crystal field theory focus: energies of the d orbitals assumptions 1.ligands:negative point charges...

65
Crystal Field Theory • Focus: energies of the d orbitals • Assumptions • 1. Ligands: negative point charges • 2. Metal-ligand bonding: entirely ionic • strong-field (low-spin): large splitting of d orbitals • weak-field (high-spin): small

Upload: james-nash

Post on 23-Dec-2015

234 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Crystal Field Theory• Focus: energies of the d orbitals

• Assumptions

• 1. Ligands: negative point charges• 2. Metal-ligand bonding: entirely ionic

• strong-field (low-spin): large splitting of d orbitals

• weak-field (high-spin): small splitting of d orbitals

Page 2: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field
Page 3: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field
Page 4: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

_ _ _

_ _

dyzdxzdxy

dz2 dx2- y2

_ _ _ _ _

isolated metal ion

d-orbitals

E

d-orbital energy level diagram for tetrahedral

only high spin

Page 5: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

dyzdxz

dxy

dz2

dx2- y2

_ _ _ _ _

isolated metal ion

d-orbitals

E

d-orbital energy level diagram square planar

__

__

__

____

only low spin

Page 6: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Crystal-Field Theory

square planar

Examples: Pd2+, Pt2+, Ir+, and Au3+.

Page 7: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

20_459

––

–– ––

dz2 dx2 – y2

dxy dyzdxz

(a) (b)

Tetrahedral Complexes

Page 8: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field
Page 9: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field
Page 10: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

High spin Low spin

Page 11: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field
Page 12: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

• Spectrochemical Series: An order of ligand field strength based on experiment:

I- Br- S2- SCN- Cl- NO3- F-

C2O42- H2O NCS- CH3CN NH3 en

bipy phen NO2- PPh3 CN- CO

Weak Field

Strong Field

N N

2,2'-bipyridine (bipy)

NH2 NH2

Ethylenediamine (en)

N

N

1.10 - penanthroline (phen)

Page 13: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Colors of Transition Metal Complexes

• Compounds/complexes that have color:

•absorb specific wavelengths of visible light (400 –700 nm)

•wavelengths not absorbed are transmitted and appear as color

Page 14: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Color and Magnetism ColorColor of a complex depends on; (i) the metal, (ii) its oxidation state & (iii) ligands (i.e., everything)

For example, pale blue [Cu(H2O)6]2+ versus dark blue [Cu(NH3)6]2+.

Partially filled d orbitals usually give rise to colored complexes because they can absorb light from the visible region of the spectrum.

Page 15: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Color and Magnetism Color

Page 16: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Visible Spectrum

White = all the colors (wavelengths)

400 nm 700 nm

wavelength, nm

higher energy lower energy

(Each wavelength corresponds to a different color)

Page 17: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field
Page 18: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Complexes and ColorThe larger the gap, the shorter the wavelength of light absorbed by electrons jumping from a lower-energy orbital to a higher one.

Page 19: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field
Page 20: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

[Ti(H2O)6]3+

Absorbs in green yellow.Looks purple.

Page 21: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

the spectrum for [Ti(H2O)6]3+ has a maximum absorption at 510 nm

Absorbs green & yellow,

transmits all other wavelengths, the

complex is purple.

Page 22: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Crystal-Field Theory

[Ti(H2O)6]3+

Page 23: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Electronic Configurations of Transition Metal Complexes

• d orbital occupancy depends on and pairing energy, P– e-’s assume the electron configuration with the

lowest possible energy cost– If > P ( large; strong field ligand)

• e-’s pair up in lower energy d subshell first

– If < P ( small; weak field ligand)• e-’s spread out among all d orbitals before any pair up

Page 24: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

d-orbital energy level diagramsoctahedral complex

d1

Page 25: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

d-orbital energy level diagramsoctahedral complex

d2

Page 26: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

d-orbital energy level diagramsoctahedral complex

d3

Page 27: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

d-orbital energy level diagramsoctahedral complex

d4

high spin < P

low spin

> P

Page 28: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

d-orbital energy level diagramsoctahedral complex

d5

high spin < P

low spin

> P

Page 29: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

d-orbital energy level diagramsoctahedral complex

d6

high spin < P

low spin

> P

Page 30: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

d-orbital energy level diagramsoctahedral complex

d7

high spin < P

low spin

> P

Page 31: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

d-orbital energy level diagramsoctahedral complex

d8

Page 32: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

d-orbital energy level diagramsoctahedral complex

d9

Page 33: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

d-orbital energy level diagramsoctahedral complex

d10

Page 34: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

20_441

Isomers(same formula but different properties)

Stereoisomers(same bonds, differentspatial arrangements)

Structuralisomers

(different bonds)

Opticalisomerism

Geometric(cis-trans)isomerism

Linkageisomerism

Coordinationisomerism

Page 35: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Coordination complexes: isomers

Isomers: same atomic composition, different structures

We’ll check out the following types of isomers:HydrateLinkageCis-transOptical (Enantiomers)

Different composition!

Page 36: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Water in outer sphere (water that is part of solvent)

Water in the inner sphere water (water is a ligand in the coordination sphere of the metal)

Hydrate isomers:

Page 37: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Structural Isomerism 1

• Coordination isomerism: • Composition of the complex ion varies.

• [Cr(NH3)5SO4]Br

• and [Cr(NH3)5Br]SO4

Page 38: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Coordination-Sphere Isomers

• Example[Co(NH3)5Cl]Br vs. [Co(NH3)5Br]Cl

• Consider ionization in water [Co(NH3)5Cl]Br [Co(NH3)5Cl]+ + Br-

[Co(NH3)5Br]Cl [Co(NH3)5Br]+ + Cl-

Page 39: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Structural Isomerism 2

• Ligand isomerism: • Same complex ion structure but point of

attachment of at least one of the ligands differs.

• [Co(NH3)4(NO2)Cl]Cl

• and [Co(NH3)4(ONO)Cl]Cl

Page 40: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Linkage Isomers

Page 41: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Linkage isomers

Bonding to metal may occur at the S or the N atom

Example: C NS

Bonding occurs from N atom to metal

Bonding occurs from S atom to metal

Page 42: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Linkage Isomers

[Co(NH3)5(NO2)]Cl2

Pentaamminenitrocobalt(III)chloride

[Co(NH3)5(ONO)]Cl2

Pentaamminenitritocobalt(III)chloride

Page 43: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Stereoisomers

• Stereoisomers– Isomers that have the same bonds, but different

spatial arrangements• Geometric isomers

– Differ in the spatial arrangements of the ligands

Page 44: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Stereoisomerism 1

• Geometric isomerism (cis-trans):

• Atoms or groups arranged differently spatially relative to metal ion

• Pt(NH3)2Cl2

Page 45: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field
Page 46: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

20_444

H3N

Co

H3N

NH3

NH3

Cl

Cl

H3N

Co

H3N

NH3

Cl

Cl

NH3

Cl

Cl

Co

Cl

Cl

Co

(a) (b)

Page 47: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

cis isomer trans isomerPt(NH3)2Cl2

Geometric Isomers

Page 48: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

cis isomer trans isomer[Co(H2O)4Cl2]+

Geometric Isomers

Page 49: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Stereoisomers: geometric isomers (cis and trans)

Cl-

Cl

Co Cl

NH3H3N

H3N

NH3

Cl

Co NH3NH3H3N

H3N

Cl

Cl-

Page 50: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Stereoisomers

• Optical isomers– isomers that are nonsuperimposable mirror

images• said to be “chiral” (handed)• referred to as enantiomers

– A substance is “chiral” if it does not have a “plane of symmetry”

Page 51: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Stereoisomerism 2

• Optical isomerism:

• Have opposite effects on plane-polarized light

• (no superimposable mirror images)

Page 52: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

20_448

Left hand Right hand

Mirror imageof right hand

Page 53: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Two coordination complexes which are enantiomers

NH3

Co Cl

ClH2O

H3N

H2O

NH3

Co NH3H2OCl

Cl

H2O

Page 54: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Plane of symmetry Achiral (one structure)

Chirality: the absence of a plane of symmetryEnantiomers are possible

A molecule possessing a plane of symmetry is achiral and a superimposible on its mirror image

Enantiomers are NOT possible

No plane of symmetryChiral (two enantiomer)

NH3

Co H2O

H2OCl

Cl

NH3

NH3

Co Cl

ClH2O

H3N

H2O

NH3

Co NH3H2OCl

Cl

H2O

Are the following chiral or achiral structures?

Page 55: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Enantiomers: non superimposable mirror images

A structure is termed chiral if it is not superimposable on its mirror image

Two chiral structures: non superimposable mirror images:

Enantiomers!

Structure Mirror imageOf structure

Page 56: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Which are enantiomers (non-superimposable mirror images) and which are identical (superimposable mirror

images)?

Page 57: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field
Page 58: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field
Page 59: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Mirror images [Co(en)3]

1

2

1

23

3

4

4

5

5

6

6

Page 60: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Enantiomers: non superimposable mirror images

A structure is termed chiral if it is not superimposable on its mirror image

Two chiral structures: non superimposable mirror images:

Enantiomers!

Structure Mirror imageOf structure

Page 61: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

20_449

N

N

N

N

N

NCo

N

N

N

N

N

NCo

Mirror imageof Isomer I

Isomer I Isomer II

N

N

N

N

N

NCo

Page 62: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

Enantiomers

A molecule or ion that exists as a pair of enantiomers is said to be chiral.

Page 63: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field

20_450

Cl

Cl

N

N

N

NCo

Cl

Cl

N

N

N

NCo

Cl

Cl

N

N

N

NCo

Cl

Cl

N

N

N

NCo

Cl

Cl

N

N

N

NCo

Isomer IIIsomer I

cistrans

Isomer II cannot besuperimposed exactlyon isomer I. They arenot identical structures.

The trans isomer andits mirror image areidentical. They are notisomers of each other.

Isomer II has the samestructure as the mirrorimage of isomer I.(b)(a)

Page 64: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field
Page 65: Crystal Field Theory Focus: energies of the d orbitals Assumptions 1.Ligands:negative point charges 2.Metal-ligand bonding: entirely ionic strong-field