cover vol1 no1 - sciencenet.cnimage.sciencenet.cn/olddata/kexue.com.cn/upload/...yu-lin gao,...

28
Insect Frontiers November 2009 Volume 1 Nomber 1 Head and siphonate mouthpart features associated with fluid-feeding Mesopsychidae scorpionflies from the mid- Mesozoic of northeastern China. (From Science 2009 326:840-847; Abstract No. 41 in this issue. Without permis- sion).

Upload: others

Post on 24-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Insect Frontiers

    November 2009 Volume 1 Nomber 1

    Head and siphonate mouthpart features associated with fluid-feeding Mesopsychidae scorpionflies from the mid-Mesozoic of northeastern China. (From Science 2009 326:840-847; Abstract No. 41 in this issue. Without permis-sion).

  • November 2009 Volume 1 Number 1

    Xin-Cheng Zhao edited 1

    Insect Behaviour 1. Social competition but not subfertility leads to a division of labour in the facultatively social

    sweat bee Megalopta genalis (Hymenoptera: Halictidae) Adam R. Smith, Karen M. Kapheim, , Sean O'Donnell, and William T. Wcislo Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1043-1050

    2. Female fitness consequences of male harassment and copulation in seed beetles,

    Callosobruchus maculatus Michelle den Hollander, and Darryl T. Gwynne Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1061-1070

    3. Jail baits: how and why nymphs mimic adult females of the German cockroach, Blattella

    germanica Dorit Eliyahu, , Satoshi Nojima, Kenji Mori, and Coby Schal, Animal Behaviour Volume 78, Issue 5,, November 2009, Pages 1097-1105

    4. Seasonally adaptive migratory headings mediated by a sun compass in the painted lady

    butterfly, Vanessa cardui R.L. Nesbit, , J.K. Hill, , I.P. Woiwod, D. Sivell, K.J. Bensusan, and J.W. Chapman Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1119-1125

    5. Copulation reduces the duration of death-feigning behaviour in the sweetpotato weevil,

    Cylas formicarius Takashi Kuriwada, Norikuni Kumano, Keiko Shiromoto and Dai Haraguchi Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1145-1151

    6. Differences in mate location behaviours between residents and nonresidents in a territorial

    butterfly Martin Bergman and Christer Wiklund Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1161-1167

    7. Mechanism of host recognition in Neodohrniphora elongata (Brown) (Diptera: Phoridae) Vinicius Gazal, Omar Bailez, and Ana Maria Viana-Bailez Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1177-1182

    8. Honeybee, Apis mellifera, guards use adaptive acceptance thresholds to limit worker

    reproductive parasitism Nadine C. Chapman, , James Makinson, Madeleine Beekman and Benjamin P. Oldroyd Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1205-1211

    9. Male eyespan and resource ownership affect contest outcome in the stalk-eyed fly,

    Teleopsis dalmanni Jennifer Small, Samuel Cotton, Kevin Fowler and Andrew Pomiankowski Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1213-1220

    10. Female preference and fitness benefits of mate choice in a species with dissociated sperm

    transfer Z. Valentina Zizzari, Annika Braakhuis, Nico M. van Straalen and Jacintha Ellers Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1261-1267

    Insect Biocontrol 11. Regulation of the seasonal population patterns of Helicoverpa armigera moths by Bt cotton

    planting Yu-lin Gao, Hong-qiang Feng and Kong-ming Wu Transgenic Research,online: 22 October 2009 10.1007/s11248-009-9337-1

    Insect Chemoreception 12. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant Zainulabeuddin Syed and Walter S. Leal PNAS 2009 106: 18803-18808

    13. A Drosophila Gustatory Receptor Essential for Aversive Taste and Inhibiting Male-to-Male

    Courtship Seok Jun Moon, Youngseok Lee, Yuchen Jiao and Craig Montell, Current Biology, Volume 19, Issue 19, 1623-1627, 17 September 2009

    14. Neural correlates of behavior in the moth Manduca sexta in response to complex odors

    http://www.pnas.org/search?author1=Zainulabeuddin+Syed&sortspec=date&submit=Submithttp://www.pnas.org/search?author1=Walter+S.+Leal&sortspec=date&submit=Submit

  • November 2009 Volume 1 Number 1

    Xin-Cheng Zhao edited 2

    Jeffrey A. Riffell, H. Lei and John G. Hildebrand PNAS November 17, 2009 vol. 106 no. 46 19219-19226

    Insect Clock 15. Temperature Entrainment of Drosophila's Circadian Clock Involves the Gene nocte and

    Signaling from Peripheral Sensory Tissues to the Brain Hana Sehadova, Franz T. Glaser, Carla Gentile, Alekos Simoni, Astrid Giesecke, Joerg T. Neuron, Volume 64, Issue 2, 251-266, 29 October 2009

    Insect Development 16. Combinatorial binding predicts spatio-temporal cis-regulatory activity Robert P. Zinzen, Charles Girardot, Julien Gagneur, Martina Braun & Eileen E. M. Furlong Nature 2009 462: 65-70

    17. Autophagy, Not Apoptosis, Is Essential for Midgut Cell Death in Drosophila Donna Denton, Bhupendra Shravage, Rachel Simin, Kathryn Mills, Deborah L. Berry, Eric H. Baehrecke and Sharad Kumar, Current Biology, Volume 19, Issue 20, 1741-1746, 08 October 2009

    Insect Ecology 18. Shape transition during nest digging in ants Etienne Toffin, , David Di Paolo, Alexandre Campo, Claire Detraina and Jean-Louis Deneubourg PNAS 2009 106:18616-18620

    19. Chemical niche differentiation among sympatric species of orchid bees Yvonne Zimmermann, Santiago R. Ramírez and Thomas Eltz Ecology: 2009 Vol. 90, No. 11, pp. 2994-3008.

    20. Ecologically dependent postmating isolation between sympatric host forms of Neochlamisus

    bebbianae leaf beetles Scott P. Egan and Daniel J. Funk PNAS November 17, 2009 vol. 106 no. 46 19426-19431

    21. High Symbiont Relatedness Stabilizes Mutualistic Cooperation in Fungus-Growing Termites Duur K. Aanen, Henrik H. de Fine Licht, Alfons J. M. Debets, Niels A. G. Kerstes, Rolf F. Hoekstra, Jacobus J. Boomsma Science 20 November 2009 Vol. 326. no. 5956, pp. 1103 - 1106

    22. Rapidly Shifting Sex Ratio across a Species Range Emily A. Hornett,Sylvain Charlat, Nina Wedell, Chris D. Jiggins and Gregory D.D. Hurst Current Biology, Volume 19, Issue 19, 1628-1631, 10 September 2009

    Insect Evolution 23. Caterpillars evolved from onychophorans by hybridogenesis Donald I. Williamson Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom PNAS November 24, 2009 vol. 106 no. 47 19901-19905

    24. Caterpillars did not evolve from onychophorans by hybridogenesis Michael W. Harta and Richard K. Grosbergb PNAS November 24, 2009 vol. 106 no. 47 19906-19909

    Insect Genetics 25. Polymorphic Butterfly Reveals the Missing Link in Ecological Speciation Nicola L. Chamberlain, Ryan I. Hill, Durrell D. Kapan, Lawrence E. Gilbert, Marcus R. Kronforst Science 2009 326: 847 – 850

    26. Homology of Dipteran Bristles and Lepidopteran Scales: Requirement for the Bombyx mori

    achaete-scute Homologue ASH2 Qingxiang Zhou, Linlin Yu, Xingjia Shen, Yinü Li, Weihua Xu, Yongzhu Yi and Zhifang Zhang Genetics, Vol. 183, 619-627, October 2009

    27. Imprinting of the Y Chromosome Influences Dosage Compensation in roX1 roX2 Drosophila

    melanogaster Debashish U. Menon and Victoria H. Meller Genetics, Vol. 183, 811-820, November 2009

    http://www.pnas.org/content/106/44/18616.abstract#aff-1#aff-1http://www.pnas.org/search?author1=Daniel+J.+Funk&sortspec=date&submit=Submithttp://www.pnas.org/search?author1=Donald+I.+Williamson&sortspec=date&submit=Submithttp://www.pnas.org/search?author1=Michael+W.+Hart&sortspec=date&submit=Submithttp://www.pnas.org/content/106/47/19906.abstract?etoc#aff-1#aff-1http://www.pnas.org/search?author1=Richard+K.+Grosberg&sortspec=date&submit=Submithttp://www.pnas.org/content/106/47/19906.abstract?etoc#aff-2#aff-2http://www.pnas.org/content/106/47/19906.abstract?etoc#aff-2#aff-2

  • November 2009 Volume 1 Number 1

    Xin-Cheng Zhao edited 3

    28. Evolution of Sex-Dependent Gene Expression in Three Recently Diverged Species of Drosophila

    Zi-Feng Jiang and Carlos A. Machado Genetics, Vol. 183, 1175-1185, November 2009

    29. Removal of the Bloom Syndrome DNA Helicase Extends the Utility of Imprecise Transposon

    Excision for Making Null Mutations in Drosophila Alice Witsell, Daniel P. Kane, Sarah Rubin and Mitch McVey Genetics, Vol. 183, 1187-1193, November 2009

    30. A Gain-of-Function Screen Identifying Genes Required for Growth and Pattern Formation of

    the Drosophila melanogaster Wing Cristina Cruz, Alvaro Glavic, Mar Casado and Jose F. de Celis Genetics, Vol. 183, 1005-1026, November 2009

    Insect Memory 31. Social Facilitation of Long-Lasting Memory Retrieval in Drosophila Marie-Ange Chabaud, Guillaume Isabel, Laure Kaiser and Thomas Preat Current Biology, Volume 19, Issue 19, 1654-1659, 24 September 2009

    Insect Molecular Biology 32. Extension of Drosophila Life Span by RNAi of the Mitochondrial Respiratory Chain Jeffrey M. Copeland, Jaehyoung Cho, Thomas Lo, Jae H. Hur, Sepehr Bahadorani, Tagui Current Biology, Volume 19, Issue 19, 1591-1598, 10 September 2009

    33. Neprilysin 4, a novel endopeptidase from Drosophila melanogaster, displays distinct

    substrate specificities and exceptional solubility states Heiko Meyer, Mareike Panz, Monika Zmojdzian, Krzysztof Jagla and Achim Paululat Journal of Experimental Biology 212, 3673-3683 (2009) October 30, 2009 34. Transcriptional and Developmental Functions of the H3.3 Histone Variant in Drosophila Akiko Sakai, Brian E. Schwartz, Sara Goldstein and Kami Ahmad Current Biology, Volume 19, Issue 21, 1816-1820, 24 September 2009

    35. Drosophila Dgt6 Interacts with Ndc80, Msps/XMAP215, and γ-Tubulin to Promote

    Kinetochore-Driven MT Formation Elisabetta Bucciarelli, Claudia Pellacani, Valeria Naim, Antonella Palena, Maurizio Gatti and Maria Patrizia Somma Current Biology, Volume 19, Issue 21, 1839-1845, 15 October 2009 36. Assembly of Endogenous oskar mRNA Particles for Motor-Dependent Transport in the

    Drosophila Oocyte Alvar Trucco, Imre Gaspar and Anne Ephrussi Cell, Volume 139, Issue 5, 983-998, 25 November 2009

    Insect Neuroscience 37. Reconstruction of virtual neural circuits in an insect brain Shigehiro Namiki , Shuichi S . Haupt, Tomoki Kazawa , Akira Takashima, Hidetoshi Ikeno and Ryohei Kanzaki Front. Neurosci. 2009 3: 206-213 38. Dynamics of Learning-Related cAMP Signaling and Stimulus Integration in the Drosophila

    Olfactory Pathway Seth M. Tomchik and Ronald L. Davis Neuron, Volume 64, Issue 4, 510-521, 25 November 2009

    39. Two Different Forms of Arousal in Drosophila Are Oppositely Regulated by the Dopamine D1

    Receptor Ortholog DopR via Distinct Neural Circuits Tim Lebestky, Jung-Sook C. Chang, Heiko Dankert, Lihi Zelnik, Young-Cho Kim Kyung-An Han, Fred W. Wol, Pietro Perona and David J. Anderson Neuron, Volume 64, Issue 4, 522-536, 25 November 2009

    Insect Nutrition 40. Water- and nutrient-dependent effects of dietary restriction on Drosophila lifespan William W. Ja, Gil B. Carvalho, Brian M. Zid, Elizabeth M. Mak, Ted Brummel and Seymour Benzer PNAS 2009 106:18633-18637

    http://frontiersin.org/neuroscience/profiles/shigehironamiki/http://frontiersin.org/neuroscience/profiles/shuichis.%20haupt/http://frontiersin.org/neuroscience/profiles/tomokikazawa/http://frontiersin.org/neuroscience/profiles/akiratakashima/http://frontiersin.org/neuroscience/profiles/hidetoshiikeno/http://frontiersin.org/neuroscience/profiles/ryoheikanzaki/http://frontiersin.org/neuroscience/profiles/ryoheikanzaki/

  • November 2009 Volume 1 Number 1

    Xin-Cheng Zhao edited 4

    Insect Palaeontology 41. A Probable Pollination Mode Before Angiosperms: Eurasian, Long-Proboscid Scorpionflies Dong Ren, Conrad C. Labandeira, Jorge A. Santiago-Blay, Alexandr Rasnitsyn, ChungKun Shih, Alexei Bashkuev, M. Amelia V. Logan, Carol L. Hotton, David Dilcher Science 2009 326: 840 - 847

    Insect Pharmacology: serotonin 42. Effects of serotonergic agents on survival and hemolymph composition of the larval

    mosquito Aedes aegypti (Diptera: Culicidae, L.) in vivo: does serotonin regulate hemolymph acid–base homeostasis?

    T. M. Clark, J. L. Lawecki, J. J. Shepherd, A. N. Hirschler and T. R. Samandu Journal of Experimental Biology 212, 3728-3736 (2009) October 30, 2009

    Insect Photoreception 43. Different photoreceptor organs are used for photoperiodism in the larval and adult stages of

    the carabid beetle, Leptocarabus kumagaii Yoshinori Shintani, Sakiko Shiga and Hideharu Numata Journal of Experimental Biology 212, 3651-3655 (2009) October 30, 2009

    Insect Society 44. Prudent sperm use by leaf-cutter ant queens Susanne P. A. den Boer Boris Baer, Stephanie Dreier, Serge Aron, David R. Nash and Jacobus J. Boomsma Proc. R. Soc. B 22 November 2009 vol. 276 no. 1675 3945-3953

    45. Termites eavesdrop to avoid competitors Theodore A. Evans, Ra Inta, Joseph C. S. Lai, Stefan Prueger, Nyuk Wei Foo, Eugene Wei'en Fu and Michael Lenz Proc. R. Soc. B 22 November 2009 vol. 276 no. 1675 4035-4041

    http://rspb.royalsocietypublishing.org/search?author1=Susanne+P.+A.+den+Boer&sortspec=date&submit=Submithttp://rspb.royalsocietypublishing.org/search?author1=Boris+Baer&sortspec=date&submit=Submithttp://rspb.royalsocietypublishing.org/search?author1=Stephanie+Dreier&sortspec=date&submit=Submithttp://rspb.royalsocietypublishing.org/search?author1=Serge+Aron&sortspec=date&submit=Submithttp://rspb.royalsocietypublishing.org/search?author1=David+R.+Nash&sortspec=date&submit=Submithttp://rspb.royalsocietypublishing.org/search?author1=Jacobus+J.+Boomsma&sortspec=date&submit=Submithttp://rspb.royalsocietypublishing.org/search?author1=Theodore+A.+Evans&sortspec=date&submit=Submithttp://rspb.royalsocietypublishing.org/search?author1=Ra+Inta&sortspec=date&submit=Submithttp://rspb.royalsocietypublishing.org/search?author1=Joseph+C.+S.+Lai&sortspec=date&submit=Submithttp://rspb.royalsocietypublishing.org/search?author1=Stefan+Prueger&sortspec=date&submit=Submithttp://rspb.royalsocietypublishing.org/search?author1=Nyuk+Wei+Foo&sortspec=date&submit=Submithttp://rspb.royalsocietypublishing.org/search?author1=Eugene+Wei'en+Fu&sortspec=date&submit=Submithttp://rspb.royalsocietypublishing.org/search?author1=Michael+Lenz&sortspec=date&submit=Submithttp://rspb.royalsocietypublishing.org/search?author1=Michael+Lenz&sortspec=date&submit=Submit

  • November 2009 Volume 1 Number 1

    Xin-Cheng Zhao edited 5

    Insect Behaviour 1. Social competition but not subfertility leads to a division of labour in the

    facultatively social sweat bee Megalopta genalis (Hymenoptera: Halictidae)

    Adam R. Smitha, Karen M. Kapheimb, , Sean O'Donnellc, and William T. Wcisloa aSmithsonian Tropical Research Institute, Panama bDepartment of Ecology & Evolutionary Biology, University of California, Los Angeles, U.S.A. cAnimal Behavior Area, Department of Psychology, University of Washington, U.S.A.

    Insects with facultative social behaviour permit direct examination of factors associated with the expression of division of labour: why do some females remain in their natal nest as nonreproductive foragers, while others disperse? The facultatively social halictid bee Megalopta genalis shows strong reproductive division of labour, associated with body size (foragers tend to be smaller than queens and dispersers). We used M. genalis to test two hypotheses for the expression of worker behaviour: (1) queens suppress reproduction by subordinates, which then forage, and (2) small-bodied females are handicapped as reproductives, and therefore take on a foraging role to assist a more fertile relative (the ‘subfertility’ hypothesis). We removed queens from 19 nests and found that the remaining foragers enlarged their ovaries and reproduced at the same rate as solitary reproductives from unmanipulated (nonremoval) nests. This observation suggests that queen dominance limited reproduction by subordinates, and that foragers were not handicapped reproductives. To investigate the effect of body size variation on reproductive rate in the absence of social interactions, we placed single, newly eclosed females into 31 observation nests. Body size was not correlated with reproductive output or with the females' tenure in the observation nests. Nor was there any correlation between body size and number of brood cells in 21 solitary-female nonremoval nests. Taken together these data show that small females were not inherently poor reproductives. We also found that ovaries of reproductive females from social groups were larger than those of solitary reproductives, suggesting that social structure shapes ovary development. Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1043-1050 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X7FRPR-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d2fd256fb44c618e7c1e9994ce446fa

    2. Female fitness consequences of male harassment and copulation in seed

    beetles, Callosobruchus maculatus

    Michelle den Hollander a, and Darryl T. Gwynnea aDepartment of Ecology and Evolutionary Biology, University of Toronto

    Despite widespread evidence for the benefits of polyandry, there are costs associated with each mating for females, and for many species, it is unknown whether the costs of extra matings outweigh the benefits. In the seed beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae), costs might come from male harassment during mating attempts or from injuries that females sustain during copulation. Benefits of mating might come from nutrients or water transferred in the ejaculate. If mating is costly overall, male presence (sexual harassment) and multiple mating in C. maculatus is expected to reduce female fitness. Females were housed with differing numbers of males (1–4) and differing opportunities for copulation. When females were both harassed by and could remate with more than one male, they had lower lifetime reproductive rates and reduced life span relative to monandrous females. These results indicate that when females are continually exposed to multiple males, the direct benefits of multiple mating do not compensate for the costs. Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1061-1070

    http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X7FRPR-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d2fd256fb44c618e7c1e9994ce446fa#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X7FRPR-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d2fd256fb44c618e7c1e9994ce446fa#aff2#aff2http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X7FRPR-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d2fd256fb44c618e7c1e9994ce446fa#aff3#aff3http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X7FRPR-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d2fd256fb44c618e7c1e9994ce446fa#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X7FRPR-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d2fd256fb44c618e7c1e9994ce446fa#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X7FRPR-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d2fd256fb44c618e7c1e9994ce446fahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X7FRPR-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d2fd256fb44c618e7c1e9994ce446fahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X7FRPR-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d2fd256fb44c618e7c1e9994ce446fahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X7FRPR-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=5&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=0d2fd256fb44c618e7c1e9994ce446fahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=7&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8b4f099a4779a7073a71a0bbcb3c6a5b#implicit0#implicit0http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=7&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8b4f099a4779a7073a71a0bbcb3c6a5b#implicit0#implicit0http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=7&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8b4f099a4779a7073a71a0bbcb3c6a5b#implicit0#implicit0

  • November 2009 Volume 1 Number 1

    Xin-Cheng Zhao edited 6

    http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=7&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8b4f099a4779a7073a71a0bbcb3c6a5b

    3. Jail baits: how and why nymphs mimic adult females of the German

    cockroach, Blattella germanica

    Dorit Eliyahua, , Satoshi Nojimaa, Kenji Morib, and Coby Schala, aDepartment of Entomology and W. M. Keck Center for Behavioral Biology, North Carolina State University, U.S.A. bPhotosensitive Materials Research Center, Toyo Gosei Co., Ltd, Chiba, Japan

    The male German cockroach performs a characteristic courtship behaviour upon contacting a sexually receptive female: he turns away from the female and raises his wings, thereby exposing tergal glands whose reservoirs contain phagostimulatory substances. The female then mounts the male and feeds upon these nuptial secretions; this behaviour places her in the appropriate precopulatory position. The contact sex pheromone on the cuticular surface of the female, responsible for eliciting courtship behaviour in males, consists of a blend of six components that share a common biosynthetic pathway. An excised female antenna can elicit the full courtship display in males. We found that antennae taken from either male or female nymphs of various ages also could elicit the full courtship response in adult males. We extracted lipids from the cuticular surface of nymphs and, guided by behavioural assays, we fractionated the extracts using various chromatography procedures, including flash (column) chromatography, high-performance liquid chromatography and gas chromatography. Mass spectrometry analysis of behaviourally active fractions revealed two classes of courtship-eliciting compounds: all nymphs possessed a novel, still unidentified compound that elicited courtship in adult males. In addition, in last-instar females, we isolated four of the six adult female-specific contact sex pheromone components, consistent with differentiation of the sexes at this stage, and the onset of sexual maturation of the pheromone biosynthetic machinery. Our results support the interpretation that nymphs engage in sexual mimicry to gain access to male-produced nuptial tergal secretions that are exposed and can be secured only during courtship. Animal Behaviour Volume 78, Issue 5,, November 2009, Pages 1097-1105 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9NCFD-4&_user=10&_coverDate=11%2F30%2F2009&_rdoc=11&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=de04763957d6987104e6a302cd3e760f

    4. Seasonally adaptive migratory headings mediated by a sun compass in

    the painted lady butterfly, Vanessa cardui

    R.L. Nesbita, , J.K. Hillb, , I.P. Woiwoda, D. Sivella, K.J. Bensusanc, and J.W. Chapmana aPlant and Invertebrate Ecology, Rothamsted Research, U.K. bDepartment of Biology, University of York, U.K. cGibraltar Ornithological and Natural History Society, Gibraltar

    Many insects undertake long-distance migrations to exploit seasonally variable conditions at high latitudes, but the mechanisms used by migrants to select and maintain beneficial flight headings are poorly understood. Using computerized flight simulators, we performed controlled experiments to test the ability of an obligate migrant butterfly (Vanessa cardui) to orient in seasonally advantageous directions (i.e. northwards in spring and southwards in autumn). We also investigated the compass mechanism used to select and maintain these headings. Laboratory-reared autumn-generation butterflies flown in the U.K. displayed a highly significant mean orientation towards the south-southwest, consistent with return migration to winter breeding sites. However, seasonally adaptive flight headings were not observed in wild-caught adults flown at the same time. Spring-generation adults caught in Gibraltar (presumed to be migrating from winter breeding sites in North Africa into Europe) showed no evidence of northward flight

    http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=7&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8b4f099a4779a7073a71a0bbcb3c6a5bhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=7&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8b4f099a4779a7073a71a0bbcb3c6a5bhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=7&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8b4f099a4779a7073a71a0bbcb3c6a5bhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=7&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8b4f099a4779a7073a71a0bbcb3c6a5bhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9NCFD-4&_user=10&_coverDate=11%2F30%2F2009&_rdoc=11&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=de04763957d6987104e6a302cd3e760f#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9NCFD-4&_user=10&_coverDate=11%2F30%2F2009&_rdoc=11&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=de04763957d6987104e6a302cd3e760f#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9NCFD-4&_user=10&_coverDate=11%2F30%2F2009&_rdoc=11&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=de04763957d6987104e6a302cd3e760f#aff2#aff2http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9NCFD-4&_user=10&_coverDate=11%2F30%2F2009&_rdoc=11&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=de04763957d6987104e6a302cd3e760f#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9NCFD-4&_user=10&_coverDate=11%2F30%2F2009&_rdoc=11&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=de04763957d6987104e6a302cd3e760fhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9NCFD-4&_user=10&_coverDate=11%2F30%2F2009&_rdoc=11&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=de04763957d6987104e6a302cd3e760fhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9NCFD-4&_user=10&_coverDate=11%2F30%2F2009&_rdoc=11&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=de04763957d6987104e6a302cd3e760fhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9NCFD-4&_user=10&_coverDate=11%2F30%2F2009&_rdoc=11&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=de04763957d6987104e6a302cd3e760fhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=14&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=875e8f53604e20f350e765ab0a6f05cd#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=14&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=875e8f53604e20f350e765ab0a6f05cd#aff2#aff2http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=14&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=875e8f53604e20f350e765ab0a6f05cd#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=14&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=875e8f53604e20f350e765ab0a6f05cd#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=14&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=875e8f53604e20f350e765ab0a6f05cd#aff3#aff3http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=14&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=875e8f53604e20f350e765ab0a6f05cd#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=14&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=875e8f53604e20f350e765ab0a6f05cd#aff1#aff1

  • November 2009 Volume 1 Number 1

    Xin-Cheng Zhao edited 7

    headings, but produced a wide scatter of flight headings with a mean direction towards the west. Butterflies flown in the simulators when the sky was not visible produced a random scatter of flight headings and less-directed flight tracks, providing evidence that migrating V. cardui use a sun compass to select and maintain their flight headings. However, when butterflies were subjected to a 6 h clock shift, no change in orientation was observed relative to the control group. Field evidence for a return migration in autumn by V. cardui is surprisingly scarce in the literature, but we conclude that the species does attempt such southward movements and that individuals use a sun compass to select their migratory heading. Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1119-1125 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=14&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=875e8f53604e20f350e765ab0a6f05cd

    5. Copulation reduces the duration of death-feigning behaviour in the

    sweetpotato weevil, Cylas formicarius

    Takashi Kuriwadaa, b, , Norikuni Kumanoa, b, Keiko Shiromotoa, b and Dai Haraguchia aOkinawa Prefectural Plant Protection Center, Japan bRyukyu Sankei Co. Ltd, Japan

    Although there have been numerous studies on the effects of mating history on mating behaviour, few studies have reported the relationship between mating history and other contextual behaviours such as foraging and predator avoidance. We examined the effect of mating history on death-feigning behaviour (an antipredator behaviour) in the sweetpotato weevil. Because mating behaviour can be divided into phases, we examined the effects of encounters with the opposite sex, copulation and insemination success on death-feigning behaviour. For females after copulation and males after multiple copulations the duration of death-feigning behaviour was reduced, whereas encounters with the opposite sex had no effect. Insemination success did not affect the duration of death feigning in males, but inseminated females reduced the duration of death feigning. We discuss the implications of these results for the effect of mating history on this antipredator behaviour. Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1145-1151 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X5YWS9-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=17&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9852244a4eba76517c88d0ed39a7a3ed

    6. Differences in mate location behaviours between residents and

    nonresidents in a territorial butterfly

    Martin Bergmana, and Christer Wiklunda aDepartment of Zoology, Stockholm University, Sweden

    Mate location strategies vary between species. Among butterflies two strategies are recognized: ‘patrolling’ males spend their life on the wing searching for females and ‘perching’ males stay at a specific site waiting to intercept passing females. In the speckled wood butterfly, Pararge aegeria, two alternative male strategies have been described: dominant males adopt a perching strategy monopolizing large sunspots on the forest floor, and subdominant males adopt a patrolling strategy. However, comparative analyses have shown that body design differs between perching and patrolling species, hence constraining opportunity for within-species variation in mate location strategy. We tested whether males differ in their propensity to adopt perching or patrolling behaviour by recording time spent flying during 30 min when alone in a large cage with only one large sunspot and many smaller ones, and whether subdominant males adopt a patrolling strategy by allowing dyads of males to interact in the cage for 60 min and recording the same behaviours again. All males adopted perching behaviour when alone, and

    http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=14&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=875e8f53604e20f350e765ab0a6f05cdhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=14&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=875e8f53604e20f350e765ab0a6f05cdhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=14&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=875e8f53604e20f350e765ab0a6f05cdhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=14&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=875e8f53604e20f350e765ab0a6f05cdhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X5YWS9-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=17&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9852244a4eba76517c88d0ed39a7a3ed#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X5YWS9-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=17&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9852244a4eba76517c88d0ed39a7a3ed#aff2#aff2http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X5YWS9-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=17&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9852244a4eba76517c88d0ed39a7a3ed#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X5YWS9-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=17&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9852244a4eba76517c88d0ed39a7a3ed#aff2#aff2http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X5YWS9-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=17&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9852244a4eba76517c88d0ed39a7a3ed#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X5YWS9-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=17&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9852244a4eba76517c88d0ed39a7a3ed#aff2#aff2http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X5YWS9-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=17&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9852244a4eba76517c88d0ed39a7a3ed#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X5YWS9-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=17&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9852244a4eba76517c88d0ed39a7a3ed#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X5YWS9-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=17&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9852244a4eba76517c88d0ed39a7a3edhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X5YWS9-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=17&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9852244a4eba76517c88d0ed39a7a3edhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X5YWS9-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=17&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9852244a4eba76517c88d0ed39a7a3edhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X5YWS9-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=17&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9852244a4eba76517c88d0ed39a7a3edhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9V30H-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=19&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c9fd5d347e5328f329815df2374c21df#implicit0#implicit0http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9V30H-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=19&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c9fd5d347e5328f329815df2374c21df#implicit0#implicit0http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9V30H-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=19&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c9fd5d347e5328f329815df2374c21df#implicit0#implicit0

  • November 2009 Volume 1 Number 1

    Xin-Cheng Zhao edited 8

    subdominant males in dyads spent only a short time in extended flights after losing contests over territory ownership, soon returning to a perching strategy and making the best of a bad job from the vantage point of a small sunspot. We argue that previous descriptions of subdominant male P. aegeria adopting a patrolling strategy are based on too short observation periods, and have mistaken males in temporary transit for males adopting patrolling behaviour. Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1161-1167 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9V30H-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=19&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c9fd5d347e5328f329815df2374c21df

    7. Mechanism of host recognition in Neodohrniphora elongata (Brown)

    (Diptera: Phoridae)

    Vinicius Gazala, Omar Bailez a, and Ana Maria Viana-Baileza aUniversidade Estadual do Norte Fluminense, Brazil

    Insects can use different cues derived from their host or habitat to localize and identify an appropriate host. We conducted this study to investigate the mechanisms used by Neodohrniphora elongata (Brown) to localize and recognize the host Atta sexdens rubropilosa Forel. Females of the parasitoid N. elongata were collected in the field and tested individually in an observation box. The effect of chemical and visual stimuli, associated with A. sexdens rubropilosa, on the location and acceptance behaviour of N. elongata was verified. The chemical stimuli of the ant workers alone triggered no behavioural response in the phorid. Visual stimuli of the ant were sufficient to trigger behavioural acts related to host localization and recognition in the phorids. The trail pheromone of A. sexdens rubropilosa associated with host visualization increased the total time of inspection of a potential host. Visual cues in motion increased the inspection period, compared to static visual cues. Moving basic morphological configurations, regardless of the degree of complexity, triggered similar inspection behaviour as that observed towards live hosts in N. elongata. The phorids, however, did not identify these incomplete morphological models as hosts when static. Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1177-1182 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X71NTW-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=21&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=71599c87226a3233a35359099713bbab

    8. Honeybee, Apis mellifera, guards use adaptive acceptance thresholds to

    limit worker reproductive parasitism

    Nadine C. Chapman a, , James Makinsona, Madeleine Beekmana and Benjamin P. Oldroyda aBehaviour and Genetics of Social Insects Laboratory, School of Biological Sciences A12, University of Sydney, Australia

    To protect their colonies from robbing by conspecifics, honeybees have evolved nest-guarding behaviour. Guards adjust their acceptance threshold so that, as the likelihood of robbing increases, fewer non-nestmates are admitted. In addition to the possibility of robbing, queenless colonies may be infiltrated by reproductively parasitic non-nestmates. We tested the hypothesis that queenless colonies would be more discriminatory of non-nestmates than queenright colonies. As predicted, queenless colonies accepted significantly fewer non-nestmates (from queenright colonies) than they did nestmates, whereas queenright colonies did not differentiate significantly between the two sources. This trend continued once laying workers became active in queenless colonies. Thus there is evidence that queenless colonies are more discerning against potential reproductive parasites than queenright colonies. We also tested the hypothesis that as the likelihood of an intruder being a reproductive parasite increased, guards would become less permissive of allowing it entrance to the colony. Queenright colonies

    http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9V30H-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=19&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c9fd5d347e5328f329815df2374c21dfhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9V30H-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=19&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c9fd5d347e5328f329815df2374c21dfhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9V30H-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=19&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c9fd5d347e5328f329815df2374c21dfhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9V30H-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=19&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c9fd5d347e5328f329815df2374c21dfhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X71NTW-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=21&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=71599c87226a3233a35359099713bbab#implicit0#implicit0http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X71NTW-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=21&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=71599c87226a3233a35359099713bbab#implicit0#implicit0http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X71NTW-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=21&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=71599c87226a3233a35359099713bbab#implicit0#implicit0http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X71NTW-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=21&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=71599c87226a3233a35359099713bbab#implicit0#implicit0http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X71NTW-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=21&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=71599c87226a3233a35359099713bbabhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X71NTW-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=21&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=71599c87226a3233a35359099713bbabhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X71NTW-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=21&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=71599c87226a3233a35359099713bbabhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X71NTW-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=21&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=71599c87226a3233a35359099713bbabhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=25&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=13acb771fe456621ee6ebfc2d15f0a30#implicit0#implicit0http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=25&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=13acb771fe456621ee6ebfc2d15f0a30#implicit0#implicit0http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=25&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=13acb771fe456621ee6ebfc2d15f0a30#implicit0#implicit0http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=25&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=13acb771fe456621ee6ebfc2d15f0a30#implicit0#implicit0http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=25&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=13acb771fe456621ee6ebfc2d15f0a30#implicit0#implicit0

  • November 2009 Volume 1 Number 1

    Xin-Cheng Zhao edited 9

    accepted significantly more non-nestmates from queenright colonies (no active ovaries) than they did non-nestmates from queenless colonies (many with active ovaries). However, queenless colonies did not make this distinction. We suggest that to queenless colonies all non-nestmates are potential parasites. Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1205-1211 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=25&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=13acb771fe456621ee6ebfc2d15f0a30

    9. Male eyespan and resource ownership affect contest outcome in the

    stalk-eyed fly, Teleopsis dalmanni

    Jennifer Smalla, Samuel Cottona, Kevin Fowlera and Andrew Pomiankowskia, b, aThe Galton Laboratory, Department of Genetics, Evolution & Environment, University College London, U.K. bCoMPLEX, University College London, U.K.

    The dominant theory for the evolution of male sexual ornaments is that they act as signals of male quality used by females in their mate choice. But these traits may also be used in male–male competition. In stalk-eyed flies, male eyespan (the distance between the eyes) is already known to play an important role in female mate choice. We investigated the influence of eyespan on male aggression over control of lek mating sites, both under controlled conditions and from field observations. Eyespan positively affected the number of aggressive encounters between two males on a lek. There were more aggressive interactions between large-eyespan males compared with small-eyespan males, and large-eyespan males won proportionately more aggressive interactions. Lek site ownership also influenced the outcome of aggression but to a smaller degree than eyespan. In addition, higher resource value, the number of females on a lek, increased the chance of aggression. The outcome of aggression between males is the control of lek aggregation sites, and this had direct consequences for male reproductive success, as lek owners gained more matings at both dusk and dawn. The importance of male–male competition in shaping sexual selection in stalk-eyed flies is discussed. Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1213-1220 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8YMKH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=26&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e632469bff89e71d1f7dfa14b149d9e

    10. Female preference and fitness benefits of mate choice in a species with

    dissociated sperm transfer

    Z. Valentina Zizzaria, 1, Annika Braakhuisb, Nico M. van Straalenb and Jacintha Ellersb, aDepartment of Evolutionary Biology, University of Siena, Italy bDepartment of Animal Ecology, VU University Amsterdam, The Netherlands

    Female mate preference can have important fitness consequences for females through direct or indirect benefits of mate choice. However, the existence and benefits of mate choice in species that perform dissociated sperm transfer is largely unknown. In the springtail Orchesella cincta, receptive females locate and take up spermatophores deposited in the litter layer by males, without even meeting their partner. We investigated female sexual selection and its benefits in O. cincta. We performed female choice trials with manipulated spermatophore density and diversity to assess female preference for different spermatophore deposition patterns. Furthermore we tested whether females benefit from choosing between spermatophores by measuring several reproductive variables of females assigned to single male (no choice) and double male (choice) mating treatments. Our results show that females chose patches with four spermatophores over patches with a single spermatophore, but did not discriminate between patches of three spermatophores from a single male or from three different

    http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=25&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=13acb771fe456621ee6ebfc2d15f0a30http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=25&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=13acb771fe456621ee6ebfc2d15f0a30http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=25&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=13acb771fe456621ee6ebfc2d15f0a30http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8HGS1-3&_user=10&_coverDate=11%2F30%2F2009&_rdoc=25&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=13acb771fe456621ee6ebfc2d15f0a30http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8YMKH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=26&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e632469bff89e71d1f7dfa14b149d9e#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8YMKH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=26&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e632469bff89e71d1f7dfa14b149d9e#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8YMKH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=26&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e632469bff89e71d1f7dfa14b149d9e#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8YMKH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=26&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e632469bff89e71d1f7dfa14b149d9e#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8YMKH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=26&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e632469bff89e71d1f7dfa14b149d9e#aff2#aff2http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8YMKH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=26&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e632469bff89e71d1f7dfa14b149d9ehttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8YMKH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=26&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e632469bff89e71d1f7dfa14b149d9ehttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8YMKH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=26&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e632469bff89e71d1f7dfa14b149d9ehttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X8YMKH-1&_user=10&_coverDate=11%2F30%2F2009&_rdoc=26&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9e632469bff89e71d1f7dfa14b149d9ehttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=32&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=46103917637b18218788c6cb42140d35#aff1#aff1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=32&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=46103917637b18218788c6cb42140d35#fn1#fn1http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=32&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=46103917637b18218788c6cb42140d35#aff2#aff2http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=32&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=46103917637b18218788c6cb42140d35#aff2#aff2http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=32&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=46103917637b18218788c6cb42140d35#aff2#aff2

  • November 2009 Volume 1 Number 1

    Xin-Cheng Zhao edited 10

    males. The mating experiment showed that O. cincta females gained indirect benefits from choosing between spermatophores of different males, because male offspring resulting from the double male treatment produced more spermatophores than the male offspring from females without a choice. No evidence was found for direct benefits of female choice, because there were no differences in clutch size, egg size or offspring survival between treatments. Despite the large number of studies on female mate choice, this is the first time that indirect benefits have been demonstrated in a species with dissociated sperm transfer. Animal Behaviour Volume 78, Issue 5, November 2009, Pages 1261-1267 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=32&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=46103917637b18218788c6cb42140d35

    Insect Biocontrol 11. Regulation of the seasonal population patterns of Helicoverpa armigera

    moths by Bt cotton planting Yu-lin Gao1, Hong-qiang Feng2 and Kong-ming Wu1 [email protected]

    1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, People’s Republic of China

    2. Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People’s Republic of China

    Transgenic cotton expressing the Bacillus thuringiensis (Bt) Cry1Ac toxin has been commercially cultivated in China since 1997, and by 2000 Bt cotton had almost completely replaced non-transgenic cotton cultivars. To evaluate the impact of Bt cotton planting on the seasonal population patterns of cotton bollworm, Helicoverpa armigera, the dynamics of H. armigera moths were monitored with light traps from four locations (Xiajin, Linqing and Dingtao of Shandong Province; Guantao of Hebei Province) in high Bt density region and five locations (Anci and Xinji of Hebei Province; Dancheng and Fengqiu of Henan Province; Gaomi of Shandong Province) in low Bt density region from 1996 to 2008. A negative correlation was found between moth densities of H. armigera and the planting years of Bt cotton in both high and low Bt density areas. These data indicate that the moth population density of H. armigera was reduced with the introduction of Bt cotton in northern China. Three generations of moths occurred between early June and late September in the cotton regions. Interestingly, second-generation moths decreased and seemed to vanish in recent years in high Bt density region, but this tendency was not found in low Bt density region. The data suggest that the planting of Bt cotton in high Bt density region was effective in controlling the population density of second-generation moths. Furthermore, the seasonal change of moth patterns associated with Bt cotton planting may regulate the regional occurrence and population development of this migratory insect. Transgenic Research,online: 22 October 2009 10.1007/s11248-009-9337-1 http://www.springerlink.com/content/e7u285331r146h68/?p=745252cf981049de8ffe1419e184dee8&pi=8

    Insect Chemoreception 12. Acute olfactory response of Culex mosquitoes to a human- and bird-

    derived attractant

    Zainulabeuddin Syed and Walter S. Leal [email protected] Department of Entomology, Honorary Maeda-Duffey Laboratory, University of California, Davis, CA 95616

    West Nile virus, which is transmitted by Culex mosquitoes while feeding on birds and humans, has emerged as the dominant vector borne disease in North America. We have identified natural compounds from humans and birds, which are detected with extreme

    http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=32&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=46103917637b18218788c6cb42140d35http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=32&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=46103917637b18218788c6cb42140d35http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=32&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=46103917637b18218788c6cb42140d35http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9W-4X9D5FH-2&_user=10&_coverDate=11%2F30%2F2009&_rdoc=32&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236693%232009%23999219994%231537167%23FLA%23display%23Volume)&_cdi=6693&_sort=d&_docanchor=&_ct=33&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=46103917637b18218788c6cb42140d35mailto:[email protected]://www.springerlink.com/content/e7u285331r146h68/?p=745252cf981049de8ffe1419e184dee8&pi=8http://www.pnas.org/search?author1=Zainulabeuddin+Syed&sortspec=date&submit=Submithttp://www.pnas.org/search?author1=Walter+S.+Leal&sortspec=date&submit=Submitmailto:[email protected]

  • November 2009 Volume 1 Number 1

    Xin-Cheng Zhao edited 11

    sensitivity by olfactory receptor neurons (ORNs) on the antennae of Culex pipiens quinquefasciatus (Cx. quinquefasciatus). One of these semiochemicals, nonanal, dominates the odorant spectrum of pigeons, chickens, and humans from various ethnic backgrounds. We determined the specificity and sensitivity of all ORN types housed in different sensilla types on Cx. quinquefasciatus antennae. Here, we present a comprehensive map of all antennal ORNs coding natural ligands and their dose-response functions. Nonanal is detected by a large array of sensilla and is by far the most potent stimulus; thus, supporting the assumption that Cx. quinquefasciatus can smell humans and birds. Nonanal and CO2 synergize, thus, leading to significantly higher catches of Culex mosquitoes in traps baited with binary than in those with individual lures. PNAS 2009 106: 18803-18808 http://www.pnas.org/content/106/44/18803.abstract

    13. A Drosophila Gustatory Receptor Essential for Aversive Taste and Inhibiting Male-to-Male Courtship

    Seok Jun Moon1, 2, Youngseok Lee1, Yuchen Jiao1 and Craig Montell1,

    1. Departments of Biological Chemistry and Neuroscience, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

    2. Department of Oral Biology, Brain Korea 21 Project, Yonsei University College of Dentistry, 250 Seongsanno Seodaemun-gu, Seoul 120-752, Korea

    Contact chemosensation is required for several behaviors that promote insect survival. These include evasive behaviors such as suppression of feeding on repellent compounds, known as antifeedants, and inhibition of male-to-male courtship. However, the gustatory receptors (GRs) required for responding to nonvolatile avoidance chemicals are largely unknown. Exceptions include Drosophila GR66a and GR93a, which are required to prevent ingestion of caffeine [1,2], and GR32a, which is necessary for inhibiting male-to-male courtship [3]. However, GR32a is dispensable for normal taste. Thus, distinct GRs may function in sensing avoidance pheromones and antifeedants. Here, we describe the requirements for GR33a, which is expressed widely in gustatory receptor neurons (GRNs) that respond to aversive chemicals. Gr33a mutant flies were impaired in avoiding all nonvolatile repellents tested, ranging from quinine to denatonium, lobeline, and caffeine. Gr33a mutant males also displayed increased male-to-male courtship, implying that it functioned in the detection of a repulsive male pheromone. In contrast to the broadly required olfactory receptor (OR) OR83b, which is essential for trafficking other ORs [4], GR66a and GR93a are localized normally in Gr33a mutant GRNs. Thus, rather than regulating GR trafficking, GR33a may be a coreceptor required for sensing all nonvolatile repulsive chemicals, including tastants and pheromones.

    Current Biology, Volume 19, Issue 19, 1623-1627, 17 September 2009 http://www.cell.com/current-biology/abstract/S0960-9822(09)01487-0

    14. Neural correlates of behavior in the moth Manduca sexta in response to complex odors Jeffrey A. Riffell1, H. Lei and John G. Hildebrand1 [email protected] or [email protected] Department of Neuroscience, University of Arizona, Tucson AZ 85721-0077

    With Manduca sexta as a model system, we analyzed how natural odor mixtures that are most effective in eliciting flight and foraging behaviors are encoded in the primary olfactory center in the brain, the antennal lobe. We used gas chromatography coupled with multiunit neural-ensemble recording to identify key odorants from flowers of two important nectar resources, the desert plants Datura wrightii and Agave palmeri, that elicited responses from individual antennal-lobe neurons. Neural-ensemble responses to the A. palmeri floral scent, comprising >60 odorants, could be reproduced by stimulation with a mixture of six of its constituents that had behavioral effectiveness equivalent to

    http://www.pnas.org/content/106/44/18803.abstracthttp://www.cell.com/current-biology/abstract/S0960-9822(09)01487-0#aff1#aff1http://www.cell.com/current-biology/abstract/S0960-9822(09)01487-0#aff2#aff2http://www.cell.com/current-biology/abstract/S0960-9822(09)01487-0#aff1#aff1http://www.cell.com/current-biology/abstract/S0960-9822(09)01487-0#aff1#aff1http://www.cell.com/current-biology/abstract/S0960-9822(09)01487-0#aff1#aff1http://www.cell.com/current-biology/abstract/S0960-9822(09)01487-0#bib1#bib1http://www.cell.com/current-biology/abstract/S0960-9822(09)01487-0#bib2#bib2http://www.cell.com/current-biology/abstract/S0960-9822(09)01487-0#bib3#bib3http://www.cell.com/current-biology/abstract/S0960-9822(09)01487-0#bib4#bib4http://www.cell.com/current-biology/abstract/S0960-9822(09)01487-0http://www.pnas.org/search?author1=Jeffrey+A.+Riffell&sortspec=date&submit=Submithttp://www.pnas.org/content/106/46/19219.abstract?etoc#corresp-1#corresp-1http://www.pnas.org/search?author1=H.+Lei&sortspec=date&submit=Submithttp://www.pnas.org/search?author1=John+G.+Hildebrand&sortspec=date&submit=Submithttp://www.pnas.org/content/106/46/19219.abstract?etoc#corresp-1#corresp-1mailto:[email protected]:[email protected]

  • November 2009 Volume 1 Number 1

    Xin-Cheng Zhao edited 12

    that of the complete scent. Likewise, a mixture of three floral volatiles from D. wrightii elicited normal flight and feeding behaviors. By recording responses of neural ensembles to mixtures of varying behavioral effectiveness, we analyzed the coding of behaviorally “meaningful” odors. We considered four possible ensemble-coding mechanisms—mean firing rate, mean instantaneous firing rate, pattern of synchronous ensemble firing, and total net synchrony of firing—and found that mean firing rate and the pattern of ensemble synchrony were best correlated with behavior (R = 41% and 43%, respectively). Stepwise regression analysis showed that net synchrony and mean instantaneous firing rate contributed little to the variation in the behavioral results. We conclude that a combination of mean-rate coding and synchrony of firing of antennal-lobe neurons underlies generalization among related, behaviorally effective floral mixtures while maintaining sufficient contrast for discrimination of distinct scents. PNAS November 17, 2009 vol. 106 no. 46 19219-19226 http://www.pnas.org/content/106/46/19219.abstract?etoc

    Insect Clock 15. Temperature Entrainment of Drosophila's Circadian Clock Involves the

    Gene nocte and Signaling from Peripheral Sensory Tissues to the Brain

    Hana Sehadova1, 5, Franz T. Glaser2, 5, Carla Gentile1, 5, Alekos Simoni1, Astrid Giesecke1, 4, Joerg T. Albert3 and Ralf Stanewsky1, 2

    1. School of Biological and Chemical Sciences, Queen Mary College, University of London, Mile End Road, London, E1 4NS, UK

    2. Institut für Zoologie, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany 3. The Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK 4. Present address: MRC Laboratory of Molecular Biology, Structural Biology Division, Hills Road,

    Cambridge CB2 0QH, UK 5. These authors contributed equally to this work

    Circadian clocks are synchronized by the natural day/night and temperature cycles. Our previous work demonstrated that synchronization by temperature is a tissue autonomous process, similar to synchronization by light. We show here that this is indeed the case, with the important exception of the brain. Using luciferase imaging we demonstrate that brain clock neurons depend on signals from peripheral tissues in order to be synchronized by temperature. Reducing the function of the gene nocte in chordotonal organs changes their structure and function and dramatically interferes with temperature synchronization of behavioral activity. Other mutants known to affect the function of these sensory organs also interfere with temperature synchronization, demonstrating the importance of nocte in this process and identifying the chordotonal organs as relevant sensory structures. Our work reveals surprising and important mechanistic differences between light- and temperature-synchronization and advances our understanding of how clock resetting is accomplished in nature. Neuron, Volume 64, Issue 2, 251-266, 29 October 2009 http://www.cell.com/neuron/abstract/S0896-6273(09)00638-2

    Insect Development 16. Combinatorial binding predicts spatio-temporal cis-regulatory activity

    Robert P. Zinzen1,2, Charles Girardot1,2, Julien Gagneur1,2, Martina Braun1 & Eileen E. M. Furlong1 [email protected]

    1. European Molecular Biology Laboratory, D-69117 Heidelberg, Germany 2. These authors contributed equally to this work.

    Development requires the establishment of precise patterns of gene expression, which are primarily controlled by transcription factors binding to cis-regulatory modules. Although transcription factor occupancy can now be identified at genome-wide scales, decoding this regulatory landscape remains a daunting challenge. Here we used a novel

    http://www.pnas.org/content/106/46/19219.abstract?etochttp://www.cell.com/neuron/abstract/S0896-6273(09)00638-2#aff1#aff1http://www.cell.com/neuron/abstract/S0896-6273(09)00638-2#fn2#fn2http://www.cell.com/neuron/abstract/S0896-6273(09)00638-2#aff2#aff2http://www.cell.com/neuron/abstract/S0896-6273(09)00638-2#fn2#fn2http://www.cell.com/neuron/abstract/S0896-6273(09)00638-2#aff1#aff1http://www.cell.com/neuron/abstract/S0896-6273(09)00638-2#fn2#fn2http://www.cell.com/neuron/abstract/S0896-6273(09)00638-2#aff1#aff1http://www.cell.com/neuron/abstract/S0896-6273(09)00638-2#aff1#aff1http://www.cell.com/neuron/abstract/S0896-6273(09)00638-2#fn1#fn1http://www.cell.com/neuron/abstract/S0896-6273(09)00638-2#aff3#aff3http://www.cell.com/neuron/abstract/S0896-6273(09)00638-2#aff1#aff1http://www.cell.com/neuron/abstract/S0896-6273(09)00638-2#aff2#aff2http://www.cell.com/neuron/abstract/S0896-6273(09)00638-2http://www.nature.com/nature/journal/v462/n7269/abs/nature08531.html#a1#a1http://www.nature.com/nature/journal/v462/n7269/abs/nature08531.html#a2#a2http://www.nature.com/nature/journal/v462/n7269/abs/nature08531.html#a1#a1http://www.nature.com/nature/journal/v462/n7269/abs/nature08531.html#a2#a2http://www.nature.com/nature/journal/v462/n7269/abs/nature08531.html#a1#a1http://www.nature.com/nature/journal/v462/n7269/abs/nature08531.html#a2#a2http://www.nature.com/nature/journal/v462/n7269/abs/nature08531.html#a1#a1http://www.natu