crystal structure ofbabingtonite - rruffrruff.info/uploads/zk135_355.pdfzeitschrift...

19
Zeitschrift fiir Kristallographie, Bd. 135, S. 355-373 (1972) Crystal structure of babingtonite By TAKAHARU ARAKI * and TIBOR ZOLTAI Department of Geology and Geophysics, University of Minnesota** (Received 30 September 1971) Auszug Babingtonit, Ca2(Fe,Mn,Mg)FeHSb015 hat die Raumgruppe pI und die Gitterkonstanten a = 7,509 ::!:0,019 A, b = 11,697 ::!:0,028 A, c = 6,719 ::J:0,017 A, iX = 91,433 ::!: 0,041°, fJ = 93,886 ::!: 0,030°, Y = 104,255 ::!:0,029°, Z = 2. Die Struktur wurde aus dreidimensionalen Pattersondiagrammen mittels der Minimumfunktions-Methode bestimmt. Die Verfeinerung mit isotropen Temperaturfaktoren ergab R = 0,0612. Das Strukturgeriist wird von zwei Einzelketten aus Si04-Tetraedern parallel [110] und mit je fiinf Oktaedern je Elementarzelle gebildet. Die Ketten sind durch Oktaeder urn Fe,Mn,Mg zusammengehalten. In den groBen leeren Raumen zwischen den Ketten und Oktaedern liegen die Ca-Atome inmitten von Polredern aus acht O-Atomen. Der Abstand vom Si zu den briickenbilden- den O-AtuInen ist 1,6521, fUI' die u!Jrigen O-ALuIne isL Si-O = 1,6141. Fo2+ -0 lRT- 2,ORR h-iR 2.2~O A. -p'n9+___O 1.()~4- hiA 2.20fl A unCI (;R-() 2.2~7 h-iA 3,084 A. Die Struktur von Babingtonit ist der von Rhodonit deutlich ahnlich. Abstract Babingtonite, Ca2(Fe,Mn,Mg) FeHSi5015, from the Yakuki mine, Japan, has triclinic space group P I and unit-cell constants a = 7.509 ::!: 0.019 A, b = 11.697 ::!: 0,028 A, c = 6.719 ::!: 0.017 A, iX = 91.433 ::!: 0.041°, fJ = 93.886 ::J: 0.030°, y = 104.255 ::!: 0.029°, and Z = 2. Three-dimensional intensities were collected with the 28 scan method and by using Zr-filtered MoKiX radiation. The structure was determined by solving three-dimensional Patterson maps with the minimum-function method. The final least-squares refinement for isotropic temperature factors, using 3265 reflections, gave R = 0.0612. The structure consists of two single chains of silica tetrahedra, containing five tetrahedra per repeat unit, running parallel to the [110] zone and connected by Fe,Mn,Mg octahedra. Ca atoms occupy the large openings existing between the tetrahedral chains and the octahedra, and form irregular polyhedra each with eight oxygen atoms. The average distance from Si to the nonbridging * Present address: Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637. ** Minneapolis, Minnesota 55455. 23*

Upload: others

Post on 31-Aug-2019

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

Zeitschrift fiir Kristallographie, Bd. 135, S. 355-373 (1972)

Crystal structure of babingtonite

By TAKAHARU ARAKI * and TIBOR ZOLTAI

Department of Geology and Geophysics, University of Minnesota**

(Received 30 September 1971)

AuszugBabingtonit, Ca2(Fe,Mn,Mg)FeHSb015 hat die Raumgruppe pI und die

Gitterkonstanten a = 7,509 ::!:0,019 A, b = 11,697 ::!:0,028 A, c = 6,719::J:0,017 A, iX= 91,433 ::!:0,041°, fJ = 93,886 ::!:0,030°, Y = 104,255 ::!:0,029°,Z = 2. Die Struktur wurde aus dreidimensionalen Pattersondiagrammen mittelsder Minimumfunktions-Methode bestimmt. Die Verfeinerung mit isotropenTemperaturfaktoren ergab R = 0,0612.

Das Strukturgeriist wird von zwei Einzelketten aus Si04-Tetraedern parallel[110] und mit je fiinf Oktaedern je Elementarzelle gebildet. Die Ketten sinddurch Oktaeder urn Fe,Mn,Mg zusammengehalten. In den groBen leerenRaumen zwischen den Ketten und Oktaedern liegen die Ca-Atome inmittenvon Polredern aus acht O-Atomen. Der Abstand vom Si zu den briickenbilden-

den O-AtuInen ist 1,6521, fUI' die u!Jrigen O-ALuIne isL Si-O = 1,6141.Fo2+ -0 lRT- 2,ORR h-iR 2.2~O A. -p'n9+___O 1.()~4- hiA 2.20fl A unCI (;R-() 2.2~7 h-iA

3,084 A. Die Struktur von Babingtonit ist der von Rhodonit deutlich ahnlich.

Abstract

Babingtonite, Ca2(Fe,Mn,Mg) FeHSi5015, from the Yakuki mine, Japan,has triclinic space group P I and unit-cell constants a = 7.509 ::!: 0.019 A,b = 11.697 ::!: 0,028 A, c = 6.719 ::!: 0.017 A, iX = 91.433 ::!: 0.041°, fJ = 93.886

::J:0.030°, y = 104.255 ::!: 0.029°, and Z = 2. Three-dimensional intensitieswere collected with the 28 scan method and by using Zr-filtered MoKiXradiation. The structure was determined by solving three-dimensional Pattersonmaps with the minimum-function method. The final least-squares refinementfor isotropic temperature factors, using 3265 reflections, gave R = 0.0612.

The structure consists of two single chains of silica tetrahedra, containingfive tetrahedra per repeat unit, running parallel to the [110] zone and connectedby Fe,Mn,Mg octahedra. Ca atoms occupy the large openings existing between

the tetrahedral chains and the octahedra, and form irregular polyhedra eachwith eight oxygen atoms. The average distance from Si to the nonbridging

*Present address: Department of Geophysical Sciences, University of

Chicago, Chicago, Illinois 60637.

** Minneapolis, Minnesota 55455.

23*

Page 2: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

356 TAKAHARU ARAKI and -TIBOR ZOLTAI

oxygen atoms is 1.614 A and from Si to bridging oxygen atoms is 1.652 A.The range of Fe2+-0 distances is between 2.066 and 2.239 A; of Fe3+-0,between 1.934 and 2.206 A; and of Ca-O between 2.287 and 3.084 A. Thestructure of babingtonite distinctly resembles that of rhodonite.

Introduction

Although the crystal structure of babingtonite had not beendetermined prior to this study the mineral was usually classified,together with rhodonite, as a single-chain silicate, containing fivetetrahedra per repeat unit (PEACOR and NnzEKI, 1963; STRUNZ, 1970)on the basis of morphological and cell data. PREWITT and PEACOR(1964) have suggested for babingtonite a possible five-memberedsingle-chain structure on the basis of the resemblance between theb-axis diffraction patterns of babingtonite and rhodonite. However,a double-chain structure was inferable from the chemical compositionof the mineral, provided that OH is not in tetrahedral-corner position.

A comprehensive description of babingtonite from the contact-metamorphic iron deposits of the Yakuki mine, Japan, was publishedrecently by NAMBU, TANIDA and KITAMURA (1969). The specificgravity of these specimens was determined by the authors of thatpaper as 3.37 gfcm3, and the chemical formula was given as:

(Ca3. 85MnO.1l N ao.03Ko. 03 k 02 (Fe!, 26MnO. 49MgO. 26 h. 01

(Fet97Alo.olh.98(Si9.83Alo.17hO.0027.n(OH)2.27 .

One of us collected from the same locality the specimens which wereused in the following study.

Experimental

A small prismatic fragment cut from a larger babingtonite crystal,measuring about 0.45, 0.42 and 0.27 mm along the a, band c axes,was mounted on an automated Hilger-Watts four-circle diffractometerwith the b axis in approximate coincidence with the instrument'scpaxis. Intensities of 3275 upper-hemisphere reflections, within thelimit of sin () < 0.5 were measured, using Zr-filtered MoKiX radiation.Scanning across the diffraction peaks was done with a stepwise,stationary-counter, stationary-crystal, 2() scan technique by applyinga symmetrical scan range of 1 0 and a rate of 10f 100 seconds. Back-ground measurements were made every 50 seconds on both sides ofthe peaks. The scintillation counter was set at the crystal-to-counterdistance of 20 em, and an aperture 6 mm in diameter was used.

Page 3: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

Crystal structure of babingtonite 357

Absorption corrections were calculated for the polyhedral-shapedcrystal by using a Gaussian integral method with divisions of 7(BURNHAM,1966), and all reflections were corrected. Weights for allreflections were assigned by considering counting statistics, long-periodsource fluctuation which was deduced from repeated measurementson selected standard reflections, and from errors in crystal-sizemeasurements. 313 reflections had intensities lower than 2(1(1) andthese were set to be equal to (1(1).

The unit-cell constants of babingtonite were refined by a least-squares method by using the initial data obtained from precessionphotographs and from a CuK IX powder diffractometer chart. '{'herefined parameters with corresponding standard deviations are:

a = 7.509:::!:: 0.019 Ab = 11.697 :::!::0.028 Ac = 6.719:::!:: 0.017 A

IX = 91.433 :::!:: 0.041 °

(J = 93.886 :::!:: 0.030 °

Y = 104.255 :::!:: 0.029°.

These lattice parameters agree closely with those previously reportedby RICHMOND(1937).

Structure determination

An N (z) test for the detection of the presence of a center of inver-sion was carried out. The results indicated strongly that the structureof babingtonite is centric, so space group PI was accepted in con-sequent calculations.

A three-dimensional Patterson synthesis was calculated from the3275 observed intensities and a search was initiated for locatingpotential inversion peaks. Since there were possible overlapping ofpeaks in the Patterson maps, those peaks with heights larger thanthat of Fe-Fe single-vector peaks were ignored. Seven peaks showingpossible inversion and conjugate relationships and having no pro-minent peaks in forbidden zones were selected as probable inversionpeaks.

By using the inversion-peak candidate located at 0.08, 0.475,0.35 in x, y, and z coordinates of the Patterson synthesis, M2 mapswere prepared. These maps contained a number of relatively largesymmetrical peaks equal to the number of atoms anticipated ina unit cell. In addition. to these peaks, however, there were manyothers of relatively low height and more irregular peaks as well.With the aid of standard interatomic distances and coordination

Page 4: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

358 TAKAHARU ARAKI and TIBOR ZOLTAI

polyhedra the major features of the babingtonite structure wereeasily deduced. A typical section of the M2 maps is shown in Fig. 1.Structure factors were calculated from the approximate atomic coor-dinates of the M2 maps by using arbitrary temperature factors.An R value of 33.90/0 was obtained. A subsequent Fourier synthesisdisclosed better-defined atomic positions and the input of thesecoordinates decreased the R value to 25.7%. The shifts in the atomicpositions in a second Fourier synthesis were negligible and furthersyntheses were judged to be unnecessary.

Fig. 1. M2 section at z = 0.125 showing parts of Fe2+, Fe3+, Ca(1), Si(3), Si(5)and oxygen atoms

Four cycles of least-squares refinement of the atomic positionsand isotropic temperature factors were calculated. The percentage ofMg occupancy in the Fe2+ position was also computed. Because ofthe small difference in t curves between Mn2+ and Fe2+ (although theFe2+ site was presumed to be partly replaced by Mn2+ and Mg2+)the calculations of these occupancy ratios were omitted. In thesecalculations, fully ionized states were assumed for all atoms exceptoxygen, which was assumed to be half ionized (CROMERand MANN,1968). Ten reflections out of the 3275 were excluded from the calcu-lations because their intensity measurements appeared to be lessreliable due to possible machine failure. No corrections for secondary-extinction effects were made. The final conventional R value andweighted R for 3265 reflections were 6.12 and 6.92%, respectively.

The final atomic coordinates and temperature factors with cor-responding standard deviations are listed in Table 1. All observedand calculated structure factors are tabulated in Table 2.

Page 5: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

Atom x y zI

BI

Occupancy

Ca(1) 0.78195 0.94185 0.14246 0.82820.00011 0.00007 0.00012 0.0140

Ca(2) 0.23789 0.52034 0.30414 0.69580.00010 0.00007 0.00012 0.0136

Fe2+ 0.59363 0.64411 0.06137 0.4954 0.85610.00008 0.00005 0.00009 0.0165 0.0058

Fe3+ 0.04655 0.23532 0.18443 0.55990.00007 0.00005 0.00008 0.0116

Si(1) 0.28767 0.05351 0.34126 0.57880.00014 0.00009 0.00015 0.0166

Si(2) 0.46011 0.31355 0.42474 0.52240.00014 0.00009 0.00015 0.0162

Si(3) 0.80613 0.44506 0.20977 0.49600.00014 0.00009 0.00015 0.0161

Si(4) 0.98773 0.71336 0.30999 0.52260.00014 0.00009 0.00015 0.0163

Si(5) 0.32721 0.83592 0.10650 0.58220.00014 0.00009 0.00016 0.0165

0(1) 0.19767 0.98774 0.53409 1.05940.00039 0.00026 0.00044 0.0437

0(2) 0.13003 0.08047 0.18484 0.70000.00036 0.00024 0.00041 0.0390

0(3) 0.43302 0.17111 0.43607 0.88660.00038 0.00025 0.00042 0.0414

I

0(4) 0.31691 0.33841 0.24601 0.71780.00036 0.00024 0.00041 0.0394

0(5) 0.55045 0.62029 0.36622 0.74030.00037 0.00024 0.00041 0.0394

Crystal structure of babingtonite 359

Table 1. Final atomic parameters and their standard

deviations (lower rows)

Page 6: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

Atom x y z B Occupancy

0(6) 0.67737 0.37087 0.37284 0.75350.00036 0.00024 0.00041 0.0398

0(7) 0.96850 0.38455 0.15858 0.75060.00037 0.00024 0.00041 0.0399

0(8) 0.67837 0.47453 0.02701 0.68700.00036 0.00024 0.00041 0.0391

0(9) 0.92555 0.56897 0.33717 0.68690.00035 0.00023 0.00040 0.0389

0(10) 0.87215 0.75533 0.12528 0.75490.00037 0.00024 0.00041 0.0399

0(11) 0.02110 0.22100 0.47837 0.89250.00038 0.00025 0.00042 0.0414

0(12) 0.20394 0.73700 0.24969 0.77270.00037 0.00024 0.00041 0.0401

0(13) 0.50958 0.79949 0.05626 0.88860.00038 0.00025 0.00043 0.0415

0(14) 0.80576 0.14201 0.08167 0.81420.00037 0.00024 0.00042 0.0405

0(15) 0.39447 0.96755 0.22562 0.90760.00038 0.00025 0.00043 0.0416

360 TAKAHARU ARAKI and TIBOR ZOLTAI

Table 1. (Oontinued)

Description of the structure

The c-axis projection of the babingtonite structure is illustratedin Fig. 2. The major bond distances and angles, with their standarddeviations, are listed in Tables 3 and 4, respectively.

The dominant feature in the babingtonite structure is the singlechain of silica tetrahedra containing five tetrahedra per repeat unit.There are two chains per unit cell, both extending parallel in thedirection of [110]. These chains are connected by bands of Fe octa-hedra and Ca polyhedra.

There are two kinds of iron octahedra (which contain Mn and Mg)in the structure. In one octahedron the Fe-O distances range from

Page 7: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

Crystal structure of babingtonite 361

Table 2. List of observed and calculated .tructure factor.

k 1 IF.1 F IF.I F. k I IF.I F. k I IF.I F. . k 1 IF.I F..-.. 1 -2 19.4 -18.4 -9 1 2.6 - 3.9 -8 7 -5 54.4 -50.9 -7 . -. 5.. '.6 -7 12_1 29.2 -27.6. 12,1 lIt.s 2 6.7 6.9 -. 28.0 -27.6 -3 '.5 ... . 44.1-46.3,

'.2 - J.1 3 '.6 - 3.5 -3 36.1''''.8 -2 11.0 10.7 1 56.6 60.1t

2 9.8 9.. . 8.5 11.2 _2 12.5 12.8 -. 2.' 2.. 2 22.2 21,6-.. 2 _1 12,1 -11.0 -9 8 -3 26.0 25.4 _1 2.6 - 0.2 . 9.3 - 8.4 J '.J - 4.9. 16.7 18.5 -2 7.1 - 5.4 . 16.0-16.9 1 28.9 -30.J . 6.. 5.J

1 2.7 - '.8 -1 13.3 -14.2 1 8.' - 8.9 2 10.2 -11.7 -7 I' -3 6.9 - 5.12 20.8 -19.9 0 2.8 - 4.It 2 22.) -23.6 J 2.' '.8 -2 20.' -19.9J 61.' -64.3 1 6.7 - 7.0 J 24.3 26.8 . 23.5 -25.1 _1 9.8

_8.1

-.. 3 -2 9.' - 9.9 2 2.6 1.0 . 17.8 H~.J 5 9.9 -10.2 0 111.1 11,..2.1 70.6 70.' J 70.0 72.6 5 28.7 31.5 6 10.7 -10.8 1 2.7 - 1t.1t

. 12.8 l1t.8 . 49.8 50.7 -8 8 -. 15.0 11..8 7 12.8 11.9 2 2.7 - I.'1 36.7 -31t.7 -9 9 -J J.. 0.1 -J 8.8 7.2 -7 5 .6 4.J 3.7 J 9.8 10.12 2.7 J.7 -2 '.5 7.2 -. 20.' '9.9 -5 23.8 -23.2 -7 1%_1 21.8 -21.1J 8.8 -10.7 _1 50.3 -49.5 _1 8.7 9.1 -. 5.9 - 5.8 . 2.8 - I...1. . -2 2.9 - 5.6 . 43.2 -4J.6 . 15.1 -15.5 -J 25.8 25.% ,

2".3 26.1&_1 15.6 _1,..8 1 18.0 17.4 1 q7.0 -49.2 -2 9.9 - 8.5 . 16.6 16.70 7.' '.7 2 2.7 1.5 2 30.3 -31.8 _1 21t.l 25.) -6 1 -7 5.' -

).11 20.7 '9.9 J J.9 - 1.9 J 12.5 14.6 0 26.5 25. It -6 20.) 18.52 8.7 - 7.5 -9 10 -2 '.2 6.J . 29.2-29.8 1 21.2 21.5 -5 1t).5 -1t2.6J 5.2 2.7 -1 9.9 8.8 5 8.' - 5.J 2 21.5 23.5 -. 13.1 12.5

-1. 5 _2'-' - 2.9 0 30.7 31.5 -8 9 -. 12.9 -12.2 J 26.0 -27.1t -J 21t.3 21t.8_1 2.8 - I.' 1 32.3 -31t.2 -J 30.9 29.6 . 1').8 -21.0 -2 5.5 - 1t.2. 12.7 12.1 2 11.3 -11.2 _2 18.2 18.2 5 18.5 -17.5 -. 36.7 36.9

1 9.8 9.2 J 2.7 0.9 -, 11.7 -IO.1t 6 6.2 - 7.3 0 12.5 12.32 15." 15.9 -9 11 -1 5.6 - 1a.1t 0 21t.9 25.3 7 5.' 5.0 1 11t.1t '5.2J 25.4 -27.6 0 9.. 9.9 1 36.9 36.4 -7 6 -6 7.9

_8.8 2 8.9 9.9

.1. 6 -I 2.8 I.' 1 18.9 -19.4 2 49.4 50.3 -5 2.9 '.9 J 11t.7 -16.0. 13.0 14.8 2 16.5 -16.9 J 12.8 _12.4 -. 10.8 B.2 . 21.8 -22.91 46.9 47.3 -8 1 -5 19.. 18.8 . 23.6 -24.8 -J 60.5 -57.5 5 16.7 -17.92 48.7 5'.5 -. 8.8 9.2 5 14.3 -13.' -2 18.8 -16.9 6 18.1t '9.3J 16.5 -17.7 -J 1).9 -1".0 -8 10 -4 5.' 5.2 -1 '7.4 38.5 7 18.1 -17.9

-.. 7 _1 2.8 2.J -2 14.2 -H.) -J 1t0.4 -38.5 0 5.9 '.J 8 31.1 -30.50 8.. - 6.6 -1 29.1 -29.8 -2 60.9 -56.6 1 ... - 1.5 -6 . -7 22.4 20.51 22.6 -21.3 0 33.5 33.9 _1 29.3 30.8 2 8.7 _10." _6 8.1 - 7.82 2".0 -22.7 1 76.1 80.5 0 18.4 18.2 J 10.7 -10.9 -5 5.8 5.6

-I. 0 21.1 -19.9 2 6.6 - 5.0 1 2.6 - 1.1 . 18.9 18.6 -. 1t6.0 -46.81 7.5 - 5.8 J 2.5 0.1 2 16.6 15.6 5 65.5 68.6 -J 85.1 -83.6

-9 1 -J 23.3 -23.2 . 12.8 11.3 J 13.3 -a.5 6 10." 10.3 _2 3J.o 33.'_2 18.8 -19.1 , 15.4 15.8 . 5.8 - 5.J 7 1t1.2 -40.5 _1 20.2 17.2_1 8.6 7.9 6 2.7 - 1.7 -8 11 -3 8.' 7.5 -7 7 -6 J.l '.1 0 '9.2 -18.90 12.8

'''.2 -8 2 -5 12.1 12.7 _2 23.0 22.5 -5 15.1t -1It.9 1 2.2 - 2.11 a.. 16.0 -. 22.1 -20.3 _1 6.J 6.6 -. 2.8 0.1 2 15.9 -17.12 2".7 25.6 -J 37.7 -J5.7 0 10.2 - 8.7 -J 23.4 22.9 J 13.0 -13.5J "7.9 -50.7 -2 7.5 - 8.4 1 22.1 -21.5 -2 7.2 7.1 . 50.8 55.0. 29.1t -30.8 -1 21.6 -23.8 2 38.0 -40.\ -1 10.0 11.7 5 84.6 9'."5 28.6 -30.0 . 2.5 2.6 J 6.2 6.J 0 7.7 - 7.7 6 J.7 - 5.J

-9 2 -. 15.. -lIt.5 1 22.1 -21.2 . 9.8 8.5 1 56.2 -59.6 7 9.6 - 9.8-J 19.9 -20.9 2 26.2 -27.3 -8 12 _2 16.9 15.8 2 :n.o -36.0 . 15.0 14.5_2 10.3 - 9.7 J '.7 6.1 _1 25.0 26.8 J 12." - 0.6 -6 J -7 80.1 76.1_1 13.2 12.6 . 2.5 1.7 . '.J

_1." . J.7 - 3.It _6 14.4 -13.0. 17.3 17.3 5 10.6 10.6 1 '.6 - 4.3 5 10.1 - 8.3 -5 23.2 -22.0

1 71.) 73.7 6 2.7 - 0.9 2 22.6 20.7 6 7.9 -8.1 -. 16.6 '5.52 16.2 17.2 -8 J -5 11.1 11.2 J 12.8 -13.It . -7 . -5 '.9 J.. -J 36.6 35.7

J 9.5 -10.6 -. 7.7 - 6.0 -8 13_1 2.8 - 1.1 -. 7.J - 7.8 -2 2.' - 0.3. 18.1 18.1 -J 35.9 35.6 . 16.7-16.5 -J 36.1 33.8 -. 22.0 23.85 6.9 - 6.2 -2 35.8 31.7 ,

5.' 6.6 -2 7.5 6.8 0 "8.8 -51.3-9 J -. 2.9 2.7 _1 20.9 19.8 -7 1 _6 24.2 22.4 -. 29.3 30.8 , 105.5 -115.1

-J 56.5 -55.1 0 9.0 -10.7 -5 47.1 45.6 0 10.2 -10.3 2 2.2 - 2.3-2 2.7 - 1.5 1 7.1 '.7 -. 7.0 7.0 1 26.9 29.1 J 7.7 7.9_1 12.5 10.6 2 5.J 5.1 -J 24.9 25.8 2 33.8 J4.9 . '5.5 -16.0

0 33.6 -33.0 J 6.1 - 3.7 -2 "3.lt -4).) J 22.8 -24." 5 18.6 -19.0. '....1 -32.8 . 7.9 8.2 _1 79.J -81.5 . 2.5 0.5 6 '.5 - 2."2 5.7 - 6.0 5 12.9 -1).1 0 9.5 9.2 5 14.3 13.0 7 '5.8 16.ltJ 28.2 28.3 6 30.4 -3'.9 1 26.0 -28.1 6 ... - 2.0 8 5.9 5.5. 7.1 7.1 -8 . -5 38.6 -35.0 2 JJ.9 -J5.5 -7 9 -5 6.8

_8.0 -6 . -7 31.8 -30.7

5 )6.0 35.2 -. 11.3 - 9.6 J 5.5 - 1a.7 -. 13.5 11.2 _6 6.1 - 6.6-9 . -. 15.8 16.) -J 29.3 30.0 . 30.5 )2.9 -J "4.7 -43.1 -5 '.8 - 5.2

-J ItS." "'0.3 -2 17.0 _16.1 5 2.5 ... -2 35.5 -:n.2 -. 1).8 11.9_2 22.0 20.0 -1 18.8 -19.8 6 25.4 26.0 _1 15.8 -H.O -J 35.7 :n.o-. 26.7 -27.7 . 2.7

_2.2 7 15.) 16.1 0 27.0 -27.6 -. '9.2 18.'"0 13.'" -12.8 . 2.' - 2.2 -7 2 _6 14.8 12.0 1 )1.'" 3".9

_1'.8 - 2.6

1 17.2 -14.8 2 18.2 17./t -5 )7." J5.3 . 13.0 -a.2 0 5.1 - 4.82 5.' - ".7 J 79.6 85.) -. 2.7 - 3.'" J 9.. - 9.2 1 7).5 79.6J 13.5 '/t.6 . 2.6 - 0.8 -J 12.5 13.5 . '.7 - 5.7 2 31.7 JJ.J. J.8 - 1.9 5 31.9 -34.1 _2 29.8 29.6 5 5.5 - 3.8 J 29.6 -32.45 48.2 -.9.8 6 J.9 - 0.9 _1 90.2 94.0 6 27.1 27.8 . 5.8 6.5

-9 5 -. 12.5 12.7 -8 5 -5 30.7 27.7 . 16.3 -18.1 -7 10 -5 31.0 29.J 5 17.9 -18.9-J 15.5 -15.5 -. 23.6 23.' 1 411.7 -49.0 -. 28.9 25.8 6 2.6 - 1.7_2

'.8 '.8 -3 11.5 11.2 2 20.9 -23.2 -3 J7.9 -36.4 7 21.9 2J.O_1 11.7 -lIt.o -2 11.2 1.6 J 10.8 -11.2 -2 6.8 - 5.6 -6 5 -7 16.8 17.00 5.1 - 4.3 -1 66.5 -66.0 . 25." 28.0 -. 24.3 24.5 -6 16.5 -15.61 "'.2 "4.7 0 18.6 -20.8 5 24.3 24.5 0 35.% 36... -5 2.8 - 4.12 11.5 12.8 1 20.4 19.8 6 6.6 - 6.0 1 15." 16.6 -. 15.2 -15.1J 27.8 -27.7 2 12.8 -1..1 7 55.8 -57.6 2 15.3 -1..9 -3 57.5 -55.-1. 9.8 11.1 ) 1).7 -13.6 -7 J _6 31.5 -30.8 J 59.9 -60.8 _2 9.7 10.05 5.9 '.8 . 12.7 12." -5 94.) -89.2 . J9.6 -IaO., _1 7.. - 6.8

-9 6 -. '.5 0.1 5 20.5 20.'" -. 15.5 -15.1 5 26.2 27.3 . 6.7 6.9-J 23." -22.2 6 2.8 J.9 -J .1.' .1." -7 11 -It "7.8 -/t5.0 1 16.8 18.3_2 ..6 - .." -8 6 -5 16.0 13.6 _2 2.5 ..0 -J 5.J - 4.2 2 7.1 7.5_1 21.5 -23.5 -. .15.9 16.2 _1 17.3 17.9 -2 2.8 - 0.6 J 18.0 -21.0. 2.7 - I.' -J 22.2 23.3 0 9.7 -11.3 -1 30.1 29.6 . 17.6 -18.31 17.2 -17.0 -2 2.7 J.. 1 2..0 -26.0 0 38.' 39.3 5 10." 10.62 15.1 -"".0 -1 32.8 ".1 2 13.1 -1.\.5 1 8.9 10.2 6 J9.J 39.3J 16.2 17.5 . 5.1 2.2 J 53.9 58.' 2 '.J - J.' 7 32.1 31.2. 2.7 - 1.1 , 50.7 -53.1 . 14.:J ".7 J 1).5 1'-.0 -6 6 -7 J.O 1.55 9.9 - 8.7 . 8.7 - 9.4 5 ".8 37.8 . '9.0 20.0 _6 8.9 - 6.8

-9 7 -J '.2 0.5 J J.7 2.1 6 12.9 12.7 5 27.4 -27.1 -5 36.6 3..1_2 28., 26.3 . 2.6 - ".1 7 10.6 -n.3 -7 12 -It 10.1 -10.3 -. 2:J.6 -23.7_1 22.2 19.7 5 18.5 17.9 -7 . _6 17.0 -16.2 -J 21.0 _20.8 -J 17.' -16.90 7.7 6.7 6 111.9 15.' -5 2.8 1.9 -2

'.'I., -2 1%.2 ".,

Page 8: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

362 TAKAHARU ARAKI and TIBOR ZOLTAI

Table 2. (Continued)

k 1 IFol F, h k 1 IF.I F, k 1 IF.I F, h k 1 IF.I F, IF.I F,

-6 6 -1 38.7 39.0 _6 ,It , 17.8 18.0 -5 7 -7 10.7 9.9 -5 15_1 9.k 9., _k

3 31.2 33.30 22.8 2"'.2 -6 '5

_1 10.9 11.7 -6 10.9 -10.5 0 22.5 -23.4 k 27.8 29.41 6.5 8.0 0 20.0 19.6 -5 7.4" 8.7 1 9.9 10.5 5 23.5 24.32 15.0 -13.8 1 20.0 -19.7 -k 6.k 7.2 2 7.8 9.0 6 2.6 2.8, 72.3 -78.7 -5 1 -7 11,6 10.9 -, 8.6 - 8.5 -k

,-8 7.8 - 7.9 7 24.5 -23.0

k 2.k 0.0 -6 18.0 -16.% -2 5.,- 5.B -7 35.6 -32.9 8 12.7 -12.5

5 6.2-

7.5 -5 111.5 -13.6 _1 18.5 -18.2 -6 69.0 65.5 -k 7 -7 2"'.3 -24.96 12.1 - 9.9 -'0 39.% -38.2 0 12.6 13.6 -5 56.9 Slt.o -6 12.2 11.,7 13.0 12.6 -, 32.% -30.6 1 27.5 -29.0 -k 15.7 -11".8 -5 2.7 1.5

-6 7 _6 2.9 - 0.8 -2 45.9 45.9 2 5.9 6.5 -3 19.1 _18.8 -k 20.5 '9.3-5 30.6 _28.1 -, 21.9 -21.6 , 16.9 18.3 _2 12.7 12.1 -, 59.0 55.8-k }0.1 -28.7 0 54.9 57.9 k 7.0 - 6."

_1 2.0 0.7 -2 31.5 -29.8-, 18.9 _18.0 , 11a.5 -14.0 5 8.6 8.5 0 6.k - /t.6 -1 6.3 5.'_2 5., - 6., 2 10,q -11,1 6 1}.1 -1J.lt 1 36.4 38.1 0 25., -25.9_1 71.3 71.7 , }8.8 -4/j.2 7 2.8 1.2 2 61.4 -65.5 1 27.7 -29.6

0 1n.s 10.5 k 5.1 5.5 -5 8 -7 18.0 -17.0 , 21.7 -22., 2 7.9 8.', 19.5 21.5 5 27.0 28.0 _6 ,.0 - '.9 k 1t6.0 50.7 , 27.5 10.62 18.% 18.3 6 2%.0 2%.% -5 5.k - 5.9 5 2%.% -26.5 k '9.0 '9.7, 36.7 38.2 7 26.2 26.5 -k 5.6 5.6 6 9.2 - 8.7 5 9.8 -10.2k 5.% - %.5 8 2.9 l.k -, 93.1 90.7 7 15.0 -15.8 6 29.1 -27.85 51t.1 -56.8 -5 2 -7 16.1 15.6 -2 k., - 5., 8 15.1t 1%.8 7 31t.2 -}j.l6 9., -10.0 _6 10.8 7.0 -, %5.5 -1t2.1t -k 2 -8 11.9 -12.2 8 2.9 2.17 12.1 _12.1 -5 22.1 20.7 0 32.0 33.6 -7 2.8 0.8 -k 8 -7 :w.6 -28.6

-6 8 -6 13.3 13.3 -k 30.2 -28.9 1 15.3 '5.6 -6 2.7 ,.k -6 7.k - 7.5-5 '.9 k.O -, 9.6 - 9.7 2 13.2 15.0 -5 32.9 -29.9 -5 31.' -30.0-k 16.7 _16.6 -2 2%.0 23.8 , 2., 0.5 _k 12.3 _11.6 -k 33.2 32.6-, k.8 - %.7 -1 51t.9 55.9 k 17.9 -18.0 -, 7.9 6.6 -3 2.5 0.6-2 6.1

_ q.l 0 13.7 llt.O 5 7%.9 -79.8 -2 32.3 30.3 -2 8.k 8.5_1 108.3 -110.3 1 15.2 16.1 6 22.0 -22.% -1 9.7 8. k -1 k.6 3090 31.8 -33.3 2 q9.9 -52.7 7 12.6 11.3 0 18.2 18.8 0 27.8 -29.'1 66.8 71.7 , 102.8 -1 16.1t -5 9

_6 9.7 -11.3 1 5.7 5.0 1 18.5 -19.42 6.8 - 7.5 k 13.2 15.3 -5 23.8 23.2 2 31.1 31.9 2 2.2 2.1, 1%.2 15.0 5 37.7 -39.6 -k 2.7 2.9 , 68.3 73.6 3 60.4 66.2k 6.5 - 6.2 6 20.2 -20.8 -, 3%.5 -3%.4 k q8.5 -52.6 k 12.6 12.85 17.3 -17.1 7 16." 15.9 -2 27.5 -2/t.7 5 ,.9 2.8 5 20.9 21.06 2.7 - 1.5 8 7.9 7.5 -, 10.8 -11.5 6 2.k 0., 6 11.5 10.67 39.5 38.3 -5

, -7 10.1 8.8 0 ,.6 '.1 7 12.% -12.6 7 9.2 B.'-6 9 -6 17.5 16.2 -6 18.5 -17 .3 1 5".2 57.7 8 2.8 ,., -k 9 -7 9.' - 9.%-5 91.3 85.7 -5 25.2 -2/t.5 2 q5.2 /t8.2 -k

, -8 2.9 - 1.8 -6 21.5 -17.5-k %6.9 1t1t.9 -k 17.3 -16.3 , ,.7 - /t.7 -7 9.9 - 8./t -5 9.0 9.6-, 22.5 -21.% -, 28.0 -27.0 k '.5 2., -6 '.7 2.0 -k /t9.7 "7.3_2 10.3 _11.0 -2 30.7 30.3 5 35.6 35.7 -5 6.1 5.1 -, 8., _

8.1-, ,.6 _

%.1 -1 65.7 65.2 6 2".6 25.5 -k 6.8 - 5.5 -2 27.7 26.80 5.9 k.8 0 9.7 9.7 7 "6.0 -%3.7 -, 11.0 11.0 -1 20.9 -20.71 12.0 _11.7 , 26./t 27.6 -5 10 -6 /t9.5 1t6.% -2 2., - 2.5 0 6.5 - 7.62 25.1t 27.3 2 55.8 59., -5 21.3 -20.6 -, 57.7 -57.5 , 13.5 -lIt.5, 22.3 -25.5 , 76.1 8q.3 -, 10.3 10.9 0 55.0 -56.% 2 30... -31.0k 22.5 -23.1 k 20.6 -21.7 -, 7.9 - 6.6 1 "8.3 -50.7 3 90.8 -98.75 13.1 ...13.6 5 1t1.1 -/t5.0 -2 32.0 -30.9 2 10.5 11.6 k 11.6 -12.16 18.1 -18.1 6 1%.2 -lq.O _1 11.9 -12.3 ,

2".1 27.0 5 5,., Sit. It-6 10 -6 9.6 9.9 7 2%.0 -21t.2 0 2.6 0.1 k 20.3 -22.1 6 11.7 -11.1

-5 10.7 10.8 8 21.9 20.8 1 70.8 -77.4 5 9.1 - 9.7 7 13.4 12.8-k 29.0 -28.1 -5 k -7 2.9 2.2 2 29.4 -30.9 6 15.1 _14.6 -k 10 -7 9.1 9.1-, 2.8 - 2.2 -6 2.8 ,.5 ,

'9.7 20.5 7 24.0 2q.0 -6 9.k - 9."-2 12.2 -12.2 -5 8.0 7.1 k k.7 - 5.6 8 n.3 33.1 -5 17.8 -16.8_1 2.5 - 1.9 -k 2.6 ,.1 5 B.9 9.6 -k k -8 14.3 -13.5 -k 11.6 -10.J0 21.6 21.9 -, k.9 - 2.8 6 17.9 17.8 -7 27.6 -25.5 -, 6.2 - 5.61 lq.5 15.2 -2 87.2 -8".7 -5 11 -6 8.1 - 8.1 -6 16.5 '5.6 -2 3/j.1t J2.62 2.k 0.7 _1 179.2 -19J.0 -5 11.8 12.7 -5 12.5 10.9 -1 120.4 120.5, 11.1 10.4 0 11.7 12.6 -k 7.0 5.5 -k 93.0 89.J 0 70.2 75.0k 29.9 30.8 , 67.4 72.6 -, 44.9 43.0 -, 80.8 77.0 1 5/j.5 -59.55 6.7 - 6.2 2 5.8 6.6 -2 29.2 28.2 -2 25.3 -25.5 2 2., - 1.66 3".8 36.7 , 16.8 17.9 _1 2.6 2.k -, 25.0 -21t.9 3 8.2 - 7.7-6 11-5 ,.0 ,.k k 2., ,., 0 ,.8 - 2.6 0 31t.9 36." k 2.5 - 0.1

-k 12.5 - 9.6 5 26.1 -27.1r. 1 28.7 -30.1" 1 ,.k 5.1 5 6.k 5.5-, 6.8 - 5.9 6 15.9 17.5 2 2.k - 0.6 2 20.8 21.8 6 k.2 - 2.8-2 5.0 - 5./t 7 57.9 58.1" , 9.6 9.8 , 21.7 22.3 7 4/t.9 _%2.0_1 2.6 - 2.7 8 2.9 - 3.4 k 29." 30.9 k 62.8 -68.8 ~k11 -6 1).6 -11.60 6.7 - 7.1" -5 5 -7 15.2 -1).) 5 9., 8., 5 .92.5 -99.5 -5 64.7 -60.21 26.1 -25.2 -6 1"7.1,, %%.6 6 27.8 -27.1 6 8.1 - 7.6 -k 1t2.8 -1,,1.02 1,,3.7 -45.5 -5 87.3 82.4 -5 12 -5 33.6 -32." 7 12.6 1J.1t -3 11." -11.0, 23.9 25.8 -k 32.0 31.0 -k 2.9 2.0 8 8.8 - 6.7 -2 21.3 21.7k 21".1 25.1 -, )1.) -29.9 -, 33.8 3'.8 -k 5 -8 ,6.5 -3".4 -1 7.5 - 8.35 2.7 2.k -2 22.1" -21.0 -2 k.8 - 5.9 -7 62.3 -58.5 0 38.7 -1t1.1_6 12 -5 ,.0 0.5 -1 2.2 - 1.7 -1 13.1 -12.4 _6 23.4 21.6 1 8.k 10.0

-k 20.) -18.2 0 k.6 6.5 0 35.7 -37.0 -5 13.3 12.8 . 5.0_

It.o-, "%."I,,).1t 1 12.7 13.2 1 17.2 -18.8 -k 27.2 -25.8 , 16.9 17.1

-2 26.J 23.7 2 k.6 k.7 2 21.6 22.6 -, 65.9 -63.6 k "7.1t 46.9_1 21.4 -21.8 , 65.9 -71.4 , 43.7 %1t.7 -2 21.0 -19.5 5 5.1 - 5.90 10.0 -10.0 k 7., 8.7 k 17.5 17.6 -1 28." -28.1" 6 11.3 _11.61 9.8 10.3 5 5.k 6.2 5 k.1 2.5 0 72.6 77.1 -k 12 _6 12.4 -13.22 15.1 16.2 6 2.6 k.2 -5 13

_It ,6.9 33.6, 1,,2.5 %5.2 -5 29.7 26.5, 12.7 '3.2 7 12.7 -11.7 -, 5.7 k.2 2 19.3 19.6 -k 35.6 3".4k 12.1 -12.2 8 2.9 - 3.1 -2 12.2 12.6 3 ,.5 - ".5 -, 13.7 -1).4

5 "3.0 -4J.O -5 6 -7 19.2 -16.6 -1 12.3 -11.7 k 19.6 19.6 -2 2.7 - 2.,-6 1) _% ,.1 k.k -6 7.0 7., 0 24.7 -26., 5 60.1 . 64.0 -, 12.2 -11.1-, 1).8 -1).4 -5 13.3 _12.6 1 k.3 - ..8 6 7.9 - 7.6 0 24.0 -24.4

-2 26.0 -24.4 -k 18.0 -16.2 2 6.1 7.0 7 ,5., -n.8 1 15.6 -17.'-1 7.0 7.2 -, k.O ,.1 3 %2.4 -43.7 8 k.3 - 0.2 2 k.8 5.70 k.k ,.8 -2 20.5 18.9 k 26.) -26.3 -k 6 -8 ,.0 ,.0 , 13.7 -14.01 19.1 20.1 -1 20.6 -21.4 -5 14 -4 5.9 - 5.5 -7 68.8 65.2 k 9.2 - 8.'"2 31.1 33.0 0 26.8 27.4 -, ,.0 5.0 _6 13.7 11.9 5 16.2 15.1, 21.4 23.1" 1 ".0 14.4 -2 9.1 9., -5 7.k - 7.5 6 18.9 -17."k 8.k - 8.6 2 12.1 -12.6 _1 53.) 51.2 -k 5., - 1.1 -k 13 -5 8.9 7.,-6 11"-3 8.3 7.6 , 38.3 41.6 0 5,.6 56.9 -, 24.8 -22.7 -k '.0 - 1.6

-2 20.0 -19.4 k k.O - 0.9 1 39.2 -40.6 -2 20.2 -20.1 -3 2.9 5.2-1 15.9 -16.0 5 14.3 -14.2 2 7.0 - 6.8 -1 k., k.l -2 2.8 0.70 2.7 - 0.1 6 28.8 )0.1 , 2.7

_0.2 0 4..5 -1,,5.7 _1 2.6 - 2.71 24.8 -25.8 7 25.0 -23.8 k 2.8 0.8 , 91.6 -100.0 0 10.7 11.1

2 32.9 -3%.5 8 21.1 -21.6 -5 15 -2 9.9 9.9 2 27.2 29.8 1 21.' 21.4

Page 9: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

Crystal structure of babingtonite 363

Table 2. (Continued)

h k1'01

, , k 1 1'01, , h k

1'01,, I',I ,, 1',1 ,,

-, 1; 2 2.6 ;.7 -; 5 -2 10.6- 9.2 -; 11 2 27.1 -28.1 -2

, 2.2 0.6 -2 1 11.1 -12.0; 31.5 -30.9 -1 11.2- 9.5 ; 2.6 1.7 5 2.5 2.6 2 16.'" 17.1r., 6.7 6.' 0 5.6 5.0 , 26.2 -26.7 6 36.8 35.3 ; 30.5 31.0

5 ;.0 2.0 1 26.1". -27.4 5 56.0 -53.7 7 26.1 2".3, 33.1 -32.5

-It 1'1-4 7.6 B.6 2 105.5 _11/t.2 6 20.5 -21.3 B "".7 -"2.8 5 17.3 17.4-; 49.8 -10.7 J 121,2 -135.8 -J 12 -6 26.8 -26.2 9 B.' - 5.B 6 18.1 17.7-2 12.1 -10.7 , J.6 '.0 -5 16.5 16.0 -2

, -B 8.' B.7 7 7.2 7.5-I 30.9 30.6 5 1t0.l 41.0 -, '.5 - 5.1 -7 21.1 -21.0 -2 10 -7 22.7 20.7

0 6.J - 0.6 6 25.7 26.3 -J 5.2 -6,2 -6 37.2 37.3 _6 38.2 39.1

1 2.6 - J.7 7 22.6 21.7 -2 12.2 12,2 -5 52.7 50.1 -5 15.2 16.12 19., -18.8 B 13.6 -11.2 -1 7.6 B.O -, 11.3 - 9.9 -, 18.7 -18.8J ,It." -13.5 -J 6 -B 22.2 22.9 0 5.0 '.J -J 15.2 -1".6 -J 25.7 26.2, 111.7 15.% -7 7.' 6.7 1 70.8 75.7 -2 7.' - 6.7 _2 35.8 -34.3-, 15 -) 9.' 10.2 _6

'5.7 _16.6 2 21.8 21.8 _1 6.2 - 6.8 _1 22.4 -21.7-2 5J.4 "9.1 -5 29.0 _26.8 J 15.3 -15.3 0 33.6 -34.6 0 42.5 "6.2-I 17./t -17.8 -, 2.5 0.1 , 21,2 -19.1 1 21t.O 25.6 1 12.1 11.7

0 16.1t 16.% -J llt.8 -13.8 5 23.1". -23.1 2 59.0 -60.0 2 7.9 - 7.31 2.6 1.7 -2 81.1 77.3 6 B.2 - 7.1t J 106.5 _111.2 J 15.6 -11t.82 3%.2 -}5.0 _1

'5'.0 151t.5 -J 13 -5 6.2 _ 6.1 , 18.2 18.8 , 5.2 - J.'; 9.9 - 9.6 0 20.5 -22.1 -, '.9 - ;.2 5 llt.T 12.7 5 21t.9 -22.7-It 16 _1 13.6 lit. 3 1 32.0 -33.5 -J 57.8 -52.7 6 11.2 -10.9 6 25.9 -25.}

0 15.} 15.1t 2 15.5 -17.1 -2 21.1". -20.7 7 '5.7 n.8 7 27.} -26.11 28.7 29.1t J 12.8 -12.7 -1 11.7 -10.7 B 11.7 -11.0 -2 11 -7 '.1 - 2.9

-; 1 -B Itl.8 -}9.5 ,5.9 '.B 0 20.6 21.8 9 19.% -17.} _6 9.J -11.9

-7 3%.1t -}0.6 5 27.% 27.1t 1 16.1 15.6 -2 5 -, 2.B - 6.0 -5 21t.% -2}.6-6 20.9 19.5 6 1t0.7 _ltl.0 2 9.' -10.3 -7 5.0 - 2.7 -, '.0 - 2.B-5 2.5 o.J 7 58.0 -55.5 J 17.6 18.4 -6 6.1 6.5 -J 17.7 16.,.-, 1t6.8 -41"..5 B 15.1t 15.4 , 26.9 -24.9 -5 6.2 5.1 _2 13.7 -12.7-J }1t.2 -}2.1t -J 7 _B

'.7 2.J 5 9.9 - 7.7 -, '.0 - 2.9 _1 2.7 - 2.0-2 22.7 -21." -7 40.8 1t0.6 -J lit -It 11"..9 -lIt.8 -J H.l -11.6 0 9.0 -10.1t_I 54.6 -55.2 -6 23." -2}.0 -J J.o -

}.O -2 59.5 55.1 1 '9.1 19.60 82.9 87.2 -5 78.8 -75.1 -2 10.1 - 8." -1 111"..2 111.9 2 29.2 27.91 30.5 32.2 -, 11.}

- 9.9_1

}3." -}1.5 0 115.1t 128.5 J 87.6 85.72 11.8 -12.1 -J 2.5 1.5 0 32.9 33.6 1 37.7 38.5

, 20.0 20.4J 28.8 29.7 -2 16.5 15.1 1 2.6 - 3.2 2 55.8 -58.5 5 22.6 -20.8,

"2." "".5 -1 50.8 -1".8.6 2 2.7 1.9 J 6.1 - 6.2 6 2.' - 1.05 }0.1 }1.7 0 31.2 -33.1 J 17.2 -17 .0

, 9.J 9.7 -2 12 _6 7.7 9.26 52.1 -53.6 1 26.8 28.9 ,

15.9 -15.1 5 10.1 9.1 -5 22.% 21.67 22.5 -20.7 2 17. I". 18.3 -; 15 -} ;.2 1.6 6 26.6 24.7 -, 16.1 15.4B 28.2 -28.1t ; 65.7 70.8 -2 11.1t -10.3 7 13.7 -1).0 -J 29.1t 29.}9 17.7 -17 .6

,2.' - 2.9 _1 J.O

_J.l B 37.7 -J7.5

_2 29.1 -27.%-; 2

_,29.1 28.8 5 6.1

- 6.5 0 2.7 1.0 -2 6 -B 13.7 lit.} _1 90.8 -85.6-7 62.5 60.2 6 2.7 O.J 1 2.7 2.6 -7 16.6 llt.7 0 30.7 -}3.3-6 20.1 -19.1 7 3".2 32.9 2 15.5 lit.") -6 }6.9 -J6.6 1 19.7 17.9-5 '.6 2.6 B 28.} -26.7 J 49.5 46.7 -5 _19.8 21.2 2 11.4 10.9-, B.J B.O -J B -B 26.5 27.} -J 16 -2 11.0 - 9.9 -, 82.6 -77.8 J 10.n - 9.6-J 7.6 - 6.8 -7 2.B - 0.5 -I J5.9 -}}.It -J 7}.0 -68.2 , 41.1 -,.O.}-2 }1.,. -29.6 -6 6.6 - 5.4 0 1t7.8 -4g.7 -2 %8.} 1t6.1t 5 7.5 B.J_1 5.B 5.0 -5 "9.4 1t6.6 1 2.B '.2 -1 '5.7 llt.5 6 B.5 9.00 100.7 _110.1 -, 18.7 -17 .g

-2 1 -9 11.8 10.7 0 19.6 ~20.4 -2 13 -5 }6.7 }6.81 11.6 -lJ.8 -J 21.9 ~20.5 -B 12.1t 11.0 1 41.6 -4J.7 -, }5.0 }5.62 9°.} 98.9 -2 20." 18.9 -7 6.7 ,.6 2 6/1.5 -68.2 -; 2.9 0.6J 20.6 21.2 -1 2}.9 -22.6 -6 6.5 '.1 J 7.' - 7.0 _2

2'1.} -21.1, n.2 14.} 0 27.} -28.7 -5 16.4 111.0 , 70.1 70.4 _1 1t9.5 48.25 28.2 29.1t 1 2.1 - J.J -, 16.0 -1}.5 5 50.8 1t9.8 0 J5.1 J3.96 22.1 -21.6 2 2.2 I.' -J 33.3 30.8 6 '1.8 - 1t.2 1 20.3 -19."7 33.0 -31.9 J 43.9 -45.1 -2 18.1 -17.4 7 9.B 7.0 2 2.9 2.BB 18.9 18.1 ,

21." 13.9 -1 ItO.9 39.5 B 13.7 13.2 J 37.0 -J5.99 39.8 38.\ 5 28.7 27.2 0 35.1 -34.0 -2 7 -, 25.2 21t.% , 1j3.} -40.5

-; ;-B 15.7 -15.2 6 10.1t _10.8 1 33.8 -39.3 -7 }1.8 32.1 5 '.5 2.B-7 29.7 -28.9 7 29.2 27.5 2 95.2 -102.9 -6 2.7 2.9 -2 14 -5 35.8 -35."-6 2.7 - 2.7 B 11.8 -10.7 J 64.5 -67.1 -5 21.7 -20.4 -, B.' - 8."-5 21t.O-2}.0 -J 9 -, 9.7 - 7.5 , 69.6 72.3 -, 7.1 6.B -J 21.2 21.0-, 79.7 76.% _6 J.o - 2.8 5 11.6 10.5 -; 122.9 117.7 _2 19.3 -17.5-J 126.0 122.3 -5 10.1 -10.6 6

'".5 41.0 -2 33.6 -31.0 _1 2.8 1.9_2 41.} -}7.6 -, 2.7 2.' 7 B.2 9.5 _I 15.0 13.8 0 16.6 16.9

_I 18.7 -19.7 -; 2.7 - 1.5 , 10.9 - 9.8 0 22.1 -22.8 1 HI.7 lB.l0 21.7 -23.8 -2 '.J ;.; 9 2.9 - 0.6 1 38.7 -"2.1 7.' - 8.21 B.7 B.7 -1 lei3.5 Itl.2 -2 2 -9 2.B I.B 2 llei.3 -lit.} J 26.2 2J.82 7.5 B.O 0 21.7 21.0 -B 15.3 15.1 J 5.0 - 4.5 , 17.9 15.7; 38.0 Itl.0 1 27.7 29.6 -7 6.B - 7.0 , lei6.6 -44.8 -2 15 -3 9.' - 9.0, 19.9 -21.5 2 2.J - 1.5 -6 3°.} -29. lei 5 58.4 -57.6 _2 6.6 - 8.05 7.2 - 7.0 J 20.2 _21.2 -5 9.'

_ 8.2 . 28.0 26.5 _I 15.6 -14.36 26.9 -26.} , 18.7 19.1 -, 16.2 -15.6 7 }6.5 31t.4 0 33.4 -32.37 38.6 -38.2 5 2.7

_ 0.6 -J 117."- -""-.0,

16."'- 16.3 1 13.7 -n.9B 21.1 -20.2 6 16.7 15.2 -2 32.8 33.6 -2 B -, 11.6 11.7 2 13.6 12.59 21.2 -20.0 7 5.5 2.'

_1 1}2.0 140.6 -7 59.8 -60.4 J 21.8 18.6

-J, _B 41.} -39.2 -J 10 -7 16.,g 17.1 0 78.9 -84.1 -6 1ei.2 ).6 -2 16 -2 7.5 B.J

-7 Ito.It -38.5 -6 2.9 2.6 1 5.6 J.o -5 l1t.6 14.7 -1 15.1.1 -15.1_6 42.2 -41.7 -5 1).1 _10.6 2 17.1 -16.8 -'.

29.0 -2Q.l 0 16.8 -15.8

-5 9.B - 9.0 -, 36.6 -33.9 J 1.9-

0.7 -J 15.4 -14.} 1 7.6 7.B-, 44.7 "2.2 -J 77.1 -74.6

, 23.4, 24.1 -2 n.6 13.3 -1 1 -9 23.3 -25.8-; 20.8 -18.8 -2 23.7 2}.0 5 13.6 1}.0 _1 12.3 -12."- -B 2.7 2.5_2 16.5 15.3 -1 22.1 21.6 6 87.6 -8H.O 0 37.5 37.It -7 18.9 18.8_I 7.2 - ".8 0 13.2 _1}.6 7 }6.% -34,.5 1 119.8 '3".1 -6 10.3 - 9.%

0 61.8 -6%.5 1 7.J_ 6.,,- B 4,5.3 leiS.5 2 61.0 -65.7 -5 n.8 n.2

1 B.7 5.1 2 42.8 _1t6.0 9 15.2 -13.4 J }6.1 -35.5 -'. 19.5 -17.72 57.6 60.8 J B.2 - 7.1 -2 J -9 18.2 18.6 , 13.7 -12.9 -; 7.J - 6.6J }7.0 39.0 , 18.3 18.3 -B 27.5 27.4 5 23.2 -22.5 -2 141.0 141.1, J.5 0.7 5 )<).3 37.8 -7 28.3 27." 6 6.' 7.' -1 2<).2 36.85 4,9.1 49.1 6 33.3 31.8 -6 76.8 -75.7 7 12.0 10.0 0 43.5 4,5.86 27.6 27.1 7 2.9 I.J -5 "3.0 -40.1 B 2.9 0.6 1 /1.0 0.57 33.2

}}.}-J 11 -6 13.9 lit.} -, 2.J - 0.6 -2 9 -7 28.1 29.S 2 54.2 -54.1

B 9.5 - 7.6 -5 17.1 -17.8 -J 6.J 5.0 -6 18.8 17.4 J 17.6 -15.7-; 5 -B '.B J.5 -, 20.0 -18.5 -2 24.0 -22.5 -5 6.0 '.2

, 2.J - 0.2-7 2.B 2.9 -J 73.9 72.0 -1 39.6 -38.3 -, 27.8 -25."- 5 19.7 19.9

-6 9.6 10." -2 60.4 57.0 0 B.9 7.J -J 89.4 -85.' 6 17.4 15.7

-5 16.6 14,.9 _1'.B

_ 6.0 1 39.1 39.7 -2 30.0 -27.9 7 16.7 -16.1-, 16.}

1"."0 6.1

-5.6 2 5.B .:. 3.0 _1 12.9 12.2 8 36.1 -}6.0

-J 18.0 17.6 1 28.5 -31.2 J 88.9 91.4 0 29.9 }0.9 9 21t.} -21.9

Page 10: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

364 TAKAHARU ARAKI and TIBOR ZOLTAI

Table 2. (ContinlUd)

k 1 IF,I F, IF,I F, h k IF,I F, k 1 1',1, , h k 1 IF,I F,

2 -, 12.~ 11.8 -, 1 6.5 5.0 -,"

2 34.1 -}1.4 5 -5 27.0 27.'" 11 -, .., - 9.1-8 ... 7.0 2 41.0 38.1 J 2q.2 22.0 -. 12.1 -11.9 0 7.6 - 5.'-7 2.7 2.6 J 117.8 118.1 . 25.5 22.8 -J 22.7 -23.J"

, 37.} :n.8-6 6.' - 5.3 . }8.1 -36.8 _1 15 -3 )/1.5 )).5

-2 70.5 73.7 2 21.8 -21.5-5 31.% }0.2 5 25.3 -2,..6 _2 ltO,O It1. 1 -1 5.0 5.'

)25.5 -24.2

-. 93.6 -89.0 6 1J.It- -n.o -, 2.6 2.J 0 16.4 '5.7 . '9.4 17.2-J 2.)

- 1.2 7 llt.S -H..6 0 22.5 -21.9 1 20.2 17.5 5 10.0 - 9.9-2 35.8 34.4 8 31.0 29.9 1 10.5 11.7 2 l1t,O -12." 6 6.8 - 7.0_1 11.4 -11.It -I- 8 -8 28.4 -28.9 2 0.2 - 7.5

) 6J.) -58.6 0 12 -6 lt1.5 -41.80 16.1 -16.} -7 2.7 - 3.2

)40.3 -)7.6 . 9.6 - 8.7 -5 15.9 -16.9

1 64.9 -65.4 -6 '9.7 20.6 -1 16 _1 29.8 30.4 5 6.4 6.' -. 6.. - 5.22 17.6 -16.1" -5 20.0 18.8 0 16.4 -15.8 6 55.4 -54.0 -) 46.3 -50.3)

19.0 18.1 -. 12.9 12.8 0 0 1 55.2 50.0 7 62." -59.2 -2 2.' 0.1. 5'.8 50.5 -) 29.6 )1.0 2 56.0 -51.8 8 41.1 37.2 -, 6.0 - 4.85 111..1 13.1 -2 41.8 -1,.0.2 J 25.3 -24.0 6 -8 14.2 -13.3 0 9.' - 8.36 12.4 11,0 -1 76.3 -78.9 . :H.2 -:n.6 -7 30.1 31.0 1 21.8 22.67 30.2 29.3 0 9.2 9.0 5 11.1 - 9.7 -6 79." -83.3 2 7.' 8.18 10.6 9.' 1 10.1 9.J 6 19.3 18.1 -5 7}." -78.} J 2.8 - 2.79 2.9 2.1 2 ,".6 13.8 7 11.9 -13.3 -. 23.1 2".1 . '.9 5.1-, )

-9 2.8 - .., ) 311.7 -37.3 8 "3.2 -"".3 -J 2.6 - 0.7 5 20.6 '9.0-8 }2.7 33.1 . 17."-16.5 9 '.1 2.8 -2 2.1 0.8 0

'3 -5 26.6 26.8-7 17.0 16." 5 9.9 11.7 , -9 2.' - 0.6 -, 12.0 12.8 -. 22." -23.3-6 15.8 _16.1 6 23.} 2".0 -8 21t.5 26.2 0 6.8 6.7 -) tit. 1 -1"'.2-5 29.7 -}o.o 7 68.0 65.3 -7 25.9 25.1t 1 28.3 -26.8 -2 9.' ,.'-. 19.9 20.7 . ).0 - 0.8 _6 35.2 3J".1t 2 133.9 130.3 _1 5.5 - 7.9-) 60.1 51t.3 -. 9 -7 10.3 -10.8 -5 11t.3 -13.1t )

96.9 91.5 0 23.5 2".6-2 7.' - 5.5 -6 1').8 18.8 -. 1}7.8 -142.6 . 2.5 0.' 1 '.7 - 2.5_1 43.8 38.8 -5 40.8 It2.2 -) 103.9 -102.5 5 6.7 6.8 2 16.7 -15.7

0 It2.7 _It2.6 -. 5.3 '.7_2

9.' - 7.It 6 21t.5 -23.9 ) 55.0 -50.,, 25.1 -21t.7 -J 18.2 _18.8 _1 16.5 16.It 7 18.3 -16.9 . 5.5 - 6.72 '.2 - '.9 -2 2.' - 0.5 0 31.6 -30.1 0 2.9 - 0.9 5 11.6 8.,) ItO.9 -37.0 -1 57.8 62.6 1 ).5 - 1.7 7 -8 '.8 - 0.6 0 lit -J" 32.1 -30.9. 71.' -69.1 0 13.3 -13.1 2 53.8 "5.3 -7 ).6 - 5.2 -J 6.8 5.', "}.7 -1t2.8 1 43.} -42.7 J 59.7 -53.6 -6 7.9 -10.4 -2 20.8 21.'6 67.4 65.9 2 21t." 21.8 . 86.8 82.3 -5 21.8 22.5 -1 "'3.0 41t.77 34.4 32.8

)47.6 -",6.J" 5 5.1 - 2.'" -. 9.7 8.9 0 12.1 11.5

8 12.7 12.1 . 21t.1 -23.2 6 11.3 _11.6 -) 17.2 16.9 , 21.0 -20.}9 16.0 15.It 5 ..6 ).) 7 10.5 -11.2 -2 59.2 -62.1 2 8.0 - 7.'

-1 . -, 23.1 22.1t 6 9.) - 7.6 8 23.8 22.8 -, 61.7 -66.0 J 22.1 22.0-8 29.6 -30.0 7 Its.7 -It". 1 9 22.It 22.2 0 61.9 -62.1 . 32.6 30.1-7 29.} -30.0 -, 10 -7 15.7 15.7 2 -9 2.8 - 0.5 , 15.8 -15.0 0 15 -} 11.1 12.0-6 12." 12.7 -6 9.0 - 6.9 _8

'.0 5.' 2 51.6 "8.9 -2 19.3 19.2-5 9.1 - 9.8 -5 "2.1 -4J".0 -7 31t.7 3"'.5

)8.7 - 8.1 _1 30.1 -31.0

-. 51.5 -49.5 -. 2.6 - 0.1 -6 J,,".3 %5.1 . 20.8 19.6 0 2"'.2 -22.9-) 10.0 - 9.9 -J. ..6 7.9 -5 2.' 2.8 5 3".It -3"'.7, 25.5 2".3

-2 7.6 - 6.9 -2 26.} -27.7 -. 61t.o 6).5 6 32.0 -30.0 2 15.4 -14.5-1 J5.8 -33.0 _1

6.' 6.5 -) 57.8 55.9 7 21.0 21.9 o -9 :21.5 -20.60 160.7 200.8 0 HI.O 19.1 _2 70.5 -67.0 8 18.2 17.6 -8 15.9 -16.0,

116." 121.3 1 ).8- '.8

_1 17.0 -13.9 8 -8 ).2 1.6 -7 8.1 8.62 "8.7 -",6.5 2 25.2 22.9 0 20.0 -17.7 -7 9.J - 7.1 -6 !t6.7 !t6.6J 19.1 -17.7

)78.2 7"'.5

, 21.9 -20.9 -6 2.6 - 0.7 -5 6.' - 5.2. 14.8 -1It.2 . 15.4 13.1 2 11".9 12.2 -5 12.2 11.9 -. 15.8 tit. 15 21.2 -19.7 5 31.5 -28.'"

)25.'" 21t.5 -. 52.2 55.3 -) 1}2.1 _138.6

6 15.5 l1t.3 6 2.8_

1.6 . 61.9 -57.6 -) 33.7 35.3 -2 134.8 -152.77 ... 1.7 7 12.3 -11.1 5 23.0 -19.6 -2 1}.1

-1"'.5_1 23.8 23.7

0 17.2 -17.2 -1 11 -7 9.8 9.0 6 9.' 8.9 _1 13.5 -14.0 0 14.0 111..99 26.5 -25.1 -6 8.7 - 7.8 7 38.0 -36.8 0 J.o - 4.1 1 33.0 -30.4-, 5 -8 18.3 19.3 -5 8.8 10.3 0 25.9 2"'.2

,5"'.1 54.3 2 33." -30.2

-7 35." 36.8 -. 5.J 6.' 9 26.9 26.7 2 24.3 23.} ) )..- 2.5

-6 39.2 40.2 -J 2.6 - 0.5)

-9 8.J - 7.2 )27.8 -28.3 . 5.5 - 5.1

-5 11.6 11.3 -2 28.It -28.8 _8 17.2 -15.7 . 26.5 -26.0 5 J.)'.6-. tlt1. 7 -tlt3.6 -1 20.7 _21.1 -7 15.0 -16.6 5 21.7 -20." 6 87.6 88.6

-) 117.'" -116.7 0 57.2 -58.5 -6 7.5 - 5.5 6 ... '.2 7 10.6 11.2-2 33.3 -29.7 1 34.7 -32.1 -5 21." 22.0 7 18.6 -17 .0 8 ).6

- 0.2-, 36.3 33.9 2 29.1 26.7 -. 18.8 18.9 9 -7 13." -14.8 , 17.2 16.20 '.8 5.6 J 5.6 2.9 -) 10." -10.9 -6 2.7 - }.3 ,

-9 10.'" - 9.91 36.4 -36.0 . 8.0 7.8 -2 19.2 -17.8 -5 15.8 15.7 -8 23.7 -23.'2 63.5 60.0 5 6.0 6.J .,31.'" -32.4 -. 26.1 27.5 -7 15.5 15.5) 11.1 -10.5 6 It",.1 -"1.1 0 }1.2 29.6 -J It".o -J,,7.0 -6 70.1 71.1

. 2.J 0.9 -. 12 -6 7.6 - 6.7 , 29.9 -20.6 -2 14.5 15.8 -5 ).' 2.65 5.7 2.' -5 17.9 15.8 2 19.5 17.8 -, 7.6 - 7.8 -. 5., - 5.66 21t.7 2".2 -. 29.8 29.6 )

32.2 29.2 0 20.0 -20.6 -) 30.6 31. It7 2.7 1.8 -) 49.0 51.9 . )9.7 -37.J" , 11.1 11.3 -2 118.3 129.70 19.1 17.1 -2 5.8 - 6.1 5 8.6 8.0 2 ).7 ).5 -1 1t6.9 46.8

-1 6 -8 16.6 16." -1 9.9 -10." 6 15.0 -tit. 1 J '9.2 -18.9 0 '9.2 -1lt.4-7 38.J" 38.7 0 0.9 - 8.6 7 7.5 5.2 . 62.J" 5".3

, 30.6 -27.6-6 "9." 51.9 , J,,5.3 J,,3.7

'0 17.3 16.7 5 67.2 63.3 2 60.0 -56.8-5 2.5 '.5 2 36.3 35.5 9 lIt~6 -15." 6 22.3 -20.7

)17.7 -11.7

-. 11.7 11.4 J 10.0 8.2 . -9 5.7 5.5 7 34.2 -32.0 . 11".2 13.1-) 59.J" 59.0 . 1".2 -14.2 _8 25.2 -2J".6 0 10 -7 35.0 36.4 5 10.9 - 8.1-2 15.5 -1'-.9 5 29.5 -28.0 -7 7.6 7.5 -6 17.3 -17.7 6 116.2 -115.2-, J,,8.2 42.8 6 9.8 - 8.0 -6 31.2 31.3 -5 ).0

0.' 7 25.6 -2".60 28.0 -27.% -. 13 -5 10.8 12.1 -5 2.5 - '.5 -. 20.5 21.7 0 Ja3.6 1t2.21 15.8 -15.6 -. 21.5 19.8 -. 68.3 68.0 -) 22.8 2J".7 9 2., - 2..2 111.7 _12.6 -) 65.1 -67.8 -J 10.1 - 8.1 -2 27.3 28.8 2 -9 21.5 -20.9)

14.4 13.8 -2 25.2 -26.0 -2 120.2 -129.1 -, 2.2 0.' -0 2.6 - 1.0. 8.0_

6.8 -, 28.6 30.'" -, "o.6 -J,,2.2 0 62.7 -6J".5 -7 2.6 ~0.35 57.1 -55.6 0 11.4 -10.7 0 38.9 .0.3 1 98.8 -98.0 -6 93.. -97.56 21.4 _21.6 1 13.1 12.9 1 17.6 -15.1 2 6.6 5.6 -5 "5.8 -45.57 It"." -43.8 2 7.' 7.0 2 8.2 6.7 ) 19.8 18.8 -. 40.2 39.10 9.2 6.0 )

9.7 - 9.J) %05.1-"'.8 . 13.J" 12.1 -) '.5 '.9-, 7 -8 28.7 -27.7 . 22.6 19." . 9.2 0.9 5 8.7 - 9.0 -2 19." 18.8

-7 16.5 -17.1 5 60.5 56.2 5 10." 11.0 6 18.8 17.8 -, 23.3 :2).5-6 11.3 _11.8 -1 lJ"-5 8.5 -10.1 6 5".8 5".5 7 1).0 14.9 0 36.2 -38.9-5 13.J" _12.8 -. 10.8 10.8 7 37.2 35.8 0 11 -7 37.0 -37.5 1 18.7 17.6-. 23.2 23.1 -) 15.5 15.9 0 5.7 - 1t.5 -6 3'.8 -30.8 2 145.7 148.7-) 23.2 22.3 -2 17.9 17.6 5 -9 22.9 -22.. -5 8.2 - 8.0 )

66.1 60.5-2 5.8 -

5.) -1 6.5 '.5 -0 llt.2 -13.. -. lIt.l 13.0 . .8.2 -J,,".8-1 20.3 -19.7 0 0.0 - 7.3 -7 ..) - 5.6 -) 63.0 67.5 5 10.4 - 8.80 ).5 2.7 , 79.) -71t.O -6 56.9 58.. -2 40.0 "3.7 6 50.5 -48.8

Page 11: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

Crystal structure of babingtonite 365

Table 2. (Continued)

IF.I F, IF.I F, k 1 IF.I F, IF.I F, k 1 IF.I F,

7 11.9 _11.6 J 20.1 -19.2 , -9 22.5 -21.7 J It7.t 1t8.1 o -9 2.9 - 2.58 6.1 6.6 , 21.5 20.1 -8 10.5 _10., , 12.5 -12.0 -8 6.0 6.09 26.2 21r..2 5 27.9 25.1 -7 11.7 _10.3 5 15.7 111.0 -7 15.2 -H.6

J -9 ,"'.6 16.2 6 , 1.0 - 9.1 _65'.1" -52.7 6 19.8 -19.2 -6 27.2 29.1

-8 7.8 - 7.0 7 27.0 25." -5 5.0 - 2.9 7 21.6 -21.6 -5 20.7 -20.6-7 5.9 - 5.7 9 -7 ,., ,.6 -, 36.2 -38.7 7 -8 7.1 5.8 -, 111.0 -123.2-6 25.8 27.5 -6 16.5 18.0 -J 8.5 9.8 -7 '.6 - 1.2 -J 18.7 19.2-5 20,0 '9.1 -5 8.' 9.0 _2 25.2 25.9 _6 25.9 -27.5 -2 23.5 26.2-, 19.8 19.7 -, 20.8 -22.3 -, 19.9 -19.3 -5 22.6 -2J...4 -, 2.9 - 2.2-J 38.8 -38.6 -J '.8 5.6 0 25.8 -25.6 -, 12.3 -12.3 0 20.5 21.0-2 8.6 - 9.4 -2 2.2 - 0.8 1 13.8 -1It.J -J 28.9 J2.1t 1 12.0 11,0-1 11.6 -11t.7 -, 7., - 6.8 2 21.7 -20.7 -2 72.6 -HO.O 2 60.0 -58.6

0 41.1 -43.0 0 ItO.l 1t2.6 J 96.0 93.2 -1 87.2 -9".9 J 32.8 3'.31 15.2 15.7 1 33.2 -32.6, 178.2 182.0 0 24.3 25.1 , 110.6 106.5

2 12." 11,6 2 35.0 -32.1 5 29.6 27.8 , 2.2 - 1.6 5 13.1 -13.6J 15.7 '5.0 J 28.9 -28.1 6 29.0 -26.7 2 9.J 10.6 6 24.2 22.2, 22.0 19.6 , 25.6 23.6 7 12.9 -12.2 J 28.7 27.7 7 10.0 - 8.05 34.8 -32.6 5 9.2 8.5 8 3}.8 -32.8

,'9.3 -lH.4 8 9.1 - 7.8

6 13.5 -11.5 6 11.3 10.5 2 -9 15.6 16.2 5 10.2 10.9 ,-9 45.8 41t.6

7 36.0 34.5 7 12.7 -12.9 -8 54.5 55.8 6 74.5 71.2 -8 44.8 46.18 7.J 6.6 10 -7 5.7 '.0 -7 20.9 -20.3 7 58.7 55.J -7 lB.7 19.5,

-9 21.8 -22.4 -6 2.8 - 1.5 _6 38.7 -}9.6 8 -7 24.6 -21t.3 -6 6.9 8.7-8 15.3 -15.2 -5 13.3 -11.5 -5 2.J - 0.2 -6 73.7 77.1 -5 18.7 -19.9-7 6.0 - J.9 -, 10.9 -10.8 -, 21.7 22.4 -5 48.5 53.0 -, 2.1 - 3.4-6 20.B 20.9 -J 6.8 - 6.9 -J 66.3 69.6 -, 21".3 -26.4 -J 7.' 7.9-5 18.0 17.3 -2 45.2 48.3 -2 28.5 31.1 -J 11.7 -12.8 -2 J.2 '.7-, bO.3 62.0 -1 29.8 30.6 _1 40.5 -43.1 -2 2.2 1.0 _1 44.7 1,,8.1-J 16.1 -17.5 0 lit. 1 -15.1 0 166.1 -213.8 -, )0.7 32.7 0 112.2 -121".5-2 J.J 1.'

, 13.9 -13.4 , 45.0 -ltlt.o 0 8.J '.J 1 111.1 -118.5-, 30.0 -30.2 2 9.5 - 9.4 2 16.2 11.1.9 1 J.5 - 3.2 2 7}.2 -72....

0 8.5 -8.2 J 19.0 18.0 J 10.5 10.0 2 5t..7 -56.1 J 25.8 24.,

1 50.4 -It5.9, 17.7 1%.5 , 13.9 -12.9 J 76.7 -72.9 , 7.J 7.1

2 43.2 )8.8 5 1....2 -13.1t 5 2.5 '.1, 10.0 - 9.J 5 6.2 5.1

J 8.5 7.9 6 '.8 -6.0 6 2.7 - 2.3 5 13.6 12.8 6 2.7 - 0.0, 28.1 -26.7 11 -6 10.... - 9.8 7 16.3 16.4 6 17.1 15.6 7 21t.J" -22.8

5 '.1 2.8 -5 17.8 -18.4 8 Itl.a 41.2 7 13.5 12.9 8 8.6 7.56 27.H -26.4 -, 6.J - 6.2 J -9 2.8 - 2.3 9 -7 9.8 11.6 2 -9 16." 16.57 22.9 -20.9 -J 25.1t 27.1 -8 22.9 -23.4 -6 10.2 -12.2 -8 8.8 7.08 17.4 -15.9 -2 10.0 -11.7 -7 24.7 -23.7 -5 It9.2 -5'.... -7 12.6 -13.9

5 -8 17.2 -17.5 -, 52.7 -55.6 _6 40.... -It2.1 -, 6., - '.1 -6 21.8 -20.8-7 2.6 - 3.2 0 17.9 18.1 -5 19.1 -20.5 -J 8.6 - 9.2 -5 '5.2 16.9-6 11.0 -10.1 , J.8 - 2.1 -, 55.8 58.9 -2 31".0 36.2 -, 22.0 -23.1t-5 37.6 39.3 2 2H.3 -26.5 -J 67.3 70.9 -, 1,,9.8 53.2 -J 70.5 75.6-, 13.1 -11".0 J 20.0 19.7 -2 31.0 31.0 0 41.2 1t2.8 -2 70.5 76.3-J "2.1

_It}.6 , 10.8 9.8 _1 1.8 1.9 1 7.7 - '.6 -1 9.9 _10.0-, 26.8 28.9 5 5.2 2.8 0 57.1 59.1 2 13.5 -1J.% 0 19.9 19.6-1 1t8.7 -51.0 6 38.0 35.8

, 65.8 65.6 J 19.5 18.9 , J8.7 )7.a0 11.2 _10.6 12 -6 21.8 21.1 2 49.6 _Its.1 , 37.0 -3).8 2 '.9 5.91 '.J

_2.4 -5 60.4 6....5 J 23.6 -22.6 5 2.7 2.1 J 74.a 73.0

2 2}.1 -21.1t -, '.9 - It.3 , 68.0 -66.J 6 26.0 22.6 , 10.5 -10.5J 13. It 11.8 -J 6.u - 6.9 5 18.2 -16.9 2 10 -7 11.9 10.5 5 20.3 _20.0,

15' .4 150.9 -2 2.' 0.8 6 22.9 22.1 -6 2.7 J.8 6 30.3 -29.95 1,,3.5 41.8 -1 11.9 12.2 7 11.7 l'.1t -5 27.2 -26.5 7 5.9 - 5.66 39.0 -J6.7 0 11.1t 11.5 8 50.2 -47.0 -, 31t.... -37.3 8 2.8 1.07 2.8 - '.2 , 11.3 -12." , -9 '.1 '.5 -J 2.' - 1.7 J -8 16.9 15.98 19.9 -18.5 2 32.B -31.6 -8 12.9 13.0 -2 10.2 -10.' -7 10.0 _10.0

6 -8 42.0 "3.a J 59.B -56.9 -7 30.9 -30.1 -, 7.6 7.'_6 31.9 -JJ.5

-7 16.4 17.7 , 22.0 _20.1 _6 5.7 - ....} 0 32.2 }3.5 -5 }o.o -30.4-6 32.8 -33.5 5 11.7 9.5 -5 2.' - 0.9 1 7.5 - 8.6 -, 16.7 18.6-5 2.5 - ,., 13 -5 H.6 -It5.2 -, 67.1 -73.5 2 5.5 6.2 -J 16.5 -16.6-, 24.3 25.7 -, 2.7 - 1.5 -J 12.9 -13.4 J J.8 1.8 -2 118.3 -13'.7-J 38.1 1t0.1 -J 10.1 - 9.J _2

5".4 57.6 , 2.7 - 0.6 -1 1.9 0.'-2 32.9 35.2 -2 2.5 - 3.1 _1 J.9 - I.' 5 9.7 9.J 0 3a.. 39.6-, 17.3 17.9 _1 J7.J 38.0 0 9.9 11.0 6 16.1 -H..9 1 20.9 21.60 lG1t.6 -185.0 0 1t9.9 .9.8 , 29.7 29.7 2 11 -6 25.. 2J".. 2 16.3 16.11 132.5 -13}.9 1 22.3 22.7 2 19.7 -19.1 -5 19.6 -20.1 J 6.'

_6.1

2 16.. 15.9 2 13.8 -12.6 J J.8 - 1.' -, '.6 - It.2 , 23.8 _22.1J 12.5 11.1 J 2.7 2.J , 1t3.3 ItO.5 -J 20.2 21.5 5 42.6 .1.6, 6.' 6.1 , 7.J - 5.5 5 7.2 - 2.3 -2 20.3 -21.6 6 76.2 73.25 2.7 - J.5 1%_It 32.9 -34.5 6 2.7 - 2.6 -, 12.8 13.7 7 10.0 8.'6 10.8 11.2 -J 28.7 -29.7 7 2.8 1.5 0 2.5 0.7 8 27.2 -25.'"7 2.8 - 2.2 -2 7.5 6.1 8 21.8 -19.9 1 5.6 '.8

,-8 31.7 -33.0

8 23.1" 23.7 _1 11.8 -11." 5 -8 "'3.5 1t3.1 2 18.8 19.0 -7 14.3 -15.07 -8 16.5 -18.1 0 25.5 23.0 -7 2.7 - 1.2 J 6.J '.0 -6 79.'" 83.5

-7 60.3 -61.3 1 23.1 -2}.7 -6 23.8 2"'.0, 6....6 -60.9 -5 2.' 1.9

-6 17.8 _16.2 2 18.2 -17.7 -5 11.1t _11.6 5 48.2 -"".5 -, 22.3 -21".3-5 17.1 _18.... J 11.5 12.0 -, 2.2 - 1.5 2 12 -5 19.8 20.6 -J 8.9 10.,-, 5°.2 53.7 15 -2 2.7 - 0.2 -J 12.8 13.3 -, 5.5 '.J -2 20.9 21.8-J 73.5 82.3 -, 11.. - 9.8 _2 J.l 2.7 -J .5.3 -1t6.s -1 17.0 18.It-2 "'3.2 46.8 0 12.5 11.5 -, 9.8 10.3 -2 11.1 -10.. 0 1t7.1 48.'"-, H.' -15.9 1 7.6 - 8.7 0 24.0 _21t.1 -1 10.9 -10.0 1 29.6 -30.2

0 4'.. .'.3 o -9 26.6 -26.5 1 J6.J -)S.% 0 20.5 20.7 2 103.0 -10lt.",1 71t.5 7..3 -8 16.1 -15.5 2 61.8 -58.5 1 6J"., 65.1 J 21.8 -19.02

"'..' _"'2.8 -7 21.9 23.4 J J.7 2.6 2 1}.1 12.7 , 15.%''''.1J 21.8 20.4 -6 40.. "'0.1

, 9.7 9.' J 2.7 - 2.% 5 16.6 15.7, 21.... -21.5 -5 %7.3 "8.4 5 5.0 - 3.9 , 2.8 - 2.0 6 13.6 13.05 J9.J -38.3 -, 25.9 25.6 6 14.6 13.0 2 13 -4 9.J 9.1 7 7.0 6."6 2.8 - 0.2 -J 17.7 -18.5 7 10.7 - 9.6 -J :55.8 -37.9 8 9.9 8.77 17.It '5.9 -2 "'7.0 "'9.

It 8 9.8 - 7.5 -2 3a.8 -40.6 5 -8 7.' 6.08 -8 2.9 '.9 -1 '-5.9 -ltIt.2 6 _8 10.9 11.} -1 2.6 ,.,

-7 11.0 11.3-7 23.. -23.5 0 6.9 - 5.6 -7 1}.1 12.9 0 ,.,

- 5.0 -6 1t9.3 -52.1-6 .2.8 -"'3.5 1 9.J 6.6 _6 18.1 -19.'- 1 72.8 -74.8 -5 10.2 - 9.9-5 2.6 1.8 2 :50.6 28.6 -5 27.3 -27.2 2 14.8 13.3 -, 2....9 -26.3-, 28.3 -30.5 J 17.7 -16.7 -, 2.J - J.J J 10.5 10.1 -J 2., - 2.6-J 90.0 -102.2 , la.8 -17.0 -J 27.0 28.7 2 H -3 1t2....

"".2 -2 63.1t 68.3-2 27.8 30.1 5 '9.3 17.3 _2 89.2 97.J -2 '9.% 21.9 _1

"'9.6 5'.9-, J.8 '.7 6 "'3.1 -",o.7 _1 1t.6 J.6 -1 2.7 - 0.9 0 28.0 27.70 33.1 31t.2 7 28.9 -27.5 0 25.0 -2"'.6 0 11.' -10.7 1 18.5 -18.71 36.1 J7.9 8 5J.5 -52.1 1 8.J 7.0 1 6.5 - 6.9 2 21.2 20.72 J.5 - ,., 9 11.8 -12.0 2 J.8 '.1 2 6., - 7.5 J 21.6 _21.2

Page 12: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

366 TAKAHARU ARAKI and TIBOR ZOLTAI

Table 2. (Continued)

IF.I F, h k 1 IF.I F, k 1 IF.I F, k 1 IF.I F, k 1 IF.I F,

. 50.6 -1t9.7 3,,, _1

37.7 -36.9 5 7 6.9 6.5 1 -6 5.9 6.1 7 5 9.5 - 8.65 7.0 7.1 0 20.1 _18.8 6 -7 '.3 5.3 -5 17.7 -18./j, 8 -6 2.7 - 3.16 2.7 - 0.9 o _8 It1. 1 -ItO.5 -6 '9.0 _18.8 -. 10.6 -10.4 -5 9.6 10.17 17.4 -15.6 -7 37.1 36.3 -5 8.0 5.7 -3

2;2 3.7 -. 23." 23.96 -8 15.2 13.5 _6 51t.1 57.0 -, 58.7 63.2 -2 20.4 21.6 -3 VI.} l1t,8

-7 12.2 11." -5 25.1 -27.6 -3 12.5 12.3 _1 1(}.2 -45.2 -2 60,0 63.0-6 10.3 _10.4 -, B.O - 7.9 -2 11.6 -12.7 0 81.5 -8s.1t -1 21.2 21.7-5 :n.6 -35.% -3 23.8 21,..9 -1 13.4 n.8 1 }2.8 :n.o 0 '.8 '.5-. 23.7 -2".% -2 47.6 50.2 0 8.6 7.6 2 3."'. 3.0 1 B.9

-9.1

-3 19.3 21.3 -1 11.3 12,6 1 12.7 -11.5 3 '4.1 -13.10 2 18.3 -18.7-2 78.6 -87.0 0 51t.7 58.2 2 B.' - 9.7 , 37.3 36.B 3 7.' - 7.6-1 "3.0 laS.3 1 91.0 -95.6 3 17.1t 17.0 5 2.6 - 0.6 . 6.3 - 5.70 29.1 29.9 2 111,.6 _118.2 , 69.2 -68.0 6 15.7 -1}.0 5 n.7 12.51 11.8 -n.2 3 5.2 - 5./t 5 32.6 -3D.} 7 32.7 }O.O 9 -5 35.7 -38.62 3.7 2.1 , 2.6 0.0 6 '.9 '.5 2 -8 2.8 0.1 -, 37.1t -39.83 16.9 _16.8 5 2.6 - 0.7 7 -7 16.7 -18.2 -7 7.6 - 9.2 -3 llt.S 16.0, 5.1 3.2 6 11.9 1'.7

_6 16.2 _16.2 -6 25.8 -27.5 -2 32.J" 32.35 2.7 - 1.7 7 15.9 15.1 -5 22.0 24.2 -5 66.9 71.9 -1 6.' - 5.76 5.6 5.3 8 8.7 7.6 -, 9.2 - 9.8 -, 8q.6 9J".5 0 6.2 5.77 2J,..5 22.2 1 -8 16.J,. 16.8 -3 13.6 -15.4 -3 9.1 7.8 1 28.6 -29.1

7 -7 16.3 1J".2 -7 10.2 8.7 -2 9.6 10.9 -2 13.9 -1J,..9 2 13.6 -12.9-6 29.8 30.1 -6 J,,7.2 -1,,8.5 -1 10.5 _10.q _1 13.6 -15.0 3 9.7 9.7-5 12.q 13.6 -5 33.2 -36.6 0 15.6 16.3 0 2.3 - 1.3 , 1,,2.2 J,,0.6-. 36.0 39.3 -,

""B.2 -52.3 1 53.0 54.6 1 '.9 5.7 5 10-""

6.0 6.8-3 '.6 5.0 -3 67.7 73.7 2 39."" 38.9 2 23.1 23.0 -3 36.6 36.9-2 45.5 -1,,9.2 -2 105.0 111".8 3 12.1 _10.q 3 39.1 -39.8 -2 2.6 2.2_1 6.9 6.0 -1 50." 53.1" . 10.8 11.J,. , 88.4 -88.5 -, 6.B - 6.6

0 5.8 - 7.1 0 6.' - ,.. 5 6.5 - 7.2 5 20.2 -19.6 0 29.8 -30.11 J,,7.0 49.5 1 9.2 - 9.3 6 30.4 -27.9 6 6.8 - 6.7 1 3"".0 -33.72 2.3 0.2 2 75.6 76.2 8 -7 14.0 11".5 7 10.7 8.3 2 13.2 12.33 12.7 -13.5 3

""°.9 -39.9 -b 12.6 13."" 3 -8 45.8 -""6.4 3 13.6 13.1, 88.8 -85.9 , J,,1.7 -"o.0 -5 21.9 22.0 -7 21.6 -23.3 5 11 -3 11.9 12.15 . 10.7 -39.8 5 10.8 Y.l -, 2.5 - 2.0 -6 5.9 '.8 -2 6.0 - 6.16 11.8 10.1 6 10.2 - 9.0 -3 23.9 -26.3 -5 10.0 10.7 -1 '9.5 -18.87 3.0 - 2.3 7 5.2 - 5.1 -2 1,,7.""-50.0 -, 6.2 - 6.1 0 36.7 35.9

B -7 2.8-

3.0 8 16.9 15.7 _114.1" -14.7 -3 26.1" -29.""

, 2B.6 28.7_63"."

36.2 2 -8 8.2 7.2 0 6.1 - 7.7 -2 11.0 -12.7 2 20.1 -19.7-5 . 2.7 15.1 -7 10.3 8.8 1 2.' - I.B -1 9.2 10.1 5 12 -1 5.2 5.0-, . 2.3 - 9.7 -6 18.7 -19." 2 18." -19.1 0 39.B 41.0 6 o -7 2.7 - 0.3-3

*46.8

-5"." -5 42.1 -J,,4.6 3 qO.7 -1,,2.1 1 67.5 68." -6 8.0 7.7_2

*3".5 -32.5 -, 12." -12.0 , lIt..2 13.6 2 2".7 25.8 -5 3.7

_0.2

-1 . 2.3 - B.1 -3 33.7 -36.3 5 5.1 - 0.3 3 18.6 -17.7 -, 3.' -0.9

o*

64.3 69.8 -2 95.q -10"".9 6 11.3 11.5 , 25.7 24.9 -3 ""2.5 -45.81

* 7'.1" 72.1 -1 '.3 3.8 9 -6 '7.B 19.5 5 16.8 -17 .0 -2 3.2 '.B2 . 2.6 5.1 0 17.5 -18.0 -5 32.0 32.9

",., 3.5 -1 17.9 -20.7

3 . 2.7 - 6.5 1 19.1 20.1 -, '3.5 -15.2 7 27.6 25.4 0 2.9 - 0.1. 11.0 10.2 2 35.5 36.2 -3 11.6 _12.0 ,

-7 2.7 2.2 1 16.J" 17.95 Q8.9 47.0 3 5.0 3.8 -2 65.6 70.1 _6 8.1 B.2 2 5.7 - 3.86 12.3 -10.7

, 13.6 -12.7 -1 31.8 33.1 -5 2.4 0.2 3 17.7 17.59 -7 33.1 33.2 5 22." -21.0 0 30.2 -29.8 -, 6.8 6.9 , 5.0 5.3

-6 9.7 8.6 6 28.5 27.5 1 9.9 -10.3 -3 39.5 -42.6 5 5.3 3.6-5 9.' 9.' 7 39.6 37.8 2 6.' - 7.7 -2 28.3 -29.6 6 14.1" -13.7-. 10.2 - 9.8 8 39.1" 36.9 3 17.8 18.6 _1 35.7 -38.0 7 2.9 - 0.5-3 41.7 -,.4.9 3 -B 12.0 10.7 ,

28."" 26.6 0 7.0 5.7 1 -7 2.7 - 1.'-2 25.3 -25.9 -7 4J".1 Itlt.. 5 17.7 -17 .2 1 2.3 3.6 -6 7.' 7.1_1 20.6 21.9 _6 32.5 34.1 10 -5 21.7 -23.9 2 }6.6 -37.6 -5 10.3 11.3

0 50.1 -51.5 -5 35.1 ".3 -, 12.0 13.1 3 8.2 - 8.6 -, 18."" -20.21 63.8 -66.6 -, 29.3 32.3 -3 11.6 11.3 ,

25." 26.8 -3 23.1 24.32 30.3 30.3 -3 Itl.7 -105.% -2 21.9 -22.3 5 1%.0 13.0 -2 "28.5 30.J"3 2.5 0.2 -2 38.1 -1,,1.6 -1 21".2 -21".9 6 13.2 11.9 -1 26.9 -29.7, 2%.8 25.1 -1 2.1 - 2.5 0 23.9 _21".0 7 lB.7 -16.9 0 12.1 12.%5 39.3 37.6 0 17.0 18.3 1 ..6 - 4.1t 5 -7 9.' 9.6 , 2.3 - 1.76 8.6 - 7.2 1 21.7 23.0 2 %7.0 J,,7.7 _6 7.8 5.5 2 2.J" '.73 10 -6 5.' - 5.5 2 31.3 30.7 3 53.1 52.5 -5 21.1t 23.1 3 ".5 37.8

-5 2.6 - 4.6 3 38.1 -36.9 ,'3.8 13.% -. 17.5 _18.J" , 10.1 9.1-, ItO.7 42.7 , 87.1 -86.4 , 11 -5 43.7 1t1t.5 -3 8.6

-9.1t 5 62.5 -60.3

-3 :53.1 35.3 5 7.6-

8.0 -, 8.5 - 9.9 -2 56.9 60.6 6 61.% -59.1_2 13.9 -12.5 6 6.0 5.8 -3 18.5 18.7 -1 29.5 -31.0 2 -7 40.2 -1,,2.0-1 2.' - 1.8 7 9.' 9.0 -2 16.5 -15.9 0 9.B -10.2 -6 32.9 -31t.l0 ..0 - 7." . -8 42.2 -It3.2 _1 1,,1.3 -,.2.1t 1 3.8 3.7 -5 28.7 3'.01 7.' 6.2 -7 15.6 15.8 0 18.1 _18.0 2 12.0 11.8 -, 21.0 23.32 16.1 -17.1 -6 25.5 26.3 1 16.5 15.8 3 10.0 10.7 -3 8.0 - 7.93 5.8 5.1 -5 2.' 0.5 2 29.5 -29.2 , 27.1 25.1 -2 16.8 -16.5, 10.5 - 9.1 -, 29.8 -31.6 3 2.7 1.0 5 23.7 -22.6 -1 43.7 -47.25 31".3 -32.1 -3 12.8 -13.3 , 12 -3 7.3 5.8 6 63.3 -60.7 0 38.7 -1"0.1,,

11 -5 2.7 - 2.4 -2 39.1 -""2.8 -2 25.7 26.0 6 -7 8.1 7.1 1 71.2 73.2-, 2.6 - 0.6 _1 3.5 3.0 -1 16.5 16.2 -6 1,,6.0 -48.1 2 71".0 76.0-3 2.6 - J".9 0 71t.l 76.5 0 '9.0 -18.6 -5 '.7 5.0 3 22.0 23.6-2 7.3 8.9 1 17.7 16.9 1 2.7 - 1.0 -, 11.5 12.1 . 2.5 - 0.%_1 2.5 - 0.1 2 12.9 12.6 2 13.8 -12.8 -3 11.2 12.3 5 7.1 6.5

0 2.6 - 5.3 3 6.9 - 7.7 . 13 -1 2.8 3.7 -2 27.9 -29.1 6 18.9 17.21 39.3 39.2 ,

"0.2 39.2 0 1"".6 13.8 _1 28.0 -29.3 3 -7 8.6-

6.82 32.9 31.9 5 7.9 7.3 o -8 17.2 -16.6 0 22.1 -22.7 -6 58.0 59.93 2.7 1.6 6 6.3 - 7.2 -7 21.1" 21.3 1 15.1 15.5 -5 15.2 16.6. 20.5 -19.6 7 21.5 -20.7 -6 3.2 0.2 2 77.7 78.7 -, 21t.8 27.2

3 12 -5 22.6 21.6 5 -8 19.7 20.5 -5 2.'_

0.6 3 21".6 21".9 -3 5.9 - 6.9-. 7.' 7.8 -7 20.9 20.1 -, .., - 4.2 , 2.6 - 2.6 -2 47.8 -50.8-3 5.6 - 4.8 -6 13.0 13.1 -3 32.} -35.2 5 13.3 -13.2 -1 35.6 -38.0-2 30.1 -30.6 -5 8.1 9.7 -2 36.} -38.1t 6 23.2 21, It 0 17.5 17.%_1 17.7 _18.6 -, 18.8 -19.8 -1 ""2.0 4".0 7 -6 32.3 33.3 1 63.2 -66.70 6.8 - 6.3 -3 31.2 -33.8 0 53.9 56.3 -5 33.9 34.5 2 70.6 _71.6

1 21.6 19.9 -2 16.8 18.4 1 '.0 - 2.3 -, 10.1t 8.5 3 16.3 17.02 5.1 5.1 _1 25.5 27.3 2 14.6 15.0 -3 2J".% 26.5 ,

'.0 '.73 29.6 -29.3 0 101.0 _106.% 3 16.2 -16.9 -2 33.5 -35.0 5 17.2 17.53 13 -3 16.6 -17.3 1 10.4 10.6 . 50.% %8.7 -1 -'18.0 -%9.7 6 21t.4 23.5

-2 19.2 20.7 2 Its.S Itg.l 5 20.0 -18.7 0 '.2 - 3.6 . -7 20.1 _20.%_1""8.1 47.5 3 17.0 -16.9 6 7.7 - 6.9 1 ... 1.0 -6 2.6 1.'0 11t.9 -11t.2 . 38.' 38.2 7 25.8 -23.9 . 57.7 -.58.0 -5 27.4 28.81 ..7 - 2.1 5 7.2 7.. 1 -8 21." 21.7 3 6.7 7.' -, 3.7 - 6.22 2.7 0.. 6

'3.' -12.5 -7 18.6 17.0 . 38.1 37.6 -3 35.1 37.8

Page 13: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

Crystal structure of babingtonite 367

Table 2. (Continued)

k 1 IF.I F, k 1 IF.I F k 1 IF.I F, k 1 IF.I F, k 1 IF.I F,,

. -2 87.7 91t.6 9 -J 18,2 18.} J -. llt.1r. 14.7 8 1 10.7 8.9 . 2 42.8 -"2.9_1 11.8 11.7 -2 '.5 J.l -J 5.7 5.7 2 39.6 -}8.1t J 14.8 -15.80 7.1 7.9 -, 17 .1 17.1 -2 17.3 -17.7 9 -1 26.9 26.6 5 -. 7.1 - 7.61 39.6 -41.5 0 8.9 - 9.1 -1 53.9 56.8 0 '.2 - 0.7 -J '.2 - 4.22 }1." -}2.8 I 43.9 _I,1t.0 0 68.lt 70.} o -6 20.} 20.6 -2 6.. 6.4

J 6.9 - 6.9 2 26.1 -26.4 I 11.8 -12.7 -5 58.2 -60.9 -1 25." 25.04 24.} 24.7 J 11.5 -12.2 2 7.5 - 7.9 -4 2}.2 -Zit. I.! 0 23.3 -21.65 2.7 - 2.2 6 10 -} 15.6 15.7 J 2.6 - 1.2 -J 6.4 6.5 1 }8.7 39.36 1}.2 -12.3 -2 27.6 27.2 4 '9.1 -18.7 -2 J.' J.O 2 66.7 65.7

5 -6 22.1 -22.9 -1 13.7 13.6 5 16.2 16.lt -1 2.4 4.7 J HI.}-

9.0

-5 33.7 -35.6 0 8.5 8.9 4 -6 30.5 31.6 0 30.5 -31.4 6 -J 17.8 -18.5-, 20.2 -21.5 1 2.7 2.9 -5 55.1 -58.8

, 11.6 -1}.0 -2 53.0 -53.8-J 18.5 19.8 0-7 16.6 -16.0 -4 59.8 -62.9 2 7.8 - 7.1 -1 12.5 -12.8

-2 5.0 -4.1t -6 J.2

-3.2 -J 4.5 - 1.5 J 'H.J 33.4 0 2.9 - 2.6

-I 17." 18.7 -5 4.5 '.8 -2 2'-.5 26.0 4 3".7 J'..8 I 21.0 21.20 2.4 -

2.} -, 18.% -19.0 -1 9.9 10.6 5 2.8 J.4 2 19.0 -16.51 2}.7 -24.7 -J 59.2 6lt.2 0 33.0 -32.9 I -6 19.9 -19.% 7 -1 23.3 -2}.22 2.5 O.J -2 %7.% %9.2 1 13.5 -1%.8 -5 31.9 31.6 0 5.0 - 3.6J 21.7 20.6 -1 15.8 -16.9 2 13.6 _12.1 -4 17.1 17.% o -, 18.2 -18.%4 31.a 32.1 0 6.1

-6.3 J 17 .% 17.% -J 2.5 2.5 -J 13.1 12.3

5 %.7 - 2.8 ,19.8 -21.5 4 %8.7 119.6 -2 8.1 7.6 -2 8.8 10.5

6 -6 9.5 6.2 2 13.3 -13.9 5 2%.1t 21t.8 -, 10.1t-

8.5 -1 7.6 8.2

-5 21t.O -21t.1t J 2.6-

1. 7 5 -5 4.1 - 1.5 0 28.6 -28.9 0 18.1 18.5

-4 8.J 7.8 4 H.1t H.3 -4 51.7 52.6 I lIt.5 -lIt.9 I 30.1 -29.3-J 15.1 16.2 5 18.0 -16.9 -J 2.6 0.5 2 2.6 -

2.8 2 8.J -8.1

-2 4.2 - 0.8 6 5.0 - 1t.5 -2 10.0 10.2 J 20.5 -21.2 J 6.0 - 8.1

-1 9.9 - 9.3 1 -7 25.2 -21t.8 _1 2.5 1.7 4 13.0 -12.9 1 -4 18.3 -19.80 23.5 -23.3 -6 19.7 -21.0 0 3%.2 -35.1 2 -5 2.6 o.J -J 2.6 - 1.21 4.8 - 5.0 -5 32.2 -31t.2 I 37.5 -37.7 -4 10.5 10.5 -2 H.6 1lt.l2 5.0 4.6 -4 6.' - 6.5 2 2.6

-1t.2 -J 4.6 2.6 -1 11t.6 _12.6

J 16.9 17.1 -J 18.1 19.9 J 7.1 - 6.9 -2 8.0 - 7.3 0 25.2 -23.14 33.7 -32.8 -2 15.7 -16.9 4 31.7 -30.7 -1 1t5.5 1t8.1t 1 61.4 62.35 8.1 7.2 -1 21.7 22.5 6 -5 5.1 - 4.1 0 10.2 9.7 2 24.0 23.7

7 -5 4.7 - 5.2 0 6.2 - 6.4 -4 2.7 - 3.7 1 2.6 - 2.5 J 21.1 -21.0

-4 llt.7 llt.9 , 2.4 - 2.8 -J 24.2 23.a 2 8.U - a.3 2 -4 9.J 8.4-J 10.1 - 9.0 2 10.0 8.9 -2 11.6 11.3 J 10.7 _11.6 -J 41.8 -43.7-2 9.4 - 9.0 J 31.6 32.1 -, 9.4 9.7 4 2.8 2.1 -2 26.5 -27.2-I 4.J 1.6 4 2.6 1.0 0 H.8 lit. 8 J -5 29.1 -29.1t -I J.8 -

0.80 5a.7 58.1 5 2.7 J.6 I 8.5 - 7.a -4 10.3 -10.4 0 4.' - 3.01 J.8 -

2.7 6 11.6 10.1 2 5. I 2.J -J 1t3.9 -It5.a 1 7.2_ 1t.2

2 20.4 -19.9 2 -6 9.6 -10.0 J 10.5- 9.9 -2 llt.2 -14.1 2 6.0 4.1

J la.6 17.3 -5 6.8 - 7.3 4 12.1 _12.6 -I 30.0 31.6 J -J llt.7 13.7

"5.6 - 5.1 -4 17.2 17.6 7 -4 2.7 - 0.6 0 12.1 13.0 -2 6.4 6.J

8 -5 13.0 -13.0 -J 15.1 16.7 -J 8.0 - 7.5 1 16.0 15.7 -1 16.3 -17.1-, 51.3 -53.1 -2 8.7 - 8.8 -2 26.6 -25.6 2 13.8 -15.1 0 15.9 17.0

-J 19.8 -19.7 -1 31.2 -31.1 -I 25.5 25.1 J 29.0 -28.9 1 2.8 - 3.9_2 10.5 10.2 0 20.3 -20.9 0 4.9 -

1t.9 4 2.9 - 4.0 2 22.7 -22.0-1 11.8 12.1 1 12.9 11.8 1 10.8 10.8 4 -5 2.7 - 3.2 4 -2 10.8 10.4

0 2.6 - 1.6 2 2.5 o.J 2 11.2 10.7 _4 34.5 -31t.7 -1 26.2 210.21 28.2 -28.3 J 111.10 -13.6 J 29.4 -29.1 -J 2.6 - 3.5 0 4.9 4.72 11.9 10.7 4 32.4 -31.9 8 -J 28.2 -28.3 -2 39.9 lt~. It 1 lit. 3 15.9J 5.7 - 3.7 5 16.2 16.3 -2 31.3 30.1 _1 9.0 10.6 10 o -2 9.7 8.2, 36.9 37.3 J -6 2.7 2.5 -, 19.0 18.2 0 26.3 26.1t -, 16.6 Pi-It

. -4 35.0 310.6 -5 2.6 -1.7 0 11.8 11.8 1 17.a -17.2 0 12.1 12.7

1.9387-2.2060 A, the average distance being 2.0477 A; in the other,from 2.0660----'2.2386 A, the average being 2.1687 A. These interatomicdistances indicate that the iron is trivalent in the former octahedronand divalent in the latter. This conclusion is supported by the Moss-bauer spectra, which indicates a simple pattern of separated singlepeaks for Fe3+ and Fe2+. As shown in Fig. 3, the ratio of Fe3+ to thetotal Fe content is about 0.60, which is close to that indicated in thechemical formula ofNAMBu et al. (1969). The iron and the substitutingMn and Mg atoms in these slightly distorted octahedra are coordinatedwith nonbridging oxygen atoms. Similarly, there are two types ofCa-coordination polyhedra. The first has SIX nonbridging oxygenatoms at a wide range of cation-anion distances and two bridgingoxygen atoms at longer distances. The second has four non bridgingoxygen atoms at nearly equal distances and four bridging oxygen atomsat longer distances. The Fe and Ca polyhedra are linked together bycommon edges and corner oxygen atoms. Pairs of alternating Ca, Fe

Page 14: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

368 TAKAHARU ARAKI and TIBOR ZOLTAI

.Fe eCa 8Si 00

Fig.2a. Structure of babingtonite as projected along the c axis. Numbersindicate the relative heights of the atomic positions in terms of percentages of

the c translation

Fig.2b. Illustration of the location and orientation of the silica chains. Theposition of the types of Fe ions are also shown

Page 15: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

Crystal structure of babingtonite 369

and Fe, Ca polyhedra are bond together to form bands between thesilica chains.

The silica tetrahedra are linked by sharing bridging oxygen atoms.The average Si-O-Si angle is 137.3° with a range of 131.7-144.0°.The average Si-O distance is 1.6518 for bridging oxygen and 1.6139 Afor nonbridging oxygen. The eight distances from Si to bridging

Page 16: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

370 TAKAHARU ARAKI and TIBOR ZOLTAI

Table 3. (Oontinued)

Ca(2) polyhedron Fe3+ octahedron

Ca(2)-0(8) 2.3512 0.0058 Fe3+-0(2) 2.0574 0.00470(5) 2.3539 0.0070 0(4) 2.0982 0.00650(7) 2.3756 0.0070 0(7) 1.9814 0.00430(4) 2.3760 0.0059 0(10) 2.2060 0.00540(6) 2.4518 0.0075 0(11) 2.0044 0.00540(9) 2.5679 0.0061 0(14) 1.9387 0.00660(12) 2.6407 0.00620(9) 2.8813 0.0050 Oxygen-oxygen distances between

adjacent Si-O tetrahedra. less thanFe2+ octahedron 2.80A

Fe2+-0(4) 2.2137 0.0052 0(1)-0(11) 2.5813 0.00720(5) 2.1102 0.0052 0(2)-0(14) 2.7544 0.00670(8) 2.2386 0.00540(8) 2.2019 0.00670(10) 2.1820 0.00600(13) 2.0660 0.0047

oxygen atoms, averaging 1.6587 A, involve the same oxygen atoms asthose from Ca to bridging oxygen atoms. The shorter bond from Si tobridging oxygen, of 1.6243 A length, contains 0(3) which is notbonded to either Ca or Fe cations. BecauseIof these difference in the

-.015

.000 ..015

c:,g .030

e-o~.045o

].060c:oI/)&: .075

.090

.105

Fig. 3. Resonant absorption diagram of the Mossbauer spectrum of babingtonite

Page 17: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

Crystal structure of babingtonite 371

Table 4. Selected bond angles and their standard deviations

0(1)-Ca(1)-0(2) 78.10 0.3° 0(6)-Ca(2)-0(9)* 58.2° 0.4°0(1) 0(2)* 158.5 1.5 0(6) 0(12) 73.1 0.30(1) 0(10) 110.7 0.3 0(7) 0(8) 82.4 0.20(1) 0(13) 112.8 0.4 0(7) 0(9) 61.8 0.40(1) 0(14) 81.4 0.2 0(7) 0(9)* 80.7 0.20(1) 0(15) 73.6 0.3 0(7) 0(12) 108.7 0.30(1) 0(15)* 127.5 0.5 0(8) 0(9) 112.6 0.30(2) 0(2)* 80.6 0.2 0(8) 0(9)* 160.0 1.30(2) 0(10) 95.6 0.2 0(8) 0(12) 85.1 0.20(2) 0(13) 167.5 2.8 0(9) 0(9)* 68.1 0.30(2) 0(14) 65.5 0.3 0(9) 0(12) 60.0 0.40(2) 0(15) 136.5 0.7 0(9)* 0(12) 110.5 0.30(2) 0(15)* 104.3 0.20(2)* 0(10) 73.3 0.30(2)* 0(13) 88.7 0.2 0(4)-Fe2+- 0(5) 170.5 2.8

0(2)* 0(14) 87.9 0.20(4) 0(8) 80.8 0.2

0(2)* 0(15) 122.4 0.40(4) 0(8)* 95.0 0.2

0(2)* 0(15)* 56.6 0.40(4) 0(10) 80.5 0.2

0(10) 0(13) 75.0 0.30(4) 0(13) 93.0 0.2

0(10) 0(14) 155.6 1.10(5) 0(8) 92.9 0.2

0(10) 0(15) 125.0 0.50(5) 0(8)* 91.0 0.2

0(10) 0(15)* 120.9 0.30(5) 0(10) 93.2 0.2

0(13) 0(14) 120.9 0.40(5) 0(13) 93.6 0.2

0(13) 0(15) 55.4 0.50(8) 0(8)* 81.1 0.2

0(13) 0(15)* 74.6 0.20(8) 0(10) 95.7 0.2

0(14) 0(15) 78.0 0.20(8) 0(13) 173.1 3.8

0(14) 0(15) 55.1 0.4 0(8)* 0(10) 174.8 6.6

0(15) 0(15)* 70.1 0.3 0(8)* 0(13) 96.6 0.20(10) 0(13) 86.2 0.2

0(5)-Ca(2)-0(4) 91.2 0.20(5) 0(6) 64.0 0.4 0(2)-Fe3+-O(4) 92.5 0.20(5) 0(7) 160.0 1.7 0(2) 0(7) 175.0 4.60(5) 0(8) 81.7 0.2 0(2) 0(10) 84.6 0.20(5) 0(9) 136.5 0.6 0(2) 0(11) 88.1 0.20(5) 0(9)* 112.1 0.3 0(2) 0(14) 87.1 0.20(5) 0(12) 82.0 0.2 0(4) 0(7) 87.6 0.20(4) 0(6) 120.7 0.4 0(4) 0(10) 82.5 0.20(4) 0(7) 73.0 0.3 0(4) 0(11) 89.4 0.20(4) 0(8) 75.2 0.2 0(4) 0(14) 170.5 3.60(4) 0(9) 131.6 0.5 0(7) 0(10) 90.5 0.20(4) 0(9)* 89.6 0.2 0(7) 0(11) 96.9 0.20(4) 0(12) 159.9 1.5 0(7) 0(14) 91.9 0.20(6) 0(7) 134.6 0.7 0(10) 0(11) 168.8 2.50(6) 0(8) 141.1 0.8 0(10) 0(14) 88.1 0.20(6) 0(9) 84.0 0.2 0(11) 0(14) 100.0 0.3

24*

Page 18: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

372 TAKAHARU ARAKI and TIBOR ZOLTAI

Table 4. (Oontinued)

0(1)-Si(1)-0(2) 111.1 0.2 0(9)-Si(4)-0(10) 112.80 0.300(1) 0(3) 104.0 0.3 0(9) 0(11) 108.4 0.30(1) 0(15) 109.2 0.2 0(9) 0(12) 103.5 0.30(2) 0(3) 113.6 0.4 0(10) 0(11) 114.3 0.30(2) 0(15) 108.1 0.2 0(10) 0(12) 106.9 0.20(3) 0(15) 110.7 0.3 0(11) 0(12) 110.5 0.3

0(3)-Si(2)-0(4) 108.5 0.3 0(12)-Si(5)-0(13) 110.3 0.20(3) 0(5) 114.5 0.4 0(12) 0(14) 108.9 0.20(3) 0(6) 107.1 0.3 0(12) 0(15) 110.8 0.30(4) 0(5) 113.8 0.3 0(13) 0(14) 116.8 0.30(4) 0(6) 110.4 0.3 0(13) 0(15) 106.3 0.30(5) 0(6) 102.4 0.3 0(14) 0(15) 103.5 0.3

0(6)-Si(3)-0(7) 111.3 0.2 Si(1)-0(3) -Si(2) 136.8 0.7

0(6) 0(8) 109.8 0.2 Si(2)-0(6) -Si(3) 144.0 0.50(6) 0(9) 104.4 0.3 Si(3)-0(9) -Si(4) 139.7 0.70(7) 0(8) 117.8 0.30(7) 0(9) 101.3 0.3 Si(4)-0(12)-Si(5) 131.7 0.3

0(8) 0(9) 111.3 0.3 Si(5)-0(15)-Si(1) 134.4 0.6

Asterisk denotes position of -x, -y, -z, when different equivalent positionsof same species are involved in the group.

Si-O bonds the silica tetrahedron is distorted. The nonbridgingoxygen atoms are also shifted a little in the tetrahedra and the distancesbetween bridging and non bridging oxygen atoms are shorter whenthe nonbridging oxygen atoms are involved in short Ca-O bonding.

The structure of babingtonite is distinctly similar to that ofrhodonite. The fifth tetrahedron, containing Si(1), however, is shiftedin babingtonite because of the oxygen atoms' strong bond to the Ca(1)cation located on one side of the tetrahedron. The positions of theCa and Fe cations correspond roughly to four of the five cation posi-tions in the rhodonite structure. The hydrogen-atom proton is prob-ably in a site close to 0(3) or to O( 1) and O( 11) or both, for theseare exceptionally short 0-0 distances of 2.5534 within a tetrahedronand 2.5813 A between adjacent tetrahedra.

Acknowledgements

The authors wish to thank Drs. J. D. BRITTONand YEH MEI CHOW,School of Chemistry, University of Minnesota, for their help in theuse of the four-circle diffractometer purchased from funds granted

Page 19: Crystal structure ofbabingtonite - RRUFFrruff.info/uploads/ZK135_355.pdfZeitschrift fiirKristallographie, Bd. 135,S.355-373 (1972) Crystal structure ofbabingtonite By TAKAHARUARAKI*and

Crystal structure of babingtonite 373

jointly by the Chemistry Research Instruments Program of NSF andthe Graduate Research Center of the University of Minnesota, andDr. S. S. HAFNER, University of Chicago, for obtaining Mossbauercharts on babingtonite. The authors wish to acknowledge the financialsupport of their study by the National Science Foundation.

References

C. W. BURNHAM (1966), Computation of absorption corrections and the sig-nificane of end effect. Amer. Mineral. 51, 159-167.

D. T. CROMER and J. B. MANN (1968), X-ray scattering factors computed fromnumerical Hartree-Fock wave functions. Acta Crystallogr. A 24, 321-324.

M. NAMBU, K. TANIDA and T. KITAMURA (1969), Mineralogical study of man-ganese silicate ores in Northern Japan. VII. Manganiferous babingtonitefrom Yakuki mine, Fikushina Prefecture. Senko-Seiren Kenkyusho Iho. 25,117-128.

D. P. PEACOR and N. NnzEKI (1963), The redetermination and refinement ofthe crystal structure of rhodonite, (Mn,Ca)Si03. Z. Kristallogr.119, 98-116.

C. T. PREWITT and D. P. PEACOR (1964), Crystal chemistry of the pyroxenesand pyroxenoids. Amer. Mineral. 49, 1527-1542.

W. E. RICHMOND (1937), On babingtonite. Amer. Mineral. 22, 630-642.H. STRUNZ (1970), Mineralogische Tabellen. 5th Ed., Akad. Verlagsges., Leipzig.