crystal structure and electrostatic properties of

28
research papers 430 https://doi.org/10.1107/S2053229617006556 Acta Cryst. (2017). C73, 430–436 Received 22 February 2017 Accepted 1 May 2017 Edited by A. L. Spek, Utrecht University, The Netherlands Keywords: corticosteroids; ELMAM2 database; MoPro; prednisolone acetate; crystal structure; opthalmic drug. CCDC references: 1547360; 1547359; 1547358 Supporting information: this article has supporting information at journals.iucr.org/c Crystal structure and electrostatic properties of prednisolone acetate studied using a transferred multipolar atom model Ammara Shahid, a,b Sajida Noureen, b Muhammad Iqbal Choudhary, a Sammer Yousuf a * and Maqsood Ahmed b * a H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and b Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan. *Correspondence e-mail: [email protected], [email protected] Prednisolone acetate {systematic name: 2-[(8S,9S,10R,13S,14S,17R)-11,17-dihy- droxy-10,13-dimethyl-3-oxo-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3H- cyclopenta[a]phenanthren-17-yl]-2-oxoethyl acetate}, is an ophthalmic drug that belongs to the class of corticosteroids. Its crystal structure was refined using the classical independent atom model (IAM) and a transferred multipolar atom model using the ELMAM2 database. The results of both refinements have been compared. The ELMAM2 refinement was found to be superior in terms of the refinement statistics. It has been shown that certain electron-density-derived properties can be calculated on the basis of the transferred parameters for crystals which diffract to ordinary resolution. The procedure proves helpful in understanding the mode of action of the drug molecule. 1. Introduction Corticosteroids are known to increase the intraocular pres- sure, which hinders the reactions caused in response to ocular inflammatory and immunologic conditions (Dora Liu et al., 2013). They work by the induction of phospholipase A2 inhibitory proteins, which are known collectively as lipocortins (Greaves, 1976). These proteins work in controlling the biosynthesis of potent mediators of inflammation, such as prostaglandins and leukotrienes, by preventing the release of their common precursor, arachidonic acid, which is released from the membrane phospholipids by phospholipase A2. Prednisolone acetate, (I), is an ophthalmic drug of the corti- costeroid family (Czock et al., 2005). It helps in relieving various eye problems (Raizman, 1996; Bergh et al., 2001; Romanowski et al., 1996; Leibowitz & Kupferman, 1974). It is available on the market with generic names such as Pred Forte and Omnipred as eye drops, and Delta-Stab as an injection. It is assumed that the action of prednisolone acetate is initiated via lipocortins (phospholipase A 2 inhibitory pro- teins), hindering the biosynthesis of strong inflammation ISSN 2053-2296 # 2017 International Union of Crystallography

Upload: others

Post on 10-Dec-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Crystal structure and electrostatic properties of

research papers

430 https://doi.org/10.1107/S2053229617006556 Acta Cryst. (2017). C73, 430–436

Received 22 February 2017

Accepted 1 May 2017

Edited by A. L. Spek, Utrecht University, The

Netherlands

Keywords: corticosteroids; ELMAM2 database;

MoPro; prednisolone acetate; crystal structure;

opthalmic drug.

CCDC references: 1547360; 1547359;

1547358

Supporting information: this article has

supporting information at journals.iucr.org/c

Crystal structure and electrostatic properties ofprednisolone acetate studied using a transferredmultipolar atom model

Ammara Shahid,a,b Sajida Noureen,b Muhammad Iqbal Choudhary,a Sammer

Yousufa* and Maqsood Ahmedb*

aH. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi,

Karachi 75270, Pakistan, and bDepartment of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100,

Pakistan. *Correspondence e-mail: [email protected], [email protected]

Prednisolone acetate {systematic name: 2-[(8S,9S,10R,13S,14S,17R)-11,17-dihy-

droxy-10,13-dimethyl-3-oxo-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3H-

cyclopenta[a]phenanthren-17-yl]-2-oxoethyl acetate}, is an ophthalmic drug

that belongs to the class of corticosteroids. Its crystal structure was refined using

the classical independent atom model (IAM) and a transferred multipolar atom

model using the ELMAM2 database. The results of both refinements have been

compared. The ELMAM2 refinement was found to be superior in terms of the

refinement statistics. It has been shown that certain electron-density-derived

properties can be calculated on the basis of the transferred parameters for

crystals which diffract to ordinary resolution. The procedure proves helpful in

understanding the mode of action of the drug molecule.

1. Introduction

Corticosteroids are known to increase the intraocular pres-

sure, which hinders the reactions caused in response to ocular

inflammatory and immunologic conditions (Dora Liu et al.,

2013). They work by the induction of phospholipase A2

inhibitory proteins, which are known collectively as lipocortins

(Greaves, 1976). These proteins work in controlling the

biosynthesis of potent mediators of inflammation, such as

prostaglandins and leukotrienes, by preventing the release of

their common precursor, arachidonic acid, which is released

from the membrane phospholipids by phospholipase A2.

Prednisolone acetate, (I), is an ophthalmic drug of the corti-

costeroid family (Czock et al., 2005). It helps in relieving

various eye problems (Raizman, 1996; Bergh et al., 2001;

Romanowski et al., 1996; Leibowitz & Kupferman, 1974). It is

available on the market with generic names such as Pred Forte

and Omnipred as eye drops, and Delta-Stab as an injection.

It is assumed that the action of prednisolone acetate is

initiated via lipocortins (phospholipase A2 inhibitory pro-

teins), hindering the biosynthesis of strong inflammation

ISSN 2053-2296

# 2017 International Union of Crystallography

Page 2: Crystal structure and electrostatic properties of

mediators, such as leukotrienes and prostaglandins, which in

turn inhibits the discharge of their respective precursor,

arachidonic acid, which is released from the membrane of

phospholipids as a result of the action of phospholipase A2

(Valerio, 1963; Black et al., 1960).

The chemical properties of (I) rest on the charge–density

distribution (Coppens, 1998; Jayatilaka, 2012). A thorough

knowledge of the stereochemistry, structural parameters,

planarity and shared arrangement of the molecule is necessary

for the understanding of structure–property relationships.

Furthermore, intra- and intermolecular interactions play an

important role in the formation of novel drugs and in their

interactions with proteins. The frequently practiced indepen-

dent atom model (IAM) does not provide complete infor-

mation about the intermolecular interactions and is likely to

generate severe systematic errors in the refined atomic factors

(Ruysink & Vos, 1974).

Experimental electron-density studies are generally carried

out using X-ray diffraction on single crystals at ultra-high

resolution (d = 0.5 A) (Coppens, 1998). The problematic part

is to sort out the anisotropic atomic mean-square displace-

ments from the static molecular electron distribution (Hirsh-

feld, 1976). Nevertheless, operational thermal displacement

factor deconvolution and significant electron-density distri-

butions can be attained at lower resolution through the

transferability of the atomic parameters from an electron-

density database (Pichon-Pesme et al., 1995; Jelsch et al., 1998;

Dittrich et al., 2004, 2005, 2007; Ahmed et al., 2016). The

transfer of electron-density parameters is based on

constraining the atomic coordinates at their expected values;

this was initially established by Brock et al. (1991) on naph-

thalene and anthracene crystals.

The ELMAM database (Zarychta et al., 2007), which was

originally built for proteins, has been modified to the

ELMAM2 library (Domagała et al., 2012) for the study of

common organic molecules and is established on optimal

local-coordinate systems (Domagała & Jelsch, 2008). The

MoPro software (Guillot et al., 2001; Jelsch et al., 2005) has

built-in features for the automated transfer of electron-density

parameters for the respective atom types. Various atoms in a

molecule are distinguished with respect to their nature and the

number of atoms attached to their neighbours.

research papers

Acta Cryst. (2017). C73, 430–436 Shahid et al. � C23H30O6 via ELMAM2 and IAM 431

Table 1Experimental details.

ELMAM2 IAM via MoPro IAM via SHELX

Crystal dataChemical formula C23H30O6 C23H30O6 C23H30O6

Mr 402.46 402.46 402.46Crystal system, space group Monoclinic, P21 Monoclinic, P21 Monoclinic, P21

Temperature (K) 100 100 100a, b, c (A) 8.4816 (1), 13.865 (3), 8.9437 (1) 8.4816 (1), 13.865 (3), 8.9437 (1) 8.4816 (19), 13.865 (3), 8.9437 (19)� (�) 102.709 (1) 102.709 (1) 102.709 (17)V (A3) 1026.0 (2) 1026.0 (2) 1026.0 (4)Z 2 2 2Radiation type Cu K� Cu K� Cu K�� (mm�1) 0.76 0.76 0.76Crystal size (mm) 0.43 � 0.34 � 0.21 0.43 � 0.34 � 0.21 0.43 � 0.34 � 0.21

Data collectionDiffractometer Bruker Kappa APEXII CMOS

detectorBruker Kappa APEXII CMOS

detectorBruker Kappa Apex II CMOS

detectorAbsorption correction Multi-scan (SADABS; Krause et

al., 2015)Multi-scan (SADABS; Krause et

al., 2015)Multi-scan (SADABS; Krause et

al., 2015)Tmin, Tmax 0.735, 0.856 0.735, 0.856 0.735, 0.856No. of measured, independent and

observed reflections16242, 4018, 3976 [I > 2�(I)] 16242, 4018, 3976 [I > 2�(I)] 16242, 4018, 3942 [I > 2�(I)]

Rint 0.028 0.028 0.028(sin �/�)max (A�1) 0.617 0.617 0.617

RefinementR[F 2 > 2�(F 2)], wR(F 2), S 0.018, 0.048, 0.91 0.034, 0.093, 1.73 0.026, 0.067, 1.07No. of reflections 4018 4018 4018No. of parameters 262 262 271No. of restraints 0 0 1H-atom treatment H atoms treated by a mixture of

independent and constrainedrefinement

H atoms treated by a mixture ofindependent and constrainedrefinement

H atoms treated by a mixture ofindependent and constrainedrefinement

��max, ��min (e A�3) 0.11, �0.14 0.32, �0.20 0.22, �0.16Absolute structure Flack x determined using 1846

quotients [(I+) � (I�)]/[(I+) + (I�)] (Parsons et al.,2013)

Flack x determined using 1846quotients [(I+) � (I�)]/[(I+) + (I�)] (Parsons et al.,2013)

Flack x determined using 1846quotients [(I+) � (I�)]/[(I+) + (I�)] (Parsons et al.,2013)

Absolute structure parameter 0.01 (5) 0.01 (5) 0.01 (5)

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SIR92 (Altomare et al., 1993), MoPro (Jelsch et al., 2005), SHELXL2015 (Sheldrick, 2015), Mercury (Macrae et al.,2006), MoProViewer (Guillot, 2011) and publCIF (Westrip, 2010).

Page 3: Crystal structure and electrostatic properties of

In the current study, the crystal structure and molecular

properties of prednisolone acetate, (I), have been studied

using electron-density parameters from the ELMAM2 library.

The crystal structure of (I) has been reported twice in the past

according to a survey of the Cambridge Structural Database

(CSD; Groom et al., 2016) under the refcode entries

ZZZGDA (Pasternak, 1959) and ZZZGDA01 (Shikii et al.,

2005). However, no coordinates are available for the former

study, whereas the latter study provides no details about the

structure and the crystal packing. Moreover, the latter model

has poor refinement statistics. We therefore redetermined the

structure of (I) under improved conditions in order to study

the electrostatic properties of this important drug molecule.

2. Experimental

2.1. Crystallization

Prednisolone acetate, (I), was purchased from Sigma–

Aldrich in powder form and was cystallized from methanol by

slow evaporation. However, to improve the quality of the

crystals, a recrystallization was carried out from a 1:1 (v/v)

mixture of methanol and ethyl acetate. Good-quality colour-

less crystals of (I) were obtained.

2.2. Data collection

The crystal used for analysis was cooled from room

temperature to 100 K over a period of almost 30 min under a

stream of liquid nitrogen using a Kryoflex II gas flow appa-

ratus. The temperature was stable up to 1 K. Details of the

data collection are given in Table 1.

2.3. Structure refinement

Crystal data and structure refinement details for the three

refinement types (vide infra) are summarized in Table 1. The

structure was first refined using SHELXL2015 (Sheldrick,

2015). The riding model was used for H atoms bonded to C

atoms, with C—H = 0.93 (aromatic), 0.97 (CH2), 0.96 (CH3)

and 0.98 A (CH), and with Uiso(H) = 1.2Ueq(C). H atoms

bonded to O atoms were refined freely, with Uiso(H) =

1.2Ueq(O).

2.3.1. IAM refinement. The refined model from the SHELX

refinement was imported into MoPro (Jelsch et al., 2005). A

full-matrix least-squares refinement using the independent

atom model (IAM) was performed according to the intensity

data. A SHELX-type weighting scheme was adopted {w =

1/[�2(Fo2) + (aP)2 + bP], where P = (Fo

2 + 2Fc2)/3, with a = 0.04

and b = 0.02} in order to have a goodness-of-fit close to unity.

Initially, only the scale factor was refined. This was followed by

a refinement of the positions of all the atoms. The C—H bond

lengths were constrained to standard values of neutron

distances obtained from the International Tables for Crystal-

lography (Allen & Bruno, 2010). H atoms bonded to O atoms

were refined freely. Finally, the displacement parameters of all

the atoms were refined. The anisotropic displacement para-

meters for H atoms were constrained to calculated values

obtained from the SHADE server (Madsen, 2006). The

refinement was continued until convergence. The residual

electron-density maps after the IAM refinement are shown in

Fig. 2 (labelled ‘A’). At the end of the IAM refinement, the R

factor was 0.034, the wR2 factor was 0.093 and the goodness-

of-fit was 1.733. The minimum and maximum electron-density

peaks were �0.202 and 0.317 e A�3, respectively.

2.3.2. ELMAM2 refinement. The electron-density para-

meters from the Hansen and Coppens model (Hansen &

Coppens, 1978) were transferred from the ELMAM2 library

(Domagała et al., 2012), applying a built-in procedure in

MoPro. After this transfer, the molecule was electrically

neutralized. The structural parameters, such as the scale

factors, thermal displacement factors and positional para-

meters, were refined until convergence, while the electron-

density parameters were kept unchanged during the

ELMAM2 refinement. H atoms were treated in the same

manner as discussed previously for the IAM refinement. The

ELMAM2 refined model was found to be significantly

improved. The residual electron-density maps after the

ELMAM2 refinement are shown in Fig. 2 (labelled ‘B’). The

crystallographic R factor R[F 2 > 2�(F 2)]was 0.018, the

weighted R factor wR(F 2) was 0.048 and the goodness-of-fit S

was 0.91. The minimum and maximum electron-density peaks

were �0.14 and 0.11 e A�3, respectively.

3. Results and discussion

3.1. Crystal structure and packing

The crystal structure of (I) including H atoms is shown in

Fig. 1. The bond lengths, angles and torsion angles are

comparable with the coordinates available in the CSD

(Groom et al., 2016). The asymmetric unit consists of one

molecule, whereas the unit cell has two molecules. The

compound has the characteristic fundamental configuration of

corticosteroids, having a four-fused-ring assembly composed

of two cyclohexane rings, a cyclohexadienone ring and a

cyclopentane ring (Stephen et al., 1988). The cyclohexane rings

(B and C) are nonplanar in nature and embrace a classical

research papers

432 Shahid et al. � C23H30O6 via ELMAM2 and IAM Acta Cryst. (2017). C73, 430–436

Figure 1The molecular structure of the title compound, based on the ELMAM2refinement, showing the atom-numbering scheme for the non-H atoms.Displacement ellipsoids are drawn at the 50% probability level.

Page 4: Crystal structure and electrostatic properties of

chair conformation, while the cyclopentane ring (D) shows a

14�,17�-envelope conformation (Cremer & Pople, 1975). The

ring intersection A/B exhibits a quasi-trans conformation,

while the B/C and C/D ring intersections both display a trans

configuration (Bucourt, 1974). The torsion angle of the methyl

group on the cyclopentane ring (C13—C17) is �51.4 (2)�, as

calculated for C18—C13—C17—C20, whereas the acetate

group attached to the cyclopentane ring has a torsion angle of

164.7 (2)�, as measured for C17—C20—C21—O5. All the

bond lengths and angles are in the usual ranges found for

analogous structures (Galdecki et al., 1990; Vasuki et al., 2002;

Thamotharan et al., 2004; Shen et al., 2011). Fig. 2 shows the

residual electron-density maps after IAM (labelled ‘A’) and

ELMAM2 (labelled ‘B’) refinement for selected portions of

the molecule. It is evident from the IAM maps that the resi-

dual electron-density peaks coincide with the covalent bonds.

However, the maps from the ELMAM2 model are remarkably

cleaner and little density is left over. This result provides

strong evidence in favour of the advantage of using the

transferred parameters. The molecular assembly is built

primarily on the basis of strong intermolecular hydrogen

bonding, which is further strengthened by a number of lateral

weak hydrogen–hydrogen interactions (Fig. 3). The model is a

representative steroidal association resulting in the P21 space

group due to strong intermolecular interactions, i.e. O2—

HO2� � �O1i and O3—HO3� � �O1v (see Table 2 for symmetry

codes). The structure is stabilized by an extensive network of

hydrogen bonds, in which each molecule of (I) forms strong

O—H� � �O hydrogen bonds to four other molecules. These

include the polarized cyclohexadienone carbonyl O1 atom,

which acts as an acceptor of two hydrogen bonds, while the

alcohol groups HO2 and HO3 participate as hydrogen-bond

donors to the carbonyl O1 atom on different neighbouring

molecules (see Table 2 and Fig. 4). In addition, atom O6 acts

as an acceptor in the formation of an intermolecular C—

H� � �O hydrogen bond, while atoms O4 and O5 are not

involved in any significant hydrogen-bond interactions. The

geometrical parameters of the intermolecular interactions are

reported in Table 2. Two types of interactions can be differ-

entiated on the basis of their geometry, viz. two strong inter-

molecular hydrogen bonds have bond distances (D� � �A) >

2.7 A and angles D—H� � �A > 175�. The distance of successive

molecules from the mean plane is 4.425 A. The molecular

arrangement is composed of zigzag chains, parallel sheets and

the stacking of molecules over each other along the a axis, the

research papers

Acta Cryst. (2017). C73, 430–436 Shahid et al. � C23H30O6 via ELMAM2 and IAM 433

Figure 3A view of the molecular packing, showing the strong intermolecularhydrogen bonds (green solid lines). [Symmetry codes: (i) x, y, z � 1; (ii)�x, y + 1

2, �z + 2; (iii) x + 1, y, z � 1; (iv) �x + 1, y + 12, �z + 1; (v)�x + 1,

y + 12, �z + 2.]

Figure 2A comparison of the residual electron-density maps from selectedfragments of the molecule after the IAM and ELMAM2 refinements. Thecontours are drawn at 0.05 e A�3. The maps are drawn using all data.

Table 2Hydrogen-bond geometry (A, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

O2—HO2� � �O1i 0.94 1.88 2.8168 (4) 172O2—HO2� � �C3i 0.94 2.69 3.5595 (3) 154O2—HO2� � �C4i 0.94 2.89 3.5029 (2) 124C12—H12A� � �O3 1.09 2.37 2.8504 (5) 105C12—H12B� � �O6 1.09 2.47 3.4749 (2) 153C14—H14A� � �O3 1.10 2.39 2.8292 (2) 102C16—H16A� � �O4 1.09 2.53 2.9453 (3) 101C21—H21B� � �C12 1.09 2.81 3.5415 (3) 124C19—H19B� � �O2 1.08 2.27 2.8720 (2) 113C19—H19C� � �C8 1.08 2.87 3.2452 (6) 100C18—H18B� � �O4 1.08 2.68 3.0950 (3) 103C18—H18C� � �C16 1.08 2.52 2.9733 (5) 104C18—H18A� � �O2 1.08 2.40 3.0726 (6) 119C6—H6A� � �C2ii 1.09 2.88 3.4322 (6) 111C7—H7B� � �O1ii 1.09 2.68 3.5707 (6) 139C23—H23B� � �C6iii 1.08 2.94 3.5917 (4) 119C16—H16B� � �O6iv 1.09 2.69 3.5139 (7) 132C16—H16B� � �O1v 1.09 2.45 3.3487 (2) 138O3—HO3� � �O1v 1.00 1.73 2.7302 (5) 176O3—HO3� � �C3v 1.00 2.66 3.5981 (6) 157

Symmetry codes: (i) x; y; z� 1; (ii) �x; yþ 12;�zþ 2; (iii) xþ 1; y; z� 1; (iv)

�x þ 1; yþ 12;�zþ 1; (v) �xþ 1; yþ 1

2;�zþ 2.

Page 5: Crystal structure and electrostatic properties of

b axis and the c axis, respectively, by means of different

interactions. The molecular structure can be described as a

donor–acceptor adduct, in which the carbonyl and hydroxy

groups play essential roles in the hydrogen-bonding pattern.

3.2. Hirshfeld surface analysis

The Hirshfeld surface of the structure was determined in

order to obtain a better understanding of the intermolecular

forces involved in stabilizing the structure (Spackman &

Byrom, 1997; Spackman & Jayatilaka, 2009). This analysis,

which involves partitioning the structure into molecular

volumes and intermolecular voids, was performed using the

Crystal Explorer software (Wolff et al., 2012). In this analysis,

the contact distances di and de from the Hirshfeld surface to

the nearest atoms inside and outside, respectively, are studied

individually, together with a supplementary contact distance,

dnorm, which combines both di and de, and the van der Waals

radii (Bondi, 1964) of the interacting atoms. Hirshfeld surfaces

using the dnorm property of the molecule are presented in

Fig. 4. The regions shown in red indicate the sites of the

interactions. The fingerprint plots of the structure contain the

intermolecular interactions. Three types of interactions origi-

nated in the crystal packing: H� � �H interactions accounts for

64.4%, O� � �H for 28.0% and C� � �H for 5.5%, as shown in

Fig. 5. The enrichment ratio (ER) was calculated using the

method provided by Jelsch et al. (2014), which shows that

H� � �H contacts are favoured, having an ER value of 1.232,

over O� � �H and C� � �H interactions, with have ER values of

0.616 and 0.616, respectively.

3.3. Electrostatic potential and dipole moment

The incidence of probable electrostatic contacts close to the

molecule can be defined qualitatively by means of an elec-

trostatic potential map (ESP) on the electron-density isosur-

face. The electrostatic potential can be assessed directly from

the electron density (Su & Coppens, 1992). Fig. 6 depicts the

three-dimensional electron-density surface coloured according

to the electrostatic potential. The maps show that electron

density is accumulated on all three O atoms. The electro-

negative surface spreads from atom O1 to the other O-atom

sites (O3, O4, O5 and O6), since the negative potential

produced by carbonyl atom O1 is stronger than that produced

by the O atoms of the acetate and hydroxy groups. The

carbonyl group has a high negative electrostatic potential as a

result of being a strong acceptor of H� � �O hydrogen bonds and

the site of attack by electrophilic species. Indeed, this is the

cause of the polar nature of the title molecule, as shown by the

comparatively high dipole moment value of 6.875 Debye

(Fig. 7), as calculated using MoProViewer (Guillot, 2011) for

an electrically neutralized molecule. The hydroxy groups

present in this molecule, i.e. 11�-OH and 17�-OH, are the

main binding sites with receptors (Lin et al., 1984). In the

research papers

434 Shahid et al. � C23H30O6 via ELMAM2 and IAM Acta Cryst. (2017). C73, 430–436

Figure 4A Hirshfeld surface of the parent molecule around which there is acluster of hydrogen-bonding molecules.

Figure 5Fingerprint plots of the title compound, showing the percentage ofvarious interactions.

Figure 6The three-dimensional electron-density isosurface generated at anelectron-density value of 0.05 e A�3, coloured according to the electro-static potential.

Page 6: Crystal structure and electrostatic properties of

current study, it is found that the OH groups are strongly

positive in the electrostatic potential map and act as hydrogen-

bond donors; in addition to this, the carbonyl O atom is highly

electronegative and acts as a hydrogen-bond acceptor due to

the above intermolecular interaction.

3.4. Topology of the hydrogen bonds

Table 1S of the Supporting information lists the topological

parameters of the strong hydrogen bonds. The analysis was

performed using Bader’s quantum theory of Atoms in Mol-

ecule (Bader, 1990). The transferred model provides another

advantage in that a quantitative analysis of the bond proper-

ties can be made to a reliable extent. The strongest hydrogen

bonds are formed with atom O1. Two of the hydrogen bonds

involving atom O1 are characterized by very short distances

and reasonably high values of electron density at the critical

points. The remainder of the hydrogen bonds are medium-to-

weak in terms of their bond lengths and the values of the

electron density at the critical points are also much lower.

4. Conclusions

This study makes a qualitative and quantitative analysis of the

crystal structure and the electron-density-derived properties

of the ophthalmic drug prednisolone acetate using the prin-

ciple of transferability of electron-density parameters on

diffraction data having ordinary resolution. The results of the

refinement show that the transferred model is better than the

classical independent atom model (IAM). The drug binds

through a network of strong hydrogen bonds. The carbonyl O

atom is the principal site of interaction. The study highlights

the advantage of using the transferred model, which can be

used routinely.

Acknowledgements

AS is grateful for funding from the ICCBS, University of

Karachi. The authors greatly acknowledge the ICCBS,

University of Karachi, for providing the X-ray diffraction

facility.

References

Ahmed, M., Nassour, A., Noureen, S., Lecomte, C. & Jelsch, C.(2016). Acta Cryst. B72, 75–86.

Allen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380–386.Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993).

J. Appl. Cryst. 26, 343–350.Bader, R. F. W. (1990). In Atoms in Molecules: A Quantum Theory.

Oxford: Clarendon Press.Bergh, J., Jonsson, P. E., Glimelius, B. & Nygren, P. (2001). Acta

Oncol. 40, 253–281.Black, R. L., Oglesby, R. B. & von Sallmann, L. (1960). JAMA, 174,

166–171.Bondi, A. (1964). J. Phys. Chem. 68, 441–451.Brock, C. P., Dunitz, J. D. & Hirshfeld, F. L. (1991). Acta Cryst. B47,

789–797.Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison,

Wisconsin, USA.Bucourt, R. (1974). The Torsion Angle Concept in Conformational

Analysis, in Topics in Stereochemistry, edited by E. L. Eliel & N. L.Allinger, Vol. 8, p. 159. New York: Interscience.

Coppens, P. (1998). Acta Cryst. A54, 779–788.Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.Czock, D., Keller, F., Rasche, F. M. & Haussler, U. (2005). Clin.

Pharmacokinet. 44(1), 61–98.Dittrich, B., Hubschle, C. B., Messerschmidt, M., Kalinowski, R.,

Girnt, D. & Luger, P. (2005). Acta Cryst. A61, 314–320.Dittrich, B., Koritsanszky, T. & Luger, P. (2004). Angew. Chem. Int.

Ed. 43, 2718–2721.Dittrich, B., Munshi, P. & Spackman, M. A. (2007). Acta Cryst. B63,

505–509.Domagała, S., Fournier, B., Liebschner, D., Guillot, B. & Jelsch, C.

(2012). Acta Cryst. A68, 337–351.Domagała, S. & Jelsch, C. (2008). J. Appl. Cryst. 41, 1140–1149.Galdecki, Z., Grochulski, P. & Wawrzak, Z. (1990). J. Crystallogr.

Spectrosc. Res. 20, 425–428.Greaves, M. W. (1976). Postgrad. Med. J. 52(612), 631–633.Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta

Cryst. B72, 171–179.Guillot, B. (2011). Acta Cryst. A67, C511–C512.Guillot, B., Viry, L., Guillot, R., Lecomte, C. & Jelsch, C. (2001). J.

Appl. Cryst. 34, 214–223.Hansen, N. K. & Coppens, P. (1978). Acta Cryst. A34, 909–921.Hirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.Jayatilaka, D. (2012). Modern Charge–Density Analysis, edited by

C. Gatti & P. Macchi, pp. 213–257. New York: Springer.Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128.Jelsch, C., Guillot, B., Lagoutte, A. & Lecomte, C. (2005). J. Appl.

Cryst. 38, 38–54.Jelsch, C., Pichon-Pesme, V., Lecomte, C. & Aubry, A. (1998). Acta

Cryst. D54, 1306–1318.Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J.

Appl. Cryst. 48, 3–10.Leibowitz, H. M. & Kupferman, A. (1974). Invest. Ophthalmol.

13(10), 757–763.Lin, M. T., Eiferman, R. A. & Wittliff, J. L. (1984). Exp. Eye Res. 38,

333–339.Liu, D., Ahmet, A., Ward, L., Krishnamoorthy, P., Mandelcorn, E. D.,

Leigh, R. & Kim, H. (2013). Allergy Asthma Clin. Immunol. 9(1),30.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P.,Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39,453–457.

Madsen, A. Ø. (2006). J. Appl. Cryst. 39, 757–758.

research papers

Acta Cryst. (2017). C73, 430–436 Shahid et al. � C23H30O6 via ELMAM2 and IAM 435

Figure 7The arrow shows the direction of the total dipole moment (6.88 D) of (I),computed on the basis of transferred parameters.

Page 7: Crystal structure and electrostatic properties of

Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.Pasternak, R. A. (1959). Anal. Chem. 31, 959.Pichon-Pesme, V., Lecomte, C. & Lachekar, H. (1995). J. Phys. Chem.

99, 6242–6250.Raizman, M. (1996). Arch. Ophthalmol. 114, 1000–1001.Romanowski, E. G., Roba, L. A., Wiley, L., Araullo-Cruz, T. &

Gordon, Y. (1996). Arch. Ophthalmol. 114, 581–585.Ruysink, A. F. J. & Vos, A. (1974). Acta Cryst. A30, 503–506.Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.Shen, Y.-B., Wang, M., Liang, Q.-K. & Luo, J. (2011). Acta Cryst. E67,

o2752.Shikii, K., Seki, H., Sakamoto, S., Sei, Y., Utsumi, H. & Yamaguchi, K.

(2005). Chem. Pharm. Bull. 53, 792–795.Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–

220.

Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.Stephen, R. B., Paul, A. S., Brian, T., James, F. & Peter, M. (1988).

JACS, 110, 1609–1614.Su, Z. & Coppens, P. (1992). Acta Cryst. A48, 188–197.Thamotharan, S., Parthasarathi, V., Dubey, S., Jindal, D. P. & Linden,

A. (2004). Acta Cryst. C60, o110–o112.Valerio, M. (1963). Bull. Mem. Soc. Fr. Ophtalmol. 76, 572–580.Vasuki, G., Parthasarathi, V., Ramamurthi, K., Dubey, S. & Jindal,

D. P. (2002). Acta Cryst. E58, o1359–o1360.Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J.,

Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. TheUniversity of Western Australia.

Zarychta, B., Pichon-Pesme, V., Guillot, B., Lecomte, C. & Jelsch, C.(2007). Acta Cryst. A63, 108–125.

research papers

436 Shahid et al. � C23H30O6 via ELMAM2 and IAM Acta Cryst. (2017). C73, 430–436

Page 8: Crystal structure and electrostatic properties of

supporting information

sup-1Acta Cryst. (2017). C73, 430-436

supporting information

Acta Cryst. (2017). C73, 430-436 [https://doi.org/10.1107/S2053229617006556]

Crystal structure and electrostatic properties of prednisolone acetate studied

using a transferred multipolar atom model

Ammara Shahid, Sajida Noureen, Muhammad Iqbal Choudhary, Sammer Yousuf and Maqsood

Ahmed

Computing details

For all compounds, data collection: Bruker D8 Venture Photon 100 CMOS Detector (Bruker, 2014). Cell refinement:

APEX2 (Bruker, 2014) for ELMAM2; APEXII (Bruker, 2014) for IAM_MoPro; APEX II (Bruker, 2014) for IAM_shelx.

For all compounds, data reduction: SAINT (Bruker, 2014). Program(s) used to solve structure: SIR92 (Altomare et al.,

1993) for ELMAM2, IAM_shelx. Program(s) used to refine structure: MoPro (Jelsch et al., 2005) for ELMAM2,

IAM_MoPro; SHELXL2015 (Sheldrick, 2015) for IAM_shelx. For all compounds, molecular graphics: Mercury (Macrae

et al., 2006) and MoProViewer (Guillot, 2011); software used to prepare material for publication: pubCIF (Westrip,

2010).

(ELMAM2) 2-[(8S,9S,10R,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-

oxo-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl acetate

Crystal data

C23H30O6

Mr = 402.46Monoclinic, P21

Hall symbol: P 2yba = 8.4816 (1) Åb = 13.865 (3) Åc = 8.9437 (1) Åβ = 102.709 (1)°V = 1026.0 (2) Å3

Z = 2

F(000) = 432Dx = 1.303 Mg m−3

Cu Kα radiation, λ = 1.54178 ÅCell parameters from 1200 reflectionsθ = 5.1–72.2°µ = 0.76 mm−1

T = 100 KBlock, colorless0.43 × 0.34 × 0.21 mm

Data collection

Bruker Kappa APEXII CMOS detector diffractometer

Radiation source: MicrofocusGraphite monochromatorω and φ scanAbsorption correction: multi-scan

(SADABS; Krause et al., 2015)Tmin = 0.735, Tmax = 0.856

16242 measured reflections4018 independent reflections3976 reflections with > 2.0σ(I)Rint = 0.028θmax = 72.2°, θmin = 5.1°h = 0→10k = −17→17l = −11→10

Page 9: Crystal structure and electrostatic properties of

supporting information

sup-2Acta Cryst. (2017). C73, 430-436

Refinement

Refinement on F2

Least-squares matrix: fullR[F2 > 2σ(F2)] = 0.018wR(F2) = 0.048S = 0.914018 reflections262 parameters0 restraintsPrimary atom site location: structure-invariant

direct methodsSecondary atom site location: difference Fourier

map

Hydrogen site location: difference Fourier mapH atoms treated by a mixture of independent

and constrained refinementw = 1/[σ2(Fo

2) + (0.04P)2 + 0.02P] where P = (Fo

2 + 2Fc2)/3

(Δ/σ)max < 0.001Δρmax = 0.11 e Å−3

Δρmin = −0.14 e Å−3

Absolute structure: Flack x determined using 1846 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)

Absolute structure parameter: 0.01 (5)

Special details

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O5 0.70274 (8) 0.6266 (2) 0.22895 (7) 0.02560 (7)O1 0.18968 (7) 0.3601 (2) 1.26199 (6) 0.01831 (7)O2 0.12075 (8) 0.4751 (2) 0.49923 (7) 0.02034 (7)O3 0.62449 (7) 0.7004 (2) 0.65025 (6) 0.01935 (7)O4 0.48420 (9) 0.7664 (2) 0.26468 (7) 0.02775 (8)O6 0.48211 (8) 0.5327 (2) 0.20364 (8) 0.02625 (7)C3 0.15950 (10) 0.3957 (2) 1.13056 (9) 0.01413 (8)C2 0.19306 (11) 0.3429 (2) 0.99978 (10) 0.01738 (9)H2 0.25244 0.27333 1.01692 0.03693C1 0.15160 (11) 0.3802 (2) 0.85832 (10) 0.01736 (9)H1 0.17009 0.33641 0.76335 0.03530C10 0.08137 (10) 0.4792 (2) 0.82179 (9) 0.01449 (9)C4 0.08747 (10) 0.4907 (2) 1.10259 (9) 0.01434 (8)H4 0.05908 0.52977 1.19818 0.03176C5 0.05640 (9) 0.5314 (2) 0.96281 (9) 0.01396 (8)C6 0.00186 (11) 0.6342 (2) 0.94013 (9) 0.01775 (9)H6A −0.01127 0.66577 1.04862 0.03472H6B −0.11510 0.63859 0.85956 0.03544C7 0.12760 (11) 0.6920 (2) 0.87742 (9) 0.01830 (9)H7A 0.24166 0.69327 0.96262 0.03302H7B 0.08610 0.76614 0.85396 0.03629C8 0.15900 (10) 0.6479 (2) 0.72921 (9) 0.01447 (9)H8 0.04937 0.65426 0.63766 0.03016C9 0.20722 (10) 0.5404 (2) 0.75477 (8) 0.01321 (8)H9 0.31715 0.54081 0.84668 0.02710C11 0.26000 (10) 0.4929 (2) 0.61779 (9) 0.01494 (9)H11 0.31543 0.42317 0.65711 0.03358C12 0.38872 (10) 0.5527 (2) 0.56167 (9) 0.01551 (8)

Page 10: Crystal structure and electrostatic properties of

supporting information

sup-3Acta Cryst. (2017). C73, 430-436

H12A 0.50331 0.54589 0.64523 0.03282H12B 0.40596 0.52171 0.45416 0.03400C13 0.34482 (10) 0.6595 (2) 0.53767 (9) 0.01444 (8)C14 0.30050 (10) 0.6997 (2) 0.68381 (9) 0.01511 (9)H14A 0.40566 0.68690 0.77816 0.02935C15 0.29384 (12) 0.8094 (2) 0.65822 (10) 0.02021 (10)H15A 0.32343 0.84814 0.76714 0.03954H15B 0.17404 0.83154 0.59516 0.03932C16 0.42260 (11) 0.8282 (2) 0.56167 (10) 0.01997 (9)H16A 0.36699 0.86372 0.45396 0.04149H16B 0.51973 0.87294 0.62700 0.04228C17 0.48963 (10) 0.7281 (2) 0.53083 (9) 0.01705 (9)C20 0.54379 (11) 0.7207 (2) 0.37846 (10) 0.01988 (9)C21 0.68346 (11) 0.6506 (2) 0.37939 (10) 0.02396 (10)H21A 0.79593 0.68280 0.44269 0.04096H21B 0.66052 0.58389 0.43596 0.03750C22 0.59418 (11) 0.5616 (2) 0.15387 (10) 0.02108 (9)C23 0.63519 (11) 0.5306 (2) 0.00648 (10) 0.02805 (10)H23C 0.55534 0.47313 −0.04330 0.05238H23B 0.75949 0.50767 0.02937 0.05341H23A 0.62022 0.59118 −0.07080 0.05162C19 −0.08754 (11) 0.4672 (2) 0.71237 (10) 0.02251 (9)H19B −0.07736 0.42416 0.61470 0.04243H19C −0.13450 0.53720 0.67363 0.04123H19A −0.16963 0.43416 0.77342 0.04272C18 0.20904 (11) 0.6751 (2) 0.39418 (9) 0.01826 (9)H18B 0.24783 0.64560 0.29679 0.04105H18C 0.18779 0.75138 0.37878 0.04239H18A 0.10196 0.63877 0.41082 0.04039HO2 0.15410 0.43897 0.42280 0.03227HO3 0.69621 0.75701 0.68342 0.03495

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O5 0.0176 (3) 0.0355 (3) 0.0249 (3) −0.0051 (3) 0.0073 (2) 0.0017 (3)O1 0.0219 (3) 0.0171 (3) 0.0149 (3) 0.0033 (2) 0.0019 (2) 0.0025 (2)O2 0.0243 (3) 0.0213 (3) 0.0163 (3) −0.0079 (2) 0.0064 (2) −0.0059 (2)O3 0.0185 (3) 0.0155 (3) 0.0207 (3) −0.0018 (2) −0.0029 (2) 0.0020 (2)O4 0.0329 (4) 0.0257 (3) 0.0242 (3) −0.0007 (3) 0.0055 (3) 0.0111 (3)O6 0.0216 (3) 0.0301 (3) 0.0293 (3) −0.0040 (3) 0.0107 (3) 0.0015 (3)C3 0.0147 (4) 0.0128 (3) 0.0143 (4) 0.0006 (3) 0.0020 (3) 0.0008 (3)C2 0.0238 (4) 0.0108 (3) 0.0198 (4) 0.0015 (3) 0.0097 (3) 0.0002 (3)H2 0.05198 0.02029 0.04067 0.00600 0.01486 0.00177C1 0.0272 (4) 0.0093 (3) 0.0178 (4) −0.0019 (3) 0.0098 (3) −0.0020 (3)H1 0.05127 0.02568 0.03145 −0.00183 0.01453 −0.00820C10 0.0190 (4) 0.0121 (3) 0.0126 (3) −0.0012 (3) 0.0039 (3) −0.0013 (3)C4 0.0163 (4) 0.0132 (4) 0.0130 (3) 0.0029 (3) 0.0023 (3) −0.0011 (3)

Page 11: Crystal structure and electrostatic properties of

supporting information

sup-4Acta Cryst. (2017). C73, 430-436

H4 0.03702 0.03372 0.02441 0.00708 0.00647 −0.00476C5 0.0153 (4) 0.0124 (4) 0.0140 (3) 0.0015 (3) 0.0029 (3) −0.0016 (3)C6 0.0214 (4) 0.0139 (4) 0.0182 (4) 0.0058 (3) 0.0049 (3) 0.0008 (3)H6A 0.04309 0.03523 0.02583 0.00640 0.00755 −0.00554H6B 0.02766 0.04292 0.03100 0.00496 −0.00383 0.00265C7 0.0233 (4) 0.0120 (3) 0.0198 (4) 0.0034 (3) 0.0050 (3) −0.0009 (3)H7A 0.02980 0.03530 0.03005 0.00236 −0.00186 −0.00186H7B 0.04588 0.02314 0.03965 0.01258 0.00901 0.00325C8 0.0170 (4) 0.0102 (3) 0.0154 (4) 0.0018 (3) 0.0017 (3) 0.0007 (3)H8 0.02696 0.03339 0.02688 0.00318 −0.00114 0.00091C9 0.0169 (4) 0.0095 (3) 0.0130 (3) −0.0004 (3) 0.0028 (3) −0.0001 (3)H9 0.02539 0.02517 0.02792 0.00011 −0.00027 −0.00141C11 0.0205 (4) 0.0095 (3) 0.0159 (3) −0.0013 (3) 0.0062 (3) −0.0006 (3)H11 0.03951 0.02142 0.04180 0.00315 0.01323 0.00261C12 0.0187 (4) 0.0112 (3) 0.0173 (3) −0.0012 (3) 0.0055 (3) 0.0009 (3)H12A 0.02819 0.03069 0.03622 −0.00102 −0.00017 0.00353H12B 0.04324 0.03091 0.03047 −0.00279 0.01374 −0.00487C13 0.0163 (4) 0.0108 (3) 0.0151 (4) −0.0020 (3) 0.0008 (3) 0.0014 (3)C14 0.0174 (4) 0.0103 (3) 0.0163 (3) −0.0002 (3) 0.0008 (3) 0.0007 (3)H14A 0.02884 0.02531 0.03015 0.00059 −0.00159 0.00128C15 0.0254 (5) 0.0107 (4) 0.0234 (4) 0.0006 (3) 0.0027 (3) 0.0008 (3)H15A 0.05545 0.02564 0.03561 −0.00341 0.00590 −0.00391H15B 0.03858 0.03278 0.04333 0.00735 0.00189 0.00943C16 0.0217 (4) 0.0114 (4) 0.0247 (4) −0.0024 (3) 0.0005 (3) 0.0033 (3)H16A 0.04979 0.03479 0.03763 0.00487 0.00473 0.01207H16B 0.04562 0.03061 0.04757 −0.01112 0.00369 −0.00302C17 0.0183 (4) 0.0134 (3) 0.0173 (4) −0.0016 (3) −0.0009 (3) 0.0032 (3)C20 0.0188 (4) 0.0196 (4) 0.0207 (4) −0.0039 (3) 0.0031 (3) 0.0057 (3)C21 0.0184 (4) 0.0300 (4) 0.0231 (4) −0.0015 (4) 0.0040 (3) 0.0024 (3)H21A 0.02812 0.05058 0.04196 −0.00902 0.00291 0.00112H21B 0.04008 0.03413 0.04070 −0.00114 0.01412 0.00877C22 0.0142 (4) 0.0267 (4) 0.0224 (4) −0.0007 (3) 0.0041 (3) 0.0038 (3)C23 0.0185 (4) 0.0440 (6) 0.0224 (4) 0.0032 (4) 0.0063 (3) 0.0017 (4)H23C 0.05069 0.06468 0.04609 −0.01514 0.01999 −0.01164H23B 0.03490 0.08238 0.04503 0.01123 0.01324 0.00177H23A 0.05715 0.06131 0.03986 0.00343 0.01813 0.01233C19 0.0196 (4) 0.0304 (5) 0.0169 (4) −0.0076 (4) 0.0026 (3) −0.0042 (3)H19B 0.04189 0.05378 0.03178 −0.00677 0.00843 −0.01835H19C 0.03806 0.03805 0.04272 0.00032 −0.00164 0.00271H19A 0.03568 0.06169 0.03188 −0.01637 0.00975 0.00370C18 0.0192 (4) 0.0166 (4) 0.0168 (4) −0.0029 (3) −0.0009 (3) 0.0024 (3)H18B 0.03918 0.05433 0.03031 0.00592 0.00912 −0.00427H18C 0.04861 0.02797 0.04552 0.00451 −0.00061 0.00605H18A 0.02979 0.05142 0.03921 −0.00969 0.00595 0.00817HO2 0.03555 0.03418 0.02870 −0.00561 0.01053 −0.00989HO3 0.03421 0.02842 0.03876 −0.01077 0.00056 0.00348

Page 12: Crystal structure and electrostatic properties of

supporting information

sup-5Acta Cryst. (2017). C73, 430-436

Geometric parameters (Å, º)

O5—C22 1.3561 (5) C9—H9 1.0990O5—C21 1.4299 (4) C11—C12 1.5399 (4)O1—C3 1.2484 (4) C11—H11 1.0990O2—C11 1.4246 (4) C12—C13 1.5310 (5)O2—HO2 0.9399 C12—H12B 1.0920O3—C17 1.4349 (3) C12—H12A 1.0920O3—HO3 0.9971 C13—C17 1.5651 (4)O4—C20 1.2108 (5) C13—C14 1.5413 (4)O6—C22 1.2036 (5) C13—C18 1.5393 (3)C3—C4 1.4510 (5) C14—C15 1.5379 (5)C3—C2 1.4598 (4) C14—H14A 1.0990C2—C1 1.3401 (5) C15—C16 1.5561 (4)C2—H2 1.0830 C15—H15A 1.0920C1—C10 1.5032 (5) C15—H15B 1.0920C1—H1 1.0830 C16—C17 1.5478 (5)C10—C9 1.5817 (4) C16—H16B 1.0920C10—C5 1.5089 (4) C16—H16A 1.0920C10—C19 1.5558 (4) C17—C20 1.5343 (4)C4—C5 1.3436 (4) C20—C21 1.5308 (5)C4—H4 1.0830 C21—H21A 1.0920C5—C6 1.4997 (5) C21—H21B 1.0920C6—C7 1.5349 (4) C22—C23 1.4983 (4)C6—H6A 1.0920 C23—H23C 1.0770C6—H6B 1.0920 C23—H23A 1.0770C7—C8 1.5355 (4) C23—H23B 1.0770C7—H7B 1.0920 C19—H19A 1.0770C7—H7A 1.0920 C19—H19C 1.0770C8—C14 1.5284 (4) C19—H19B 1.0770C8—C9 1.5484 (5) C18—H18C 1.0770C8—H8 1.0990 C18—H18A 1.0770C9—C11 1.5414 (4) C18—H18B 1.0770

C22—O5—C21 114.5 (3) C12—C11—H11 107.085C11—O2—HO2 107.519 C13—C12—H12B 109.434C17—O3—HO3 110.198 C13—C12—H12A 109.384C4—C3—C2 117.8 (3) H12B—C12—H12A 107.287C1—C2—H2 119.635 C17—C13—C14 98.8 (2)C10—C1—C2 124.5 (3) C17—C13—C12 115.1 (3)C10—C1—H1 117.383 C17—C13—C18 109.4 (2)C9—C10—C5 106.8 (2) C14—C13—C12 109.1 (3)C9—C10—C1 107.7 (3) C14—C13—C18 112.3 (3)C9—C10—C19 115.1 (3) C15—C14—H14A 105.719C5—C10—C1 112.2 (3) C16—C15—H15A 111.167C5—C10—C19 107.3 (3) C16—C15—H15B 110.684C5—C4—H4 119.510 H15A—C15—H15B 109.143C6—C5—C4 121.1 (3) C17—C16—C15 106.2 (3)

Page 13: Crystal structure and electrostatic properties of

supporting information

sup-6Acta Cryst. (2017). C73, 430-436

C7—C6—H6A 109.319 C17—C16—H16B 109.934C7—C6—H6B 109.486 C17—C16—H16A 110.559H6A—C6—H6B 107.990 H16B—C16—H16A 110.177C8—C7—C6 112.0 (3) C20—C17—C13 112.6 (3)C8—C7—H7B 108.601 C20—C17—C16 114.3 (3)C8—C7—H7A 108.275 H21A—C21—H21B 109.303H7B—C7—H7A 108.507 H23C—C23—H23A 109.703C14—C8—C9 107.1 (2) H23C—C23—H23B 111.095C14—C8—C7 109.7 (3) H23A—C23—H23B 108.944C14—C8—H8 110.443 H19A—C19—H19C 108.168C9—C8—C7 110.3 (2) H19A—C19—H19B 110.592C9—C8—H8 109.899 H19C—C19—H19B 109.165C11—C9—C10 114.2 (2) H18C—C18—H18A 110.751C11—C9—C8 114.0 (2) H18C—C18—H18B 109.978C11—C9—H9 104.455 H18A—C18—H18B 110.566

O5—C22—C23—H23C 173.34 H7B—C7—C8—C9 −176.24O5—C22—C23—H23A −66.87 H7B—C7—C8—H8 −55.28O5—C22—C23—H23B 51.83 C8—C14—C13—C17 −179.54 (6)O5—C21—C20—O4 −15.92 (7) C8—C14—C13—C12 −58.96 (6)O5—C21—C20—C17 164.73 (6) C8—C14—C13—C18 65.20 (6)O1—C3—C4—C5 178.81 (2) C8—C14—C15—C16 −160.75 (6)O1—C3—C4—H4 −0.75 C8—C14—C15—H15A 79.61O1—C3—C2—C1 176.32 (5) C8—C14—C15—H15B −41.85O1—C3—C2—H2 −4.04 C8—C9—C11—C12 50.52 (6)O2—C11—C9—C10 57.45 (6) C8—C9—C11—H11 168.06O2—C11—C9—C8 −74.89 (6) C8—C9—C10—C19 66.33 (6)O2—C11—C9—H9 171.06 H8—C8—C14—C13 −60.54O2—C11—C12—C13 74.63 (6) H8—C8—C14—C15 63.48O2—C11—C12—H12B −47.22 H8—C8—C14—H14A −177.31O2—C11—C12—H12A −163.52 H8—C8—C9—C11 65.94O3—C17—C20—O4 −154.84 (14) H8—C8—C9—H9 179.67O3—C17—C20—C21 24.50 (8) C9—C11—O2—HO2 −172.65O3—C17—C13—C14 72.68 (6) C9—C11—C12—C13 −48.94 (6)O3—C17—C13—C12 −43.37 (7) C9—C11—C12—H12B −170.80O3—C17—C13—C18 −169.83 (6) C9—C11—C12—H12A 72.91O3—C17—C16—C15 −88.74 (6) C9—C10—C19—H19A −171.47O3—C17—C16—H16B 29.86 C9—C10—C19—H19C −53.10O3—C17—C16—H16A 151.72 C9—C10—C19—H19B 66.74O4—C20—C17—C13 86.19 (7) C9—C8—C14—C13 59.12 (6)O4—C20—C17—C16 −30.24 (8) C9—C8—C14—C15 −176.87 (6)O4—C20—C21—H21A 104.83 C9—C8—C14—H14A −57.65O4—C20—C21—H21B −135.86 H9—C9—C11—C12 −63.53O6—C22—O5—C21 6.21 (6) H9—C9—C11—H11 54.01O6—C22—C23—H23C −5.43 H9—C9—C10—C19 −179.93O6—C22—C23—H23A 114.36 H9—C9—C8—C14 59.66O6—C22—C23—H23B −126.94 C11—C9—C10—C19 −66.38 (6)C3—C4—C5—C10 4.86 (5) C11—C9—C8—C14 −54.06 (6)

Page 14: Crystal structure and electrostatic properties of

supporting information

sup-7Acta Cryst. (2017). C73, 430-436

C3—C4—C5—C6 −172.10 (6) C11—C12—C13—C17 161.87 (6)C3—C2—C1—C10 4.89 (5) C11—C12—C13—C14 51.86 (6)C3—C2—C1—H1 −175.33 C11—C12—C13—C18 −72.76 (6)C2—C3—C4—C5 −2.05 (6) H11—C11—O2—HO2 −56.03C2—C3—C4—H4 178.39 H11—C11—C12—C13 −166.70C2—C1—C10—C9 115.16 (8) H11—C11—C12—H12B 71.44C2—C1—C10—C5 −2.16 (6) H11—C11—C12—H12A −44.86C2—C1—C10—C19 −120.11 (8) C12—C11—O2—HO2 62.00H2—C2—C3—C4 176.82 C12—C13—C17—C20 75.09 (6)H2—C2—C1—C10 −174.74 C12—C13—C17—C16 −161.59 (6)H2—C2—C1—H1 5.04 C12—C13—C14—C15 168.73 (7)C1—C10—C9—C11 53.85 (6) C12—C13—C14—H14A 57.37C1—C10—C9—C8 −173.43 (6) C12—C13—C18—H18C −176.66C1—C10—C9—H9 −59.70 C12—C13—C18—H18A 62.90C1—C10—C5—C6 174.28 (6) C12—C13—C18—H18B −57.25C1—C10—C5—C4 −2.82 (5) H12A—C12—C13—C17 40.48C1—C10—C19—H19A 68.33 H12A—C12—C13—C14 −69.54C1—C10—C19—H19C −173.31 H12A—C12—C13—C18 165.84C1—C10—C19—H19B −53.46 H12B—C12—C13—C17 −76.79C1—C2—C3—C4 −2.82 (6) H12B—C12—C13—C14 173.19H1—C1—C10—C9 −64.62 H12B—C12—C13—C18 48.57H1—C1—C10—C5 178.06 C13—C17—O3—HO3 −152.55H1—C1—C10—C19 60.11 C13—C17—C20—C21 −94.48 (7)C10—C9—C11—C12 −177.14 (5) C13—C17—C16—C15 26.90 (10)C10—C9—C11—H11 −59.60 C13—C17—C16—H16B 145.50C10—C9—C8—C14 173.13 (5) C13—C17—C16—H16A −92.64C10—C9—C8—C7 53.79 (6) C13—C14—C15—C16 −31.96 (9)C10—C9—C8—H8 −66.87 C13—C14—C15—H15A −151.60C10—C5—C6—C7 −59.15 (6) C13—C14—C15—H15B 86.94C10—C5—C6—H6A −179.32 C14—C13—C17—C20 −168.85 (6)C10—C5—C6—H6B 61.27 C14—C13—C17—C16 −45.53 (8)C10—C5—C4—H4 −175.59 C14—C13—C18—H18C 60.50C4—C5—C10—C9 −120.67 (8) C14—C13—C18—H18A −59.94C4—C5—C10—C19 115.40 (7) C14—C13—C18—H18B 179.92C4—C5—C6—C7 118.01 (8) C14—C15—C16—C17 2.66 (6)C4—C5—C6—H6A −2.17 C14—C15—C16—H16B −116.10C4—C5—C6—H6B −121.58 C14—C15—C16—H16A 122.42H4—C4—C5—C6 7.46 H14A—C14—C13—C17 −63.21C5—C10—C9—C11 174.60 (6) H14A—C14—C13—C18 −178.47C5—C10—C9—C8 −52.68 (6) H14A—C14—C15—C16 80.00C5—C10—C9—H9 61.06 H14A—C14—C15—H15A −39.65C5—C10—C19—H19A −52.72 H14A—C14—C15—H15B −161.10C5—C10—C19—H19C 65.64 C15—C14—C13—C17 48.15 (8)C5—C10—C19—H19B −174.51 C15—C14—C13—C18 −67.11 (6)C5—C6—C7—C8 55.89 (7) C15—C16—C17—C20 149.07 (13)C5—C6—C7—H7B 176.68 H15A—C15—C16—C17 122.25C5—C6—C7—H7A −64.21 H15A—C15—C16—H16B 3.49C6—C5—C10—C9 56.43 (6) H15A—C15—C16—H16A −117.99

Page 15: Crystal structure and electrostatic properties of

supporting information

sup-8Acta Cryst. (2017). C73, 430-436

C6—C5—C10—C19 −67.50 (7) H15B—C15—C16—C17 −116.28C6—C7—C8—C14 −172.41 (6) H15B—C15—C16—H16B 124.97C6—C7—C8—C9 −54.68 (7) H15B—C15—C16—H16A 3.49C6—C7—C8—H8 66.28 C16—C17—O3—HO3 −40.47H6A—C6—C7—C8 176.75 C16—C17—C20—C21 149.09 (14)H6A—C6—C7—H7B −62.45 C16—C17—C13—C18 71.95 (6)H6A—C6—C7—H7A 56.65 H16A—C16—C17—C20 29.53H6B—C6—C7—C8 −65.14 H16B—C16—C17—C20 −92.33H6B—C6—C7—H7B 55.66 C17—C20—C21—H21A −74.53H6B—C6—C7—H7A 174.77 C17—C20—C21—H21B 44.79C7—C8—C14—C13 178.79 (6) C17—C13—C18—H18C −48.17C7—C8—C14—C15 −57.19 (6) C17—C13—C18—H18A −168.61C7—C8—C14—H14A 62.03 C17—C13—C18—H18B 71.24C7—C8—C9—C11 −173.40 (6) C20—C17—O3—HO3 85.65C7—C8—C9—H9 −59.67 C20—C17—C13—C18 −51.37 (7)H7A—C7—C8—C14 −51.61 C20—C21—O5—C22 −77.36 (7)H7A—C7—C8—C9 66.12 C21—O5—C22—C23 −172.60 (6)H7A—C7—C8—H8 −172.92 H21A—C21—O5—C22 161.38H7B—C7—C8—C14 66.02 H21B—C21—O5—C22 43.11

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O2—HO2···O1i 0.94 1.88 2.8168 (4) 172O2—HO2···C3i 0.94 2.69 3.5595 (3) 154O2—HO2···C4i 0.94 2.89 3.5029 (2) 124C12—H12A···O3 1.09 2.37 2.8504 (5) 105C12—H12B···O6 1.09 2.47 3.4749 (2) 153C14—H14A···O3 1.10 2.39 2.8292 (2) 102C16—H16A···O4 1.09 2.53 2.9453 (3) 101C21—H21B···C12 1.09 2.81 3.5415 (3) 124C19—H19B···O2 1.08 2.27 2.8720 (2) 113C19—H19C···C8 1.08 2.87 3.2452 (6) 100C18—H18B···O4 1.08 2.68 3.0950 (3) 103C18—H18C···C16 1.08 2.52 2.9733 (5) 104C18—H18A···O2 1.08 2.40 3.0726 (6) 119C6—H6A···C2ii 1.09 2.88 3.4322 (6) 111C7—H7B···O1ii 1.09 2.68 3.5707 (6) 139C23—H23B···C6iii 1.08 2.94 3.5917 (4) 119C16—H16B···O6iv 1.09 2.69 3.5139 (7) 132C16—H16B···O1v 1.09 2.45 3.3487 (2) 138O3—HO3···O1v 1.00 1.73 2.7302 (5) 176O3—HO3···C3v 1.00 2.66 3.5981 (6) 157

Symmetry codes: (i) x, y, z−1; (ii) −x, y+1/2, −z+2; (iii) x+1, y, z−1; (iv) −x+1, y+1/2, −z+1; (v) −x+1, y+1/2, −z+2.

Page 16: Crystal structure and electrostatic properties of

supporting information

sup-9Acta Cryst. (2017). C73, 430-436

(IAM_MoPro) 2-[(8S,9S,10R,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-

oxo-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl acetate

Crystal data

C23H30O6

Mr = 402.46Monoclinic, P21

Hall symbol: P 2yba = 8.4816 (1) Åb = 13.865 (3) Åc = 8.9437 (1) Åβ = 102.709 (1)°V = 1026.0 (2) Å3

Z = 2

F(000) = 432Dx = 1.303 Mg m−3

Cu Kα radiation, λ = 1.54178 ÅCell parameters from 1200 reflectionsθ = 5.1–72.2°µ = 0.76 mm−1

T = 100 KBlock, colorless0.43 × 0.34 × 0.21 mm

Data collection

Bruker Kappa APEXII CMOS detector diffractometer

Radiation source: MicrofocusGraphite monochromatorω and φ scanAbsorption correction: multi-scan

(SADABS; Krause et al., 2015)Tmin = 0.735, Tmax = 0.856

16242 measured reflections4018 independent reflections3976 reflections with > 2.0σ(I)Rint = 0.028θmax = 72.2°, θmin = 5.1°h = 0→10k = −17→17l = −11→10

Refinement

Refinement on F2

Least-squares matrix: fullR[F2 > 2σ(F2)] = 0.034wR(F2) = 0.093S = 1.734018 reflections262 parameters0 restraintsPrimary atom site location: structure-invariant

direct methodsSecondary atom site location: difference Fourier

map

Hydrogen site location: difference Fourier mapH atoms treated by a mixture of independent

and constrained refinementw = 1/[σ2(Fo

2) + (0.04P)2 + 0.02P] where P = (Fo

2 + 2Fc2)/3

(Δ/σ)max < 0.001Δρmax = 0.32 e Å−3

Δρmin = −0.20 e Å−3

Absolute structure: Flack x determined using 1846 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)

Absolute structure parameter: 0.01 (5)

Special details

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O5 0.70285 (15) 0.5436 (5) 0.22837 (14) 0.02781 (14)O1 0.18957 (14) 0.2770 (5) 1.26180 (12) 0.02061 (13)O2 0.12052 (15) 0.3921 (5) 0.49937 (13) 0.02263 (13)O3 0.62454 (15) 0.6172 (5) 0.65032 (13) 0.02178 (13)O4 0.48441 (17) 0.6832 (5) 0.26473 (14) 0.03055 (16)O6 0.48240 (15) 0.4497 (5) 0.20392 (15) 0.02839 (14)

Page 17: Crystal structure and electrostatic properties of

supporting information

sup-10Acta Cryst. (2017). C73, 430-436

C3 0.15919 (19) 0.3126 (5) 1.13043 (18) 0.01676 (16)C2 0.1933 (2) 0.2601 (5) 0.99959 (19) 0.01954 (18)H2 0.25236 0.19047 1.01647 0.03693C1 0.1513 (2) 0.2971 (5) 0.85822 (19) 0.01965 (18)H1 0.16983 0.25270 0.76391 0.03530C10 0.0814 (2) 0.3961 (5) 0.82184 (17) 0.01678 (17)C4 0.08768 (19) 0.4076 (5) 1.10265 (17) 0.01696 (16)H4 0.05844 0.44722 1.19732 0.03176C5 0.05622 (18) 0.4486 (5) 0.96283 (17) 0.01616 (16)C6 0.0018 (2) 0.5517 (5) 0.94003 (19) 0.01976 (18)H6A −0.01148 0.58279 1.04880 0.03472H6B −0.11530 0.55556 0.85955 0.03544C7 0.1279 (2) 0.6092 (5) 0.87760 (18) 0.02004 (18)H7A 0.24135 0.61091 0.96363 0.03302H7B 0.08578 0.68329 0.85489 0.03629C8 0.1590 (2) 0.5650 (5) 0.72924 (17) 0.01642 (17)H8 0.05007 0.57165 0.63701 0.03016C9 0.20712 (19) 0.4573 (5) 0.75471 (16) 0.01531 (16)H9 0.31683 0.45814 0.84686 0.02710C11 0.2601 (2) 0.4098 (5) 0.61796 (17) 0.01689 (17)H11 0.31446 0.33964 0.65671 0.03358C12 0.3890 (2) 0.4695 (5) 0.56173 (18) 0.01810 (17)H12A 0.50372 0.46335 0.64524 0.03282H12B 0.40567 0.43921 0.45360 0.03400C13 0.34491 (19) 0.5765 (5) 0.53786 (17) 0.01627 (17)C14 0.3005 (2) 0.6167 (5) 0.68350 (17) 0.01700 (17)H14A 0.40619 0.60375 0.77719 0.02935C15 0.2936 (2) 0.7267 (5) 0.65801 (19) 0.0224 (2)H15A 0.32415 0.76506 0.76718 0.03954H15B 0.17374 0.74911 0.59569 0.03932C16 0.4223 (2) 0.7453 (5) 0.5617 (2) 0.02252 (19)H16A 0.36778 0.78080 0.45373 0.04149H16B 0.51969 0.79068 0.62498 0.04228C17 0.4893 (2) 0.6453 (5) 0.53060 (18) 0.01921 (18)C20 0.5435 (2) 0.6376 (5) 0.37827 (19) 0.02246 (18)C21 0.6836 (2) 0.5676 (5) 0.3800 (2) 0.02617 (19)H21A 0.79546 0.60015 0.44405 0.04096H21B 0.66246 0.50157 0.43913 0.03750C22 0.5939 (2) 0.4787 (5) 0.1539 (2) 0.02372 (18)C23 0.6349 (2) 0.4476 (5) 0.0063 (2) 0.0307 (2)H23C 0.55525 0.38982 −0.04261 0.05238H23B 0.75911 0.42434 0.02995 0.05341H23A 0.61994 0.50826 −0.07078 0.05162C19 −0.0879 (2) 0.3843 (5) 0.71228 (19) 0.02513 (19)H19B −0.07706 0.34078 0.61531 0.04243H19C −0.13469 0.45419 0.67267 0.04123H19A −0.16932 0.35025 0.77302 0.04272C18 0.2090 (2) 0.5921 (5) 0.39441 (18) 0.02053 (18)

Page 18: Crystal structure and electrostatic properties of

supporting information

sup-11Acta Cryst. (2017). C73, 430-436

H18B 0.24606 0.56279 0.29603 0.04105H18C 0.18635 0.66820 0.37742 0.04239H18A 0.10110 0.55599 0.40930 0.04039HO2 0.14975 0.36037 0.43279 0.03227HO3 0.68360 0.66466 0.67561 0.03495

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O5 0.0213 (6) 0.0375 (7) 0.0263 (6) −0.0045 (5) 0.0088 (5) 0.0020 (5)O1 0.0228 (6) 0.0200 (5) 0.0177 (5) 0.0020 (4) 0.0016 (4) 0.0016 (4)O2 0.0267 (6) 0.0246 (6) 0.0172 (5) −0.0077 (5) 0.0061 (5) −0.0066 (4)O3 0.0212 (6) 0.0170 (5) 0.0235 (5) −0.0026 (4) −0.0032 (4) 0.0018 (4)O4 0.0360 (8) 0.0275 (6) 0.0272 (6) −0.0024 (6) 0.0048 (5) 0.0112 (5)O6 0.0223 (6) 0.0321 (7) 0.0327 (6) −0.0022 (5) 0.0101 (5) 0.0036 (5)C3 0.0144 (7) 0.0175 (7) 0.0176 (7) −0.0024 (6) 0.0017 (5) −0.0007 (5)C2 0.0231 (8) 0.0130 (7) 0.0240 (8) −0.0015 (6) 0.0086 (6) 0.0006 (6)H2 0.05198 0.02029 0.04067 0.00600 0.01486 0.00177C1 0.0271 (9) 0.0129 (7) 0.0216 (7) −0.0037 (6) 0.0110 (6) −0.0026 (6)H1 0.05127 0.02568 0.03145 −0.00183 0.01453 −0.00820C10 0.0205 (8) 0.0143 (7) 0.0153 (7) −0.0023 (6) 0.0035 (6) −0.0010 (5)C4 0.0150 (7) 0.0191 (7) 0.0160 (7) −0.0008 (6) 0.0017 (5) −0.0023 (6)H4 0.03702 0.03372 0.02441 0.00708 0.00647 −0.00476C5 0.0147 (7) 0.0159 (7) 0.0176 (7) −0.0001 (6) 0.0028 (5) −0.0017 (5)C6 0.0226 (8) 0.0166 (7) 0.0211 (7) 0.0045 (6) 0.0070 (6) 0.0002 (6)H6A 0.04309 0.03523 0.02583 0.00640 0.00755 −0.00554H6B 0.02766 0.04292 0.03100 0.00496 −0.00383 0.00265C7 0.0254 (9) 0.0133 (7) 0.0220 (7) 0.0029 (6) 0.0067 (6) −0.0006 (6)H7A 0.02980 0.03530 0.03005 0.00236 −0.00186 −0.00186H7B 0.04588 0.02314 0.03965 0.01258 0.00901 0.00325C8 0.0185 (7) 0.0127 (6) 0.0174 (7) 0.0024 (6) 0.0027 (6) 0.0009 (5)H8 0.02696 0.03339 0.02688 0.00318 −0.00114 0.00091C9 0.0189 (7) 0.0127 (7) 0.0143 (7) −0.0004 (6) 0.0036 (5) −0.0010 (5)H9 0.02539 0.02517 0.02792 0.00011 −0.00027 −0.00141C11 0.0220 (8) 0.0125 (7) 0.0171 (7) −0.0015 (6) 0.0063 (6) −0.0009 (5)H11 0.03951 0.02142 0.04180 0.00315 0.01323 0.00261C12 0.0217 (8) 0.0132 (7) 0.0200 (7) −0.0013 (6) 0.0060 (6) 0.0014 (5)H12A 0.02819 0.03069 0.03622 −0.00102 −0.00017 0.00353H12B 0.04324 0.03091 0.03047 −0.00279 0.01374 −0.00487C13 0.0179 (7) 0.0132 (7) 0.0169 (7) −0.0012 (6) 0.0023 (6) 0.0020 (5)C14 0.0193 (8) 0.0123 (7) 0.0180 (7) 0.0004 (6) 0.0009 (6) 0.0001 (5)H14A 0.02884 0.02531 0.03015 0.00059 −0.00159 0.00128C15 0.0283 (9) 0.0126 (7) 0.0253 (8) 0.0005 (6) 0.0034 (6) 0.0003 (6)H15A 0.05545 0.02564 0.03561 −0.00341 0.00590 −0.00391H15B 0.03858 0.03278 0.04333 0.00735 0.00189 0.00943C16 0.0256 (9) 0.0125 (7) 0.0274 (8) −0.0017 (6) 0.0013 (6) 0.0031 (6)H16A 0.04979 0.03479 0.03763 0.00487 0.00473 0.01207H16B 0.04562 0.03061 0.04757 −0.01112 0.00369 −0.00302

Page 19: Crystal structure and electrostatic properties of

supporting information

sup-12Acta Cryst. (2017). C73, 430-436

C17 0.0201 (8) 0.0142 (7) 0.0211 (7) −0.0020 (6) −0.0004 (6) 0.0033 (6)C20 0.0207 (8) 0.0209 (7) 0.0248 (8) −0.0076 (6) 0.0028 (6) 0.0043 (6)C21 0.0211 (8) 0.0355 (9) 0.0219 (8) −0.0012 (7) 0.0048 (6) 0.0012 (7)H21A 0.02812 0.05058 0.04196 −0.00902 0.00291 0.00112H21B 0.04008 0.03413 0.04070 −0.00114 0.01412 0.00877C22 0.0163 (8) 0.0282 (9) 0.0259 (8) 0.0030 (6) 0.0031 (6) 0.0057 (6)C23 0.0203 (8) 0.0460 (11) 0.0263 (8) 0.0045 (8) 0.0066 (7) 0.0032 (8)H23C 0.05069 0.06468 0.04609 −0.01514 0.01999 −0.01164H23B 0.03490 0.08238 0.04503 0.01123 0.01324 0.00177H23A 0.05715 0.06131 0.03986 0.00343 0.01813 0.01233C19 0.0216 (9) 0.0333 (9) 0.0199 (7) −0.0079 (7) 0.0033 (6) −0.0033 (6)H19B 0.04189 0.05378 0.03178 −0.00677 0.00843 −0.01835H19C 0.03806 0.03805 0.04272 0.00032 −0.00164 0.00271H19A 0.03568 0.06169 0.03188 −0.01637 0.00975 0.00370C18 0.0214 (8) 0.0195 (8) 0.0182 (7) −0.0030 (6) −0.0009 (6) 0.0024 (6)H18B 0.03918 0.05433 0.03031 0.00592 0.00912 −0.00427H18C 0.04861 0.02797 0.04552 0.00451 −0.00061 0.00605H18A 0.02979 0.05142 0.03921 −0.00969 0.00595 0.00817HO2 0.03555 0.03418 0.02870 −0.00561 0.01053 −0.00989HO3 0.03421 0.02842 0.03876 −0.01077 0.00056 0.00348

Geometric parameters (Å, º)

O5—C22 1.3550 (9) C9—H9 1.0990O5—C21 1.4408 (7) C11—C12 1.5412 (7)O1—C3 1.2476 (8) C11—H11 1.0990O2—C11 1.4266 (7) C12—C13 1.5333 (8)O2—HO2 0.8210 C12—H12B 1.0920O3—C17 1.4398 (7) C12—H12A 1.0920O3—HO3 0.8275 C13—C17 1.5642 (7)O4—C20 1.2073 (9) C13—C14 1.5378 (7)O6—C22 1.2008 (9) C13—C18 1.5397 (7)C3—C4 1.4489 (8) C14—C15 1.5410 (8)C3—C2 1.4597 (7) C14—H14A 1.0990C2—C1 1.3379 (9) C15—C16 1.5535 (8)C2—H2 1.0830 C15—H15A 1.0920C1—C10 1.5029 (8) C15—H15B 1.0920C1—H1 1.0830 C16—C17 1.5472 (8)C10—C9 1.5812 (7) C16—H16B 1.0920C10—C5 1.5111 (7) C16—H16A 1.0920C10—C19 1.5585 (7) C17—C20 1.5344 (7)C4—C5 1.3459 (8) C20—C21 1.5313 (9)C4—H4 1.0830 C21—H21A 1.0920C5—C6 1.5029 (8) C21—H21B 1.0920C6—C7 1.5342 (8) C22—C23 1.5007 (8)C6—H6B 1.0920 C23—H23C 1.0770C6—H6A 1.0920 C23—H23A 1.0770C7—C8 1.5362 (7) C23—H23B 1.0770

Page 20: Crystal structure and electrostatic properties of

supporting information

sup-13Acta Cryst. (2017). C73, 430-436

C7—H7A 1.0920 C19—H19B 1.0770C7—H7B 1.0920 C19—H19C 1.0770C8—C14 1.5283 (7) C19—H19A 1.0770C8—C9 1.5510 (7) C18—H18B 1.0770C8—H8 1.0990 C18—H18A 1.0770C9—C11 1.5410 (6) C18—H18C 1.0770

C22—O5—C21 114.2 (6) C12—C11—H11 107.488C11—O2—HO2 107.316 C13—C12—H12B 108.931C17—O3—HO3 108.908 C13—C12—H12A 108.935C4—C3—C2 117.7 (6) H12B—C12—H12A 107.810C1—C2—H2 119.468 C17—C13—C14 98.9 (5)C10—C1—C2 124.4 (6) C17—C13—C12 115.2 (5)C10—C1—H1 117.932 C17—C13—C18 109.2 (5)C9—C10—C5 106.8 (5) C14—C13—C12 109.3 (5)C9—C10—C1 107.8 (5) C14—C13—C18 112.1 (5)C9—C10—C19 115.0 (5) C15—C14—H14A 105.785C5—C10—C1 112.4 (5) C16—C15—H15A 110.939C5—C10—C19 107.2 (5) C16—C15—H15B 111.013C5—C4—H4 118.645 H15A—C15—H15B 109.165C6—C5—C4 121.4 (6) C17—C16—C15 106.3 (5)C7—C6—H6B 109.928 C17—C16—H16B 110.123C7—C6—H6A 109.654 C17—C16—H16A 110.236H6B—C6—H6A 108.132 H16B—C16—H16A 108.874C8—C7—C6 111.9 (5) C20—C17—C13 112.7 (5)C8—C7—H7A 108.971 C20—C17—C16 114.5 (6)C8—C7—H7B 109.036 H21A—C21—H21B 107.970H7A—C7—H7B 108.185 H23C—C23—H23A 110.225C14—C8—C9 107.1 (5) H23C—C23—H23B 110.861C14—C8—C7 109.8 (5) H23A—C23—H23B 109.411C14—C8—H8 109.854 H19B—C19—H19C 109.255C9—C8—C7 110.3 (5) H19B—C19—H19A 109.779C9—C8—H8 109.982 H19C—C19—H19A 109.250C11—C9—C10 114.3 (5) H18B—C18—H18A 109.511C11—C9—C8 114.1 (5) H18B—C18—H18C 109.244C11—C9—H9 104.643 H18A—C18—H18C 110.049

O5—C22—C23—H23C 172.97 H7B—C7—C8—C9 −175.89O5—C22—C23—H23A −66.86 H7B—C7—C8—H8 −54.54O5—C22—C23—H23B 52.12 C8—C14—C13—C17 −179.67 (11)O5—C21—C20—O4 −16.11 (13) C8—C14—C13—C12 −58.90 (12)O5—C21—C20—C17 164.83 (12) C8—C14—C13—C18 65.27 (12)O1—C3—C4—C5 178.76 (5) C8—C14—C15—C16 −160.94 (11)O1—C3—C4—H4 −1.21 C8—C14—C15—H15A 79.88O1—C3—C2—C1 176.13 (9) C8—C14—C15—H15B −41.62O1—C3—C2—H2 −3.51 C8—C9—C11—C12 50.37 (12)O2—C11—C9—C10 57.58 (11) C8—C9—C11—H11 168.54O2—C11—C9—C8 −74.95 (11) C8—C9—C10—C19 66.34 (12)

Page 21: Crystal structure and electrostatic properties of

supporting information

sup-14Acta Cryst. (2017). C73, 430-436

O2—C11—C9—H9 171.34 H8—C8—C14—C13 −60.52O2—C11—C12—C13 74.57 (11) H8—C8—C14—C15 63.71O2—C11—C12—H12B −46.76 H8—C8—C14—H14A −176.87O2—C11—C12—H12A −163.99 H8—C8—C9—C11 65.55O3—C17—C20—O4 −154.9 (3) H8—C8—C9—H9 179.29O3—C17—C20—C21 24.14 (17) C9—C11—O2—HO2 −172.56O3—C17—C13—C14 72.92 (12) C9—C11—C12—C13 −48.78 (12)O3—C17—C13—C12 −43.38 (13) C9—C11—C12—H12B −170.11O3—C17—C13—C18 −169.78 (11) C9—C11—C12—H12A 72.66O3—C17—C16—C15 −88.72 (12) C9—C10—C19—H19B 67.20O3—C17—C16—H16B 31.15 C9—C10—C19—H19C −52.63O3—C17—C16—H16A 151.30 C9—C10—C19—H19A −172.37O4—C20—C17—C13 86.51 (13) C9—C8—C14—C13 58.91 (12)O4—C20—C17—C16 −30.16 (15) C9—C8—C14—C15 −176.86 (12)O4—C20—C21—H21A 104.92 C9—C8—C14—H14A −57.44O4—C20—C21—H21B −137.36 H9—C9—C11—C12 −63.35O6—C22—O5—C21 6.07 (12) H9—C9—C11—H11 54.83O6—C22—C23—H23C −5.58 H9—C9—C10—C19 179.61O6—C22—C23—H23A 114.59 H9—C9—C8—C14 59.94O6—C22—C23—H23B −126.43 C11—C9—C10—C19 −66.59 (12)C3—C4—C5—C10 4.63 (10) C11—C9—C8—C14 −53.80 (12)C3—C4—C5—C6 −172.17 (12) C11—C12—C13—C17 161.99 (11)C3—C2—C1—C10 5.58 (10) C11—C12—C13—C14 51.76 (13)C3—C2—C1—H1 −174.82 C11—C12—C13—C18 −72.78 (12)C2—C3—C4—C5 −1.57 (11) H11—C11—O2—HO2 −56.06C2—C3—C4—H4 178.46 H11—C11—C12—C13 −167.07C2—C1—C10—C9 114.88 (15) H11—C11—C12—H12B 71.60C2—C1—C10—C5 −2.53 (11) H11—C11—C12—H12A −45.62C2—C1—C10—C19 −120.44 (16) C12—C11—O2—HO2 62.18H2—C2—C3—C4 176.83 C12—C13—C17—C20 74.82 (12)H2—C2—C1—C10 −174.78 C12—C13—C17—C16 −161.57 (12)H2—C2—C1—H1 4.82 C12—C13—C14—C15 168.74 (13)C1—C10—C9—C11 53.64 (12) C12—C13—C14—H14A 57.46C1—C10—C9—C8 −173.43 (11) C12—C13—C18—H18B −57.05C1—C10—C9—H9 −60.16 C12—C13—C18—H18A 62.78C1—C10—C5—C6 174.29 (12) C12—C13—C18—H18C −176.57C1—C10—C5—C4 −2.67 (11) H12A—C12—C13—C17 40.57C1—C10—C19—H19B −53.03 H12A—C12—C13—C14 −69.66C1—C10—C19—H19C −172.86 H12A—C12—C13—C18 165.80C1—C10—C19—H19A 67.40 H12B—C12—C13—C17 −76.79C1—C2—C3—C4 −3.53 (11) H12B—C12—C13—C14 172.98H1—C1—C10—C9 −64.72 H12B—C12—C13—C18 48.44H1—C1—C10—C5 177.86 C13—C17—O3—HO3 −153.48H1—C1—C10—C19 59.96 C13—C17—C20—C21 −94.46 (13)C10—C9—C11—C12 −177.10 (10) C13—C17—C16—C15 26.7 (2)C10—C9—C11—H11 −58.93 C13—C17—C16—H16B 146.53C10—C9—C8—C14 173.20 (11) C13—C17—C16—H16A −93.32C10—C9—C8—C7 53.79 (12) C13—C14—C15—C16 −31.92 (18)

Page 22: Crystal structure and electrostatic properties of

supporting information

sup-15Acta Cryst. (2017). C73, 430-436

C10—C9—C8—H8 −67.46 C13—C14—C15—H15A −151.10C10—C5—C6—C7 −59.20 (12) C13—C14—C15—H15B 87.39C10—C5—C6—H6B 61.43 C14—C13—C17—C20 −168.89 (12)C10—C5—C6—H6A −179.48 C14—C13—C17—C16 −45.28 (16)C10—C5—C4—H4 −175.40 C14—C13—C18—H18B −179.97C4—C5—C10—C9 −120.66 (15) C14—C13—C18—H18A −60.13C4—C5—C10—C19 115.58 (14) C14—C13—C18—H18C 60.52C4—C5—C6—C7 117.80 (15) C14—C15—C16—C17 2.74 (12)C4—C5—C6—H6B −121.57 C14—C15—C16—H16B −116.81C4—C5—C6—H6A −2.48 C14—C15—C16—H16A 122.45H4—C4—C5—C6 7.80 H14A—C14—C13—C17 −63.31C5—C10—C9—C11 174.61 (11) H14A—C14—C13—C18 −178.37C5—C10—C9—C8 −52.46 (12) H14A—C14—C15—C16 79.52C5—C10—C9—H9 60.81 H14A—C14—C15—H15A −39.66C5—C10—C19—H19B −174.23 H14A—C14—C15—H15B −161.16C5—C10—C19—H19C 65.95 C15—C14—C13—C17 47.97 (15)C5—C10—C19—H19A −53.80 C15—C14—C13—C18 −67.09 (12)C5—C6—C7—C8 56.04 (13) C15—C16—C17—C20 149.0 (3)C5—C6—C7—H7A −64.82 H15A—C15—C16—C17 121.88C5—C6—C7—H7B 176.92 H15A—C15—C16—H16B 2.33C6—C5—C10—C9 56.30 (12) H15A—C15—C16—H16A −118.42C6—C5—C10—C19 −67.46 (13) H15B—C15—C16—C17 −116.55C6—C7—C8—C14 −172.66 (12) H15B—C15—C16—H16B 123.90C6—C7—C8—C9 −54.87 (13) H15B—C15—C16—H16A 3.15C6—C7—C8—H8 66.48 C16—C17—O3—HO3 −41.45H6A—C6—C7—C8 176.57 C16—C17—C20—C21 148.9 (3)H6A—C6—C7—H7A 55.71 C16—C17—C13—C18 72.02 (12)H6A—C6—C7—H7B −62.55 H16A—C16—C17—C20 29.03H6B—C6—C7—C8 −64.68 H16B—C16—C17—C20 −91.11H6B—C6—C7—H7A 174.46 C17—C20—C21—H21A −74.14H6B—C6—C7—H7B 56.20 C17—C20—C21—H21B 43.58C7—C8—C14—C13 178.65 (12) C17—C13—C18—H18B 71.44C7—C8—C14—C15 −57.11 (13) C17—C13—C18—H18A −168.73C7—C8—C14—H14A 62.30 C17—C13—C18—H18C −48.08C7—C8—C9—C11 −173.21 (12) C20—C17—O3—HO3 84.89C7—C8—C9—H9 −59.47 C20—C17—C13—C18 −51.58 (13)H7A—C7—C8—C14 −51.57 C20—C21—O5—C22 −77.25 (13)H7A—C7—C8—C9 66.22 C21—O5—C22—C23 −172.53 (12)H7A—C7—C8—H8 −172.42 H21A—C21—O5—C22 161.62H7B—C7—C8—C14 66.32 H21B—C21—O5—C22 44.04

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O2—HO2···O1i 0.82 2.00 2.8195 (4) 172O2—HO2···C3i 0.82 2.80 3.5618 (4) 155C12—H12A···O3 1.09 2.36 2.8488 (6) 105C12—H12B···O6 1.09 2.46 3.4728 (3) 153

Page 23: Crystal structure and electrostatic properties of

supporting information

sup-16Acta Cryst. (2017). C73, 430-436

C14—H14A···O3 1.10 2.38 2.8288 (4) 102C16—H16A···O4 1.09 2.53 2.9478 (4) 101C21—H21B···C12 1.09 2.81 3.5384 (4) 124C19—H19B···O2 1.08 2.27 2.8712 (4) 113C19—H19C···C8 1.08 2.88 3.2475 (7) 100C18—H18B···O4 1.08 2.68 3.0965 (4) 102C18—H18C···C16 1.08 2.53 2.9719 (6) 103C18—H18A···O2 1.08 2.41 3.0738 (7) 119C6—H6A···C2ii 1.09 2.88 3.4304 (7) 111C7—H7B···O1ii 1.09 2.68 3.5697 (6) 139C16—H16B···O6iii 1.09 2.69 3.5120 (7) 132C16—H16B···O1iv 1.09 2.46 3.3518 (3) 138O3—HO3···O1iv 0.83 1.91 2.7325 (6) 177

Symmetry codes: (i) x, y, z−1; (ii) −x, y+1/2, −z+2; (iii) −x+1, y+1/2, −z+1; (iv) −x+1, y+1/2, −z+2.

(IAM_shelx) 2-[(8S,9S,10R,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-

oxo-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl acetate

Crystal data

C23H30O6

Mr = 402.46Monoclinic, P21

a = 8.4816 (19) Åb = 13.865 (3) Åc = 8.9437 (19) Åβ = 102.709 (17)°V = 1026.0 (4) Å3

Z = 2

F(000) = 432Dx = 1.303 Mg m−3

Cu Kα radiation, λ = 1.54178 ÅCell parameters from 1200 reflectionsθ = 5.1–72.2°µ = 0.76 mm−1

T = 100 KBlock, colorless0.43 × 0.34 × 0.21 mm

Data collection

Bruker Kappa Apex II CMOS detector diffractometer

Radiation source: MicrofocusGraphite monochromatorω and phi scanAbsorption correction: multi-scan

SADABS (Krause et al., 2015)Tmin = 0.735, Tmax = 0.856

16242 measured reflections4018 independent reflections3942 reflections with I > 2σ(I)Rint = 0.028θmax = 72.2°, θmin = 5.1°h = −10→10k = −17→17l = −11→11

Refinement

Refinement on F2

Least-squares matrix: fullR[F2 > 2σ(F2)] = 0.026wR(F2) = 0.067S = 1.074018 reflections271 parameters1 restraintHydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(Fo2) + (0.0391P)2 + 0.1219P]

where P = (Fo2 + 2Fc

2)/3(Δ/σ)max < 0.001Δρmax = 0.22 e Å−3

Δρmin = −0.16 e Å−3

Absolute structure: Flack x determined using 1846 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)

Absolute structure parameter: 0.01 (5)

Page 24: Crystal structure and electrostatic properties of

supporting information

sup-17Acta Cryst. (2017). C73, 430-436

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O5 0.70295 (16) 0.54102 (11) 0.22842 (15) 0.0275 (3)O1 0.18982 (15) 0.27450 (9) 1.26188 (13) 0.0200 (3)O2 0.12030 (16) 0.38966 (10) 0.49946 (14) 0.0220 (3)O3 0.62443 (16) 0.61465 (9) 0.65034 (14) 0.0214 (3)O4 0.48451 (18) 0.68073 (10) 0.26480 (15) 0.0296 (3)O6 0.48224 (16) 0.44716 (10) 0.20361 (16) 0.0281 (3)C3 0.1594 (2) 0.31013 (12) 1.13048 (19) 0.0165 (3)C2 0.1930 (2) 0.25744 (12) 0.9996 (2) 0.0190 (3)H2 0.2436 0.1976 1.0144 0.023*C1 0.1517 (2) 0.29462 (12) 0.8587 (2) 0.0194 (3)H1 0.1675 0.2566 0.7776 0.023*C10 0.0814 (2) 0.39354 (12) 0.82181 (18) 0.0165 (3)C4 0.0878 (2) 0.40496 (12) 1.10240 (18) 0.0164 (3)H4 0.0626 0.4388 1.1839 0.020*C5 0.05656 (19) 0.44584 (12) 0.96305 (18) 0.0158 (3)C6 0.0020 (2) 0.54896 (12) 0.9400 (2) 0.0194 (3)H6A −0.0099 0.5764 1.0367 0.023*H6B −0.1019 0.5521 0.8684 0.023*C7 0.1278 (2) 0.60634 (12) 0.87749 (19) 0.0196 (3)H7A 0.2283 0.6081 0.9542 0.024*H7B 0.0904 0.6722 0.8578 0.024*C8 0.1591 (2) 0.56236 (12) 0.72924 (18) 0.0163 (3)H8 0.0620 0.5682 0.6468 0.020*C9 0.2072 (2) 0.45466 (11) 0.75470 (17) 0.0151 (3)H9 0.3051 0.4554 0.8368 0.018*C11 0.2602 (2) 0.40727 (12) 0.61802 (18) 0.0169 (3)H11 0.3084 0.3446 0.6525 0.020*C12 0.3888 (2) 0.46692 (12) 0.56175 (19) 0.0176 (3)H12A 0.4908 0.4615 0.6359 0.021*H12B 0.4039 0.4400 0.4657 0.021*C13 0.3448 (2) 0.57391 (11) 0.53781 (18) 0.0163 (3)C14 0.3007 (2) 0.61395 (12) 0.68386 (19) 0.0174 (3)H14A 0.3949 0.6022 0.7674 0.021*C15 0.2937 (2) 0.72406 (12) 0.6583 (2) 0.0223 (4)H15A 0.3205 0.7583 0.7551 0.027*H15B 0.1872 0.7440 0.6028 0.027*C16 0.4227 (2) 0.74252 (12) 0.5618 (2) 0.0220 (4)H16A 0.3740 0.7743 0.4662 0.026*H16B 0.5087 0.7831 0.6180 0.026*

Page 25: Crystal structure and electrostatic properties of

supporting information

sup-18Acta Cryst. (2017). C73, 430-436

C17 0.4896 (2) 0.64275 (12) 0.53063 (19) 0.0188 (4)C20 0.5438 (2) 0.63512 (13) 0.3783 (2) 0.0223 (4)C21 0.6833 (2) 0.56530 (15) 0.3798 (2) 0.0259 (4)H21A 0.7826 0.5941 0.4370 0.031*H21B 0.6645 0.5067 0.4324 0.031*C22 0.5940 (2) 0.47608 (14) 0.1537 (2) 0.0235 (4)C23 0.6351 (2) 0.44493 (17) 0.0067 (2) 0.0295 (4)H23C 0.5649 0.3932 −0.0374 0.044*H23B 0.7453 0.4233 0.0266 0.044*H23A 0.6215 0.4983 −0.0634 0.044*C19 −0.0876 (2) 0.38162 (14) 0.7126 (2) 0.0243 (4)H19B −0.0779 0.3426 0.6264 0.036*H19C −0.1294 0.4439 0.6772 0.036*H19A −0.1600 0.3510 0.7667 0.036*C18 0.2089 (2) 0.58936 (12) 0.39423 (19) 0.0200 (4)H18B 0.2414 0.5632 0.3063 0.030*H18C 0.1881 0.6571 0.3793 0.030*H18A 0.1125 0.5574 0.4076 0.030*HO2 0.148 (3) 0.3583 (18) 0.434 (3) 0.030*HO3 0.685 (3) 0.665 (2) 0.676 (3) 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O5 0.0202 (7) 0.0374 (7) 0.0263 (7) −0.0039 (5) 0.0084 (5) 0.0018 (6)O1 0.0226 (6) 0.0192 (6) 0.0171 (6) 0.0020 (5) 0.0019 (5) 0.0019 (4)O2 0.0263 (7) 0.0238 (6) 0.0167 (6) −0.0077 (5) 0.0064 (5) −0.0074 (5)O3 0.0199 (6) 0.0164 (6) 0.0238 (6) −0.0024 (5) −0.0038 (5) 0.0016 (5)O4 0.0346 (8) 0.0273 (7) 0.0259 (7) −0.0020 (6) 0.0047 (6) 0.0105 (6)O6 0.0228 (7) 0.0320 (7) 0.0318 (7) −0.0024 (6) 0.0106 (5) 0.0031 (6)C3 0.0134 (7) 0.0170 (8) 0.0185 (8) −0.0025 (6) 0.0021 (6) −0.0002 (6)C2 0.0229 (8) 0.0111 (7) 0.0247 (8) −0.0001 (6) 0.0089 (7) 0.0005 (6)C1 0.0266 (9) 0.0128 (8) 0.0213 (8) −0.0040 (7) 0.0109 (7) −0.0043 (6)C10 0.0209 (8) 0.0142 (8) 0.0145 (7) −0.0020 (7) 0.0039 (6) −0.0008 (6)C4 0.0154 (8) 0.0179 (8) 0.0157 (7) −0.0003 (6) 0.0031 (6) −0.0032 (6)C5 0.0132 (7) 0.0155 (8) 0.0184 (8) −0.0003 (6) 0.0029 (6) −0.0024 (6)C6 0.0221 (9) 0.0171 (8) 0.0198 (8) 0.0049 (7) 0.0060 (7) −0.0003 (6)C7 0.0239 (9) 0.0131 (7) 0.0218 (8) 0.0032 (7) 0.0052 (7) −0.0010 (6)C8 0.0186 (8) 0.0130 (7) 0.0163 (8) 0.0021 (6) 0.0018 (6) 0.0007 (6)C9 0.0179 (8) 0.0125 (7) 0.0143 (7) −0.0005 (6) 0.0021 (6) −0.0004 (6)C11 0.0225 (9) 0.0111 (7) 0.0176 (7) −0.0012 (6) 0.0053 (6) 0.0000 (6)C12 0.0203 (8) 0.0142 (8) 0.0189 (7) −0.0010 (6) 0.0058 (6) 0.0014 (6)C13 0.0177 (8) 0.0135 (7) 0.0168 (8) −0.0022 (6) 0.0019 (6) 0.0019 (6)C14 0.0200 (9) 0.0126 (7) 0.0179 (7) 0.0003 (6) 0.0005 (6) 0.0004 (6)C15 0.0271 (10) 0.0133 (8) 0.0247 (9) 0.0009 (7) 0.0021 (7) 0.0002 (6)C16 0.0241 (9) 0.0126 (8) 0.0263 (9) −0.0024 (7) −0.0005 (7) 0.0032 (6)C17 0.0194 (9) 0.0147 (7) 0.0200 (8) −0.0024 (6) −0.0005 (6) 0.0036 (6)C20 0.0200 (9) 0.0209 (8) 0.0251 (9) −0.0084 (7) 0.0028 (7) 0.0036 (7)

Page 26: Crystal structure and electrostatic properties of

supporting information

sup-19Acta Cryst. (2017). C73, 430-436

C21 0.0211 (9) 0.0338 (10) 0.0226 (9) −0.0021 (8) 0.0047 (7) 0.0023 (7)C22 0.0165 (8) 0.0278 (9) 0.0256 (9) 0.0033 (7) 0.0034 (7) 0.0065 (7)C23 0.0196 (9) 0.0441 (12) 0.0251 (9) 0.0035 (9) 0.0058 (7) 0.0028 (8)C19 0.0220 (9) 0.0317 (10) 0.0190 (8) −0.0077 (8) 0.0040 (7) −0.0035 (7)C18 0.0213 (9) 0.0180 (8) 0.0189 (8) −0.0028 (7) 0.0005 (7) 0.0023 (6)

Geometric parameters (Å, º)

O5—C22 1.356 (2) C9—H9 0.9800O5—C21 1.440 (2) C11—C12 1.539 (2)O1—C3 1.248 (2) C11—H11 0.9800O2—C11 1.428 (2) C12—C13 1.533 (2)O2—HO2 0.80 (3) C12—H12A 0.9700O3—C17 1.438 (2) C12—H12B 0.9700O3—HO3 0.87 (3) C13—C14 1.539 (2)O4—C20 1.207 (2) C13—C18 1.540 (2)O6—C22 1.202 (2) C13—C17 1.568 (2)C3—C4 1.447 (2) C14—C15 1.543 (2)C3—C2 1.461 (2) C14—H14A 0.9800C2—C1 1.335 (3) C15—C16 1.556 (3)C2—H2 0.9300 C15—H15A 0.9700C1—C10 1.503 (2) C15—H15B 0.9700C1—H1 0.9300 C16—C17 1.544 (2)C10—C5 1.511 (2) C16—H16A 0.9700C10—C19 1.556 (2) C16—H16B 0.9700C10—C9 1.581 (2) C17—C20 1.535 (2)C4—C5 1.341 (2) C20—C21 1.526 (3)C4—H4 0.9300 C21—H21A 0.9700C5—C6 1.503 (2) C21—H21B 0.9700C6—C7 1.532 (3) C22—C23 1.496 (3)C6—H6A 0.9700 C23—H23C 0.9600C6—H6B 0.9700 C23—H23B 0.9600C7—C8 1.535 (2) C23—H23A 0.9600C7—H7A 0.9700 C19—H19B 0.9600C7—H7B 0.9700 C19—H19C 0.9600C8—C14 1.527 (2) C19—H19A 0.9600C8—C9 1.552 (2) C18—H18B 0.9600C8—H8 0.9800 C18—H18C 0.9600C9—C11 1.539 (2) C18—H18A 0.9600

C22—O5—C21 114.28 (14) C12—C13—C14 109.12 (13)C11—O2—HO2 107.5 (18) C12—C13—C18 111.44 (13)C17—O3—HO3 107.7 (16) C14—C13—C18 112.33 (14)O1—C3—C4 121.01 (15) C12—C13—C17 115.23 (14)O1—C3—C2 121.36 (15) C14—C13—C17 98.86 (13)C4—C3—C2 117.63 (15) C18—C13—C17 109.30 (13)C1—C2—C3 120.42 (16) C8—C14—C13 114.13 (13)C1—C2—H2 119.8 C8—C14—C15 119.73 (15)

Page 27: Crystal structure and electrostatic properties of

supporting information

sup-20Acta Cryst. (2017). C73, 430-436

C3—C2—H2 119.8 C13—C14—C15 103.86 (14)C2—C1—C10 124.68 (16) C8—C14—H14A 106.0C2—C1—H1 117.7 C13—C14—H14A 106.0C10—C1—H1 117.7 C15—C14—H14A 106.0C1—C10—C5 112.08 (13) C14—C15—C16 103.66 (14)C1—C10—C19 107.89 (14) C14—C15—H15A 111.0C5—C10—C19 107.29 (14) C16—C15—H15A 111.0C1—C10—C9 107.71 (14) C14—C15—H15B 111.0C5—C10—C9 106.86 (13) C16—C15—H15B 111.0C19—C10—C9 115.11 (13) H15A—C15—H15B 109.0C5—C4—C3 122.35 (15) C17—C16—C15 106.51 (14)C5—C4—H4 118.8 C17—C16—H16A 110.4C3—C4—H4 118.8 C15—C16—H16A 110.4C4—C5—C6 121.42 (15) C17—C16—H16B 110.4C4—C5—C10 122.58 (15) C15—C16—H16B 110.4C6—C5—C10 115.94 (14) H16A—C16—H16B 108.6C5—C6—C7 109.03 (14) O3—C17—C20 107.33 (14)C5—C6—H6A 109.9 O3—C17—C16 111.84 (14)C7—C6—H6A 109.9 C20—C17—C16 114.60 (14)C5—C6—H6B 109.9 O3—C17—C13 107.84 (13)C7—C6—H6B 109.9 C20—C17—C13 112.63 (14)H6A—C6—H6B 108.3 C16—C17—C13 102.46 (14)C6—C7—C8 112.08 (14) O4—C20—C21 121.23 (17)C6—C7—H7A 109.2 O4—C20—C17 124.00 (18)C8—C7—H7A 109.2 C21—C20—C17 114.77 (15)C6—C7—H7B 109.2 O5—C21—C20 112.93 (15)C8—C7—H7B 109.2 O5—C21—H21A 109.0H7A—C7—H7B 107.9 C20—C21—H21A 109.0C14—C8—C7 109.81 (14) O5—C21—H21B 109.0C14—C8—C9 107.02 (13) C20—C21—H21B 109.0C7—C8—C9 110.21 (13) H21A—C21—H21B 107.8C14—C8—H8 109.9 O6—C22—O5 123.10 (17)C7—C8—H8 109.9 O6—C22—C23 125.84 (18)C9—C8—H8 109.9 O5—C22—C23 111.05 (16)C11—C9—C8 114.05 (13) C22—C23—H23C 109.5C11—C9—C10 114.34 (13) C22—C23—H23B 109.5C8—C9—C10 113.19 (13) H23C—C23—H23B 109.5C11—C9—H9 104.6 C22—C23—H23A 109.5C8—C9—H9 104.6 H23C—C23—H23A 109.5C10—C9—H9 104.6 H23B—C23—H23A 109.5O2—C11—C12 112.46 (13) C10—C19—H19B 109.5O2—C11—C9 108.81 (13) C10—C19—H19C 109.5C12—C11—C9 112.46 (13) H19B—C19—H19C 109.5O2—C11—H11 107.6 C10—C19—H19A 109.5C12—C11—H11 107.6 H19B—C19—H19A 109.5C9—C11—H11 107.6 H19C—C19—H19A 109.5C13—C12—C11 113.42 (14) C13—C18—H18B 109.5C13—C12—H12A 108.9 C13—C18—H18C 109.5

Page 28: Crystal structure and electrostatic properties of

supporting information

sup-21Acta Cryst. (2017). C73, 430-436

C11—C12—H12A 108.9 H18B—C18—H18C 109.5C13—C12—H12B 108.9 C13—C18—H18A 109.5C11—C12—H12B 108.9 H18B—C18—H18A 109.5H12A—C12—H12B 107.7 H18C—C18—H18A 109.5

O1—C3—C2—C1 176.40 (17) C11—C12—C13—C18 −72.82 (18)C4—C3—C2—C1 −3.0 (2) C11—C12—C13—C17 161.91 (13)C3—C2—C1—C10 5.0 (3) C7—C8—C14—C13 178.78 (13)C2—C1—C10—C5 −2.1 (2) C9—C8—C14—C13 59.15 (17)C2—C1—C10—C19 −120.01 (19) C7—C8—C14—C15 −57.29 (19)C2—C1—C10—C9 115.16 (19) C9—C8—C14—C15 −176.92 (14)O1—C3—C4—C5 178.72 (16) C12—C13—C14—C8 −59.11 (18)C2—C3—C4—C5 −1.9 (2) C18—C13—C14—C8 65.00 (18)C3—C4—C5—C6 −172.13 (15) C17—C13—C14—C8 −179.81 (13)C3—C4—C5—C10 4.8 (3) C12—C13—C14—C15 168.80 (14)C1—C10—C5—C4 −2.9 (2) C18—C13—C14—C15 −67.09 (17)C19—C10—C5—C4 115.39 (18) C17—C13—C14—C15 48.10 (15)C9—C10—C5—C4 −120.64 (17) C8—C14—C15—C16 −160.80 (14)C1—C10—C5—C6 174.22 (14) C13—C14—C15—C16 −32.06 (17)C19—C10—C5—C6 −67.52 (18) C14—C15—C16—C17 2.80 (18)C9—C10—C5—C6 56.44 (17) C15—C16—C17—O3 −88.58 (17)C4—C5—C6—C7 117.91 (18) C15—C16—C17—C20 148.98 (15)C10—C5—C6—C7 −59.22 (18) C15—C16—C17—C13 26.67 (17)C5—C6—C7—C8 56.09 (18) C12—C13—C17—O3 −43.37 (18)C6—C7—C8—C14 −172.45 (13) C14—C13—C17—O3 72.74 (15)C6—C7—C8—C9 −54.79 (18) C18—C13—C17—O3 −169.74 (13)C14—C8—C9—C11 −53.90 (17) C12—C13—C17—C20 74.87 (18)C7—C8—C9—C11 −173.27 (14) C14—C13—C17—C20 −169.03 (14)C14—C8—C9—C10 173.08 (12) C18—C13—C17—C20 −51.51 (19)C7—C8—C9—C10 53.71 (17) C12—C13—C17—C16 −161.49 (13)C1—C10—C9—C11 53.88 (17) C14—C13—C17—C16 −45.39 (15)C5—C10—C9—C11 174.49 (13) C18—C13—C17—C16 72.13 (16)C19—C10—C9—C11 −66.49 (19) O3—C17—C20—O4 −154.98 (17)C1—C10—C9—C8 −173.23 (13) C16—C17—C20—O4 −30.1 (2)C5—C10—C9—C8 −52.63 (16) C13—C17—C20—O4 86.5 (2)C19—C10—C9—C8 66.39 (18) O3—C17—C20—C21 24.1 (2)C8—C9—C11—O2 −74.93 (17) C16—C17—C20—C21 148.95 (16)C10—C9—C11—O2 57.54 (17) C13—C17—C20—C21 −94.44 (18)C8—C9—C11—C12 50.36 (18) C22—O5—C21—C20 −77.2 (2)C10—C9—C11—C12 −177.17 (13) O4—C20—C21—O5 −16.1 (3)O2—C11—C12—C13 74.46 (17) C17—C20—C21—O5 164.80 (15)C9—C11—C12—C13 −48.80 (18) C21—O5—C22—O6 5.9 (3)C11—C12—C13—C14 51.81 (18) C21—O5—C22—C23 −172.58 (16)