csci 6363 human computer interaction fall, 2015 class introduction and user interface history xerox...

109
CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Upload: isabel-tate

Post on 12-Jan-2016

223 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

CSCI 6363Human Computer Interaction

Fall, 2015

Class Introduction

and

User Interface HistoryXerox Star, 1981

Page 2: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Introduction

• Welcome

• Introductions– Name, where from, program, year of study (when finish, if 2nd year about

program), “goals” – from course and more generally

• About the course structure – class web site– Syllabus– Exams

• “Objectives” and exams

– Programming and Project

• Now, some details

Page 3: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

About the Course Content“Human Computer Interaction”

• The course …– “Presents theory of human-computer interaction, as well as development

methods for interfaces, such as user centered design, … . Course presents evaluation and testing techniques, such as heuristic evaluation, … as well as user-interface programming and ethical and societal issues.”

• Will look in detail about how to design and implement interfaces

• Will develop skills through both the study of design principles from the literature and their application to development of systems

– “Theories, Principles, guidelines”– Qt is a “high level”, cross-platform, evolving system

• Will examine human-computer interaction literature through:– “Secondary sources”, books, review articles– “Primary sources”, technical journal articles– As a graduate course, requires synthesis of ideas

Page 4: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Familiar Systems …

• What is the below?– Right, a computer

• Many (essentially all) courses concerned with, e.g., algorithms, architecture, operating systems, …

– How many courses have you had concerned with these?

Page 5: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Familiar Systems …

• What is the below?– Right, a human

• Not so many courses in your curriculum talk about design for

• However, without humans there would be no computers!– (because they not only build them, they buy and use them)

Page 6: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Familiar Systems …

• So, the subject(s) of this course – human computer interaction– Computer system, human, software, hardware, programming, models, …

• And – most importantly, their interaction– Human-Computer Interaction: HCI

Page 7: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Familiar Systems …

• So, the subject(s) of this course – human computer interaction– Computer system, human, software, hardware, programming, models, …

• And – most importantly, their interaction– Human-Computer Interaction: HCI

Page 8: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Familiar Systems …

• So, the subject(s) of this course – human computer interaction– Computer system, human, software, hardware, programming, models, …

• Also, will be concerned with how to program display and interaction mechanisms common to user interface implementation

Page 9: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Familiar Systems …

• So, the subject(s) of this course – human computer interaction– Computer system, human, software, hardware, programming, models, …

• Also, will be concerned with how to program display and interaction mechanisms common to user interface implementation

• Even learn some things about the human– Cognition, performance, …

Page 10: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Why Design for the Human?

• Practically …– Design of systems often “neglected” element– At least in context of curriculum– Products succeed or not, depending much more on their interface

design, than, e.g., efficiency of implementation• E.g., Apple!!

• Bigger picture …– “External aids to cognition”, as critical for humans– Ability of computers to store and retrieve information has significant impact

on our culture– History of computing systems leads to emphasis on interactive system– This is the 50 year lesson

• i.e., the perspective that will help you think across your career

Page 11: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Why Design for the Human?

• An example

Page 12: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Ever seen this?

Page 13: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Ever seen this?

• What’s wrong here?

• To start with, it doesn’t provide the user feedback about whether the last action was correct

– It does not say it is the course schedule

• Then, well, I guess it’s a matter of “selecting a term”

Page 14: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

What’s a module?• Is it like a semester?

Page 15: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

OK,scroll down• But, why do you (the

user have to scroll down?

• Why isn’t the usual, rather the exceptional, choice the one on top?

• What is the user’s impression of the system and the organization using it?

Page 16: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

OK,scroll down• Besides impression

and satisfaction, what’s the cost?

• About 6 seconds per user

– If practiced– If no error

• 6 secs * 3 times * 30,000 users =~

150 hours

• How long to do right?– ~ 0 hours

Page 17: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

OK,scroll down• But, why do you (the

user) have to scroll down?

• Why isn’t the usual, rather the exceptional, choice the one on top?

– A simple design principle

• What is the user’s impression of the system and the organization using it?

Page 18: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

OK,scroll down• But, why do you (the

user have to scroll down?

• Why isn’t the usual, rather the exceptional, choice the one on top?

• What is the user’s impression of the system and the organization using it?

– ? Incompetent– ? Doesn’t care about

user (me!)

Page 19: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Why HCI and Interactive Systems?• The interface is all the user (customer, employee) sees!

– Efficiency, success, satisfaction …

• Practically …– In sw systems > 50% of code is ui code– And somebody has to program it

• Discipline wise …– ACM SIGCHI is 2nd largest conference– SIGGRAPH in 10’s of k, SIGCHI k’s … many just hundreds

• Bigger picture …– “External aids to cognition”, as critical for humans– Ability of computers to store and retrieve information may have deep

implications– History of computing systems leads to emphasis on interactive systems

• Context first

Page 20: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Overview of Interactive Systems

• Humans interact with computers primarily through displays (and input devices)

• In fact, lots of things going on that are part of the whole context of computing, humans and hci

– Human– Interaction

• Style, characterization, design

– Programming systems

• Other UTPA CS courses:– CSCI 6360: Graphics– CSCI 6361: Visualization

Programming systems-windows-graphics

Hardware andgraphics engines

3-DViewing

Transformation

Representation ofcurves and surfaces

“Models”,(Foley et al. term)

DrawingAlgorithms

Lights Rendering

User, i.e., Human“Interaction” “Perception” “Information”

An illusion: analog world represented

digitally

Programming is a craft

OpenSystem

DisplayClosedSystem

Page 21: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

External Aids to Cognition

• A “big picture” (1,000 year) idea

• Surely important for a career

• Human as “tool maker”

• … and the computer is a heck of a tool

• Computers “amplify cognition”

Page 22: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Amplifying Cognition

• A really big idea …

• Humans think by interleaving internal mental action with perceptual interaction with the world

• This interleaving is how human intelligence is expanded– Within a task (by external aids)– Across generations (by passing on techniques)

• Computer in general, and interactive systems in particular, are important class of external aids

• A quick example, then back to the abstract

Page 23: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Amplifying Cognition

• A really big idea …

• Humans think by interleaving internal mental action with perceptual interaction with the world

• This interleaving is how human intelligence is expanded– Within a task (by external aids)– Across generations (by passing on techniques)

• Computer in general, and interactive systems in particular, are important class of external aids

• A quick example, then back to the abstract

Page 24: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

External Cognition – A Demo

• In your head: 34 x 72

Page 25: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

External Cognition – A Demo

• In your head: 34 x 72

• Without special purpose algs, it’s a choreNeed to remember intermediate results:

34 x 2 and 34 x 70 and add them

• External aids make it easy to remember int. results– paper and pencil, easy

• Or do away with altogether – calculator, fast

Page 26: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Amplifying Cognition

• Humans think by interleaving internal mental action with perceptual interaction with the world

• This interleaving is how human intelligence is expanded– Within a task (by external aids)– Across generations (by passing on techniques and knowledge)

• Computers in general, and interactive systems in particular, are important class of “external aids to cognition”

Page 27: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

External Aids to Cognition

• In fact, a long history of external aids

• Abacus

• Slide rule exploits addition of logs for multiplication– Analog device

• Computers are general purpose external aids to cognition– Quite revolutionary …– … and a great place to spend a

career …

Page 28: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

External Aids to Cognition

Page 29: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Ratio of Human Cost to Hardware Cost for Computing

• Many years ago computers were large expensive unreliable machines

• Von Neuman thought a few machines of capacity of Eniac would be enough for US

• Plugging in cables, or setting switches, was reasonable use of operator time (both training and operation)

• Cost of computer time relative to operator time was very high,

• And tasks that were performed were relatively simple

• A few calculations vs. interactive scientific visualization, or the human task of managing one's own "information space"

ENIAC

Page 30: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Ratio of Human Cost to Hardware Cost

• Interface styles have changed over time

• As cost of hardware has decreased, has resulted in increasing need for efficiency of human time utilization

Page 31: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Ratio of Human Cost to Hardware Cost

• Change in the relative cost of computer to human time,

– coupled with tasks that can be performed due the processing power are responsible for the change in interface style

– (put another way:)

• Power of computer essentially ALLOWS more computing power to be directed toward the interface

– Today, even "entry-level" PC's have "way more" processing power than needed for most task

• e.g., word processing

• Today, cost of hardware is essentially trivial compared to the cost of human user!

Page 32: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Ratio of Human Cost to Hardware Cost

• Moore’s law is the 800 pound elephant in the room

• But, no real change in change in interaction style since mid ’80’s

– 30 years!– Approaching a complete human

generation!

• Rather, more computing devices

– Shneiderman notes, and his current edition reflects this

• Also, connectivity of devices and storage

Page 33: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Context of User Interfaces• Graphics is key enabling technology in evolution of

computing environments: – Graphical user interfaces– Visual computing,

• e.g., desktop publishing, scientific visualization, information visualization

• Hardware revolution drives everything – ~ every 18 months, computer power improves by factor of 2 in price/performance

– Moore's Law– … and exponential growth generally – things are different …

• Graphics memory and network speeds are on even faster exponentials  

– graphics chips in particular have major improvements every six to nine months

Page 34: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Moore’s Law

• … the 800 pound elephant in the room

Page 35: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Moore’s Law – CPUsExponential growth

• Hardware revolution drives everything – ~ every 18 months, transistor count improves by factor of 2 in price/count

• Below has linear y axis for emphasis, next with log y axis

– Moore's Law, mid ‘60’s … really, ~Law, or even metaphor

Gordon Moore, 1962

Page 36: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Moore’s Law - CPUs• Hardware revolution drives everything

– ~ every 18 months, transistor count improves by factor of 2 in price/count – Moore's Law

Page 37: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Moore’s Law - CPUs• Hardware revolution drives everything

– ~ every 18 months, transistor count improves by factor of 2 in price/count – Moore's Law

Page 38: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Another Example of Exp. Growth• The Internet … by whatever metric

Page 39: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Another Example of Exp. Growth• And digital camera resolution ….

Page 40: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Taking Advantage of Exp. Growth?

Page 41: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

The Other Side of Moore’s LawComputing Becomes Exponentially Cheaper

• With implications for interface design, ubiquitous computing, …

• Computing power a commodity– E.g., cpu power for gui such as Mosaic, IE, ~50 cents! today, cf. Kuniavsky

Page 42: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

On Exponential Growth …• Some “technology” is exponential in advancement• Other things are not …

– E.g., software and …

Page 43: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

But, Moore’s Law Dead?

• … and transistor count not equal to power

Page 44: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Moore’s Law Dead?

• Transistor count not equal to performance

Page 45: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Parallelism and Moore’s Law

• Moore’s law is alive and well for graphics and may be fine too for “gpu computing”

– Because lends itself to parallelization

– Pipeline architecture works well with current approach to cg

• Now, gpu processing power significant fraction of cpu processing power in pc’s

• How to use parallel, here, gpu, architectures is not a new question

• Cf. Nvidia gpu programming language (CL)

Page 46: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Ratio of Human Cost to Hardware Cost

Page 47: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Ratio of Human Cost to Hardware Cost

• Moore’s law is the 800 pound elephant in the room

• But, no real change in change in interaction style since mid ’80’s

– 25 year’s!– Approaching a complete human

generation

• Rather, more computing devices

– Shneiderman notes and his current edition reflects this

• Also, connectivity of devices and storage

Page 48: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

And Ratio of Human Cost to Hardware Cost for Computing … and “Neural Power”

Hans Moravec, When will computer hardware match the human brain? Dec. 1997 http://www.frc.ri.cmu.edu/~hpm/

But, like, not …1. Promise of future fallacy2. Computer processing not (at all) like neural processing

(but, cf. this month’s CACM, “Cognitive Computing”)

Page 49: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Chronology of System Development(another take on style)

1945-1955 Pioneer

1955-1965 Historical

1965-1980 Traditional

1980-1995 Modern

1995-? Future

UI Paradigm batch processing command languages

full screen (menus, forms)

WIMP noncommand based

interfaces

Terminal Technology TTY typewriter

line oriented terminals (“glass

TTY” CRT) full screen terminals

graphical displays

desktop workstations

heavy portables

“Dynabook” multimedia I/O

easily portable

cellular modem

User Types experts, pioneers

technocrats

professional computerists

specialized groups without computer

knowledge

business professionals

hobbyists

everybody

Operating Mode one user

batch

central processing

time sharing

remote access single user PC’s

networked single user

embedded systems

Programming Language

machine language assembler high level languages

problem oriented languages

spreadsheets

nonimperative visual programming

Wise, 1997

Page 50: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Future?

• Web is part of it

• Mobile applications are part of it

• What else?

• First, intellectual precursors to “web as we know it”– Example of what “the idea” looked like, before the technology to support it

was available

Page 51: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

W W W = Hypertext(a quick example of why vision and history matter)

Page 52: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

W W W = Hypertext(a quick example of why vision and history matter)

• Real “power” interest in Internet only arose well after its initial implementation

– ARPANET– Relatively few people cared about ftp, bbs, …– At least “few” compared to current use of WWW

• Interest and use arose only after:– Specification of WWW

• How to go from one file/document to another via its address … the link!– And then only with design of a graphic user interface for it

• Text-based browsers not too neat (at least to non-computer types)• How to “navigate” easily and with use of pictures/images/icons

• Essential idea of “navigation” among documents dates to Vannevar Bush’s Memex, 1945

Page 53: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

History: Vannevar Bush, MEMEX

• MIT professor 25 years, etc.– Claude Shannon (information theory) was student

• Roosevelt’s science advisor in WWII 

• Invented continuous intergraph or Differential Analyses– Essentially, Charles Babbage’s Difference Engine with shafts

driven by motors– Analog computing solutions to differential equations (gears, etc.)– Big and handmade

Page 54: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

History: Bush's MEMEX, 1945

• "As We May Think", 1945– MEMory EXtender system– Atlantic Monthly!– available at:

http://www.theatlantic.com/atlantic/atlweb/flashbks/computer/bushf.htm

– “new knowledge not reaching the people who would benefit from it”

– Concerned about the explosion of scientific literature which made it impossible even for specialists to follow developments in a field,

– “A Memex is a device in which an individual stores all his books, records, and communications, and which is mechanized so that it may be consulted with exceeding speed and flexibility. It is an enlarged intimate supplement to his memory.”

– desk, slanting screens, buttons, levers, and keyboard

• “A memex looked like a desk with two pen-ready touch screen monitors and a scanner surface. It had several gigabytes of storage space filled with textual and graphic, indexed, information”

Page 55: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

History: Bush's MEMEX, 1945

• Microfilm projectors for viewing different information

– uses mircofilm for storage – new material can be added via

microfilm or by direct entry via ‘‘dry photography'‘

• Supports indexing, cross referencing, keywords

– supports associative indexing via links and creation of ``trails'' which can later be followed

– allows annotations comments, and marginal notes .

– envisions multimedia i/o: other senses, such as, speech and audio

• Associative indexing– "The process of tying things together

is the important thing.“– New profession of ``trail blazing"– Trail building and trail following by

user

Page 56: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Editor’s foreword to Bush’s 1945 Atlantic Monthly article

As Director of the Office of Scientific Research and Development, Dr. Vannevar Bush has coordinated the activities of some six thousand leading American scientists in the application of science to warfare. In this significant article he holds up an incentive for scientists when the fighting has ceased. He urges that men of science should then turn to the massive task of making more accessible our bewildering store of knowledge. For years inventions have extended man's physical powers rather than the powers of his mind. Trip hammers that multiply the fists, microscopes that sharpen the eye, and engines of destruction and detection are new results, but not the end results, of modern science. Now, says Dr. Bush, instruments are at hand which, if properly developed, will give man access to and command over the inherited knowledge of the ages. The perfection of these pacific instruments should be the first objective of our scientists as they emerge from their war work. Like Emerson's famous address of 1837 on "The American Scholar," this paper by Dr. Bush calls for a new relationship between thinking man and the sum of our knowledge. --THE EDITOR

Page 57: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Design of the Internet and its Access

• History of Berners-Lee specification

• History of Mosaic

Page 58: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Design/Invention of the WWW

• ARPANET, 1969 – then, NSFNET – then, Internet

– DOD sponsored distributed network with alternate routes to withstand nuclear attack

– Internet Protocol added, 1978

• Tim Berners-Lee– CERN

• Organisation européenne pour la recherche nucléaire

• European Organization for Nuclear Research

– 1980, ENQUIRE• Hypertext with linked pages

– 1989, First proposal for “large hypertext system”

– 1990, with Robert Caillau standards for www published

Page 59: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Design/Invention of the WWW

• 1990, CERN phone book first document on WWW

– 1st web server a NeXT designed by Steve Jobs

– info.cern.ch

• 1st web browser– Tim Berners-Lee– Text only

• Paul Kuntz, 1991– Brought NeXT software back to

Stanford Linear Accelerator Center– Louise Addis adapted for VM/CMS

os on IBM mainframe– Display center’s documents

Page 60: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

From alt.hypertext, August 6, 1991

In article <[email protected]> [email protected] (Nari  Kannan) writes:

>    Is anyone reading this newsgroup aware of research or development efforts in > the following areas:

>     1. Hypertext links enabling retrieval from multiple heterogeneous sources of   > information?

The WorldWideWeb (WWW) project aims to allow links to be made to any   information anywhere. The address format includes an access method   (=namespace), and for most name spaces a hostname and some sort of path. We have a prototype hypertext editor for the NeXT, and a browser for line mode   terminals which runs on almost anything. These can access files either locally,   NFS mounted, or via anonymous FTP. They can also go out using a simple protocol   (HTTP) to a server which interprets some other data and returns equivalent   hypertext files. For example, we have a server running on our mainframe   (http://cernvm.cern.ch/FIND in WWW syntax) which makes all the CERN computer   center documentation available. The HTTP protocol allows for a keyword search   on an index, which generates a list of matching documents as annother virtual   hypertext document.

If you're interested in using the code, mail me.  It's very prototype, but   available by anonymous FTP from info.cern.ch. It's copyright CERN but free   distribution and use is not normally a problem.

The NeXTstep editor can also browse news. If you are using it to read this,   then click on this: <http://info.cern.ch/hypertext/WWW/TheProject.html> to find   out more about the project. We haven't put the news access into the line mode   browser yet.

We also have code for a hypertext server. You can use this to make files   available (like anonymous FTP but faster because it only uses one connection).   You can also hack it to take a hypertext address and generate a virtual   hypertext document from any other data you have - database, live data etc. It's   just a question of generating plain text or SGML (ugh! but standard) mark-up on   the fly. The browsers then parse it on the fly.

The WWW project was started to allow high energy physicists to share data,   news, and documentation. We are very interested in spreading the web to other   areas, and having gateway servers for other data.  Collaborators welcome! I'll   post a short summary as a separate article.

Tim Berners-Lee                         [email protected] World Wide Web project                  Tel: +41(22)767 3755     CERN                                    Fax: +41(22)767 7155 1211 Geneva 23, Switzerland             (usual disclaimer)

The WorldWideWeb (WWW) project aims to allow links to be made to any information anywhere. . .

Page 61: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

A Design to Popularize the WWW

• Early adopters of www were universities, centers, etc.

– As with ARPANET

• Text based browsers with embedded links

– Primitive functionality and interface elements

• Erwise and Viola, 1992– For X-windows– 1st graphical browsers outside NeXT-based

• Mosaic– Code still available! (checked, 3/1/13)

• ftp://ftp.ncsa.uiuc.edu/Mosaic/– Marc Andreesen and Eric Bina

• Undergraduate students at UIUC and working at NCSA• Used computers belonging to UIUC to develop, so belonged to

university• 1993 demo:

– http://www.totic.org/nscp/demodoc/demo.html

– Strongly support of integrate multimedia– Responsive to bug fixes– Mosaic – Netscape Navigator

• Jim Clark, founded SGI• “browser wars”

Page 62: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Some Interactive Systems History

Page 63: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Some More HistoryVision, or Design, then Technology to (fully) Support

• Doug Englebart– A Turing Award for vision in interaction

• Ivan Sutherland– A early 1960’s “paint program” that foreshadowed much

• Alan Kay– The “personal computer” – also, dynabook, Apple II

• Today’s ubiquitous interaction style– Xerox Star and Alto– Then, Steve Jobs visits Xerox, … Apple Lisa and Macintosh

Page 64: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Douglas Engelbart, 1963

• Turing Award, 1998 – this is a big deal!

• Augmentation of human intellect (1963) – “... increasing the capability of man to approach a complex

problem situation, gain comprehension to suit his particular needs, and to derive solutions to problems.”

– Recognized his ideas built on Bush's idea of a machine that would aid human cognition

– hierarchical structures for ordinary documents– group creation and problem solving

• NLS System (1965 1968):– outline editors for idea development – hypertext linking – tele-conferencing, word processing, e-mail

• System required:– mouse pointing device for on-screen selection: Invented the mouse

(1965) as a replacement for light pens for use in his NLS system– a one-hand chording device for keyboard entry – full windowing software environment – on-line help systems– concept of consistency in user interfaces

Page 65: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Turing Award

• ACM’s highest honor– E.g., p = np ?

• Several Turing awards for interfaces and insights to nature of computing as we have described it

• This fact often neglected in view of the field of computing …

Page 66: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Sutherland’s Sketchpad• Ivan Sutherland

– “Pioneer” of … lots of things– Visualization– Graphics– Interaction– Still around

• Evans and Sutherland graphics

• First truly interactive graphics system, Sketchpad

– A fairly sophisticated “paint” (or drawing) program

• MIT, Ivan Sutherland’s 1963 Ph.D. thesis

– “Sketchpad, A Man-Machine Graphical Communication System”

• Available: www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf

• Video: www.youtube.com/watch?v=mOZqRJzE8xg

• “Among most important works in computer science”

Ivan Sutherland using Sketchpad in 1963 CRT monitor, light pen and function-key panel

Page 67: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Ivan Sutherland’s Sketchpad, 1963

• Regarded as the first to implement much of what called “visualization”, “immersion”, and “virtual reality” (not to mention cg)

• Some quotes:

– ….. If the task of the display is to serve as a looking-glass into the mathematical wonderland constructed in computer memory, it should serve as many senses as possible.

– ….. By working with such displays of mathematical phenomena we can learn to know them as well as we know our own natural world. Such knowledge is the major promiseof computer displays.

– ….. The ultimate display would, of course, be a room within which the computer can control the existence of matter. A chair displayed in such a room would be good enough to sit in. Handcuffs displayed in such a room would be confining, and a bullet displayed in such a room would be fatal. With appropriate programming such a display could literally be the Wonderland into which Alice walked.

Page 68: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Sutherland’s 1960’s equipment

• “Ultimate display”, 1965

• Sword of Damocles – 1st HMD– Actual camera-like metal shutters– Not OSHA approved

Page 69: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Advances in Computer Graphics for Interaction

• Input devices such as data tablets (1964)

• Display processors, capable of real time image manipulation (1968)

• Introduction of low cost graphics terminals (1970s)

• OS support for interactive graphics under timesharing systems

• New programming languages for embedded graphics support

• New applications flourished - computer aided math libraries (1968) . - 3D computer graphics / molecular modeling (1968, 1977). - animation, movies, sequencing of images (1966, 1969)

 

Page 70: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

The “Personal Computer”, 1

Dynabook (Alan Kay, 1977): Conceptualized notebook computer:

cardboard prototype

“...a self contained knowledge manipulator in a portable package the size of an

ordinary notebook...”

powerful processor, lots of memory, high resolution graphics, high fidelity audio

 

Altair 8800 (1975):Considered to be first microcomputer

2 MHz Intel 8080 with 256 bytes standard RAM and interfaced

with the user through octal front panel switches appeared in Popular Electronics home computer

people, could build for around $400

Altair 8800

Page 71: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

The “Personal Computer”, 2

Apple II (1977):Was “easy to use”

Color graphics

High-level language embedded in ROM

4K of memory, more could be added to a maximum of 12K (if using the 4K chips) or 48K (if using the 16K chips)

Page 72: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Innovations at Xerox PARC in Late 1970s Xerox Alto

Comprehensive combination of many ideas developed at Xerox PARC and other pioneering systems:

• user conceptual model via the desktop metaphor .

• direct manipulation, property/option sheets to specify appearance of objects .

• what you see is what you get (WYSIWYG) . • universal generic commands that are used

throughout the system (e.g., move, copy, edit, delete).       

• high degree of consistency, look and feel . • modeless interaction and limited amount of

user tailorability  

Page 73: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

(FYI) Xerox Alto

The Xerox Alto (1979):• it was always referred to as the "personal computer"• it used high resolution bit-mapped graphics, a mouse, menus, icons and other

features• a single user machine supplied with software for word processing, electronic

mail and other office tasks• the 15 inch display was bit-mapped and had 72-dpi resolution (about 1000 x

800)

1/2 meg of memory, 29 mb of disk storage, and a mouse about the minimum specifications to support a graphic interface

• pioneered developments of GUIs and applications text editing, drawing, document processing, e mail, windows, menus, scrollbars, mouse control and selection

       simultaneous file storage• featured the world's first What-You-See-Is-What-You-Get (WYSIWYG)   • lead to the creation of Ethernet, a local area networking protocol, to link Altos

within PARC (1975)

Page 74: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Screen shots of an Alto

Xerox Alto

Page 75: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

• Designed for business professionals in an office environment.

• Contained all of the Alto's capabilities plus multilingual software, the Mesa programming language, and interim file servers

• The most distinguishing features of the Star were technologies like bitmapped screens, windows, a mouse-driven interface, and icons.

• The system allowed users to create complex documents by combining computing, text editing and graphics, and to access file servers and printers around the world through simple point-and-click actions

 

The Xerox Star (1981), 1"The best way to predict the future is to invent it."

--Alan Kay

Page 76: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

The Xerox Star (1981), 2

Star did not turn out to be a commercial success.

The reasons for failure:• it was ahead of its time and the full potential of the

software was only visible to the PARC developers

• the software was designed for users with no computer knowledge, it became very demanding on the hardware

• perceived as too slow unreasonable speed because of memory consumption and the number of hardware cycles needed

• costly, $16,595 in 1981; IBM introduced a cheaper machine .

• limited functionality: no spreadsheet • lacked an open architecture

• no 3rd party application development: because the programming language was never publicly released.

• direct manipulation was overly used and not the best in some cases

 

Page 77: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

(fyi) Xerox Star Design Goals (1)

FAMILIAR USER'S CONCEPTUAL MODEL        as much as possible, the functionality of the system would be conveyed to the user by representing

system objects by familiar concrete objects        that is, if possible, metaphor would be used to convey the capabilities of the system       after all, this was a personal computer for office use, so the designers settled on the metaphor of

computer system as desktopknowledge about how to use office equipment might be used in using and learning the system

 

USE ‘SEEING’ AND ‘POINTING’ VS. ‘REMEMBERING’ AND ‘TYPING’        everything that is relevant to a task is visible on the screen        their rationale was couched in terms of the human visual and memory systems        basically, if possible, it's more efficient not to have to remember the set of all commands and objects        and then they made a very interesting statement, that I'll elaborate on later:

"A subtle thing happens when everything is visible: the display becomes reality. The user model becomes identical with what is on the screen. Objects can be understood purely in terms

of their visible characteristics. Actions can be understood purely in terms of their effects on

the screen."

- this has come to be called "direct manipulation"

Page 78: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

(fyi) Xerox Star Design Goals (2)

WHAT YOU SEE IS WHAT YOU GET (WYSIWYG)UNIVERSAL COMMANDS

– as many commands as possible should be able to be used in the same– way throughout the system– help, undo

CONSISTENCY– mechanisms should be used in the same way wherever they occur– for example, the left mouse button always selects

SIMPLICITY– when possible– but novices and experts use the same system– in Alan Kay's words: "simple things should simple, complex things

should be possible"

MODELESS INTERACTION– in practice, select object, then action– for example, no delete mode

USER TAILORABILITY– well, if these design goals (except for the last one) CONJURED UP for you

the Apple Lisa and Macintosh, that's good because it was after a trip to Xerox PARC, that Steve Jobs conjured up the Apple Lisa and Macintosh (and, I understand, entered into licensing agreements with Xerox)

 

indeed, these goals have become for most designers the BASIC TENETS OF GRAPHIC INTERFACE DESIGN

Page 79: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Apple Computer - Lisa

Apple Lisa (1983)

      “after a visit to Xerox …”

based on ideas from Xerox Star

      could be used as an office tool but also individuals

at $10,000 was cheaper than the Star,

but... also failed...

Page 80: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Apple Computer - Macintosh

Apple Macintosh (1984):

same ideas from the Lisa, but much improved

Reasons for success: –         cheaper: only $2500 . –        previous systems prepared the market . –        ‘‘second generation,'' many problems

with Lisa were fixed . –        open architecture and powerful

developers toolkit . –        published interface guidelines: consistent

look and feel for apps . –        excellent graphics and emergence of

desktop publishing . –        Apple had marketing expertise,

distribution channels, and experienced computer sales and support staff

 

Page 81: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Ware’s “Ultimate Display”

Page 82: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

A question to ponder …

• Recall, ui history– Nothing much new lately (30 years since gui/wimp)

• Is this because ui (or is) design awaits a fundamentally new way of conceptualizing the use of computers?

• A fact:– Second language use acquired after some young, e.g., 5-8 years

old, is fundamentally different than language skills acquired earlier• E.g., translation vs. thinking, forming phonemes

• A way that can only be conceptualized by a person (or really some critical mass of people) who have fundamentally (neurologically) different ways of perceiving computers?– Has it happened already?

– When might that happen?

– How might it happen?

Page 83: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Shneiderman Text“Human Computer Interaction”

• “Designing the User Interface”

• Some of the key points …

Page 84: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

But first …

• Ben Sheiderman– Pioneer, academic, popularizer, …– U. Maryland Human Computer Interaction Lab– http://www.cs.umd.edu/hcil/

• Provocative statements

Page 85: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

But first …

• Ben Sheiderman– Pioneer, academic, popularizer, …– U. Maryland Human Computer Interaction Lab– http://www.cs.umd.edu/hcil/

• Provocative statements

• “User-interface designers are becoming heroes of a profound transformation. Their work has turned the personal computer into the social computer, enabling users to communicate and collaborate in remarkable ways. The desktop applications that once served the needs of professionals are now enabling broad communities of users to prepare user-generated content that can be shared with millions of WWW users. And … through billions of cellphones…”

Page 86: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

“The interface is the system.”

• Interface provides/conveys the only view of the “underlying” system– Provides:

• Model of task, system capabilities … more later

• User interface strongly affects perception of software– Usable software sells (way) better

• Or at a premium, cf. Apple

– Unusable web sites are abandoned

• Perception is sometimes superficial– Users blame themselves for UI failings– People who make buying decisions are not always end-users

Page 87: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Usability of Interactive Systems(next week)

• Introduction– What is an interface?– Examples of good and bad design– Principles of design

• About the field– Evolution of hci and interface design

• Interaction Design: – Some principles through examples

• Usability – What, why, examples, motivation

• Universal Usability

• Goals for the Profession

Page 88: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Interfaces – Should and Must Do Right

• Always should have “good” interfaces– Computing time (power) is getting

cheaper– Users’ time isn’t– Ratio discussed last time

• Sometimes must have “good” interfaces

• Disasters happen (notes)– Therac-25 radiation therapy

machine– Aegis radar system in USS

Vincennes

Leveson, N. (1995). Appendix - Medical Devices: The Therac-25http://sunnyday.mit.edu/papers/therac.pdf

Page 89: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

In fact, User Interfaces are Hard to Design

• Software designers (let alone coders!) are not the user– As we’ve discussed

– Most software engineering is about communicating with other programmers

– UI is about communicating with users

• The user is always right– Consistent problems are the system’s fault

• …except when the user is not right– Users aren’t designers

Page 90: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Usability

• Is it a “good” interface?– In what ways?

• Usability: – How well users can use the system’s functionality

• Dimensions of usability (quick look):– Learnability: is it easy to learn?– Efficiency: once learned, is it fast to use?– Memorability: is it easy to remember what you learned?– Errors: are errors few and recoverable?– Satisfaction: is it enjoyable to use?

Page 91: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Usability Dimensions Vary In Importance

• So, what are the elements of usability?

• … It depends on the user– Novice users need learnability– Infrequent users need memorability– Experts need efficiency

• But no user is uniformly novice or expert– Domain experience– Application experience– Feature experience

Page 92: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Usability Is Only One Attribute of a System

• BTW, in developing large systems, development process entails a (often large) team

• Software designers have a lot to worry about:– Functionality – Usability– Performance – Size– Cost – Reliability– Security – Standards

• Many design decisions involve tradeoffs among different attributes– Which is the essence of the design process

Page 93: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Usability Engineering Is a Process

Page 94: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Usability Engineering Is a Process

• … an iterative process

• Design

• Implement

• Evaluate

• Will later look at the “spiral” model of software engineering, which systematically incorporates iteration and change

Design

Evaluate Implement

Page 95: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Usability Engineering Is a Process

• Design

• Task analysis– “Know thy user”– “Know thy domain”

• Design principles– Overarching

• Design guidelines– Avoid obvious mistakes– May be vague or contradictory

Design

Evaluate Implement

Page 96: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Usability Engineering Is a Process

• Implement

• Prototyping– Cheap, throw-away

implementations– Low-fidelity: paper, Wizard of

Oz– Medium-fidelity: HTML, Visual

Basic

• GUI implementation techniques– Input/output models– Toolkits– UI builders

Design

Evaluate Implement

Page 97: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Usability Engineering Is a Process

• Evaluate

• Evaluation tests prototypes, using …

• Expert evaluation– Heuristics and walkthroughs

• Predictive evaluation– Testing against an engineering

model (simulated user)

• Empirical evaluation– Watching users do it

Design

Evaluate Implement

Page 98: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Usability of Interactive Systems

• Introduction– What is an interface?– Examples of good and bad design– Principles of design

• About the field– Evolution of hci and interface design

• Interaction Design: – Some principles through examples

• Usability – What, why, examples, motivation

• Universal Usability

• Goals for the Profession

Page 99: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Theories, Principles, Guidelines

• Guidelines:– Navigating interface, organizing display– Getting user’s attention, data entry

• Principles:– “Rules that distill out the principles of

effective user interfaces”– Determine users’ skill level– Identify tasks– Choose an interaction style– “Golden rules of interface design”– Integrating automation and human

control

• Theories and models:– Levels of analysis theories– Stages-of-action models– GOMS and keystroke-level model– Consistency through grammars– Widget level – Context of use

Theories

Guidelines

Principles

Page 100: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Managing Design Processes• Organizational design to support usability

– Shneiderman talks about both “design” and organizational context in which it occurs

• Carroll and Rosson’s characterization of design– “radically transformational”

• Shneiderman’s “three pillars of design”– Guidelines documents and processes– User interface software tools– Expert reviews and usability

• Development methodologies– IBM: Ease of Use, Lucid

• “Ethnographic” user observation• Participatory design• Scenario development• Social impact statement for early design review• Legal Issues

Page 101: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Expert Reviews, Usability Testing, Surveys, and Continuing Assessment

• Introduction– Evaluation Plans, Acceptance Testing, and Life Cycle

• Expert reviews

• Usability testing and techniques– Goal is to “engineer” a good interface, constrained by time and cost

• Survey instruments

• Acceptance tests

• Evaluation during active use

• “Controlled psychologically oriented experiments”– Elements of science, as applied to interface evaluation

Page 102: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Command Line, Menu Selection, Form Fillin, Dialog Boxes

• What and why “frameworks (or theories) of interaction”– The big picture (again)

• Overview of interaction styles– Command line, menus, …, WIMP, … – Direct manipulation

• “Look and feel”

• Details:– “Theory, principles, and (especially) guidelines”– Menus, form fillin

Page 103: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Interaction Frameworks (Dix)

• Interaction:– Communication between

user and system

• Why have a framework?– Allows “precision” in

accounting for differences• E.g., gulfs of execution and

evaluation

– Presents global view• All elements receive

attention

Task

“wor

k on t

ask”

“comm

ands”

System

User

“gives”“per

form

s”

“feedback”

Physical System

Goals

Gulf of Execution

Gulf of Evaluation

Page 104: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Direct Manipulation (Hutchins et al.)

• Introduction– Big picture first, details and a theoretical account later

• Examples of Direct-Manipulation systems • Explanations of Direct Manipulation

– Hutchins et al. paper

 • Virtual Environments, or Immersive Interfaces

Page 105: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Balancing Function and Fashion User Manuals, Online Help, and Tutorials

• “Balancing Function and Fashion”– Error messages– Nonanthropomorphic design– Display design– Window design– Color

• “User Manuals, Online Help, and Tutorials”

Page 106: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

Balancing Function & Fashion

• Interface design, both graphics and interaction, not yet “high art” (Shneiderman)

– Architecture and fashion are old, interfaces are not

• But, not too sure how far analogy goes …

– Usually, consider that interface design is about software engineering, usability, etc.

• Recall, early discussions– Perhaps better, computer interface design is

young

• Yet, there is style– And it elements can be examined

• Where “style” results from the set of decisions made about graphics design, type of interaction form, wording selected, etc., that are made

– Recall, guidelines constrain, etc.

Page 107: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

“Look and Feel”

• “Look and feel”

– Lots of things you can interact with:• main WIMP components

(windows, menus, icons)• Buttons• Dialogue boxes• Palettes• … Collectively known as

widgets

• appearance + behavior = look and feel

Page 108: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

And programming, too

Page 109: CSCI 6363 Human Computer Interaction Fall, 2015 Class Introduction and User Interface History Xerox Star, 1981

End