critical phenomena in general relativityscn/pres/grad_theory_lunch.pdf · general relativistic...

34
Critical Phenomena in General Relativity Scott C. Noble June 10, 2003 Dept. of Physics & Astronomy University of British Columbia Critical Phenomena in General Relativity – p.1/34

Upload: others

Post on 20-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Critical Phenomena in General RelativityScott C. Noble

June 10, 2003

Dept. of Physics & Astronomy

University of British Columbia

Critical Phenomena in General Relativity – p.1/34

Page 2: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Outline

Introduction to General Relativity (GR) and Numerical Relativity

General Relativistic Hydrodynamics

Neutron Stars

Introduction to Critical Phenomena in GR

Results

Conclusion

Critical Phenomena in General Relativity – p.2/34

Page 3: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Introduction to General Relativity

Newton Einstein

Flat, Cartesian Geometry Curved, Lorentzian Geometry

dt , d~r2 = constants ds2 =

µ,ν gµνdxµdxν = constant

Instantaneous Forces, Signals Local-frame’s speed limit = c

~FGravity = −m~∇φ No ~FGravity, just free-fall!

~FTotal = m~a Gµν = 8πTµν µ, ν ∈ {0, 1, 2, 3}

Simple, linear PDE’s Difficult, many highly-nonlinear PDE’s,

in general

Critical Phenomena in General Relativity – p.3/34

Page 4: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

The Arnowitt-Deser-Misner (ADM) 3+1 Formalism

ds2 =

−α2 + βiβi

dt2 + 2βidtdxi + gijdxidxj

(t)ijg

ab

t

Σ t + dt

(M, g )

gij (t+dt)

��

Σ (x , t)j

α

βjdt

a tan

α, lapse, relates coord. time to propertime

βj , shift, how xj translates betweenslices;

na, time-like unit normal vector to Σ

gij , spatial metric on Σ

ta = αna + βa, time-like tangent to coordi-

nate’s world line.

Critical Phenomena in General Relativity – p.4/34

Page 5: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

ADM continued

ADM = constrained Hamiltonian formulation of GR;

Foliating spacetime provides “time direction” through slices → (Cauchy) InitialValue Problem;

gij(t, xk) and extrinsic curvature, Kij(t, x

k), are the dynamical variables, whereKij is a conjugate momentum to gij (Kij ≡ − 1

2£ngij)

gµν = 10 “fields”, 4 Coordinate Conditions, 4 Constraints

(10 - 4 - 4) = 2 Dynamical degrees of freedom in EQ’s which follow 2nd-order

hyperbolic PDE’s or wave equations→ Gravitational Waves, aka Ripples in the Fabric of Spacetime.... !!

Critical Phenomena in General Relativity – p.5/34

Page 6: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Fluid and Geometry Equations

Metric:

ds2 = −α (r, t)2 dt2 + a (r, t)2 dr2 + r2

dθ2 + sin2θdφ2�

Stress-Energy Tensor:

Tab = (ρ◦ + ρ◦ε + P )uaub + Pgab

Equations of Motion: Local Conservation of Energy and Particle Number

∇µT µν = 0 , ∇µ (ρ◦u

µ) = 0

Equation of State

P = (Γ − 1)ρ◦ε

Critical Phenomena in General Relativity – p.6/34

Page 7: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

D = aρ◦W , S = (ρ + P ) W 2v , τ = S/v − D − P

v =aur

αut, W 2 =

1

1 − v2

Slicing Condition :

α′

α= a2

4πr (Sv + P ) +1

2r�

1 − 1/a2

Hamiltonian Constraint :

a′

a= a2

4πr (τ + D) −1

2r

1 − 1/a2

grr Evolution :

a = −4πrαa2S

Critical Phenomena in General Relativity – p.7/34

Page 8: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Fluid Equations of Motion:

∇µTµν = 0 , ∇µJµ

ν = 0

q + 1r2

(

r2 αa f

)′= ψ

q =

D

S

τ

, f =

Dv

Sv + P

v (τ + P )

, ψ =

0

Σ

0

, w =

ρ◦

v

P

Σ ≡ Θ +2Pα

ra

Θ ≡ αa

[

(Sv − τ − D)

(

8πrP +1

2r

(

1 − 1/a2)

)

+P

2r

(

1 − 1/a2)

]

Critical Phenomena in General Relativity – p.8/34

Page 9: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Neutron Stars

NS = Big “Nucleus”, consists primarily

of neutrons in condensed state;

Most compact matter (non-BH) object;

ρAvg = 2 × 1018 kg/m3, ⇒ 1km3 ofNS = MEarth

⇒ Need GR to properly describe;

Model as static, spherical solution toGµν = 8πTµν

⇒ Tolman-Oppenheimer-Volkoff equa-tions.

Critical Phenomena in General Relativity – p.9/34

Page 10: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

A TOV, or Static Star, Solution

Critical Phenomena in General Relativity – p.10/34

Page 11: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Mass v. ln ρ◦(r = 0)

Critical Phenomena in General Relativity – p.11/34

Page 12: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Evolution of a “Static” Star Solution

Critical Phenomena in General Relativity – p.12/34

Page 13: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

A Decade of Critical Phenomena

M. W. Choptuik “Universality and Scaling in Gravitational Collapse

of a Massless Scalar Field”, PRL 70, 1, January 4, 1993.

Crit. Phen. observed anywhere you have (BH)/(No BH);

“Tuning” of initial data to Critical Solution−→ eliminate the 1 unstable mode from solution;

General feature of gravitational collapse, observed in

many different matter models (even w/o matter!: Brill Gravitational Waves)

Some Crit. Solutions are “Naked Singularities”!

Critical Phenomena in General Relativity – p.13/34

Page 14: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Systems Found to Exhibit Critical Phenomena

Critical Phenomena in General Relativity – p.14/34

Page 15: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Types of Crit. Phen.

Type I Type II

Discontinuous “Phase” Transition Continuous “Phase” Transition

MBH → M∗ > 0 MBH → 0

Static or Oscillatory Cont. or Discretely Self-similar

thang ∝ |p − p∗|−γ MBH ∝ |p − p∗|γ , Tmax ∝ |p − p∗|2γ

Critical Phenomena in General Relativity – p.15/34

Page 16: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Black Hole Mass Scaling

Critical Phenomena in General Relativity – p.16/34

Page 17: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Cont. and Discrete Self-Similarity of Type-II

Critical Phenomena in General Relativity – p.17/34

Page 18: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Types in TOV Solutions

Critical Phenomena in General Relativity – p.18/34

Page 19: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Type-I Transition

Critical Phenomena in General Relativity – p.19/34

Page 20: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Tuning Type-I Solution

Critical Phenomena in General Relativity – p.20/34

Page 21: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Typical Type-I Critical Solution

Critical Phenomena in General Relativity – p.21/34

Page 22: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Matching with Unstable Solution

Critical Phenomena in General Relativity – p.22/34

Page 23: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Movie #1 : NearCrit.mpg

Critical Phenomena in General Relativity – p.23/34

Page 24: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Far from Turn-over Point, Dispersal/BH

Critical Phenomena in General Relativity – p.24/34

Page 25: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Crit. Sol’n Nearly Stable Near Turn-over Point

Critical Phenomena in General Relativity – p.25/34

Page 26: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Critical Phenomena in General Relativity – p.26/34

Page 27: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Initial Data : TOV Solution

Critical Phenomena in General Relativity – p.27/34

Page 28: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Initial Data : TOV + In-going Velocity

Critical Phenomena in General Relativity – p.28/34

Page 29: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Parameter Space of Final States

Critical Phenomena in General Relativity – p.29/34

Page 30: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

CSS Solutions of Ideal-gas and Ultra-rel.

Comparison of dimensionless

quantities:

ω ≡ 4πr2a2ρ

a =√

grr

v =au

r

αut = Eulerian Velocity

(uµ= Fluid’s 4-velocity)

Star parameters at t = 0:

ρ◦ (r = 0) = 0.05

P = ρ2◦ , ε = P/ρ◦

Critical Phenomena in General Relativity – p.30/34

Page 31: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Scaling of Tmax: Different “Families”

γ p∗

0.94272 0.46875367383

0.94234392 0.42990315097

0.918693 0.4482047429836

Suggests scaling is fairlyindependent of:

Functional form of

perturbation;

Initial star configuration;

Critical Phenomena in General Relativity – p.31/34

Page 32: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Scaling Parameters

Test Type ρc Floor ∆r U γ p∗

- 0.05 2.5 × 10−19 4h U1 0.94272 0.46875367383

Floor 0.05 2.5 × 10−17 4h U1 0.94358 0.46875350285

Floor 0.05 2.5 × 10−15 4h U1 0.9469707 0.4687516089

Family 0.05 2.5 × 10−19 4h U2 0.94234392 0.42990315097

Family 0.0531 2.5 × 10−19 4h U1 0.918693 0.4482047429836

Our average : γ = 0.94 ± 0.01

Brady et al. (2002) (averaged over diff. methods): γ = 0.95 ± 0.02

Critical Phenomena in General Relativity – p.32/34

Page 33: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Type-II Conclusions

(Ideal-gas Type-II Sol’n.) ' (Ultra-rel. Type-II Sol’n.) for Γ = 2

γideal

' γultra−rel.

Novak (2001) did not sufficiently tune toward p∗

Critical Phenomena in General Relativity – p.33/34

Page 34: Critical Phenomena in General Relativityscn/pres/grad_theory_lunch.pdf · General Relativistic Hydrodynamics Neutron Stars Introduction to Critical Phenomena in GR Results Conclusion

Conclusions

• Type-I and Type-II Phen. observed in TOV solutions;

• Some evidence for overlap in param. space of Type-I/Type-II;

• Type-I Crit. Sol’n = Unstable Sol’n w/ same mass;

• Type-II Crit. Sol’n = Crit. Sol’n of Self-similar EOS fluid;

Critical Phenomena in General Relativity – p.34/34