crystal physics lectures- 2

Upload: maxxolimous

Post on 07-Jul-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Crystal physics lectures- 2

    1/30

    (1) Derivation of equilibrium numberof Schottky defects (vacancydefects) in elemental solids:-

    1

  • 8/18/2019 Crystal physics lectures- 2

    2/30

    (1) Derivation of equilibrium number of

    Schottky defects (vacancy defects) inelemental solids:-

    • At any fnite temperature, some o thelattice sites which are normallyoccupied by metal ions may be vacant.

    • i.e. vacancy deects are present atfnite temperatures.

    • E.g. in copper metal, some o thecopper atoms/ ions may be missingrom some o their regular lattice

    positions. 2

  • 8/18/2019 Crystal physics lectures- 2

    3/30

    • At some constant temperaturesome o the vacancies are

    created and some o thevacancies are destroyed.

    •So euilibrium is reached at thattemperature.

    •  !.e. euilibrium number o

    vacancy deects are present attemperature ".

    #

  • 8/18/2019 Crystal physics lectures- 2

    4/30

    $

  • 8/18/2019 Crystal physics lectures- 2

    5/30

    So i,

    n % number o vacancies at

    temperature "

    Ev % average energy reuired to create

    a vacancy

    & % "otal number o atoms

     " %Absolute temperature in 'elvin.

    )

  • 8/18/2019 Crystal physics lectures- 2

    6/30

    "hen, n * + &, Ev, ".

    -e will derive this relation now.

    •  "he creation o a deect reuires energy,

    i.e. the process is endothermic, i.e. heatis absorbed by the system.

    • As a conseuence o a deect ormation,

    the energy gain is more thancompensated by the confgurationdisorder introduced due to deect

    ormation.

  • 8/18/2019 Crystal physics lectures- 2

    7/30

    • or low concentration o deects, auantitative relation between n, &, Ev 0 "

    may be obtained through the use oawell 3 4olt5mann statistics.

    •  "he use o awell 3 4olt5mann statisticsis 6ustifed since the lattice sites aredistinguishable although the metal ionsoccupying them are not.

    •  "he interaction between deects isneglected.

    7

  • 8/18/2019 Crystal physics lectures- 2

    8/30

    •  "he total number o di8erent ways +- inwhich we can pic' up n3 atoms rom thecrystal consisting o &3 atoms is given by

    9

    ( 1)( 2)...........( 1)

    !

     N N N N nW 

    n

    − − − +

    =

    !

    ( )! !

     N 

    W  N n n= −

  • 8/18/2019 Crystal physics lectures- 2

    9/30

    • &ow the entropy o the system changeswith this process.

    -here,'4 % 4olt5mann constant * :/&A.

    '4 *1.#9 × 1;32# 3= 31.

    ?

    ln B

     s k W ∆ =

  • 8/18/2019 Crystal physics lectures- 2

    10/30

    • A% @elmholt5 ree energy

    1;

    !ln

    ( )! ! B

     N  s k 

     N n n

    ∆ =

      −

  • 8/18/2019 Crystal physics lectures- 2

    11/30

      Energy

     

    11

    % !nternal Energy E

     

    n/N0,0

    3"S

    A%@elmholt5reeenergy

  • 8/18/2019 Crystal physics lectures- 2

    12/30

    * A B "S * E

    A * 3 "S * E C "S

    &ow the @elmholt5 ree energy change

    + ∆A is given by

    12

     

    A = E -

    S

  • 8/18/2019 Crystal physics lectures- 2

    13/30

    1#

    0T 

     An∂∆  ∴ = ÷∂  

  • 8/18/2019 Crystal physics lectures- 2

    14/30

    ∆A * ∆E 3 "∆S

    •  "a'e partial derivative o ∆A withrespect to n at constant temperature0 euate to 5ero. Dsing Stirlingsapproimation ln F * ln 3 G

     

    1$

    !ln( )! !

    v B N  A nE Tk 

     N n n ∆ = −   −

  • 8/18/2019 Crystal physics lectures- 2

    15/30

    1)

    !ln

    ( )! !ln ! ln( )! ln !

    ln ( ) ln( ) ln

    ln ( ) ln( ) ln

     N 

     N n n

     N N n n

     N N N N n N n N n n n n

     N N N n N n n n

    − = − − −

    = − − − − + − − +

    = − − − −

    [ ]ln ( ) ln( ) lnv B A nE Tk N N N n N n n n∆ = − − − − −

  • 8/18/2019 Crystal physics lectures- 2

    16/30

    1

    [ ]{ }v(nE )

      ln ( ) ln( ) ln

    1 1{0 ( ) ( 1) ln( )( 1) ln }( )

    {1 ln( ) 1 ln }

     B T T    T 

    v B

    v B

     ATk N N N n N n n n

    n n n

     E k T N n N n n n N n n

     E k T N n n

    ∂∂∆ ∂    ∴ = − − − − − ÷   ÷∂ ∂ ∂      

    = − − − × − − − − − × −−= − + − − −

    ( ){ln } 0

    ( )ln

    ln

    exp

    exp

    v B

    v B

    v

     B

    v

     B

    v

     B

     A N n E k T 

    n n N n

     E k T n

     E    N n

    k T n E  N n

    n k T 

     E n

     N n k T 

    ∂∆ −   = − = ÷∂  

    −∴ =

    −  ∴ =   ÷  

     −∴ =   ÷

       

    ∴ = − ÷−    

  • 8/18/2019 Crystal physics lectures- 2

    17/30

    17

    exp

    exp

    v

     B

    v

     B

     E n

     N k T 

     E n N k T 

     = −

    ÷  

     = − ÷

  • 8/18/2019 Crystal physics lectures- 2

    18/30

    • sually the number o vacancies n is avery small raction o the total number ometal ions / atoms, so that above

    euation can be used to calculate thenumber o raction o vacancies so longas the temperature is ar less rom

    melting point o crystal.e.g.

    E> *1 e> " * 1;;; =, '4 * 9.2)×1;3) e>3= 31 

    19

  • 8/18/2019 Crystal physics lectures- 2

    19/30

    1?

    5

    6

    6 5

    exp

    1exp

    8.625 10 / 1000

    exp( 11.6) 9.2 10

    10 10 10

    1

    100000

      100000 1

    v

    b

     E n

     N k T 

    eV 

    eV K K  

     for N atoms n vacancy

    − −

     = − ÷

       = − ÷× ×  

    = − = ×≈ × =

    =

    ∴ = ⇒ =

  • 8/18/2019 Crystal physics lectures- 2

    20/30

    or 1;) atoms →  1 vacancyor 1 mole atoms → +H >acancy

    1 mole * .;2 × 1;2# atoms.

    2;

    23

    235

    1 6.02 10 6.02 1010

    × × = ×!n 1 mole o atoms. !.e. or & *.;2

    1;2# atoms, n * .;2 1;19 vacancies.rom the above relation we can say thatthe euilibrium number o vacancies

    increases with increase in temperature.

  • 8/18/2019 Crystal physics lectures- 2

    21/30

    Euilibrium number o vacancies inionic crystals or diatomic solids

    (!) Derivation of equilibriumnumber of Schottky defects(vacancy defects) in ionic solids

    or diatomic solids:-

    • !n ionic crystals ormation o pairedvacancies is most avored.

    • i.e. an eual number o Bve and Cveion vacancies are produced.

    21

  • 8/18/2019 Crystal physics lectures- 2

    22/30

    •  "he ormation o pairs ma'es itpossible to 'eep the surace o the

    crystal electro3statically neutral.•  "he number o vacancy pairs can be

    related to the total number o atoms

    present in the crystal on ollowingthe same procedure as adoptedabove.

    •  "he number o di8erent ways inwhich n separated vacancy pairs canbe ormed are given by

    22

  • 8/18/2019 Crystal physics lectures- 2

    23/30

    2#

    for -ve ion vacanciesfor ve ion vacancies

    2

    ! !

    ( )! ! ( )! !

    !

    ( )! !

     N N W 

     N n n N n n

     N W 

     N n n

    = × − −

    =

      −

  • 8/18/2019 Crystal physics lectures- 2

    24/30

    • So that increase in entropy will begiven by

    2$

    2

    ln

    !ln( )! !

     B

     B

     s k W 

     N  s k  N n n

    ∆ =

    ∆ =   − Now the Helmholtz free energy change ( ∆ A)

    is given by

  • 8/18/2019 Crystal physics lectures- 2

    25/30

    2)

    ∆A * ∆E 3 "∆S

    • -here Ep is the energy o ormationo vacancy pair

    •  "a'e partial derivative o ∆A withrespect to n at constant temperature

    0 euate to 5ero. Dsing Stirlingsapproimation ln F * ln 3 G

     

    2

    !ln( )! !

     p B N  A nE Tk 

     N n n ∆ = −   −

  • 8/18/2019 Crystal physics lectures- 2

    26/30

    • Substituting the above epression or

    ree enerergy, we get

    2

    [ ]

    [ ]

    [ ]

    2

    !ln

    ( )! !2 ln ! ln( )! ln !

    2 ln ( ) ln( ) ln

    2 ln ( ) ln( ) ln

     N 

     N n n N N n n

     N N N N n N n N n n n n

     N N N n N n n n

    − = − − −

    = − − − − + − − +

    = − − − −

    [ ]2 ln ( ) ln( ) ln p B A nE Tk N N N n N n n n∆ = − − − − −

  • 8/18/2019 Crystal physics lectures- 2

    27/30

    • &ow di8erentiating the aboveepression with respect to n, we get

    27

    [ ]2 ln ( ) ln( ) ln p B A nE Tk N N N n N n n n∆ = − − − − −

    [ ]{ } p(nE )

      2 ln ( ) ln( ) ln

    1 12 {0 ( ) ( 1) ln( )( 1) ln }

    ( )

    2 {1 ln( ) 1 ln }

     B T T    T 

     p B

    v B

     ATk N N N n N n n n

    n n n

     E k T N n N n n n N n n

     E k T N n n

    ∂  ∂∆ ∂  ∴ = − − − − − ÷ ÷∂ ∂ ∂      

    = − − − × − − − − − × −−

    = − + − − −

  • 8/18/2019 Crystal physics lectures- 2

    28/30

    29

    !ree ener"# in $%er&al e'iliri& a$$aine*

    a$ $e&pera$re + is cons$an$, so $%a$

    ( )2 {ln } 0

    ( )2 ln

    ln2

    exp 2

    exp2

     p B

     p B

     p

     B

     p

     B

     p

     B

     A N n E k T n n

     N n E k T 

    n E    N n

    k T n

     E  N n

    n k T 

     E n

     N n k T 

    ∂∆ −   = − = ÷∂  −

    ∴ =

    −  ∴ =   ÷  

     −∴ =   ÷  

     ∴ = − ÷−

       

  • 8/18/2019 Crystal physics lectures- 2

    29/30

    • &ow n JJ N. So we can write

    2?

    ( ) exp2

    exp 2

     p

     B

     p

     B

     E n N nk T 

     E 

    n N  k T 

     = − − ÷

       

    ∴ = − ÷  

  • 8/18/2019 Crystal physics lectures- 2

    30/30

    • or &aKl crystal Ep*2.;2 e> and at

    room temperature

    • &ow calculations o ren'el deectsor elemental solids and ionic crystalsare remaining.

    #;

    6 310 c&n   −≈