cse 203b: convexoptimization week 3 discusssession

18
CSE 203B: Convex Optimization Week 3 Discuss Session Xinyuan Wang 01/31/2020 1

Upload: others

Post on 09-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

CSE 203B: Convex OptimizationWeek 3 Discuss Session

XinyuanWang01/31/2020

1

Contents

โ€ข Convex functions (Ref. Chap.3)โ€ข Definitionโ€ข First order conditionโ€ข Second order conditionโ€ข Epigraphโ€ข Operationsthatpreserveconvexity

โ€ข Conjugatefunctions

2

Definition of Convex Functionsโ€ข A function ๐‘“: ๐‘…$ โ†’ ๐‘… is convex if dom๐‘“ is a convex set and if for all๐‘ฅ, ๐‘ฆ โˆˆ dom๐‘“ and 0 โ‰ค ๐œƒ โ‰ค 1

๐‘“ ๐œƒ๐‘ฅ + 1 โˆ’ ๐œƒ ๐‘ฆ โ‰ค ๐œƒ๐‘“ ๐‘ฅ + 1โˆ’ ๐œƒ ๐‘“(๐‘ฆ)โ€ข Review the proof in class: necessary and sufficiency

โ€ข Strict convexity:๐‘“ ๐œƒ๐‘ฅ + 1โˆ’ ๐œƒ ๐‘ฆ < ๐œƒ๐‘“ ๐‘ฅ + 1 โˆ’ ๐œƒ ๐‘“ ๐‘ฆ , ๐‘ฅ โ‰ ๐‘ฆ, 0 < ๐œƒ < 1โ€ข Concave functions:โˆ’๐‘“ is convex

3

sometimes calledJensenโ€™s inequality

(๐œƒ๐‘ฅ + 1 โˆ’ ๐œƒ ๐‘ฆ, ๐œฝ๐’‡(๐’™) + ๐Ÿ โˆ’๐œฝ ๐’‡(๐’š))

Example: convexity of functions with definition

4

i. Necessary: suppose๐‘“ is convex, then ๐‘“ satisfies the basic inequality๐‘“ ๐‘ฅ + ๐œ† ๐‘ฆ โˆ’ ๐‘ฅ โ‰ค ๐‘“ ๐‘ฅ + ๐œ†(๐‘“ ๐‘ฆ โˆ’ ๐‘“ ๐‘ฅ )

for0 โ‰ค ๐œ† โ‰ค 1. Integratingboth sides from0 to 1 on ๐œ†

> ๐‘“ ๐‘ฅ + ๐œ† ๐‘ฆ โˆ’ ๐‘ฅ ๐‘‘๐œ†@

Aโ‰ค > ๐‘“ ๐‘ฅ + ๐œ† ๐‘“ ๐‘ฆ โˆ’ ๐‘“ ๐‘ฅ ๐‘‘๐œ†

@

A=๐‘“ ๐‘ฅ + ๐‘“(๐‘ฆ)

2ii. Sufficiency: suppose๐‘“ is not convex, then there exists0 โ‰ค ๐œ†D โ‰ค 1 and

๐‘“ ๐‘ฅ + ๐œ†D ๐‘ฆ โˆ’ ๐‘ฅ > ๐‘“ ๐‘ฅ + ๐œ†D(๐‘“ ๐‘ฆ โˆ’ ๐‘“ ๐‘ฅ )

there exist๐›ผ,๐›ฝ โˆˆ [0,1] so that in the interval [๐›ผ, ๐›ฝ] the above

inequality alwaysholds,which contradicts the given inequality.๐œ†D

๐›ผ๐›ฝ

Restriction of a convex function to a lineโ€ข A function ๐‘“: ๐‘…$ โ†’ ๐‘… is convex if and only if the function๐‘”: ๐‘… โ†’ ๐‘…,

๐‘” ๐‘ก = ๐‘“ ๐‘ฅ + ๐‘ก๐‘ฃ , dom๐‘” = ๐‘ก ๐‘ฅ + ๐‘ก๐‘ฃ โˆˆ dom๐‘“}

is a convexon its domain for โˆ€๐‘ฅ โˆˆ dom๐‘“, ๐‘ฃ โˆˆ ๐‘…$.

โ€ข The property can be useful to check the convexity of a function

Example: Prove ๐‘“ ๐‘‹ = log det ๐‘‹ , dom๐‘“ = ๐‘†VV$ is concave.

5

Restriction of a convex function to a lineExample: Prove ๐‘“ ๐‘‹ = log det ๐‘‹ , dom๐‘“ = ๐‘†VV$ is concave.

Consider an arbitrary line๐‘‹ = ๐‘ + ๐‘ก๐‘‰, where ๐‘ โˆˆ ๐‘†VV$ ,๐‘‰ โˆˆ ๐‘†$. Define ๐‘” ๐‘ก =๐‘“ ๐‘ + ๐‘ก๐‘‰ and restrict ๐‘” to the interval values of ๐‘ก for ๐‘ + ๐‘ก๐‘‰ โ‰ป 0.We have

๐‘” ๐‘ก = logdet(๐‘ + ๐‘ก๐‘‰) = logdet(๐‘@Z ๐ผ + ๐‘ก๐‘\

@Z๐‘‰๐‘\

@Z ๐‘@/Z)

= ^log 1 + ๐‘ก๐œ†_

$

_`@

+ logdet ๐‘

where ๐œ†_ are the eigenvalues of ๐‘\ab๐‘‰๐‘\

ab. So we have

๐‘”c ๐‘ก = ^๐œ†_

1 + ๐‘ก๐œ†_

$

_`@

, ๐‘”cc ๐‘ก = โˆ’^๐œ†_Z

1 + ๐‘ก๐œ†_ Z

$

_`@

โ‰ค 0

๐‘“ ๐‘‹ is concave. For more practice, see Exercise 3.18.6

ร˜ The property of eigenvaluesdet๐ด = โˆ ๐œ†_$

_`@

First-order Conditionโ€ข Suppose ๐‘“ is differentiable (๐‘‘๐‘œ๐‘š๐‘“ is open and ๐›ป๐‘“ exists at โˆ€๐‘ฅ โˆˆ ๐‘‘๐‘œ๐‘š๐‘“),then ๐‘“ is convex iff dom๐‘“ is convex and for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‘๐‘œ๐‘š๐‘“

๐‘“ ๐‘ฆ โ‰ฅ ๐‘“ ๐‘ฅ + ๐›ป๐‘“ ๐‘ฅ j(๐‘ฆโˆ’ ๐‘ฅ)โ€ข Review the proof in class: necessary and sufficiency

โ€ข Strict convexity:๐‘“ ๐‘ฆ > ๐‘“ ๐‘ฅ + ๐›ป๐‘“ ๐‘ฅ j ๐‘ฆโˆ’ ๐‘ฅ , ๐‘ฅ โ‰  ๐‘ฆ

โ€ข Concave functions: ๐‘“ ๐‘ฆ โ‰ค ๐‘“ ๐‘ฅ + ๐›ป๐‘“ ๐‘ฅ j(๐‘ฆ โˆ’ ๐‘ฅ)

7

a global underestimator

Proofoffirst-ordercondition:chap3.1.3withthepropertyofrestricting๐’‡ toaline.

Second Order Conditionโ€ข Suppose ๐‘“ is twice differentiable (๐‘‘๐‘œ๐‘š๐‘“ is open and its Hessianexists at โˆ€๐‘ฅ โˆˆ ๐‘‘๐‘œ๐‘š๐‘“), then ๐‘“ is convex iff dom๐‘“ is convexand for all๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‘๐‘œ๐‘š๐‘“

๐›ปZ๐‘“ ๐‘ฅ โ‰ฝ 0 (positive semidefinite)

โ€ข Review the proof in class: necessary and sufficiency

โ€ข Strict convexity:๐›ปZ๐‘“ ๐‘ฅ โ‰ป 0โ€ข Concave functions: ๐›ปZ๐‘“ ๐‘ฅ โ‰ผ 0

8

Example of Convex Functionsโ€ข Quadratic over linear function

๐‘“ ๐‘ฅ, ๐‘ฆ =๐‘ฅZ

๐‘ฆ , for๐‘ฆ > 0

Its gradient ๐›ป๐‘“ ๐‘ฅ =opoqopor

=

Zqr\qb

rb

Hessian ๐›ปZ๐‘“ ๐‘ฅ =obpoqb

obpoqor

obporoq

obporb

= Zrs

๐‘ฆZ โˆ’๐‘ฅ๐‘ฆโˆ’๐‘ฅ๐‘ฆ ๐‘ฅZ

โ‰ฝ 0 โ‡’ convex

Positive semidefinite? ๐‘ฆโˆ’๐‘ฅ

๐‘ฆโˆ’๐‘ฅ

u, for any ๐‘ข โˆˆ ๐‘…Z, ๐‘ขj ๐‘ฃ๐‘ฃj ๐‘ข = ๐‘ฃj๐‘ข j ๐‘ฃj๐‘ข =

๐‘ฃj๐‘ข ZZ โ‰ฅ 0.

9Moreexamplesseechap.3.1.5

Epigraphโ€ข ๐›ผ-sublevel set of ๐‘“: ๐‘…$ โ†’ ๐‘…

๐ถx = ๐‘ฅ โˆˆ ๐‘‘๐‘œ๐‘š๐‘“ ๐‘“ ๐‘ฅ โ‰ค ๐›ผ}sublevel sets of a convex function are convex for any value of ๐›ผ.โ€ข Epigraph of ๐‘“: ๐‘…$ โ†’ ๐‘… is defined as

๐ž๐ฉ๐ข๐‘“ = (๐‘ฅ, ๐‘ก) ๐‘ฅ โˆˆ ๐‘‘๐‘œ๐‘š๐‘“, ๐‘“ ๐‘ฅ โ‰ค ๐‘ก} โŠ† ๐‘น๐’V๐Ÿ

โ€ข A function is convex iff its epigraph is a convex set. 10

Relation between convex sets and convex functionsโ€ข A function is convex iff its epigraph is a convex set.

โ€ข Consider a convex function ๐‘“ and ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‘๐‘œ๐‘š๐‘“๐‘ก โ‰ฅ ๐‘“ ๐‘ฆ โ‰ฅ ๐‘“ ๐‘ฅ + ๐›ป๐‘“ ๐‘ฅ j(๐‘ฆ โˆ’ ๐‘ฅ)

โ€ข The hyperplane supports epi ๐’‡ at (๐‘ฅ, ๐‘“ ๐‘ฅ ), for any

๐‘ฆ, ๐‘ก โˆˆ ๐ž๐ฉ๐ข๐‘“ โ‡’๐›ป๐‘“ ๐‘ฅ j ๐‘ฆโˆ’ ๐‘ฅ + ๐‘“ ๐‘ฅ โˆ’ ๐‘ก โ‰ค 0

โ‡’ ๐›ป๐‘“ ๐‘ฅโˆ’1

j ๐‘ฆ๐‘ก โˆ’ ๐‘ฅ

๐‘“ ๐‘ฅ โ‰ค 0

11

Supporting hyperplane, derivedfrom first order condition

First order condition for convexityepi ๐’‡๐‘ก

๐‘ฅ

Operations that preserve convexityPractical methods for establishing convexity of a functionโ€ข Verify definition ( often simplified by restricting to a line)โ€ข For twice differentiable functions, show ๐›ปZ๐‘“(๐‘ฅ) โ‰ฝ 0โ€ข Show that ๐‘“ isobtained from simple convex functions by operationsthat preserve convexity (Ref. Chap. 3.2)โ€ข Nonnegativeweighted sumโ€ข Compositionwith affine functionโ€ข Pointwisemaximum and supremumโ€ข Compositionโ€ข Minimizationโ€ข Perspective

12

Pointwise Supremumโ€ข If for each ๐‘ฆ โˆˆ ๐‘ˆ, ๐‘“(๐‘ฅ, ๐‘ฆ): ๐‘…$ โ†’ ๐‘… is convex in ๐‘ฅ, then function

๐‘”(๐‘ฅ) = suprโˆˆ๏ฟฝ

๐‘“(๐‘ฅ, ๐‘ฆ)

is convex in ๐‘ฅ.โ€ข Epigraph of ๐‘” ๐‘ฅ is the intersection of epigraphs with ๐‘“ and set ๐‘ˆ

๐ž๐ฉ๐ข๐‘” =โˆฉrโˆˆ๏ฟฝ ๐ž๐ฉ๐ข๐‘“(๏ฟฝ, ๐‘ฆ)knowing ๐ž๐ฉ๐ข๐‘“(๏ฟฝ, ๐‘ฆ) is a convex set (๐‘“ is a convex function in ๐‘ฅ and regard

๐‘ฆ as a const), so ๐ž๐ฉ๐ข๐‘” is convex.

โ€ข An interesting method to establish convexity of a function: the pointwisesupremum of a family of affine functions. (ref. Chap 3.2.4)

13

Contents

โ€ข Convex functions (Ref. Chap.3)โ€ข Definitionโ€ข First order conditionโ€ข Second order conditionโ€ข Epigraphโ€ข Operationsthatpreserveconvexity

โ€ข Conjugatefunctions

14

Conjugate Functionโ€ข Given function ๐‘“: ๐‘…$ โ†’ ๐‘…, the conjugate function

๐‘“โˆ— ๐‘ฆ = supqโˆˆ๏ฟฝ๏ฟฝ๏ฟฝp

๐‘ฆj๐‘ฅ โˆ’ ๐‘“(๐‘ฅ)

โ€ข The dom ๐‘“โˆ— consists ๐‘ฆ โˆˆ ๐‘…$ for which supqโˆˆ๏ฟฝ๏ฟฝ๏ฟฝp

๐‘ฆj๐‘ฅ โˆ’ ๐‘“(๐‘ฅ) is bounded

Theorem: ๐‘“โˆ—(๐‘ฆ) is convex even ๐‘“ ๐‘ฅ is not convex.15

(Proof with pointwise supremum)๐’š๐‘ป๐’™ โˆ’ ๐’‡(๐’™) is affine function in ๐’š

Supportinghyperplane: if๐‘“ is convex in that domain

(๐‘ฅ๏ฟฝ , ๐‘“(๐‘ฅ๏ฟฝ)) where๐›ป๐‘“j ๐‘ฅ๏ฟฝ = ๐‘ฆ if ๐‘“ is differentiable

(0,โˆ’๐‘“โˆ—(0))

Slope ๐‘ฆ = โˆ’1

Slope ๐‘ฆ = 0

Examples of Conjugatesโ€ข Derive the conjugates of ๐‘“: ๐‘… โ†’ ๐‘…

๐‘“โˆ— ๐‘ฆ = supqโˆˆ๏ฟฝ๏ฟฝ๏ฟฝp

๐‘ฆ๐‘ฅ โˆ’ ๐‘“(๐‘ฅ)

16

Affine

Normquadratic

See moreexamplesinchap3.3.1

Properties of Conjugates

17

(1)๐‘“ ๐‘ฅ + ๐‘“โˆ— ๐‘ฆ โ‰ฅ ๐‘ฅj๐‘ฆFenchelโ€™sinequality.Thus,intheaboveexample

๐‘ฅj๐‘ฆ โ‰ค @Z๐‘ฅj๐‘„๐‘ฅ + @

Z๐‘ฆj๐‘„\@๐‘ฆ, โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐‘…$,๐‘„ โˆˆ ๐‘†VV$

(2)๐‘“โˆ—โˆ— = ๐‘“,iff isconvex&f isclosed(i.e.epif isaclosedset)(3)Iff isconvex&differentiable,๐‘‘๐‘œ๐‘š๐‘“ = ๐‘…$

Formax๐‘ฆj๐‘ฅ โˆ’ ๐‘“(๐‘ฅ),wehave๐‘ฆ = ๐›ป๐‘“(๐‘ฅโˆ—)Thus,๐‘“โˆ— ๐‘ฆ = ๐‘ฅโˆ—j๐›ป๐‘“ ๐‘ฅโˆ— โˆ’ ๐‘“ ๐‘ฅโˆ— , ๐‘ฆ = ๐›ป๐‘“(๐‘ฅโˆ—)

ConjugateFunction

18

โ€ข Aneconomicinterpretation๐‘“ ๐‘ฅ :costtoproduceproductwithquantity๐‘ฅ๐‘ฆ:marketprice๐‘“โˆ—(๐‘ฆ):optimalprofitatgivenprice๐‘ฆ

โ€ข ConjugatefunctionandtheLagrangedualfunction(willbecoveredinlaterclass)โ€ข Optimizationproblemwithlinearconstraints