crosswind behavior of rail vehicles: a systematic ... · crosswind behavior of rail vehicles: a...

22
Crosswind Behavior of Rail Vehicles: A Systematic Investigation of the Sensitivity to Vehicle Parameters Prof. Dr.-Ing. Rolf Naumann, Dipl.-Ing (FH) Norman Welge LSA - Labor für Strukturanalyse

Upload: vuongnhi

Post on 28-Aug-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

  • Crosswind Behavior of Rail Vehicles:A Systematic Investigation of the Sensitivity to Vehicle Parameters

    Prof. Dr.-Ing. Rolf Naumann,Dipl.-Ing (FH) Norman WelgeLSA - Labor fr Strukturanalyse

  • Accidents under influence of crosswind are known since the beginning of 19. century (Belgium, Japan, Switzerland).

    With the introduction of light-weighted vehicles and the increase of the vehicle speed crosswind is regarded as a potential safety risk.

    - In Germany and Europe the crosswind proof is required for the

    Introduction

    2 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    - In Germany and Europe the crosswind proof is required for thehomologation of trains.

    - For an efficient design of the vehicles and the evaluation of vehicle changes it is important to know the substantial parameters and their influence on cross-wind stability.

    Systematic investigation of the sensitivity of vehicle parameters to characteristic windcurves(Diploma-Thesis of Dipl.-Ing (FH) Norman Welge)

  • German Guideline Ril 807.04

    National guideline

    Definition of vehicle classes depending on the speed

    Requirements for infrastructure and vehicles

    DIN EN 14067-6 Anforderungen zur Bewertung von Seitenwind

    Standards according crosswind

    3 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    DIN EN 14067-6 Anforderungen zur Bewertung von Seitenwind

    European standard

    Description of the state of the art of crosswind proof

    No definition of limits or reference values

    TSI HS RST

    European standard for high-speed trains class 1 vehicles fasterthan v=250 km/h

  • Approach for the sensitivity study:

    Parameter-study based on P2-method according Ril807.04

    Using SIMPACK for the multi-body simulation

    Two different vehicles (maximum speed 140 km/h and 200km/h)

    Variation of selected vehicle parameters within a defined range

    Task of the investigation

    4 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    Variation of selected vehicle parameters within a defined range

    Calculation of selected characteristic wind curves

    Evaluation of the sensitivity of the vehicle parameter

    Generalization of the results is limited, because only two vehicles were considered.

  • Basic factors

    Wind

    Vehicle speed

    Topographie

    Meteorology

    Infrastructure

    Vehicleparameter

    5 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    QiWindwardQiLeeward

    Lateral forces

    Alignment,Admitted speeds(VZG)

    Infrastructure

    Assessment by Q-criterion The main focus lies on the vehicles

  • Meteorology: wind scenario and vehicle response

    Wind Scenario: Excitation for the vehicle Definition of a gust scenario called chinese hat Derived from meteorological measurements Time-dependent wind function divided in

    basic wind load (quasi-static) peak wind load (dynamic excitation)

    6 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    Fig 1: Time history of the wind scenario

    Example for a dynamic response of the vehicle: Evaluation of the Q-forces on the windward side Filtered with 2 Hz Butterworth 4. order Oscillation during basic wind load (depending on

    the vehicle) Peak value with an unloading of app. 9 kN

    (90 % unloading)

    Fig. 2: Time history of the Q-forces windware side

  • Criterion for crosswind stability

    Fwind

    Q-criterion (tilting criterion):

    Average value of wheel unloading, Q, of the

    most critical running gear

    Unloading shall not exceed 90 % of the average

    static wheel loads Q0

    7 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    Fwind

    SOK Unloading

    static wheel loads Q0

    CWC obtained refer to the filtered (2 Hz

    Butterworth 4. order) peak wind of the time-

    dependent gust

  • CWC represent the wind speed a train can withstand, depending on the

    - vVehicle - vehicle speed

    - aq - uncompensated lateral acceleration

    - beta - wind angle

    Characteristic Wind Curves (CWC)

    8 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    20

    22

    24

    26

    28

    30

    32

    34

    36

    38

    40

    80 100 120 140 160 180 200

    vW

    ind

    [m

    /s]

    vVehicle [km/h]

    CWC for wind angle 90

    aq=0,0 m/s

    aq=0,5 m/s

    aq=1,0 m/s

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    120

    0 20 40 60 80

    vW

    ind

    [m

    /s]

    wind angle beta [Degree]

    CWC for vmax=200 km/h

    aq=0,0 m/s

    aq=0,5 m/s

    aq=1,0 m/s

  • Most detailed method for calculating CWC

    All relevant parameters and characteristics for the description of the

    dynamic behavior are considered

    Associated measured aerodynamic coefficients were used

    Using a verified multi-body simulation tool with wheel/rail contact

    P2-method for calculating CWC

    9 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    Using a verified multi-body simulation tool with wheel/rail contact

    Simulation of a real wind scenario (chinese hat)

  • Vehicles and SIMPACK models

    Regio driving trailer

    vmax = 140 km/h

    weight = 22,3 t

    vehicle class D acc. RIL 807.04

    Intercity driving trailer

    vmax = 200 km/h

    weight = 32,8 t

    vehicle class C acc. RIL 807.04

    10 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

  • CWC calculation with measured aerodynamic coefficients

    Wind angle is 90, aq=0,0 m/s, Vehicle speed in 20 km/h interval:

    120 km/h 200 km/h for Intercity train

    80 km/h 140 km/h for Regio train

    Parametervariation

    Varied parameters:40

    CWC for aq=0,0 m/s and wind angle 90

    11 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    Varied parameters:

    Mass of vehicle body (+-15%)

    Vertical center of gravity (c.g.)

    changed (+-15%)

    Aerodynamic coefficients cmx,

    cmy, cmz, cy, cz (+-30%)

    28

    30

    32

    34

    36

    38

    40

    80 100 120 140 160 180 200

    vWin

    d [

    m/s

    ]

    vVehicle [km/h]

    Regio

    Intercity

  • Variation vehicle body mass

    Masse [kg] -15% -10% -5% 0% 5% 10% 15%

    Regio 18955 20070 21185 22300 23415 24530 25645

    Intercity 27880 29520 31160 32800 34440 36080 37720

    3

    4

    CWC variation vehicle body mass

    IC v=200 km/h

    IC v=180 km/h

    IC v= 160 km/h

    12 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    -4

    -3

    -2

    -1

    0

    1

    2

    -15 -10 -5 0 5 10 15

    de

    lta

    CW

    C [

    m/s

    ]

    change mass [%]

    IC v= 160 km/h

    IC v=140 km/h

    IC v=120 km/h

    Regio v=140 km/h

    Regio v=120 km/h

    Regio v=100 km/h

    Regio v=80 km/h

  • Variation center of gravity of vehicle body

    cg [m] -15% -10% -5% 0% 5% 10% 15%

    Regio 1,505 1,593 1,682 1,770 1,859 1,947 2,036

    Intercity 1,491 1,579 1,666 1,754 1,842 1,929 2,017

    0,6

    0,8

    CWC variation center of gravity vertical

    IC v=200 km/h

    IC v=180 km/h

    IC v=160 km/h

    13 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    -0,8

    -0,6

    -0,4

    -0,2

    0,0

    0,2

    0,4

    -15 -10 -5 0 5 10 15

    de

    lta

    CW

    C [

    m/s

    ]

    change cg [%]

    IC v=140 km/h

    IC v=120 km/h

    Regio v=140 km/h

    Regio v=120 km/h

    Regio v=100 km/h

    Regio v=80 km/h

  • Variation aerodynamic coefficient cmx

    Cm

    x [

    -]

    Regio cmx variation

    30%

    20%

    10%

    cmx [-]6

    8

    CWC variation cmx

    IC v=200 km/h IC v=180 km/h

    IC v=160 km/h IC v=140 km/h

    14 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    0 10 20 30 40 50 60 70 80 90

    Cm

    x [

    wind angle []

    cmx [-]

    -10%

    -20%

    -30%

    0 20 40 60 80

    cmx

    [-]

    wind angle []

    IC cmx variation30%

    20%

    10%

    cmx [-]

    -10%

    -20%

    -30%

    -6

    -4

    -2

    0

    2

    4

    6

    -30 -20 -10 0 10 20 30

    de

    lta

    CW

    C [

    m/s

    ]

    change cmx [%]

    IC v=160 km/h IC v=140 km/h

    IC v=120 km/h Regio v=140 km/h

    Regio v=120 km/h Regio v=100 km/h

    Regio v=80 km/h

  • Variation aerodynamic coefficient cmy

    ]

    Regio cmy variation

    -30%

    -20%

    -10%

    0,8

    CWC variation cmy

    IC v=200 km/h IC v=180 km/h

    IC v=160 km/h IC v=140 km/h

    15 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    0 10 20 30 40 50 60 70 80 90

    cmy

    [-]

    wind angle []

    -10%

    cmy [-]

    10%

    20%

    30%

    0 10 20 30 40 50 60 70 80 90

    cmy

    [-]

    wind angle []

    IC cmy variation

    -30%

    -20%

    -10%

    cmy [-]

    10%

    20%

    30%

    -0,6

    -0,4

    -0,2

    0,0

    0,2

    0,4

    0,6

    -30 -20 -10 0 10 20 30

    de

    lta

    CW

    C [

    m/s

    ]

    change cmy [%]

    IC v=160 km/h IC v=140 km/h

    IC v=120 km/h Regio v=140 km/h

    Regio v=120 km/h Regio v=100 km/h

    Regio v=80 km/h

  • Variation aerodynamic coefficient cmz

    cmz

    [-]

    Regio cmz variation

    30%

    20%

    10%

    cmz [-]

    0,8

    1,0

    CWC variation cmz

    IC v=200 km/h IC v=180 km/h

    IC v=160 km/h IC v=140 km/h

    16 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    0 20 40 60 80

    cmz

    [-]

    wind angle []

    IC cmz variation

    30%

    20%

    10%

    cmz [-]

    -10%

    -20%

    -30%

    0 10 20 30 40 50 60 70 80 90

    cmz

    [

    wind angle []

    cmz [-]

    -10%

    -20%

    -30%

    -1,0

    -0,8

    -0,6

    -0,4

    -0,2

    0,0

    0,2

    0,4

    0,6

    -30 -20 -10 0 10 20 30

    de

    lta

    CW

    C [

    m/s

    ]

    change cmz [%]

    IC v=160 km/h IC v=140 km/h

    IC v=120 km/h Regio v=140 km/h

    Regio v=120 km/h Regio v=100 km/h

    Regio v=80 km/h

  • Variation aerodynamic coefficient cy

    2,0

    CWC variation cy

    IC v=200 km/h IC v=180 km/h

    ]

    Regio cy variation

    30%

    20%

    10%

    17 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    -1,5

    -1,0

    -0,5

    0,0

    0,5

    1,0

    1,5

    -30 -20 -10 0 10 20 30de

    lta

    CW

    C [

    m/s

    ]

    change cy [%]

    IC v=160 km/h IC v=140 km/h

    IC v=120 km/h Regio v=140 km/h

    Regio v=120 km/h Regio v=100 km/h

    Regio v=80 km/h0 10 20 30 40 50 60 70 80 90

    cy [

    -]

    wind angle []

    10%

    cy [-]

    -10%

    -20%

    -30%

    0 10 20 30 40 50 60 70 80 90

    cy [

    -]wind angle []

    IC cy variation

    30%

    20%

    10%

    cy [-]

    -10%

    -20%

    -30%

  • Variation aerodynamic coefficient cz

    cz [

    -]

    Regio cz variation

    30%

    20%

    10%

    cz [-]1,5

    2,0

    CWC variation cz

    IC v=200 km/h IC v=180 km/h

    IC v=160 km/h IC v=140 km/h

    18 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    0 10 20 30 40 50 60 70 80 90

    cz [

    wind angle []

    cz [-]

    -10%

    -20%

    -30%

    0 10 20 30 40 50 60 70 80 90

    cz [

    -]

    wind angle []

    IC cz variation

    30%

    20%

    10%

    cz [-]

    -10%

    -20%

    -30%

    -1,5

    -1,0

    -0,5

    0,0

    0,5

    1,0

    1,5

    -30 -20 -10 0 10 20 30

    de

    lta

    CW

    C [

    m/s

    ]

    change cz [%]

    IC v=160 km/h IC v=140 km/h

    IC v=120 km/h Regio v=140 km/h

    Regio v=120 km/h Regio v=100 km/h

    Regio v=80 km/h

  • Comparison of parameter changes

    4

    5

    6

    7

    IC parameter sensitivity on CWC

    v=120 km/h, aq=0,0 m/s

    c.g. mass

    Cmx Cmy

    Cy Cmz

    Cz

    4

    5

    6

    7

    Regio parameter sensitivity on CWC

    v=120 km /h, aq=0,0 m/s

    c.g. mass

    Cmx Cmy

    Cy Cmz

    Cz

    19 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

    de

    lta

    CW

    C [

    m/s

    ]

    parameter change [%]

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

    de

    lta

    CW

    C [

    m/s

    ]

    parameter change [%]

  • Parameter Ranking Quality Variation of the results

    cmx 1 hoch 0,88

    mass 2 hoch 0,77

    cz 3 mittel 0,68

    c.g. 4 mittel 0,61

    cmz 5 gering 0,48

    Intercity train

    Assessment of the results

    20 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    Parameter Ranking Quality Variation of the results

    mass 1 hoch 0,69

    cmx 2 hoch 0,69

    cz 3 mittel 0,28

    c.g. 4 mittel 0,05

    cmz 5 gering 0,09

    cmy 6 gering 0,11

    cmz 5 gering 0,48

    cmy 6 gering 0,89

    Regio train

  • Due to stability problems of the Regio train model, the simulation results are partly

    corrupt

    The vehicle models are not fully verified according to the standards (RIL 807.04)

    A generalization of the results (other vehicle types, speeds) is not recommended

    But: the results give a good classification of the most important parameters

    Conclusion

    21 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld

    But: the results give a good classification of the most important parameters

    Most significant parameters are the vehicle mass and the aerodynamic

    coefficient (cmx roll moment)

    Less important are cmz and cmy

    Parameter variations are more or less independent of the vehicle speed

    More investigations are necessary for an overall assessment of the sensitivity

  • Thank you for your attention!

    22 / 22Crosswind Behavior of Rail Vehicles 19.05.2011 University of Applied Sciences Bielefeld, Referent: Prof. Dr.-Ing. Rolf Naumann Leiter Labor fr Strukturanalyse LSA Campus Bielefeld