cropsim pres

Upload: amal-prasad

Post on 14-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Cropsim Pres

    1/35

    Simulation of C and N dynamicsin soil and plants

    R.A. Poluektov & V.V.Terleev

    Agrophysical Research Institute,St.-Petersburg, Russia

  • 7/27/2019 Cropsim Pres

    2/35

    Model structure

  • 7/27/2019 Cropsim Pres

    3/35

    Input data

    Soil Texture, bulk density, hygroscopy, wilting point, fieldcapacity, saturation point, saturation hydraulic conductivity

    Climate (daily weather

    values)

    Minimum and maximum air temperature, minimum air humidity, precipitation, average wind speed, sunshineduration

    Management Irrigation and fertilization regimes

    Initial conditions Sowing date; water and nitrogen content in one meter soillayer; soil organic matter and mass of microbial populationin 0-30 cm layer

  • 7/27/2019 Cropsim Pres

    4/35

    State variables and output

    State variables Soil water moisture, soil temperature, and nitrogencontent according to layers: 0-10, 10- 20,,90 -100 cm;Physiological time (0 at emergency, 1 at anthesys, 2

    at full ripening)

    Output (daily variables)

    Primary assimilates; development stages; leaf area index;

    dry mass of the leaves, stems, roots and ears;evapotranspiration; water storage and nitrogen content inone meter soil layer; infiltration of soil water; nitrogenleaching; grain yield

  • 7/27/2019 Cropsim Pres

    5/35

    Submodels

    Processes

    Radiation regime of crop, turbulent exchange betweenair and plant, photosynthesis and respiration, plantdevelopment stages, crop transpiration and soilevaporation, soil water dynamics, nitrogen

    transformation in soil and plant

    Parameters

    Parameters of: photosynthesis unit (3 items); plantdevelopment (6 10 items according to phases);distribution keys (6 4 items according to plant organs);hydrological constants (4); N-transformation in soil (5);

    N-uptake by root (2)

  • 7/27/2019 Cropsim Pres

    6/35

    Shell structure of AGROTOOL

    Place selection

    Place selection

    Field

    selection

    Field

    selection

    Culture selection

    Choice of the yearmanagement and

    the date of forecast

    Choice of the yearmanagement and

    the date of forecast

    D

    T

    B

    SE

    D

    T

    B

    SE

    Estimationand

    forecast

  • 7/27/2019 Cropsim Pres

    7/35

    Model features

    Initialization is done by means of management program (Model shell), which constitutes simulation systemAGROTOOL (together with model itself) and includes selection of: simulation place (geographic coordinates and concretefield); culture (spring and winter wheat, spring burley, winter ray, potatoes, oats, perennial grasses); management(irrigation and fertilization regimes); task type (analysis, forecast, weather generation); calculation year; and initial state(sowing date, water and nitrogen content in one meter soil layer).

    Resolution in time and space (profile ) is following: basic time step is 24 h (units of photosynthesis, water and nitrogen dynamics use hourly internal time step) basic spatial step on vertical direction is 10 cm(up to 100 cm).

    Peculiarities of the model are: New method of calculation of plant transpiration and soil water evaporation based on modification Penman-Monteith

    method;Adaptive distribution key for calculation of root/shoot ratio using C:N interaction in plant canopy;Automotive system for calculation of the parameters of pedotransfer functions.

  • 7/27/2019 Cropsim Pres

    8/35

    Model identification consists of 5 steps:

    1) Calibration of water dynamics unit,

    2) Determination of parameters of development unit,

    3) Determination of water stress function,

    4) Calibration of nitrogen dynamics unit,

    5) Determination of parameters of forecast function.

  • 7/27/2019 Cropsim Pres

    9/35

    Parameters controlling temp of plantdevelopment:

    T 0 biological zero, 0C;

    c1 , coefficient of extra plant heating, 0C;

    opt boundary of comfort zone for soil water potential, cm;

    S 0 water stress coefficient;

    T Ph boundary of development change, degree-days.

  • 7/27/2019 Cropsim Pres

    10/35

    Water stress function

    )( _ )1( SS BWstr W W

    j

    l s p

    j

    l

    l E l E

    l PR jSS

    0

    0

    )()(

    )()(

    Wstr B a a SS a SS a SS _ 0 1 22

    33

    Correction of dry matter accumulation

    Argument of water stress function

    Stress function

  • 7/27/2019 Cropsim Pres

    11/35

    Calculation of root:shoot ratio

    Shoot

    Root

    CO 2

    NO 2 , NH 4

    NH 4 PrimAss

    (Two flows model)

  • 7/27/2019 Cropsim Pres

    12/35

    C and N transformation in soil

    Soil organicmatter

    Microbal biomass

    NH4+

    Mineralization

    Immobilization

    Nitrification

    NO3-Immobilization

    N uptake byroots

    Losses

    Ficsation

    Clayminerals

    Mineralfertilizers

    Denitrification

    Losses

    N2+H2O NH3

  • 7/27/2019 Cropsim Pres

    13/35

    )()1()(

    )()(

    k ck W

    k ck W

    rs s

    rsr

    ,)()(

    ,)()(

    root cr rd

    shoot c s sd

    N Rk W k N

    N S k W k N

    RT

    T k N av dt t k V k N

    )1(

    ,)()1()(

    )()1( k k V N N av )()( k W S k r root

    )()()( k N k N k N avrd sd

    Distribution of PrimAss:

    N demand by shoot

    and root

    N uptake by roots:

    N balance:

    Calculation of crs

  • 7/27/2019 Cropsim Pres

    14/35

    Determination of root:shoot ratio

    1- N-dependenceof crop,

    2 N-uptake by

    roots

    0

    1

    2

    3

    0 0,2 0,4 0,6 0,8 1

    Part of assimilates allocated to roots

    N i t r o g e n a

    b s o r b e

    d b y c r o p

    1

    2

  • 7/27/2019 Cropsim Pres

    15/35

    Dependence of root:shoot ratio on N-doze

    1- flowering phase,

    2 fullripening

    phase

    0

    0,05

    0,1

    0,15

    0,2

    0,25

    0,3

    0,35

    0 20 40 60 80 100

    Nitrogen fertilization dose, kg ha -1

    R o o

    t : s h o o

    t r a

    t i o

    1

    2

  • 7/27/2019 Cropsim Pres

    16/35

    Dynamics of root:shoot ratio byvarious N-fertilization

    1- variant without N,

    2 N=45 kg ha-1

    ,3 N=90 kg ha-1

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5 0,6

    0,7

    0,8

    0,9

    0 10 20 30 40 50 60 70 80 90

    Days of vegetation starting from sowing

    R o o

    t : s h o o r r a

    t i o

    1 2

    3

  • 7/27/2019 Cropsim Pres

    17/35

    ,

    1 ab MH SP

    MH

    wherevolumetric soil moisture,matrix potential,

    MH maximum hygroscopy, SP saturation point, a, b empirical parameters.

    Model of water retention curve

  • 7/27/2019 Cropsim Pres

    18/35

    Variants of calculation of hydrological constants

    , , , ,Variants Input data Results of calculation

    1 r , MH, WP, SP LC, FC, UC

    2 r , WP, SP , soil texture MH, LC, FC, UC

    3 r , MH, SP soil texture LC, WP, FC, UC

    4 r , SP MH, LC, WP, FC, UC

    1 r, r S , MH, WP LC, FC, UC, SP

    2 r, r S , WP, soil texture MH, LC, FC, UC, SP

    3 r, r S , MH, soil texture LC, WP, FC, UC, SP

    4 r, r S MH, LC, WP, FC, UC, SP

    r - soil bulk density, r S - solid phase density , M H maximum hygroscopy,SP - saturation point, WP wilting point , F C field capacity,L C lower capillary moisture, UC upper capillary moisture.

  • 7/27/2019 Cropsim Pres

    19/35

    0

    1

    2

    3

    4

    5

    6

    0,0 0,1 0,2 0,3 0,4 0,5 0,6

    4

    3

    2 1

    Volumetric soil moisture -d /d( pF ), cm 3 cm-3

    LC

    UC

    p F =

    l o g 1 0 ( -

    ) , w

    h e r e - m a t r i x p o t e n

    t i a l c m

    H 2

    O

    1 water retention curve,

    2 specific water capacity,

    3 dependence of UC on UC ,

    4 - dependence of LC on LC

    Calculation of water retention curve for the soil of Men'kovo experimentation station using the followingexperimental data:

    r , r S , M H.

  • 7/27/2019 Cropsim Pres

    20/35

    0

    1

    2

    3

    4

    5

    6

    0,0 0,1 0,2 0,3 0,4 0,5 0,6

    Volumetric soil moisture -d /d( pF ), cm 3 cm-3

    p F =

    l o g 1 0

    ( -

    ) , w

    h e r e - m a t r i x p o

    t e n t

    i a l c m

    H 2

    O

    Comparison of calculated and experimental data

    o experimental points,

    -.- - interpolated curve,

    curve calculatedusing experimental data

  • 7/27/2019 Cropsim Pres

    21/35

    Computer system for estimation soil hydraulic parameters

  • 7/27/2019 Cropsim Pres

    22/35

    Estimation of Badlauchstadt pedotransfer functions

    This program was used for estimation of the parametersincluded in pedotransfer functions. The experimental data for soil texture and saturated hydraulic conductivity were used for

    this purpose. Two additional data, apart from available MH and SP , were necessary for estimation of the pF -curve

    parameters. Such hydraulic soil parameters as field capacity( FC ) and wilting point ( WP ) were chosen for this purpose.The comparison of simulated pF -curves with experimentaldata is presented in the following Figs.

  • 7/27/2019 Cropsim Pres

    23/35

    Comparison between simulated water retention curves andexperimental data sets presented by Franko et al.

    (site Badlauchstadt)

    Fig. 1. 20-24 cm Fig. 2. 45-49 cm Fig. 3. 115-119 cm

  • 7/27/2019 Cropsim Pres

    24/35

    Comparison of simulated and real winter ray grain yield(Menkovo experimentation station)

  • 7/27/2019 Cropsim Pres

    25/35

    Dependence of spring barley grain yieldon N- dose (Menkovo experimentation station)

    10

    20

    30

    40

    0 20 40 60 80 100 120

    N-fertilization dose kg ha-1

    G r a

    i n y i e l d

    d t h a - 1

    1

    2

    3

  • 7/27/2019 Cropsim Pres

    26/35

    Nitrates leaching (Menkovo experimentation station)

    0

    30

    60

    90

    120

    150

    0 20 40 60 80 100 120

    N-fertilization dose, kg ha -1

    N - N

    O 3 l e a c h

    i n g ,

    k g

    h a

    - 1 y

    e a r -

    1

    1

    3

    2

  • 7/27/2019 Cropsim Pres

    27/35

    Yield and dry mass

    0

    20

    40

    60

    80

    100

    120

    0 20 40 60 80 100 120 140

    Days since planting

    D

    r y m a s s o

    f p l a n t o r g a n s , d t h a - 1

    1

    23

    4

    Dynamics of dry mass of potatoes plant organs.Badlauchstadt, 2001 yr.

    1 - leaves,2 - stems,3 - leaves + stems,4 - tubers, experimental data for leaves.

  • 7/27/2019 Cropsim Pres

    28/35

    Yield and dry mass

    0

    10

    20

    30

    40

    50

    60

    70 90 110 130 150 170

    Days on Julian calender

    D r y m a s s o

    f p l a n t o r g a n s ,

    d t h a - 1

    1

    2

    3

    4

    Dynamics of dry mass of spring barley plant organs.Badlauchstadt, 2000 yr.

    1 - leaves,2 - stems,3 - aboveground,4 - ears,

    - experimental data for aboveground mass.

  • 7/27/2019 Cropsim Pres

    29/35

    Yield and dry mass

    0

    20

    40

    60

    80

    100

    120

    140

    160

    100 150 200 250 300

    Days since sowing

    D r y m

    a s s o f p l a n t o r g a n s d t h a - 1

    1

    2

    3

    4

    Dynamics of dry mass of winter wheat plant organs.Badlauchstadt, 2001 yr.

    1 - leaves,2 - stems,3 - aboveground,4 - ears,

    - experimental data for aboveground,o - experimental data for ears.

  • 7/27/2019 Cropsim Pres

    30/35

    Water status

    10

    15

    20

    25

    30

    0 20 40 60 80 100 120 140

    Days since planting

    W a t e r s t o r a g e

    i n o n e m e t e r l a y e r

    , c m

    Soil water dynamics under potato crop,Badlauchstadt, 2001 yr.

    measurement data

  • 7/27/2019 Cropsim Pres

    31/35

    Water status

    10

    15

    20

    25

    30

    40 60 80 100 120 140 160 180

    Days on Julian calender

    W a t e r s t o r a g e

    i n o n e m e t e r l a y e r , c

    m

    Soil water dynamics under spring barley crop,Badlauchstadt, 2000 yr.

    - measurement data

  • 7/27/2019 Cropsim Pres

    32/35

    Results of statistical treatment for water content

    Culture/year Mean value, cm Error, cm MSE, cm

    Spring barley/2000 19.0

    -0.208 1.04

    Potatoes/2001 22.4 -1.16 0.95

    The error was calculated according to formula:

    iiiw WS WSsimn

    Ewn

    E exp11

    where WSsimi is simulated soil water storage corresponding to i-th measurement, n istotal number of measurements. Mean square error (MSE) is the square root from thevariance of the errors Ew i.

  • 7/27/2019 Cropsim Pres

    33/35

    Results of statistical treatment for dry mass

    Relative error was calculated on formula:

    i

    ii

    Bsim B Bsim

    n RE

    exp1,

    here Bsim i is simulated value of dry mass, Bexp i corresponding experimental value,n total number of measurements. Mean square error (MSE) was calculated as squareroot from variance of RE i.

    Culture/year Relative error

    MSE

    Spring barley/2000 0.065 0.24

    Potatoes/2001 0.061 0.30

    Winter wheat/2001/02 -0.21 0.44

  • 7/27/2019 Cropsim Pres

    34/35

    Conclusion

    Generally, there are externally few things inthe World, which we really anything knowabout. In the most cases it only seems to us

    that we know.

    Kharuki Murakami

    Hunting on sheep

  • 7/27/2019 Cropsim Pres

    35/35

    Thank you