ material -somewhere

Page 43: Cosmology nature of dark matter  cosmic geometry large scale structure

Shape of Fe K line

Line shape as a function of black hole spin

Line shape as a function of geometry

Line shape as a function of inclination from a rapidly spinning black hole

The detailed line shape carries Information about spin of the BH , geometry and distribution of material near the black hole (Reynolds and Novak 2003)

Page 44: Cosmology nature of dark matter  cosmic geometry large scale structure

Time variability of Fe K line

• It is not expected that the line shape will be stationary- the disk has many instabilities and the detailed variation of the line shape with time carries much information

• The prime requirement is high signal to noise -with sufficient energy resolution XMM/Suzaku data have just barely enough S/N to detect such events Reynolds and Armitage 2004

Page 45: Cosmology nature of dark matter  cosmic geometry large scale structure

Strong gravity and black hole physics Broad iron lines as probes of strong gravity - power of line variability - orbiting structure on disk and probes of time-like paths in metric - relativistic reverberation and probes of null paths in metric * Demographics of black hole mass and spin - implications for SMBH formation - strong gravity and spin across the whole mass range

Time behavior of Fe K line in NGC3516 Iwasawa, Miniutti &Fabian 2004

Page 46: Cosmology nature of dark matter  cosmic geometry large scale structure

Physics of Accretion

• Comparison of models of disk which fit present data are rather different

• Need high spectral resolution to distinguish amongst the large range of reasonable possibilities

Energy [keV]

1H0707-495 Boller 2002,3Tanaka 2004Gallo 2004

Phot

ons

cm-2 s

-1 k

eV-1

Thermal disc interpretation

Energy [keV]

Reflection spectrum interpretation

Fabian 2004

Page 47: Cosmology nature of dark matter  cosmic geometry large scale structure

High Spectral Resolution Breaks Model degeneracies

Reflection model fitted with thermal emission from the disc

Thermal model fitted with ionizedreflection from the disc

Page 48: Cosmology nature of dark matter  cosmic geometry large scale structure
Page 49: Cosmology nature of dark matter  cosmic geometry large scale structure

Summary

• Black holes are critical components of the universe

• What is needed to enhance our understanding is

– Broad band pass

– High sensitivity

– High spectral resolution

““NeXT” and NeXT” and beyond beyond

Page 50: Cosmology nature of dark matter  cosmic geometry large scale structure

1 Ms simulation: z=1.06 lensed SCUBA gal

Evidence of emission from an Evidence of emission from an outflowing wind (some SCUBA outflowing wind (some SCUBA galaxies show evidence of large-galaxies show evidence of large-scale outflows): feedback in the scale outflows): feedback in the formation of massive galaxiesformation of massive galaxies

X-ray spectra of the brightest X-ray spectra of the brightest obscured quasars can achieve obscured quasars can achieve this quality in ~100 ks exposuresthis quality in ~100 ks exposures

Page 51: Cosmology nature of dark matter  cosmic geometry large scale structure

Phase space for discovery is immense

• Set of sources chosen from serendipitous Chandra sources

Redshift 1 2 3 4 5 6

Page 52: Cosmology nature of dark matter  cosmic geometry large scale structure
Page 53: Cosmology nature of dark matter  cosmic geometry large scale structure

Black Hole Finder

Primary Mission Science Goal:Primary Mission Science Goal:•Obscured AGN and accretion history of universe

Mission parameters:Mission parameters:•Sufficient sensitivity in the 10-40keV band to find a large number (~104)of AGN in the local volume of space •Accurate enough positions to obtain IR,radio, soft x-ray, optical follow-ups

• We do not understand the number of, luminosity density and evolution of AGN

• These issues are crucial for understanding the origin of galaxies and the luminosity density of the universe

• A hard x-ray survey is necessary for finding and studying AGN in the z<1 universe.

Page 54: Cosmology nature of dark matter  cosmic geometry large scale structure

Black Hole Finder

The present paradigm for AGN consists of a black hole, accretion disk, and a physically thick region of obscuration (“the torus”)

Most lines of sight to the AGN are “blocked” by the torii which has an effective column density >1023atms/cm2,The torii are optically thick in the near-IR,optical, UV and soft x-ray band

A detection in the hard x-ray band of a source with Lx>1040.5. ergs/s

is a direct indictor of a AGN

AGN viewed edge-on through the optically

thick torusThe Seyfert II Galaxy NGC 4945

Energy (keV)

Ph

oton

s/cm

s2 k

eV

Ginga

AXAF/XMM energy band

ASCA

Black hole finder energy band

Chandra results show that many AGN lie in the nuclei of optically normal galaxies

Page 55: Cosmology nature of dark matter  cosmic geometry large scale structure

Black Hole Finder

•X-ray data show that most AGN have high column density of dust and gas in the line of sight and are optically “invisible”.

•Chandra data show that there are >7x more hard x-ray selected than optically selected AGN (at same optical threshold)

•The most numerous AGN (Lx<1044

ergs/sec) evolve inversely from the well studied quasars and are more numerous in the local than high z universe

Page 56: Cosmology nature of dark matter  cosmic geometry large scale structure

What produces the luminosity in the universe?

• The x-ray background is due to black holes

• The Far IR background is due to star formation in “starburst” galaxies

• Not clear at present what fraction of the optical-mid IR flux is produced by mixture of AGN and star formation-

• recent estimates have AGN producing 10-30% of total energy radiated in universe.

Luminosity Density in the Universe

Hasinger (2001)

Page 57: Cosmology nature of dark matter  cosmic geometry large scale structure

Comparison with other Surveys

Black hole finder needs sufficient sensitivity to extend ROSAT (soft x-ray) and complement GLAST (-ray) all sky imaging surveys:

xx

Black hole finder-100x more sensitive

~104 sources

Only complete hard x-ray sky survey to date12 high latitude sources

Page 58: Cosmology nature of dark matter  cosmic geometry large scale structure

Probing the Innermost Disk - the Suzaku Long Look of MCG-6-30-15 Fabian et al (Jan 06)

Strong iron K line and disk reflection from around a Kerr (spinning) black hole

No variations in Fe line/reflection - gravitational light bending around a Kerr BH? (Miniutti & Fabian 2004)

Constant Reflection hump

Suzaku lightcurve

Page 59: Cosmology nature of dark matter  cosmic geometry large scale structure

Where is the Energy Emitted ?

• Spectral energy distribution of the absorbed sources show that a large fraction of the AGN energy is emitted in the E>2 keV band

Chandra image of NGC6240

Ene

rgy

dens

ity

Spectral Energy Distribution of NGC6240Prototype of Hard X-ray sources

Frequency Hz

Page 60: Cosmology nature of dark matter  cosmic geometry large scale structure

X-ray Astronomy in the Next Decadethe main science themes and the role of x-ray astronomy

• Cosmology

nature of dark matter

cosmic geometry

large scale structure

• Galaxy formation and evolution-

• Extreme environments of astrophysics

massive black holes

end stages of stellar evolution

Cosmic evolution of clusters and groups provides strong constraints on cosmological parameters

direct observation of star formation rates and galactic winds over a wide range of redshifts

measuring properties of black holes and neutron stars (e.g. mass/spin, gaseous environment)-search for the direction connection between SMBH and galaxy formation

Page 61: Cosmology nature of dark matter  cosmic geometry large scale structure

X-ray Astronomy in the Next DecadeCOSMOLOGY and the role of x-ray astronomy

• Cosmologynature of dark matter cosmic geometrylarge scale structure

a proper large scale x-ray survey can • determine cosmological parameters to

extraordinary precision +/-0.01 errors in m

• measure the power spectrum of mass as a function of z

• directly observe the large scale structure • Constrain w to +/-15%

Such as survey requires •a large contiguous solid angle

•sensitivity ~50x better than Rosat

•sufficient angular resolution •to select clusters and groups and •allow optical identifications

•broad bandpass

•theoretical and observational calibration of x-ray properties to mass

Page 62: Cosmology nature of dark matter  cosmic geometry large scale structure

X-ray Astronomy in the Next DecadeGalaxy formation and evolution-and the role of x-ray astronomy

Directly observe star formation rates and ejection of metal enriched material in galactic winds

Chandra image of galactic wind in NGC1569 (Martin et al 2002)

Comparison of x-ray and radio SFR

Alexander et al 2002

X-ray and UVSFR rates for Ly-break galaxies Nandra et al 2002

N0 UV extinction corrected

UV extinction corrected

Page 63: Cosmology nature of dark matter  cosmic geometry large scale structure

X-ray Astronomy in the Next DecadeGalaxy formation and evolution-and the role of x-ray astronomy

Directly observe star formation rates and ejection of metal enriched material in galactic winds

The sensitivity of Con-X allows spectroscopy of star forming objects with 10 M/yr to z=.03 and 1000M/yr at z~1This corresponds to objects of ~1Jy in the radio

Con-X via x-ray spectroscopyof starforming regions in nearby galaxies, integrated spectra of distant galaxies will determinethe wind speed, metallicity

and total metal creation rate.

NGC4038 NE quadrant

Chandra soft band image of Arp220- showing ~15kpc x-ray “wind”

Page 64: Cosmology nature of dark matter  cosmic geometry large scale structure

From Taos Meeting 1989 (!)

• Origin of the Energy and the Continuum

• At present we have no "reliable" theory for either the origin of the energy in the high energy continuum or of the creation of the spectrum.

• Most of the proposed theories for photon creation are "best" tested by looking at time variable spectral shape and/or spectral features at E>>20 kev. It is not clear if we have any "testable" theory for the origin of the energy. However if it is due to "relativistic" phenomena (such as tapping the spin of the black hole, shock acceleration of particles or magnetic reconnection) this bound also applies.

•While results from GRO, Granat, Ginga, SAX and XTE will probably suggest a "best" theory for low redshift, low luminosity objects these missions are not sensitive enough to test the evolution with cosmic time of the underlying physical conditions.

•There are strong reasons to believe that the physical mechanism(s) should vary with cosmic time (e.g the spin and mass of the central object, the relative accretion rate and angular momentum of material etc) and luminosity (compactness ratio of "disk" to non-thermal luminosity).•Missions with sensitivity >10x that of XTE are required to start such a study.