coventry - jesper christensen

Upload: erkantalay

Post on 14-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Coventry - Jesper Christensen

    1/14

    Optimising FEV BIW Architecture

    from a Styling Envelope

    Jesper ChristensenCoventry University, UK

  • 7/30/2019 Coventry - Jesper Christensen

    2/14

    Agenda

    Introduction

    Purpose & proposed methodology

    Topology optimisation

    Lessons learnt

    Crash structure and safety cell

    Automation

    Shape & size optimisation Crash structure development

    Safety cell development

    Automation

    Conclusion and future steps

  • 7/30/2019 Coventry - Jesper Christensen

    3/14

    Low Carbon Vehicle Technology Project, ongoing TARF

    29 million research project

    Project partners:

    Introduction

    Define a methodology for developing a

    lightweight vehicle architecture (BIW)

  • 7/30/2019 Coventry - Jesper Christensen

    4/14

    Purpose & proposed methodology

    Define a methodology for developing a lightweight architecture

    Requirements:

    Vehicle may be Fully Electric (FE) or Hybrid Electric (HE)

    How?

    Conventional BIW development

    O timisin re-existin BIW

    Blank sheet use optimisation

    .

    2.Topology optimisation

    3.Shape- & size optimisation

    4.BIW draft

    Overall aims:

    Minimise BIW mass

    Meet safety requirements

  • 7/30/2019 Coventry - Jesper Christensen

    5/14

    Topology optimisation

    1. CAD model (design envelope)

    2. Topology optimisation

    3. Shape- & size optimisation

    4. BIW draft

  • 7/30/2019 Coventry - Jesper Christensen

    6/14

    Topology optimisation

    1. CAD model (design envelope)

    2. Topology optimisation

    3. Shape- & size optimisation

    4. BIW draft

    GUI Automatic topology optimisation setup - tcl

    BarrierCreation

    Wheel andsuspension

    Auxiliarycomponents

    Constraints

    - m nutes mo e

    30 seconds / model

  • 7/30/2019 Coventry - Jesper Christensen

    7/14

    Topology Shape- & size optimisation

    1. CAD model (design envelope)

    2. Topology optimisation

    3. Shape- & size optimisation

    4. BIW draft

    Safety cell

  • 7/30/2019 Coventry - Jesper Christensen

    8/14

    Shape- & size optimisation

    1. CAD model (design envelope)

    2. Topology optimisation

    3. Shape- & size optimisation

    4. BIW draft

  • 7/30/2019 Coventry - Jesper Christensen

    9/14

    Shape- & size optimisation

    1. CAD model (design envelope)

    2. Topology optimisation

    3. Shape- & size optimisation

    4. BIW draft

    `

    Crash structure

  • 7/30/2019 Coventry - Jesper Christensen

    10/14

    BIW draft

    1. CAD model (design envelope)

    2. Topology optimisation

    3. Shape- & size optimisation

    4. BIW draft

    Crash structure Safety cell

    BIW draft

  • 7/30/2019 Coventry - Jesper Christensen

    11/14

    Conclusion and future steps

    1.CAD model (design envelope)

    2.Topology optimisation

    3.Shape- & size optimisation

    Conclusions:

    Good for (rapid) initial BIW load path estimations Good for safety cell development

    Inertia Relief Limitations of linear elastic software Interpretations of results are vital

    4.BIW draft

    Future steps:

    Non-linear topology optimisation (ESLM?)

    Joint modelling (multiple materials) Increased consideration of manufacturing constraints

    Consideration of shape- and size opt. within topology opt. Combined linear and non-linear topology optimisation

  • 7/30/2019 Coventry - Jesper Christensen

    12/14

    Conclusion and future steps

    1.CAD model (design envelope)

    2.Topology optimisation

    3.Shape- & size optimisation

    Conclusions:

    Interpretations of results are vital

    4.BIW draftFuture steps:

    Automatic / mathematical extraction of results CAD model

  • 7/30/2019 Coventry - Jesper Christensen

    13/14

    Conclusion and future steps

    1.CAD model (design envelope)

    2.Topology optimisation

    3.Shape- & size optimisation

    Conclusions:

    Excellent for lightweight crash structure development Robust, stable and efficient response surfaces Excellent coupling with Dynamic modelling Excellent sampling point options

    4.BIW draftFuture steps:

    Automation / template building (as topology setup)

    Direct link with topology optimisation

  • 7/30/2019 Coventry - Jesper Christensen

    14/14

    Thank you for your attention any questions?

    Jesper ChristensenLecturer in Stress [email protected]

    Christophe BastienPrinci al Lecturer Automotive En ineerin

    [email protected]

    Mike V BlundellProfessor of Vehicle Dynamics & [email protected]