cosmology & the big bang ay16 lecture 20, april 15, 2008 mathematical cosmology, con’t...

108
Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Post on 20-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Cosmology & the Big Bang

AY16 Lecture 20, April 15, 2008

Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Page 2: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Einstein’s Equations:

(dR/dt)2/R

2 + kc

2/R

2 = 8Gc2+c

2/3

energy density CC

2(d2R/dt

2)/R + (dR/dt)

2/R + kc

2/R

2 =

-8GPc3+c2

pressure term

Page 3: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

And Friedmann’s Equations:

(dR/dt)2

= 2GM/R + c2R

2/3 – kc

2

kc2 = Ro

2[(8G/3)o – Ho]2

if = 0 (no Cosmological Constant)

or

(dR/dt)2/R2 - 8Go /3 =c

2/3 – kc

2/R2

which is known as Friedmann’s Equation

Page 4: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Note that if we assume Λ = 0, we have

(d2R/dt2)/R = (ρ + 3P)

and in a matter dominated Universe, ρ >> P

So we can define a critical density by combining the cosmological equations:

ρC = =

4πG3

3 R2.

8πG R2

3H02

8πG

Page 5: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

And we define the ratio of the density to the

critical density as the parameter

Ω ≡ ρ/ρC

For a matter dominated, Λ=0 cosmology,

Ω > 1 = closed Ω = 1 = flat, just bound Ω < 1 = openThere are many possible forms of R(t), especially

when Λ and P are reintroduced. Its our job to find the right one!

Page 6: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Λ = 0

Page 7: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 8: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 9: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Some of possible forms are:

Big Bang Models:

Einstein-deSitter k=0 flat, open & infinite

expands

Friedmann-Lemaitre k=-1 hyperbolic “

“ “ k=+1 spherical, closed

finite, collapses

Leimaitre Λ ≠0 k=+1 spherical, closed

finite, expands

Page 10: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Non-Big Bang Models

Eddington-Lemaitre Λ≠0 k=+1 spherical, closed, finite, static then expands

Steady State k=0 flat, open,

infinite, stationary

deSitter k=0 empty, no singularity, open, infinite

k =

≡ Radius of Curvature of the Universe

H02 (Ω0 – 1) + 1/3 Λ0

c2

Page 11: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

R(t)

t

F-L,0

E-L

F-L,C

L

SS,dS

EdSA Child’s Garden

of Cosmological Models

Page 12: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 13: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 14: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Cosmology is now the search for three numbers:

• The Expansion Rate = Hubble’s Constant

= H0

• The Mean Matter Density = Ωmatter

• The Cosmological Constant = ΩΛ

Taken together, these three numbers describe the geometry of space-time and its evolution. They also give you the Age of the Universe.

Page 15: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 16: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 17: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Lookback Time

For a Friedmann-Lemaitre Big-Bang Model, the lookback time as a function of redshift is

τL = H0-1 ( ) for q0=0; Λ=0

= 2/3 H0-1 [1 – (1 + z)-3/2] for q0=1/2, Λ=0

z1+z

Page 18: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

The Hubble Constant:

• H0 = *current* expansion rate

• = (velocity) / (distance)

• = (km/s) / (Megaparsecs)

• named after Edwin Hubble who

discovered the relation in 1929.

Page 19: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

The story of the Hubble Constant (never called

that by Hubble!) is the “Cosmological Distance Ladder” or the “Extragalactic Distance Scale”

Basically, we need distances & velocities to galaxies and other things.

Velocities are easy --- pick a galaxy, any galaxy, get spectrum with moderate resolution, R ~ 1000 (i.e λ/R ~ 5Å)

N.B. R = Linear Reciprocal Dispersion, get line centroids to ~ 1/10 R ~ 0.5Å/5000Å ~ 1 part in 104 ~ 30 km/s

Page 20: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Spectral features in galaxies

Page 21: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Velocity Measurement

Radial Velocities (stars, galaxies) now usually measured by cross-correlation techniques pioneered by Simkin (1973), Schechter (1976) & Tonry & Davis (1979). Accuracy depends on Signal-to-Noise and resolution. Typically, for S/N > ~ 20, errors are ~ 10% of Δλ, where (remember)

R = λ/Δλ

Page 22: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Distances are Hard!

Hubble’s original estimates of galaxy distances were based on brightest stars which were based on Cepheid Variables

Distances to the LMC, SMC, NGC6822 & eventually M31 from Cepheids.

Find the brightest stars and assume they’re the same (independent of galaxy type, etc.)

Page 23: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

CepheidsPretty Good Distance Indicators --- Standard Candles from

the Period-Luminosity (PL)

relation: L ≈ P3/2 PLC relationMV = -2.61 - 3.76 log P +2.60 (B-V)but ya gotta find them!

H0 circa 1929 ~ 600 km/s/Mpc Wrong!

1. Hubble’s galactic calibrators not classical Cepheids.

2. At large distances, brightest stars confused with star clusters.

3. Hubble’s magnitude scale was off.

Page 24: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

P-L Relation, LMC

Page 25: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

deVaucouleurs ‘76Cosmological Distance Ladder

Page 26: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Cosmological Distance Ladder

Find things that work as distance indicators (standard candles, standard yardsticks) to greater and greater distances.

Locally: Primary Indicators

Cepheids MB ~ -2 to -6

RR Lyrae Stars MB ~ 0

Novae MB ~ -6 to -9

Page 27: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Calibrate Cepheids via parallax, moving cluster = convergent point method, expansion parallax Baade-Wesselink, main sequence (HR diagram) fitting.

Secondary Distance Indicators Brightest Stars (XX??) Tully-Fisher (+ IRTF) Planetary Nebulae LF Globular Cluster LF

Page 28: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 29: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 30: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 31: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 32: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Supernovae of type Ia

Supernovae of type II (EPM)

Fundamental Plane (Dn-σ)

Faber-Jackson

Surface Brightness Fluctuations

Red Giant Branch Tip

Luminosity Classes (XXX)

HII Region Diameters (XXX)

HII Region Luminosities (???)

Page 33: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Lemaitre 1927

Hubble 1929

Oort 1932Baade 1952

Page 34: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Tully-Fisher•

Page 35: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 36: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 37: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Surface Brightness

Fluctuations

Tonry & Schneider

Page 38: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 39: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Baade-Wesselink --- EPM

EPM = Expanding Photospheres Method

Basically observe and expanding/contracting object at two (multiple) times. Get redshift and get SED. Then

L1 = 4πR12σT1

4 & L2 = 4πR22σT2

4

and R2 = R1 + v δt (or better ∫ vdt)

Page 40: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 41: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Fukugita, Hogan & Peebles 1993

Page 42: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 43: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 44: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 45: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 46: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

HST H0 Key Project Team

Page 47: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

WFPC2

footprint

Page 48: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 49: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Cepheid Light Curves N1326a

Page 50: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Matching P-L Relations

IC4182 (HST) MW (Ground)

Page 51: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 52: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 53: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 54: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 55: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

(matter):0. Baryons from Nucleosynthesis

1. Sum up Starlight (count stars and/

or count galaxies)

2. Count and Weigh Galaxies

3. Use Global techniques:

Large Scale Structure

Large Scale Flows

Page 56: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Big Bang Nucleosynthesis

Page 57: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

For

H0=70km/s/Mpc

(baryons)

~ 0.04

Page 58: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Ωmatter:Measure luminosity density = (sum of

all galaxies x their luminosity) per

unit volume (l/v) = L

Measure mean mass-to-light ratio for

galaxies (M/L)

Multiply: Mass density = (M /L) x (L)

How do we measure the Luminosity density?

Page 59: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Redshift Surveys + Φ(M)

Measure the Galaxy Luminosity Function

For a typical flux (magnitude = mL) limited

survey, we can see a galaxy of absolute magnitude M to a distance

r = 10 ( mL -M - 25)/5 Mpc

V(M) = 4/3 π r3 (Survey Solid Angle)

then

Φ(M) = dN(M)/dM = N(M,M±dM/2)/V(M)

Page 60: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Φ(M) or Φ(L) is the number density of galaxies of a given magnitude or luminosity in a sample.

Early forms:

N

M

Holmberg

Hubble

Zwicky

Page 61: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Abell Form (circa 1960) = two power laws

Now use the Schechter LF Form:

Φ(L) dL = φ* (L/L*)α exp(-L/L*) d(L/L*)

or

Φ(M)dM = 0.4 φ* log[dex 0.4(M*-M)]α+1

exp[-dex 0.4(M*-M)] dM

where φ* = normalization (# / Mpc3)

α = faint end slope

M*, L* = characteristic mag or luminosity

Page 62: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Schechter Form

The Schechter form for the LF is derived from Press-Schechter formalism for self-similar galaxy formation (more later).

Is integrable(!) solution:

L = φ* L* Γ(α+2) a Gamma function

Page 63: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 64: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 65: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Galaxy Luminosity Function:

Page 66: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Luminosity Density The Luminosity Density is then just the

integral of the luminosity function:

L = ∫ L Φ(L) dL

or

L = ∫ L(M) Φ(M) dM

(either way works)

0

0

Page 67: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Luminosity DensityTypical numbers:

B band log L = 26.65

R band log L = 26.90

K band log L = 27.20

In units of ergs s-1 Hz-1 Mpc-3 for H0=70,

in Solar Units LB = 1.2 x 108 L/ Mpc3

Page 68: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Galaxy Masses and M/Ls

Galaxies are weighed via a large number of techniques:

(a) Disk Dispersion (more later)(b) Rotation Curves(c) Velocity Dispersions (d) Binary Galaxies(e) Galaxy Groups

Page 69: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

(f) Galaxy Clusters

Virial Theorem /Projected Mass

Hydrostatic Equilibrium

Gravitational Lensing

(g) Large Scale Flows

(e) Cosmic Virial Theorem

Galaxy Field Velocity Dispersion

In all cases, L = Σ LGal in the system.

Page 70: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

(b) Rotation Curves

½ m1v(r)2 (sin i)2 GM(r)m1

M(r) = (sin i)2

With m1 = test particle mass, i = inclination,

r = radius, v(r) = rotation speed at r

r r2

=

v(r)2 r

G 2

Page 71: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

(d) Binary Galaxies

Must Model Projection Effects!

M ~

i = inclination angle

φ = orbital velocity angle

1

cos3i cos2φ

Page 72: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Abell 2142Hot Gas in X-rays

Page 73: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Strong Gravitational Lensing

Page 74: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Galaxy Flows:

Observed galaxy “velocity” is composed of

several parts

VO = VHubble + Vpeculiar + Vgrav + LSR

and

VP/VH = (1/3) () 0.66

Page 75: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

• Blue 1000 < V < 2000 km/sBlue 1000 < V < 2000 km/s

The Local Supercluster

VIRGO

Page 76: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 77: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

The Local Supercluster

We have an infall measure for the LSC and from redshift surveys we have a pretty good measure of δρ/ρ:

VP ~ 250 km/s

VH = 1100 + 250 km/s = 1350

δρ/ρ ~ 2.5

Ω ~ 0.25

Page 78: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

In terms of M/LB Ratios M/L populations ~ 1-5 M/L rotation/dispersion ~ 10 M/L galaxy satellites ~ 25 M/L binaries ~ 50 M/L galaxy groups ~ 100 M/L Clusters ~ 400 M/L CVT ~ 3-500 M/L Flows ~ 500

Page 79: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

What’s This Saying?

(1) M/L maxes out ~ 450,

ΩG = ΩM = 0.25 ± 0.05

(2) M/L grows with scale?! Gravitating matter seems to be distributed

on a scale somewhat larger than galaxies. and there’s more of it than Baryons

Non-Baryonic Dark Matter exists

Page 80: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Cosmological Constant:

Cosmological Constant = Lambda

is measured by observing the

geometry of the Universe at large

redshift (distance)

Supernovae as standard candles

CMB Fluctuations vs Models

Page 81: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 82: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 83: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 84: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 85: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Essence Project, 2004

Page 86: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Levels of Certainty in Science

You bet:

A Dime = $0.1

Your Dog = $100

Your House = $100,000

Your Firstborn = $100,000,000 ….

each x 1000 (except in New York and Boston where everything is x 10!!!)

Page 87: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

WMAP Microwave Sky

Page 88: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Best Fit

b=0.04

CDM=0.27

=0.71

T=1.02

+/- 0.02

Page 89: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Large scale geometry:CMB Fluctuations as measured by

WMAP indicate that ΩT is

very nearly unity (1.02 +/- 0.02) the Universe is FLAT

ΩΛ = ΩT - ΩM

Page 90: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Contents:= (density of the Universe)/

(closure density)

= 1.02 +/- 0.02

(total) = (baryons) +

(neutrinos) + (Cold dark matter)

+ (Dark Energy)

Page 91: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Contents:Omega (stars) =0.005 +/- 0.002

Omega(baryons) = 0.044 +/- 0.004

Omega(neutrinos) < 0.008

Omega(CDM) = 0.23 +/- 0.04

Omega(Dark Energy) = 0.73 +/- 0.04

Omega(Total) = 1

Page 92: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Contents of the Universe

0.71

0.24

0.005 0.045

Page 93: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 94: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 95: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Age of the Universe:

Ages of the Oldest things: stars,

galaxies, star clusters

Cosmological expansion age :

~ (1/H0) x geometric factors

Page 96: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 97: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 98: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 99: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Cosmological Age Calculation In FRW Cosmologies, the age of the

Universe is calculated from

τ0 = -H0-1 ∫

Where the terms are fairly self explanatory. We need to know H0, ΩM and ΩΛ

(1+z)[(1+z)2(ΩMz+1) – ΩΛz(z+2)]1/2

dz

0

Page 100: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

The empty model has 0 = H0-1

The SCDM Flat model has 0 = (2/3) H0-1

For the general case (with a CC), the full form is:

and a good approximation is

0 = (2/3) H0-1 sinn-1

[(|1-a|/a)1/2

]

/ |[1-a]|1/2

Page 101: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Where

a = matter -0.3*total + 0.3

and

sinn-1 = sinh-1 if a </= 1

= sin -1 if a > 1

(from Carroll, Press and Turner, 1992)

Also, for a flat model with L,

0 = (2/3)H0-1

-1/2

ln[(1+1/2

)/(1-)1/2

]

Page 102: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

The Age of Flat Universes

H0/ΩΛ 0.0 0.6 0.7 0.8

55 11.9 15.1 17.1 18.5 65 10.0 12.7 14.5 16.2 70 9.4 11.9 13.6 15.1 75 8.7 11.1 12.6 14.0

Where Ωtotal = 1.00000, and the ΩΛ = 0 models

are the Standard CDM models in Gyr

Page 103: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

Alternatives

ΩM = 0.3, ΩΛ = 0

gives τ0 = 0.79 H0-1 = 11.8 Gyr for H=65

(no Lambda)

ΩM = 0.25, ΩΛ = 0.6

gives τ0 = 0.97 H0-1 = 14.6 Gyr for H=65

(minimal Lambda)

Page 104: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang

JPH’s Favorite Guess Today: H0 = 70 +/- 5 km/s/Mpc

The Universe is going to expand forever

Its current age is around

14 Billion Years, and

There is a good chance its FLAT with a

Cosmological constant =

(Lambda) ~ 0.7

Page 105: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 106: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 107: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang
Page 108: Cosmology & the Big Bang AY16 Lecture 20, April 15, 2008 Mathematical Cosmology, con’t Determination of Cosmological Parameters Inflation & the Big Bang