course no: me 209 thermodynamics lecture 21: property ...me 209 thermodynamics lecture 21 u. n....

18
Slide 1/17 THERMODYNAMICS Course No: ME 209 Department: Mechanical Engineering Instructor: U. N. Gaitonde Lecture 21: Property Relations ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Upload: others

Post on 13-Mar-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 1/17

THERMODYNAMICS

Course No: ME 209

Department: Mechanical Engineering

Instructor: U. N. Gaitonde

Lecture 21: Property Relations

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 2: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 2/17

Lecture 21: Property Relations

• Relations between properties of a

simple compressible (fluid) system

• Often, we assume a unit mass of the system,

so we work with specific properties

• Tools:

– Calculus of exact differentials

– Calculus of partial derivatives

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 3: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 3/17

Energy Functions

• First law defines U ,

the thermal internal energy

• Second law defines S, entropy

• The basic property relation relates the two:

TdS = dU + pdV

• We will also use the first law:

dQ = dU + dW

• and the second law:

TdS ≥ dQ or TdS ≥ dU + dW

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 4: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 4/17

Internal Energy, U

dQ = dU + dW = dU + pdV + dWother

∴ dQv = dU + dWother

Enthalpy, H

H ≡ U + pV

∴ dH = dU + pdV + V dp

∴ dQ = dU + pdV + dWother = dH − V dp + dWother

∴ dQp = dH + dWother

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 5: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 5/17

The Helmholtz Function, A

A ≡ U − TS

∴ dA = dU − TdS − SdT

∴ dA = dQ− dW − TdS − SdT

∴ dA + dW + SdT = dQ− TdS ≤ 0∴ dW ≤ −dA− SdT

∴ dWT ≤ −dAT

Thus, A : a potential, the decrease in which represents the

maximum work that can be obtained in an isothermal process.

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 6: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 6/17

The Gibbs Function, G

G ≡ U + pV − TS = H − TS

∴ dG = dU + pdV + V dp− TdS − SdT

∴ dG = dQ− dWother + V dp− TdS − SdT

∴ dG + dWother − V dp + SdT = dQ− TdS ≤ 0∴ dWother ≤ −dG + V dp− SdT

∴ dWother,p,T ≤ −dGp,T

Thus, G : a potential, the decrease in which represents the

maximum work (other than expansion) that can be obtained in an

isobaric-cum-isothermal process.

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 7: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 7/17

Energy FunctionsWe now look at the properties of the four

‘energy functions’, U , H , A, and G.

We use the specific-property version,

so u, h, a, and g.

We use the property relation, and the following from calculus:

If z(x, y) and dz = Mdx + Ndy is an exact differential, then

M =(

∂z

∂x

)y

and N =(

∂z

∂y

)x

also:

(∂M

∂y

)x

=(

∂N

∂x

)y

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 8: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 8/17

Internal Energy, u∵ du = Tds− pdv,

we consider u(s, v)

T =(

∂u

∂s

)v

and p = −(

∂u

∂v

)s

and (∂T

∂v

)s

= −(

∂p

∂s

)v

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 9: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 9/17

Enthalpy, h = u + pv

dh = Tds− pdv + pdv + vdp

= Tds + vdp

We consider h(s, p)

T =(

∂h

∂s

)p

and v =(

∂h

∂p

)s

and (∂T

∂p

)s

=(

∂v

∂s

)p

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 10: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 10/17

Helmholtz Functiona = u− Tsda = Tds− pdv − Tds− sdT

= −sdT − pdv

We consider a(T, v)

s = −(

∂a

∂T

)v

and p = −(

∂a

∂v

)T

and (∂s

∂v

)T

=(

∂p

∂T

)v

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 11: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 11/17

Gibbs Functiong = h− Ts

dg = Tds + vdp− Tds− sdT

= −sdT + vdp

We consider g(T, p)

s = −(

∂g

∂T

)p

and v =(

∂g

∂p

)T

and (∂s

∂p

)T

= −(

∂v

∂T

)p

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 12: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 12/17

Maxwell’s Relations(∂T

∂v

)s

= −(

∂p

∂s

)v(

∂T

∂p

)s

=(

∂v

∂s

)p(

∂s

∂v

)T

=(

∂p

∂T

)v(

∂s

∂p

)T

= −(

∂v

∂T

)p

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 13: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 13/17

Maxwell’s Relations (contd)

• These relations (and their ‘reciprocals’),

known as Maxwell’s Relations,

are very useful property relations.

• The third and fourth ones relate entropy variation to purely

p-v-T (Equation-of-state or EoS) data.

• They help reduce the requirement of cp (or cv) data for

mapping the state space.

• How do you remember them? (No cogsheets, please!)

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 14: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 14/17

The Area RelationConsider a reversible cycle.

Represent it on a p-v diagram.

Also on a T -s diagram.p

v

T

s

Apv ATs

Are the two areas equal?

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 15: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 15/17

The Area Relation (contd)Yes! They are. Thus,‹

dp dv =‹

dT ds

For any reversible cycle (of a simple compressible system).

This means that the Jacobian of the transformation is 1.

∂(T, s)∂(p, v)

=∂(p, v)∂(T, s)

= 1

Now, we can use the properties of the Jacobian for the calculus

of properties.

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 16: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 16/17

The JacobianSome properties:

∂(u, v)∂(x, y)

∂(x, y)∂(u, v)

= 1

∂(p, q)∂(r, s)

∂(r, s)∂(t, u)

=∂(p, q)∂(t, u)

∂(u, y)∂(x, y)

=∂(y, u)∂(y, x)

= −∂(y, u)∂(x, y)

= −∂(u, y)∂(y, x)

=(

∂u

∂x

)y

Using these (and other) properties of the Jacobian we can

manage the Maxwell’s relations

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 17: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on

Slide 17/17

An Example(∂T

∂v

)s

=∂(T, s)∂(v, s)

=∂(T, s)∂(v, s)

∂(p, v)∂(T, s)

=∂(p, v)∂(v, s)

= −(

∂p

∂s

)v

In a similar manner all the other relations can be derived.

ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde

Page 18: Course No: ME 209 THERMODYNAMICS Lecture 21: Property ...ME 209 THERMODYNAMICS Lecture 21 U. N. Gaitonde. Slide 14/17 The Area Relation Consider a reversible cycle. Represent it on