coupling ferrybox and automated flow cytometer: a new ... · •few phytoplankton community dataset...

34
Coupling FerryBox and automated flow cytometer: a new approach for studying biogeochemical processes and CO 2 system variability in relation to phytoplankton community structure Heraklion, 6 and 7 April 2016 Pierre Marrec 1 , Cherif Sammari 2 , Nagib Bhairy 1 , Mathilde Dugenne 1 , Gérald Grégori 1 , Sana Ben Ismail 2 , Soumaya Lahbib 1 and Melilotus Thyssen 1 1 CNRS/INSU, IRD, Mediterranean Institute of Oceanography, Aix Marseille Université, Marseille, France 2 INSTM, National Institute of Marine Sciences and Technologies, Salammbô, Tunisia

Upload: others

Post on 02-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Coupling FerryBox and automated flow cytometer: a new approach for studying biogeochemical processes and CO2 system variability in

    relation to phytoplankton community structure

    Heraklion, 6 and 7 April 2016

    Pierre Marrec1, Cherif Sammari2, Nagib Bhairy1, Mathilde Dugenne1, GéraldGrégori1, Sana Ben Ismail2, Soumaya Lahbib1 and Melilotus Thyssen1

    1 CNRS/INSU, IRD, Mediterranean Institute of Oceanography, Aix Marseille Université, Marseille, France2 INSTM, National Institute of Marine Sciences and Technologies, Salammbô, Tunisia

  • Atmospheric CO2 concentration for the past 2000 years

    0 500 1000 1500 2000

    CO

    2 c

    on

    cen

    trat

    ion

    (p

    pm

    )

    260

    280

    300

    320

    340

    360

    380

    400

    1800 ≈ 280 ppmGlacial/Interglacial

    Maximum

    2014 ≈ 400 ppm

    +40%

    Since the industrial revolution: atmospheric CO2 has increased by ≈40%.

    Highest atmospheric CO2 concentration over at least the last 800 000 years.

    Essentially due to anthropogenic activities.

    Increase of atmospheric GHG concentration (CO2, as well as CH4 and N2O) is “extremely likely” (95-100% probability) the main driver of climate change (IPCC, 2013).

  • The world ocean plays a fundamental role in the exchange of CO2 with the atmosphere and constitutes an important sink for atmospheric CO2.

    The ocean stores nearly 1/3 of anthropogenic carbon released to the atmosphere (Sabine et al., 2004).

    Physical and biological processes control the ocean carbon cycle with the solubility pump and the biological pumps.

    (IPCC report, 2007)

  • (IPCC report, 2007)

    Essential to improve our understanding of the dynamics of the CO2 system and to quantify air-sea CO2 fluxes for

    global carbon cycle and climate studies.

  • Seawater partial pressure of CO2 (pCO2)

    variability

    Thermodynamic processes:- Solubility

    Non-thermodynamic processes:- Biological processes

    - Dissolution/formation of CaCO3- Lateral advection

    - Horizontal mixing- Upwelling

    Seawater temperature/salinity Structural phytoplankton heterogeneityPresence of calcifying organisms

    3D oceanic circulation (observations and models)

  • Seawater partial pressure of CO2 (pCO2)

    variability

    Thermodynamic processes:- Solubility

    Non-thermodynamic processes:- Biological processes

    - Dissolution/formation of CaCO3- Lateral advection

    - Horizontal mixing- Upwelling

    Seawater temperature/salinity Structural phytoplankton heterogeneityPresence of calcifying organisms

    3D oceanic circulation (observations and models)

    Well constrained

  • Seawater partial pressure of CO2 (pCO2)

    variability

    Thermodynamic processes:- Solubility

    Non-thermodynamic processes:- Biological processes

    - Dissolution/formation of CaCO3- Lateral advection

    - Horizontal mixing- Upwelling

    Seawater temperature/salinity Structural phytoplankton heterogeneityPresence of calcifying organisms

    3D oceanic circulation (observations and models)

    Well constrainedIndividual process contributions

    difficult to assess

  • CHROME project

    Seawater partial pressure of CO2 (pCO2)

    variability

    Thermodynamic processes:- Solubility

    Non-thermodynamic processes:- Biological processes

    - Dissolution/formation of CaCO3- Lateral advection

    - Horizontal mixing- Upwelling

    Seawater temperature/salinity Structural phytoplankton heterogeneityPresence of calcifying organisms

    3D oceanic circulation (observations and models)

  • Mediterranean Sea

    • Only few pCO2 data (SOCAT, LDEO databases)

  • Mediterranean Sea

    • Only few pCO2 data (SOCAT, LDEO databases)

    • Few phytoplankton community dataset resolving the submeso- & mesoscale : • space scales of 1-10 km and time scales of 1-10 days• space scales of 10-100 km and time scales of 10-100 days

  • Mediterranean Sea

    • Oligotrophic ecosystem

    • Dominated by small phytoplankton (picoplankton):• Cyanobacteria : Prochlorococcus & Synechococcus (0,6 – 1,2 µm)• PicoEukaryotes (< 2 µm)

    • Importance of picoplankton in oligotrophic areas:• major primary producers• most abundant phytoplankton organisms on earth

    ProchlorococcusBiodiversity project – Austin Chiang

    SynechococcusPhoto: John Waterbury,

    Woods Hole Oceanographic Institute

  • CHROME project

    High-frequency pCO2Phytoplankton abundance

    & composition

    Biogeochemical and physical parameters

    FerryBox

    Last technological advances Scientific expertise

    Unravel the role of phytoplankton community structure on biogeochemical variability and CO2 system dynamics at high spatio-

    temporal resolution

  • CHROME project

    High-frequency pCO2Phytoplankton abundance

    & composition

    Biogeochemical and physical parameters

    FerryBox

    Last technological advances Scientific expertise

    PhD ThesisYann Bozec & Pascal Morin

  • CHROME project

    High-frequency pCO2Phytoplankton abundance

    & composition

    Biogeochemical and physical parameters

    FerryBox

    Last technological advances Scientific expertise

    Melilotus Thyssen & Gérald Grégori

  • 1 Marseille ↔ Tunis& 1 Genova ↔ Tunis

    crossings per week.

    Continuous measurements: Temperature Salinity Dissolved Oxygen Fluorescence Turbidity

    Our sensors CHROME/MIO pCO2 pH Automated Flow

    Cytometer (FC)

    FerryBox installation: February 2016pCO2, pH and FC implementation: March 2016But the system is not entirely operational yet

    C/F Carthage

    INSTM FerryBox system

  • SubCtech OceanPack MK2:• Flat-Membrane-Equilibrator• LI-COR LI-840x inside• Auto-zeroing calibration• Span gas calibration

    MIO /CHROME sensors

  • SubCtech OceanPack MK2:• Flat-Membrane-Equilibrator• LI-COR LI-840x inside• Auto-zeroing• Span gas calibration

    CytoBuoy CytoSense Flow Cytometer• Single cell analysis• Automated and remotely

    controlled• Image in flow acquisition• Run with embedded computer

    MIO /CHROME sensors

  • SubCtech OceanPack MK2:• Flat-Membrane-Equilibrator• LI-COR LI-840x inside• Auto-zeroing calibration• Span gas calibration

    CytoBuoy CytoSense Flow Cytometer• Single cell analysis• Automated and remotely

    controlled• Image in flow acquisition• Run with embedded computer

    Satlantic SeaFET:• ion sensitive field

    effect transistor (ISFET)

    • Our first deployment

    MIO /CHROME sensors

  • Thanks to recent advances, we can now observe prochlorococcus with the CytoSense, in addition to larger phytoplankton cells.

    Total FWS Total SWS

    Tota

    l FLR

    Tota

    l FLO

    FWS: forward scatter, SWS: sideward scatter, FLR: red fluorescence, FLO: orange fluorescence

    Synechococcus

    Prochlorococcus

    ProchlorococcusBiodiversity project – Austin Chiang

    SynechococcusPhoto: John Waterbury,

    Woods Hole Oceanographic Institute

  • Total FWS Total SWS

    Tota

    l FLR

    Tota

    l FLO

    FWS: forward scatter, SWS: sideward scatter, FLR: red fluorescence, FLO: orange fluorescence

    It will allow us to better understand the spatio-temporal dynamics of these major photosynthetic contributors in relation to air-sea CO2 fluxes.

    Synechococcus

    Prochlorococcus

    ProchlorococcusBiodiversity project – Austin Chiang

    SynechococcusPhoto: John Waterbury,

    Woods Hole Oceanographic Institute

    Thanks to recent advances, we can now observe both with the CytoSense, in addition to larger phytoplankton cells.

  • 10 phytoplankton groups defined:ProchlorococcusSynechococcusPicoplankton & Picoplankton High FLRCryptophytes likeNanoplankton 1 & Nanoplankton High FLOMicroplankton & Microplankton High FLOUnidentified (for the moment)

    FLR5 FLR30

    Calibration with beads (1-10 µm) to classphytoplankton clusters according to their size, anduse of pictures for microphytoplankton (>20 µm).

    Total SWS (a.u.)

    Tota

    l FLR

    (a.

    u.)

    Total SWS (a.u.)

    Tota

    l FLR

    (a.

    u.)

    Tota

    l FLO

    (a.u

    .)

    Total SWS (a.u.)

    Example of clusteringOSCAHR campaign

  • Image in flow (IIF) acquisition (>20 µM)

  • Pre-FerryBox automated flow cytometer deployment: OSCAHR

    Observing Submesoscale Coupling At Hight Resolution, PIs Andrea Doglioli &Gérald Grégori, 2015-10-29 to 2015-11-06 onboard the RV Tethys II.

    Last generation Cytosense flow cytometer with IIF deployment with a -4H-Pocket FerryBox (SST, SSS, O2, FLUO) and a subCtech pCO2 sensor.

    Similar configuration as in the CHROME project.

  • Unfortunately no pCO2 data due to technical issues.

  • Chl-a conc. (µg L-1)

    Cryptophytes like Pico-Eukaryotes Nano-Eukaryotes

    Synechococcus

    Measurements every 20 minutes

    Prochlorococcus

    Microphytoplankton

  • Day

    Night

    All

    Total Fluorescence from the Cytometer (a.u.)

    Flu

    ore

    scen

    ce f

    rom

    th

    e Fl

    uo

    rim

    eter

    (a.

    u.)

    Red fluorescence (FLR): 1 of the optical parameter recorded by the cytometer (FLO, SWS,FWS).

    Strong correlation between: • The sum of the total red

    fluorescence recorded for all the clusters

    • And the fluorescence recorded by the research vessel fluorimeter

    • Quenching during daytime

    FWS: forward scatter, SWS: sideward scatter, FLR: red fluorescence, FLO: orange fluorescence

  • Leg2

    03/11 06:00 03/11 18:00 04/11 06:00 04/11 18:00 05/11 06:00 05/11 18:00 06/11 06:00

    SSS

    37,9

    38,0

    38,1

    38,2

    38,3

    38,4

    SST

    (°C)

    15

    16

    17

    18

    19

    20

    03/11 06:00 03/11 18:00 04/11 06:00 04/11 18:00 05/11 06:00 05/11 18:00 06/11 06:00

    Diss

    olved

    O2 c

    once

    ntrati

    on (µ

    mol k

    g-1 )

    200

    210

    220

    230

    240

    O 2 sa

    turati

    on le

    vel (%

    )

    86

    88

    90

    92

    94

    96

    98

    Chl-a

    conc

    entra

    tion (

    µg L-

    1 )

    0,1

    0,2

    0,3

    0,4

    0,5

    Abun

    danc

    e (N

    /mL)

    10000

    20000

    30000

    40000

    50000

    Synechococcus

    Prochlorococcus

    Abun

    danc

    e (N

    /mL)

    600

    800

    1000

    1200

    1400

    1600

    1800PicoEukaryotes

    NanoEukaryotes

    03/11 06:00 03/11 18:00 04/11 06:00 04/11 18:00 05/11 06:00 05/11 18:00 06/11 06:00

    Abun

    danc

    e (N

    /mL)

    20

    40

    60

    80

    100

    120

    500

    1000MicroEukaryotes

    Cryptophytes

    Unidentifiedflr5

    Salin

    ity

    Dis

    solv

    edO

    2(µ

    M)

    SST (°C)

    Ch

    l-a(µ

    g/L)

    O2

    saturatio

    n (%

    )

    Ab

    un

    dan

    ce(N

    mL-

    1)

  • Leg2

    03/11 06:00 03/11 18:00 04/11 06:00 04/11 18:00 05/11 06:00 05/11 18:00 06/11 06:00

    SSS

    37,9

    38,0

    38,1

    38,2

    38,3

    38,4

    SST

    (°C)

    15

    16

    17

    18

    19

    20

    03/11 06:00 03/11 18:00 04/11 06:00 04/11 18:00 05/11 06:00 05/11 18:00 06/11 06:00

    Diss

    olved

    O2 c

    once

    ntrati

    on (µ

    mol k

    g-1 )

    200

    210

    220

    230

    240

    O 2 sa

    turati

    on le

    vel (%

    )

    86

    88

    90

    92

    94

    96

    98

    Chl-a

    conc

    entra

    tion (

    µg L-

    1 )

    0,1

    0,2

    0,3

    0,4

    0,5

    Abun

    danc

    e (N

    /mL)

    10000

    20000

    30000

    40000

    50000

    Synechococcus

    Prochlorococcus

    Abun

    danc

    e (N

    /mL)

    600

    800

    1000

    1200

    1400

    1600

    1800PicoEukaryotes

    NanoEukaryotes

    03/11 06:00 03/11 18:00 04/11 06:00 04/11 18:00 05/11 06:00 05/11 18:00 06/11 06:00

    Abun

    danc

    e (N

    /mL)

    20

    40

    60

    80

    100

    120

    500

    1000MicroEukaryotes

    Cryptophytes

    Unidentifiedflr5

    Salin

    ity

    Dis

    solv

    edO

    2(µ

    M)

    SST (°C)

    Ch

    l-a(µ

    g/L)

    O2

    saturatio

    n (%

    )

    Ab

    un

    dan

    ce(N

    mL-

    1)

  • Leg2

    03/11 06:00 03/11 18:00 04/11 06:00 04/11 18:00 05/11 06:00 05/11 18:00 06/11 06:00

    SSS

    37,9

    38,0

    38,1

    38,2

    38,3

    38,4

    SST

    (°C)

    15

    16

    17

    18

    19

    20

    03/11 06:00 03/11 18:00 04/11 06:00 04/11 18:00 05/11 06:00 05/11 18:00 06/11 06:00

    Diss

    olved

    O2 c

    once

    ntrati

    on (µ

    mol k

    g-1 )

    200

    210

    220

    230

    240

    O 2 sa

    turati

    on le

    vel (%

    )

    86

    88

    90

    92

    94

    96

    98

    Chl-a

    conc

    entra

    tion (

    µg L-

    1 )

    0,1

    0,2

    0,3

    0,4

    0,5

    Abun

    danc

    e (N

    /mL)

    10000

    20000

    30000

    40000

    50000

    Synechococcus

    Prochlorococcus

    Abun

    danc

    e (N

    /mL)

    600

    800

    1000

    1200

    1400

    1600

    1800PicoEukaryotes

    NanoEukaryotes

    03/11 06:00 03/11 18:00 04/11 06:00 04/11 18:00 05/11 06:00 05/11 18:00 06/11 06:00

    Abun

    danc

    e (N

    /mL)

    20

    40

    60

    80

    100

    120

    500

    1000MicroEukaryotes

    Cryptophytes

    Unidentifiedflr5

    Salin

    ity

    Dis

    solv

    edO

    2(µ

    M)

    SST (°C)

    Ch

    l-a(µ

    g/L)

    O2

    saturatio

    n (%

    )

    Ab

    un

    dan

    ce(N

    mL-

    1)

    Phytoplankton functional and structural heterogeneity is now described at submesoscale and can be related to

    physical structures

  • First Results: 1 Marseille-Tunis transect 24-25/03/2016

    Projected latitude (°N)

    37 38 39 40 41 42 43Ch

    l-a co

    nc. (

    µg L

    -1)

    0,0

    0,5

    1,0

    1,5

    2,0

    xCO 2

    (ppm

    )

    340

    350

    360

    370

    380

    390

    SST

    (°C)

    13,5

    14,0

    14,5

    15,0

    15,5

    16,0

    Salin

    ity

    37,0

    37,5

    38,0

    38,5

    Salin

    ity

    xCO

    2(p

    pm

    )

    5,0e+3

    1,0e+4

    1,5e+4

    2,0e+4

    2,5e+4

    2e+3

    4e+3

    6e+3

    8e+3

    1e+4

    PicoEukaryote

    NanoEukaryotes

    2e+4

    4e+4

    6e+4

    8e+4

    1e+5

    Prochlococcus

    Synechococcus

    Projected latitude (°N)

    37 38 39 40 41 42 43

    0

    50

    100

    150

    3e+4

    4e+4

    5e+4

    6e+4

    7e+4

    MicroEukaryotes

    Cryptophytes Like

    Phytoplankton Group Abundance

    Flu

    o (

    a.u

    .)SS

    T (°

    C)

  • First Results: 1 Marseille-Tunis transect 24-25/03/2016

    Projected latitude (°N)

    37 38 39 40 41 42 43Ch

    l-a co

    nc. (

    µg L

    -1)

    0,0

    0,5

    1,0

    1,5

    2,0

    xCO 2

    (ppm

    )

    340

    350

    360

    370

    380

    390

    SST

    (°C)

    13,5

    14,0

    14,5

    15,0

    15,5

    16,0

    Salin

    ity

    37,0

    37,5

    38,0

    38,5

    Salin

    ity

    xCO

    2(p

    pm

    )

    5,0e+3

    1,0e+4

    1,5e+4

    2,0e+4

    2,5e+4

    2e+3

    4e+3

    6e+3

    8e+3

    1e+4

    PicoEukaryote

    NanoEukaryotes

    2e+4

    4e+4

    6e+4

    8e+4

    1e+5

    Prochlococcus

    Synechococcus

    Projected latitude (°N)

    37 38 39 40 41 42 43

    0

    50

    100

    150

    3e+4

    4e+4

    5e+4

    6e+4

    7e+4

    MicroEukaryotes

    Cryptophytes Like

    Phytoplankton Group Abundance

    Flu

    o (

    a.u

    .)SS

    T (°

    C)

  • 0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    36,89 37,62 38,25 39,06 39,88 40,69 41,49 42,28 43,15

    Prochlorococcus Synechococcus PicoEukaryotes

    NanoEukaryotes Cryptophytes Like MicroEukaryotes

    Projected latitude (°N)

    37 38 39 40 41 42 43Ch

    l-a co

    nc. (

    µg L

    -1)

    0,0

    0,5

    1,0

    1,5

    2,0

    xCO 2

    (ppm

    )

    340

    350

    360

    370

    380

    390

    SST

    (°C)

    13,5

    14,0

    14,5

    15,0

    15,5

    16,0

    Salin

    ity

    37,0

    37,5

    38,0

    38,5

    Co

    ntr

    ibu

    tio

    n t

    o t

    ota

    l re

    dfl

    uo

    resc

    en

    ce

    Salin

    ity

    xCO

    2(p

    pm

    )

    Flu

    o (

    a.u

    .)SS

    T (°

    C)

    First Results: 1 Marseille-Tunis transect 24-25/03/2016

  • Nice

    Reinstallation of the sensors as soon and as long aspossible.

    High-resolution phytoplankton structure heterogeneity.

    Essential information of phytoplankton contribution topCO2 variability and biogeochemical processes.

    Expectation of a huge dataset to get new insights aboutsurface Mediterranean ecosystems.

  • Nice