csizmazia

Upload: scsizmaz

Post on 07-Apr-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/3/2019 csizmazia

    1/20

    A SIMPLIFIED FINITE AXIOMATIZATION FOR THE SAIN

    TYPE ALGEBRAIZATION OF THE FIRST ORDER LOGIC

    Sandor Csizmazia

    Abstract. The problem of finding a finite axiomatization to the algebraic counterpart of the first order logicwas solved by Ildiko Sain. She gave a finite scheme of axioms, however she stated as an open problem thetask of giving amore simple one. In this work we give a small elegant system of axioms, solving the abovementioned problem. I would like to thank Ildiko Sain and Istvan Nemeti to inspire this work.

    This paper is a continuation of the work was initiated earlier together with Ildiko Sain and announcedin [I.Sain 87] I. Thm 1. (p.3.).

    The problem of finding a finite scheme algebraization of the first order logic goes back to [J.D.Monk70] and [L.Henkin,J.D.Monk 74] and was recalled by [I.Sain 87]:

    Devise an algebraic version of predicate logic in which the class ofrepresentable algebras forms a finitely based equational class

    An equational class is finitely based if it is axiomatizable by a finite amount of equations. An algebra

    is called representable if it is isomorphic to a subdirect product of set algebras. According to [A.Tarski66] we add the requirement that the operations should be logical. An operation is called logical iff it isinvariant under permutation of the base of the algebra. By [I.Sain 93] (p.2.) the logical counterpart ofthis requirement is that isomorphic models satisfy the same formulas. Sain found the following solutionto the above stated problem. We shall use the notation of [HMT I] and [HMT II].

    [i, j] is the permutation of i and j, [i/j] is the replacement of i by j (i.e. [i/j](i) = jand [i/j](k) = k if k = i). Let f and i, j , then let f(i/j) according to the definitionf(i/j)(i) = f(j) and f(i/j)(n) = f(n) if n = i. Sb(X) is the class of all subsets of X.

    Definition 1.:([Sain 87.] I. Def.1. p.3.)

    By a Sgws we understand a subalgebra:

    A Sb(U), , , V, , V, Ssuc, Spred, Sij , cii,j

    where: S(x) = SV (x) = {q V | q x} for every and x V,

    Sij = S[i/j], and suc

    is the usual successor, and pred is its inverse with pred(0) = 0,

    V U let Gwsunit in the sense of [HMT II.] Def.3.1.1. (5.o.) definition and let Ssuc(V) =Spred(V) = Sij(V) = ci(V) = V

    Remark 2.: It is clear from the definition that Sgws algebras do not contain the constants of the cylindricalgebras dij ,i ,j < . The logical counterpart of this is that Sgws algebras are related to the first order

    logic without equality.

    Typeset by AMS-TEX

    1

  • 8/3/2019 csizmazia

    2/20

    Theorem 3.:([Sain 87.] I. Thm.1. (Sain & student), p.3.)

    ISgws is a variety axiomatizable by a finite scheme of equations.

    A detailed introduction to the history of the problem solved above and an overview of the results can be

    found in [I.Nemeti 91]. During the last years many results were published in this area.The negative results are: in [B.Biro 87] the non-finitizability of logic with equality, the strengthening ofBiros result in [I.Nemeti 91] and [H.Andreka 91]. In [I.Sain, R.J.Thompson 91] there is a non-finitizabilityresult for quasi-polyadic algebras. In [Sagi 95] and [Sagi,Nemeti 95] there are a non-finitizability resultsfor polyadic algebras.The positive results are: in [I.Sain 93] there are results on adding di,j , i , j < constants to Sgws. In[I.Sain, V.Gyuris 95] there are finitizability results for first order logic with equality too. Also in [Sagi 95]it was shown that Sgws can be replaced by Cs-style algebras i.e. by such Sgwss the geatest elements ofwhich are (full) Cartesian spaces. Strong positive results in non-well-founded set theories are in [NemetiTit1],[Nemeti Tit2] and in [Simon-Nemeti 95].

    Our main theorem originated in [I.Sain 87] II. p.38. Claim (under Remark 10.1.) as an open problem.The [I.Sain 87] preprint introduced the class of Sgws-like algebras. She gave a finite axiom scheme [I.Sain87] II. p.37. (Remark 10.1) axiomatizing the class of Sgws algebras. However she left the task of findingsimpler and more elegant axiomatization(s) as an open problem. We list the original system of axiomsand we will give a simplified version of it as stated in [S.Csizmazia 92], [S.Csizmazia 95]. The presentlyreported research was conducted with guidance from I.Sain and R.J.Thompson during the period 1987-1992 (though some corrections were made later). During 1993-1995 strongly related and sometimesslightly overlapping results were found by I.Sain and V.Gyuris of [I.Sain, V.Gyuris 95].

    We will denote the variable symbols of the language of Sgws algebras with x, y.

    The function symbols of the type tSgws are the following ones:

    0 : , the least element constant symbol

    1 : , the greatest element constant symbol- : < d : d >, the symbol of the complementation+ : < d, d : d >, the symbol of the join : < d, d : d >, the symbol of the meetci : < d : d >, the symbols of the cilindrifications (i < )Sij : < d : d >, the symbols of the replacements (i,j < )

    Ssuc : < d : d >, the symbol of the successorSpred : < d : d >, the symbol of the predecessor

    Let us denote with LSgws the tSgws type first order language.

    We will introduce the following defined symbols:

    Pij : < d : d >, the symbols of the interchange (where i,j < )

    Pijdef= SpredS

    0j+1S

    j+1i+1S

    i+10 Ssuc

    First we will detail the AX system of axioms according to [I.Sain 87] II. (in the [I.Sain 87] II. Proof ofTheorem 1. 34-38.o.), after this we will give its simplified version as PAX.

    The AX system of axioms contains the following schemes:

    With arbitrary i, j, k,l < :

    (S0) The usual axioms of the Boolean algebras

    2

  • 8/3/2019 csizmazia

    3/20

    (S1) The Spred, Ssuc, Sij are Boolean endomorphisms

    With arbitrary S {Spred, Ssuc, Sij}:

    S(x + y) = Sx + Sy

    S(x y) = Sx Sy

    S0 = 0

    S1 = 1

    (S2) The connections of Spred, Ssuc with each other and with Sij :

    (1.1) SpredSsucx = x

    (1.2) SsucSpredx = S01x

    (1.3) SsucSijx = Si+1j+1Ssucx if i = j

    (1.4) SijSpredx = SpredSi+1j+1x if i = 0 and i = j

    (1.5) S0jSpredx = SpredS0j+1S

    1j+1x if j = 0

    (1.6) Jonssons seven schemes about the connections of the Sij-s and the Pij-s (see [HMT II.] (p.68.)):

    (1.6.1) Pijx = Pjix

    (1.6.2) PijPjix = x

    (1.6.3) PijPikx = P

    jkP

    ijx if j = k, i = k, i = j

    (1.6.4) PijSki x = S

    kj P

    ijx if j = k, i = k

    (1.6.5) Pij

    Sj

    ix = Si

    jx if i = j

    (1.6.6) SijSkl x = S

    kl S

    ijx if k = j, i = k, l

    (1.6.7) SijSikx = S

    ikx if i = k

    (S3) The q1 q9 axiom schemes of Pinter [73]:

    (q1) Sij(x) = S

    ijx

    (q2) Sij(x + y) = S

    ijx + S

    ijy

    (q3) Siix = x

    (q4

    ) Sij

    Sk

    ix = Si

    jSk

    jx

    (q5) ci(x + y) = cix + ciy

    (q6) x cix

    (q7) Sijcix = cix

    (q8) ciSijx = S

    ijx if i = j

    (q9) Sijckx = ckS

    ijx if k = i, j

    We give the simplified version as PAX:

    3

  • 8/3/2019 csizmazia

    4/20

    Let PAX be the following finite amount of axiom schemes with arbitrary i, j, k,l < :

    (S0) The usual axioms of the Boolean algebras

    (S1) The Spred, Ssuc, Sij are Boolean endomorphisms:

    with arbitrary S {Spred, Ssuc, Sij}:

    (0.1) S(x + y) = Sx + Sy

    (0.2) S( -x ) = - Sx

    (S2) The connections of Spred and Ssuc with each other and with Sij:

    (1.1) SpredSsucx = x

    (1.2) SsucSpredx = S01x

    (1.3) SsucSijx = Si+1j+1Ssucx if i = j

    (S3) The connections of ci-s and Sij-s:

    (p1) Sijcix = cix

    (p2) ciSijx = S

    ijx if i = j

    (p3) Sijckx = ckS

    ijx if k = i, j

    The properties of the Sij-s:

    (p4) SijS

    ki x = S

    ijS

    kj x

    (p5) Siix = x

    The properties of the ci-s:

    (p6) cix x

    (p7) ci(x + y) = cix + ciy

    PAX fully describes Sgws:

    Theorem 4.: ISgws = Mod(PAX)

    The proof uses significantly [I.Sain 87] I. Lemma 1. (p.6.): ISgws = Mod(AX). As it will be provedin Lemma 5.: AX and PAX are equivalent, thus Mod(PAX) = Mod(AX). Out of this we concludeISgws = Mod(PAX).

    Lemma 5.: AX |= PAX and PAX |= AX

    Proof 5.:1. The part AX |= PAX is obvious, because every axiom and axiom scheme of PAX except of (S1)(0.2)are part of AX. The axiom (S1)(0.2) is a consequence of AX(S0), (S1):1 = S(1) = S(x + x) = S(x) + S(x)

    0 = S(0) = S(x x) = S(x) S(x)

    and because of the existence of the unique complementer in the Boolean algebras: S(x) = S(x).

    4

  • 8/3/2019 csizmazia

    5/20

    2. We have to prepare some lemmas as evidence to the other part: PAX |= AX

    As a proof we will use the results of [C.C.Pinter 73]. Because PAX contains every axiom and scheme of[C.C.Pinter 73] we will not repeat the proofs of these results. The results are the following ones, wherei,j,k,l < are arbitrary:

    (i) [C.C.Pinter 73] Lemma 2.2 (i) p.363.:

    PAX |=ci0 = 0

    (ii) [C.C.Pinter 73] Lemma 2.2 (ii) p.363.:

    PAX |=ci(x ciy) = cix ciy

    (iii) [C.C.Pinter 73] Lemma 2.2 (iii) p.363.:

    PAX |=cicjx = cjcix

    (iv) [C.C.Pinter 73] Lemma 2.2 (iv) p.363.:

    PAX |=SijSikx = S

    ikx if i = k

    (v) [C.C.Pinter 73] Lemma 2.2 (v) p.363.:

    PAX |=SijSkl x = S

    kl S

    ijx if i = k, l and k = j

    (vi) [C.C.Pinter 73] Lemma 5 Proof (4) p.363.:

    PAX |=cix = min{y | y x and y = Sijz for some z } if i = j

    Lemma 6.: PAX |= SijSki x = S

    kj x, if cix = x

    Proof 6.:

    Let us assume that cix = x

    If i = j then

    SiiS

    ki x =

    Ski x

    PAX(S3)/(p5)

    If i = k then

    SijS

    kkx =

    Sijx

    PAX(S3)/(p5)

    We can assume that i = j, k

    x = cix =

    Sijcix =

    Sijx(3)

    PAX(S3)/(p1) cix = x

    5

  • 8/3/2019 csizmazia

    6/20

    Then if j = k

    SijS

    ki x =

    SijS

    kj x =

    Skj S

    ijx =

    Skj x

    PAX(S3)/(p4) (v) (3)

    because i = j, k and j = k

    If j = k

    SijS

    ki x =

    SijS

    jjx =

    Sjjx =

    x

    PAX(S3)/(p4) PAX(S3)/(p5) (3)

    Lemma 7.:

    Let S {Spred, Ssuc, Sij} be arbitrary. Then the following statements are consequences of PAX:

    S(x y) = S(x) S(y)

    S(0) = 0

    S(1) = 1

    Proof 7.:

    S(x y) =

    S((x y)) =

    S(x + y) =

    S(x) + S(y) =

    S(x) + S(y)

    PAX(S1)(0.2) PAX(S0) PAX(S1)(0.1) PAX(S1)(0.2)

    =

    (S(x) S(y))

    PAX(S0)

    Then according to (S0):S(x y) = S(x) S(y) follows.

    S(1) = S(x + x) =

    S(x) + S(x) =

    S(x) + S(x) =

    1(4)

    PAX(S1)(0.1) PAX(S1)(0.2) PAX(S0)

    S(0) =

    S(1) =

    S(1) =

    1 =

    0

    PAX(S0) PAX(S1)(0.2) (4) PAX(S0)

    Lemma 8.:

    PAX |= ciSjix = cjS

    ijx

    Proof 8.:

    Sijx cix PAX(S3)/(p6), (S3)/(p1), (S1)(0.1)

    cjSijx cjcix PAX(S3)/(p7)(5)

    6

  • 8/3/2019 csizmazia

    7/20

    a. (i = j) case:

    ciSjix =

    cicjS

    jix =

    cjciS

    jix

    cjSijS

    jix =

    cjS

    ijx

    PAX(S3)/p2

    (iii) (5)-ben PAX(S3)/(p4

    ), (p5

    )

    i = j i = j with x.

    = Sjix

    The direction is verifiable interchanging the role of the i and j.

    b. (i = j) case: obvious.

    Lemma 9.:

    PAX |=c0Ssucx = Ssucx

    Proof 9.:

    Ssucx =

    SsucSpredSsucx =

    S01Ssucx =

    c0S

    01Ssucx =

    c0Ssucx

    PAX(S2)(1.1) PAX(S2)/(1.2) PAX(S3)/(p2) PAX(S2)(1.2), (1.1)

    Lemma 10.:

    PAX |= if x = Sijy for some y and i = j, then Sijx = x

    Proof 10.:

    Sijx = S

    ijS

    ijy =

    Sijy =

    x

    (iv)

    (because i = j) (because x = Sijy)

    The following lemma have been already published in [I. Sain, V. Gyuris 94] (p.17.) from the author.

    Lemma 11.:

    PAX |=c1Ssucx = Ssucc0x

    Proof 11.:

    We remark that the minimums exist in this proof is due to the celebrated Jonsson-Tarski theorem:every Mod(PAX) algebra is embeddable into a complete algebra ([HMT I.] Thm. 10.5.(i) (p.412.)),where the positive equations (our system of axioms essentially looks like) are preserved. Because of thecompletness the minimums exist in the extended algebra, as well as in its subalgebra, in Mod(PAX).

    because of (vi): c1Ssucx = min {y | y Ssucx and y = S12z for some z }

    B1

    (1)

    7

  • 8/3/2019 csizmazia

    8/20

    because of (vi): Ssucc0x = Ssucmin {y | y x and y = S01z for some z }

    B2

    (2)

    In the next step we will verify that (1) = (2). Starting with (1) we will get (2) applying sometransformations.

    a.) The following identity is valid:

    min {y | y Ssucx and y = S12z for some z }

    B1

    = min {y | y Ssucx and

    (3) y = S12z1 for some z1 and y = S

    01z2 for some z2 }

    A1

    The identity above is true because of A1 B1 and for every y B1 there is less y

    A1, especially

    y def

    = c0(y) will be available as we shall see later.Let y B1.a.1.)

    Because of PAX(S3)/(p6): c0(y) y c0(y) y y

    ya.2.)

    y

    Ssucx because if y Ssucx, then

    y = c0(y)

    c0(Ssucx) =

    Ssuc(x) =

    Ssucx

    PAX(S3)/(p7) Lemma 9. PAX(S1)(0.2)

    PAX(S1)(0.2)

    a.3.)

    S12y

    = S12(c0(y)) =

    c0(S12y) =

    c0(y) = y

    PAX(S3)/(p3), (S1)(0.2) (3) and Lemma 10.

    and

    S01y

    = S01(c0(y)) =

    c0(y) = y

    PAX(S1)(0.2), (S3)/(p1)

    Thus because of a.2.) and a.3.) it is true that y

    A1b.) It is valid that

    min {y | y Ssucx and y = S12z1 for some z1 and

    (4) y = S01z2 for some z2 }

    A1

    =

    min {Ssucy | y x and

    (5) y = S01z for some z } A2

    because A1 = A2.

    b.1.) In the identity above first we shall proof the direction A1 A2:Let y A1.

    y =

    S01y =

    SsucSpredy

    Lemma 10. PAX(S2)(1.2)

    y Ssucx Spredy

    SpredSsucx =

    x

    PAX(S1)(0.1) PAX(S2)(1.1)

    8

  • 8/3/2019 csizmazia

    9/20

    y =

    S01y =

    SsucSpredy and y Ssucx Spredy

    SpredSsucx =

    x

    Lemma 10 PAX(S2)(1.2) PAX(S1)(0.1) PAX(S2)(1.1)

    and

    S0

    1

    Spredy =

    SpredSsucS0

    1

    Spredy =

    SpredS1

    2

    SsucSpredx =

    SpredS1

    2

    S0

    1

    y =

    Spredy

    PAX(S2)(1.1) PAX(S2)(1.3) PAX(S2)(1.2) y A1

    Thus it is true that y A2.b.2.) After this we shall proof the direction A2 A1:

    Let y A2. Then y = Ssucy

    for some y

    x, and for which (5) is valid too.

    Because of PAX(S1) if y

    x y = Ssucy

    Ssucx.

    S01y = S

    01Ssucy

    =

    SsucSpredSsucy

    =

    Ssucy

    = y

    PAX(S2)(1.2) PAX(S2)(1.1)

    and

    S12y = S

    12Ssucy

    =

    SsucS01y

    =

    Ssucy

    = y

    PAX(S2)(1.3) (5) and Lemma 10

    verifies that y A1.c.) The following identity is valid:

    min {Ssucy | y x and y = S01z for some z }

    A2

    = Ssucmin {y | y x and y = S01z for some z }

    B2

    Because y B2 Ssucy A2 thus according to PAX(S1)(0.1) the identity above is true and this verifiesthe lemma.

    Remark 12.:

    Similarly with arbitrary i < : PAX |=ci+1Ssucx = Ssuccix.

    Lemma 13.:

    PAX |=Ssucc0x = c0S10Ssucx

    Proof 13.:

    Spredc0S10Ssucx =

    SpredS01c0S

    10Ssucx =

    SpredS01c1S

    01Ssuc =

    (1)

    PAX(S3)/(p1) Lemma 8 PAX(S2)(1.2)

    SpredSsucSpredc1SsucSpredSsucx =

    Spredc1Ssucx =

    SpredSsucc0x =

    c0x

    PAX(S2)(1.1) Lemma 10. PAX(S2)(1.1)

    from (1):

    Spredc0S10Ssucx = c0x applying Ssuc

    SsucSpredc0S10Ssucx = Ssucc0x because of PAX(S2)/(1.2) and PAX(S3)/(p1)

    c0S10Ssucx = Ssucc0x

    9

  • 8/3/2019 csizmazia

    10/20

    We will give the deduction of the system of axioms AX from the system of axioms PAX

    AX(S0) exactly PAX(S0).

    AX(S1) is provable from PAX(S1) because of the Lemma 7.

    AX(S2)(1.1)-(1.3) exactly PAX(S2)(1.1)-(1.3).

    AX(S2)(1.4): PAX |=SijSpredx = SpredSi+1j+1x if i = 0 and i = j proof:

    Let i = j and i = 0, then because of PAX(S2)(1.3):

    SsucSijSpredx = S

    i+1j+1SsucSpredx PAX(S2)(1.2)

    SsucSijSpredx = S

    i+1j+1S

    01x

    SpredSsucSijSpredx = SpredS

    i+1j+1S

    01x PAX(S2)(1.1)

    SijSpredx = SpredSi+1j+1S

    01x (v)(because i = 0)

    SijSpredx = SpredS

    01S

    i+1j+1x PAX(S2)(1.2)

    SijSpredx = SpredSsucSpredS

    i+1j+1x PAX(S2)(1.1)

    SijSpredx = SpredS

    i+1j+1x

    AX(S2)(1.5): PAX |= S0jSpredx = SpredS0j+1S

    1j+1x if j = 0 proof:

    Let j = 0. Because of PAX(S2)(1.1):

    S0jx = SpredSsucS

    0jx PAX(S2)(1.3) (because j = 0)

    S0jx = SpredS

    1j+1Ssucx Lemma 6 (by Lemma 9.: 0 (Ssucx))

    S0jx = SpredS

    0j+1S

    10Ssucx PAX(S2)(1.2)

    S0jSpredx = SpredS

    0j+1S

    10S

    01x PAX(S3)/(p4)

    S0jSpredx = SpredS

    0j+1S

    10S

    00x PAX(S3)/(p5)

    S0jSpredx = SpredS

    0j+1S

    10x PAX(S3)/(p4)

    S0jSpredx = SpredS

    0j+1S

    1j+1x

    We will not proof Jonsson schemes in their original sequence from PAX, because some of the schemeswill be used later to prove the other ones.

    AX(S2)(1.6.6): PAX |=SijSkl x = S

    kl S

    ijx if (k = j, i = k, l) proof:

    Similar as (v).

    AX(S2)(1.6.7): PAX |=SijSikx = S

    ikx if (i = k) proof:

    Similar as (iv).

    10

  • 8/3/2019 csizmazia

    11/20

    AX(S2)(1.6.5): PAX |=PijSjix = S

    ijx if (i = j) proof:

    Let i = j. Then:

    PijSjix =

    SpredS0j+1Sj+1i+1Si+10 SsucSjix =

    SpredS0j+1Sj+1i+1 Si+10 Sj+1i+1Ssucx =

    Pij definition PAX(S2)(1.3.) PAX

    (because i = j) (S3)/(p4)

    SpredS0j+1S

    j+1i+1 S

    i+10 S

    j+10 Ssucx =

    SpredS

    0j+1S

    j+1i+1S

    j+10 S

    i+10 Ssucx =

    (v) PAX(S3)/(p4)

    (because i = j)

    SpredS0j+1S

    j+1i+1S

    j+10 S

    i+1j+1Ssucx =

    SpredS

    0j+1S

    j+1i+1S

    j+10 SsucS

    ijx =

    PAX(S2)(1.3) (iv)

    (because i = j)SpredS

    0j+1S

    j+10 SsucS

    ijx =

    SpredS

    j+1j+1SsucS

    ijx =

    Lemma 6. PAX(S3)/p5

    (because 0 (SsucSijx):Lemma 9.)

    SpredSsucSijx =

    Sijx

    PAX(S2)(1.1)

    AX(S2)(1.6.4): PAX |=PijSki x = S

    kj P

    ijx if (j = k, i = k) proof:

    a. Let k = 0 and k = i, j

    PijS

    ki x =

    SpredS

    0j+1S

    j+1i+1S

    i+10 SsucS

    ki x =

    SpredS

    0j+1S

    j+1i+1S

    i+10 S

    k+1i+1 Ssucx =

    Pijdefinition PAX(S2)(1.3.) PAX

    (because i = k) (S3)/(p4)

    SpredS0j+1S

    j+1i+1S

    i+10 S

    k+10 Ssucx =

    SpredS

    0j+1S

    j+1i+1S

    k+10 S

    i+10 Ssucx =

    (v) (v)

    (because i = k) (because j, i = k)

    SpredS0j+1S

    k+10 S

    j+1i+1 S

    i+10 Ssucx =

    SpredS

    0j+1S

    k+1j+1S

    j+1i+1S

    i+10 Ssucx =

    PAX(S3)/(p4) (v)

    (because k = j)

    SpredSk+1j+1S

    0j+1S

    j+1i+1 S

    i+10 Ssucx =

    Skj SpredS

    0j+1S

    j+1i+1 S

    i+10 Ssucx =

    Skj P

    ij

    AX(S2)(1.4.) Pij definition

    (because k = j, k = 0)

    b. Let k = 0 and k = i, j

    11

  • 8/3/2019 csizmazia

    12/20

    Because k = j, i, then j, i = 0

    PijS

    0i x =

    SpredS

    0j+1S

    j+1i+1S

    i+10 SsucS

    0i x =

    SpredS

    0j+1S

    j+1i+1S

    i+10 S

    1i+1Ssucx =

    Pijdefinition PAX(S2)(1.3.) PAX

    (because i = 0) (S3)/(p4)

    SpredS0j+1Sj+1i+1S

    i+10 S

    10Ssucx =

    SpredS0j+1S

    j+1i+1S

    10S

    i+10 Ssucx =

    (v) (v)

    (because i = 0) (because j, i = 0)

    SpredS0j+1S

    10S

    j+1i+1 S

    i+10 Ssucx =

    SpredS

    0j+1S

    1j+1S

    0j+1S

    j+1i+1S

    i+10 Ssucx =

    (iv), PAX(S3)/(p4), (v) AX(S2)(1.5)

    (because j = 0) (because 0 = j)

    S0jSpredS

    0j+1S

    j+1i+1 S

    i+10 Ssucx =

    S0jP

    ij

    Pij definition

    AX(S2)(1.6.2): PAX |=PijPji x = x proof:

    a. Let i = j

    PijP

    ji x =

    Pijdefinition

    SpredS

    0j+1S

    j+1i+1 S

    i+10 SsucSpredS

    0i+1S

    i+1j+1S

    j+10 Ssucx =

    PAX(S2)(1.2)

    SpredS0j+1S

    j+1i+1 S

    i+10 S

    01S

    0i+1S

    i+1j+1S

    j+10 Ssucx =

    (iv)

    SpredS0j+1S

    j+1i+1S

    i+10 S

    0i+1S

    i+1j+1S

    j+10 Ssucx =

    PAX(S3)/(p4)

    SpredS0j+1S

    j+1i+1 S

    i+10 S

    00S

    i+1j+1S

    j+10 Ssucx =

    PAX(S3)/(p5), (iv)

    (because i = j)

    SpredS0j+1S

    j+1i+1 S

    i+1j+1S

    j+10 Ssucx =

    SpredS

    0j+1S

    j+1i+1 S

    j+10 Ssucx =

    PAX(S3)/(p4), (p5) (iv)

    SpredS0j+1S

    j+10 Ssucx =

    SpredS

    j+1j+1Ssucx =

    SpredSsucx =

    x

    Lemma 6. PAX(S3)/(p5) PAX

    (because 0 (Ssucx):Lemma 9. ) (S2)(1.1)

    12

  • 8/3/2019 csizmazia

    13/20

    b. Let i = j

    PiiP

    iix =

    Pi

    idefinition

    SpredS0i+1S

    i+1i+1S

    i+10 SsucSpredS

    0i+1S

    i+1i+1S

    i+10 Ssucx =

    PAX(S2)(1.2)

    SpredS0i+1S

    i+1i+1S

    i+10 S

    01S

    0i+1S

    i+1i+1S

    i+10 Ssucx =

    (iv)

    SpredS0i+1S

    i+1i+1S

    i+10 S

    0i+1S

    i+1i+1S

    i+10 Ssucx =

    Lemma 6.

    because i + 1 (Si+1i+1Si+10 Ssucx)

    SpredS0i+1S

    i+1i+1S

    00S

    i+1i+1S

    i+10 Ssucx =

    PAX(S3)/(p5)

    SpredS0i+1S

    i+10 Ssucx =

    SpredS

    i+1i+1Ssucx =

    SpredSsucx =

    x

    Lemma 6. PAX(S3)/(p5) PAX

    (because 0 (Ssucx):Lemma 9. ) (S2)(1.1)

    Lemma 14.:[I.Sain,R.J.Thompson 88] (p.553.)

    PAX |=Ski SijS

    jkS

    kj S

    ji S

    ikx = S

    ki x if i = j, k

    Proof 14.:

    Let i = j, k. Then:

    Sk

    iSi

    jSj

    kSk

    jSj

    iSi

    kx =

    Sk

    iSi

    jSj

    kSj

    iSi

    kx =

    Sk

    iSi

    jSj

    iSi

    kx =

    PAX(S3)/(p4), (p5) (iv) PAX(S3)/(p4), (p5)

    (because i = j)

    Ski S

    ijS

    ikx =

    Ski S

    ikx =

    Ski x

    (iv) PAX(S3)/(p4), (p5)

    (because i = k)

    13

  • 8/3/2019 csizmazia

    14/20

    Lemma 15.:

    PAX |=cicix = cix if i = j, k

    Proof 15.:

    Let j = i. Then:

    cicix =

    ciSijcix =

    Sijcix =

    cix

    PAX(S3)/(p1) PAX(S3)/(p2) PAX(S3)/(p1)

    (because i = j)

    Lemma 16.:

    PAX |=Ski cix = Pikcix if k = i

    Proof 16.:

    a. Let k = 0 and k = i

    Ski cix =

    Ski SpredSsuccix =

    SpredS

    k+1i+1 c0Ssuccix =

    PAX(S2)(1.1) Lemma 9. PAX

    AX(S2)(1.4)(because k = 0, k = i)(S3)/(p3)

    Spredc0Sk+1i+1 Ssuccix =

    SpredS

    0k+1c0S

    k+1i+1 Ssuccix =

    SpredS

    0k+1S

    k+1i+1 Ssuccix =

    PAX(S3)/(p1) Lemma 9. Remark

    PAX(S3)/(p3) 11.

    SpredS0k+1S

    k+1i+1 ci+1Ssucx =

    SpredS

    0k+1S

    k+1i+1 S

    i+10 ci+1Ssucx =

    PAX(S3)/(p1) Remark 12.

    SpredS0k+1S

    k+1i+1 S

    i+10 Ssuccix =

    Pikcix

    Pikdefinition

    b. Let k = 0 and k = i

    14

  • 8/3/2019 csizmazia

    15/20

    Because k = i, then i = 0

    S0i cix =

    S0i SpredSsuccix =

    SpredS

    0i+1S

    1i+1c0Ssuccix =

    PAX(S2)(1.1) Lemma 9. (v)

    AX(S2)(1.5)(because 0 = i) (because i = 0)SpredS

    1i+1S

    0i+1c0Ssuccix =

    SpredS

    1i+1c0Ssuccix =

    SpredS

    1i+1ci+1Ssuccix =

    PAX(S3)/(p1) Lemma 9., 15. PAX

    Remark 12. (S3)/(p1)

    SpredS1i+1S

    i+10 ci+1Ssuccix =

    SpredS

    1i+1S

    i+10 Ssuccix =

    Remark 12,15 PAX(S2)(1.1)

    SpredSsucSpredS1i+1S

    i+10 Ssuccix =

    SpredS

    01S

    1i+1S

    i+10 Ssuccix =

    Pi0cix

    PAX(S2)(1.2) Pi0definition

    Lemma 17.:[I.Sain,R.J.Thompson 88] (p.553.) :

    PAX |=Skj Pijx = S

    kj S

    ji S

    ikx if i,j,k are distinct.

    Proof 17.:

    Let i,j,k be distinct. Then:

    Skj P

    ij(x S

    ikx)

    Skj P

    ijcj(x S

    ikx) =

    PAX(S3)/(p6) PAX(S3)/(p1)

    Skj P

    ijS

    ji cj(x S

    ikx) =

    Skj S

    ijcj(x S

    ikx) =

    Skj S

    ikcj(x S

    ikx) =

    AX(1.6.5.) PAX(S3)/(p4) PAX(S3)/(p3)

    (because i = j) (because j = i, k)

    Skj cjS

    ik(x S

    ikx) =

    Skj cj(S

    ikx S

    ik(S

    ikx)) =

    Skj cj(S

    ikx S

    ikS

    ikx) =

    PAX(S1) PAX(S1) PAX(S3)/(p1), (p2)

    (because i = k)

    Skj cj(S

    ikx S

    ikx) =

    Skj cj(0) =

    Skj (0) =

    0

    PAX(S0) (i) PAX(S1)

    Thus Skj Pijx S

    kj P

    ijS

    ikx = 0 because of PAX(S1).

    15

  • 8/3/2019 csizmazia

    16/20

    Then:

    Skj P

    ijx

    Skj P

    ijS

    ikx =

    Skj P

    ijciS

    ikx =

    Skj S

    ji ciS

    ikx =

    Skj S

    ji S

    ikx(1)

    PAX(S0) PAX(S3)/(p2) Lemma 16. PAX(S3)/(p2)

    (because i = k) (because i = j) (because i = k)

    Ski x =

    Ski SijS

    jkS

    kj S

    ji S

    ikx

    Ski SijS

    jkS

    kj P

    ijx =

    Ski S

    ijS

    jkP

    ijx(2)

    Lemma 14. (1) (because i = k, j) and PAX(S3)/(p4), (p5)

    (because i = k, j) PAX(S1)(0.1)

    Thus:

    Ski P

    jix

    Ski S

    ijS

    jkP

    ijP

    ji x =

    Ski S

    ijS

    jkx

    (2) bol AX(1.6.2.)

    Interchanging the role of i and j we will get: (3) Skj Pijx S

    kj S

    jiS

    ik

    The statement follows from (1) and (3).

    Lemma 18.:

    PAX |=SsucPijx = Pi+1j+1Ssucx if i = j

    Proof 18.:

    Let i = j

    SsucPijx =

    SsucSpredS

    0j+1S

    j+1i+1S

    i+10 Ssucx =

    S01S

    0j+1S

    j+1i+1S

    i+10 Ssucx =

    Pijdefinition PAX(S2)/(1.2) (iv)

    S0j+1S

    j+1i+1 S

    i+10 Ssucx =

    S0j+1P

    i+1j+1Ssucx =

    Pi+1j+1S

    0i+1Ssucx =

    Lemma 17. AX(1.6.4) Lemma 9.

    (because i = j)

    Pi+1j+1S

    0i+1c0Ssucx =

    Pi+1j+1c0Ssucx =

    Pi+1j+1Ssucx

    PAX(S3)/(p1) Lemma 9.

    Lemma 19.:

    PAX |=Ski ciSi0c0x = PikP0i c0x if i = 0, k = i

    16

  • 8/3/2019 csizmazia

    17/20

    Proof 19.:

    Let i = 0, k = i. Then:

    S

    ki ciS

    i0c0x = P

    ikciS

    i0c0x = P

    ikS

    i0c0x = P

    ikP

    0i c0x

    Lemma 16. PAX(S3)/(p2) Lemma 16.

    (because k = i) (because 0 = i) (because i = 0)

    AX(S2)(1.6.3): PAX |=PijPikx = P

    jkP

    ijx if j = k, i = k, i = j proof:

    We will prove it in two steps. In the step a. we will prove the statement for x where c0x = x. In thestep b. the case c0x = x will be attributed to the application of step a.

    Let i,j,k be distinct.

    a. Let c0x = x

    Starting from PAX(S3)/(p4) we can deduce:

    SjkS

    ijx = S

    jkS

    ikx

    PjkS

    kj P

    ijS

    jix= S

    jkP

    ikS

    ki x AX(S3)(1.6.5) (because i = j, j = k, i = k)

    PjkP

    ijS

    ki S

    jix= P

    ikS

    ji S

    ki x AX(S3)(1.6.4) (because i = j, j = k, i = k)

    PjkP

    ijS

    ji S

    ki x= P

    ikS

    ji S

    ki x (v) (because i = j, j = k, i = k)(3)

    Starting from (iv) we conclude the following, because i = k:

    SijS

    ikx = S

    ikx

    PijS

    ji P

    ikS

    ki x = P

    ikS

    ki x AX(S3)(1.6.5) (because i = j, i = k)

    PijS

    ji P

    ikS

    ki S

    jix= P

    ikS

    ki S

    jix replacing x by S

    ji (x)

    PijS

    ji P

    ikS

    ji S

    ki x= P

    ikS

    jiS

    ki x (v) (because i = j, j = k, i = k)(4)

    According to (3) and (4) starting from the following identity:

    PjkP

    ijS

    ji S

    ki x = P

    ijS

    ji P

    ikS

    ji S

    ki x

    PjkP

    ijS

    ji S

    ki x = P

    ijS

    ji S

    jkP

    ikS

    ki x AX(S3)(1.6.4) (because i = j, i = k)

    PjkP

    ijS

    ji S

    ki x = P

    ijS

    jkP

    ikS

    ki x (iv) (because j = k)

    PjkP

    ijS

    ji S

    ki x = P

    ijP

    ikS

    ji S

    ki x AX(S3)(1.6.4) (because i = j, j = k)(5)

    PjkP

    ijS

    ji S

    ki ciS

    i0c0x= P

    ijP

    ikS

    ji S

    ki ciS

    i0c0x replacing x by ciS

    i0c0x

    PjkPijSji PikP0i c0x = PijPikSji PikP0i c0x because of Lemma 19.

    17

  • 8/3/2019 csizmazia

    18/20

    (6) PjkPijS

    jiP

    ikP

    0i x = P

    ijP

    ikS

    ji P

    ikP

    0i x because c0x = x

    We can transform the identity (6) with help of AX(S2)(1.6.2) for the following form, when the x isreplaced by Pi0x and P

    ki x:

    (7)Pj

    kPi

    jSj

    ix =Pi

    jPi

    kSj

    ix

    The method eliminating the Ski -s from (5) is called Method of the elimination of replacements

    Let us repeat the Method of the elemination of replacements in the identity (7) for the Sji . We shallget the following identity.

    (8) PjkPijx = P

    ijP

    ikx, thus we have proved (1.6.3), if c0x = x.

    b. Let c0x = x

    PjkP

    ijx =

    SpredSsucP

    jkP

    ijx =

    SpredP

    j+1k+1P

    i+1j+1Ssucx =

    PAX(S2)(1.1) Lemma 18. step a. of the deduction

    (because j = k, i = j) (c0Ssuxx =Ssucx:Lemma 9.)

    SpredPi+1j+1P

    i+1k+1Ssucx =

    SpredSsucP

    ijP

    ikx =

    PijP

    ikx

    Lemma 18. PAX(S2)(1.1)

    (because i = k, i = j

    Thus we have completed the proof of the identity (1.6.3).

    AX(S2)(1.6.1): PAX |=Pijx = Pjix proof:

    If i = j then Pii x = Pii x is obvious. Thus we can assume that i = j.

    Let i = j.

    a. Let c0x = x

    Let k = i, j. Then:

    SjkS

    ijx =

    SjkS

    ikx =

    SikS

    jkx =

    SikS

    jix(1)

    PAX(S3)/(p4) (v) PAX(S3)/(p4)

    (because j = i, k and k = i)

    Let us start with the identity (1):

    18

  • 8/3/2019 csizmazia

    19/20

    SjkS

    ijx = S

    ikS

    jix

    PjkS

    kj P

    ijS

    jix = P

    ikS

    ki P

    ji S

    ijx AX(S2)(1.6.5) (because j = i, k and k = i)

    PjkPijS

    ki S

    jix = P

    ikP

    ji S

    kj S

    ijx AX(S2)(1.6.4) (because j = k and k = i)

    PijP

    ikS

    ki S

    jix = P

    ji P

    jkS

    kj S

    ijx AX(S2)(1.6.3) (because j = i, k and k = i)

    PijS

    ikS

    jix = P

    ji S

    jkS

    ijx AX(S2)(1.6.5) (because j = k and k = i)

    PijS

    ikS

    jkx = P

    ji S

    jkS

    ikx PAX(S3)/(p4)

    PijS

    ikS

    jkx = P

    ji S

    ikS

    jkx (v) (because j = i, k and k = i)

    In the last identity we can apply the Method of the elimination of replacements to the Sjk and Sik. We

    will get the following identity:

    Pijx = P

    ji x (if j = i and c0x = x) b. Let c0x = x

    Pji x =

    SpredSsucP

    ji x =

    SpredP

    j+1i+1Ssucx =

    PAX(S2)(1.1) Lemma 16. step a. in the deduction

    (because i = j) (c0Ssuxx = Ssucx:Lemma 9.)

    SpredPi+1j+1Ssucx =

    SpredSsucP

    ijx =

    Pijx

    Lemma 16. PAX(S2)(1.1)

    (because i = j)

    Thus we have completed the proof of the identity (1.6.1).

    AX(S3)/(q1) exactly PAX(S1)(0.2.) if we shall choose as S the Sij.

    AX(S3)/(q2) exactly PAX(S1)(0.1.) if we shall choose as S the Sij.

    AX(S3)/(q3) exactly PAX(S3)/(p5).

    AX(S3)/(q4) exactly PAX(S3)/(p4).

    AX(S3)/(q5) exactly PAX(S3)/(p4).

    AX(S3)/(q6) exactly PAX(S3)/(p5).

    AX(S3)/(q7) exactly PAX(S3)/(p1).

    AX(S3)/(q8) exactly PAX(S3)/(p2).

    AX(S3)/(q9) exactly PAX(S3)/(p3).

    Thus we have completed the proof of the Lemma 5. as well as the Theorem 4.

    19

  • 8/3/2019 csizmazia

    20/20

    References

    [Andreka,H. 91] Complexity of the Equations Valid in Algebras of Relations, PhD thesis,Hun.Ac.Sci., also Ann.Pure Appl. Logic, to appear, Budapest, 1991 (Thesis for D.Sc - a post-habilitation degree)..

    [Bro,B. 87] Non-finite-axiomatizability results in algebraic logic, Journal of Symbolic Logic 75 (1992),no. 2.

    [Csizmazia,S. 92] Database Logic Founded by a General Datamodell, PhD dissertation Hun.Ac.Sci., Budapest,1992, p. 132.

    [Csizmazia,S. 95] Additions to Databases and Cylindric Algebras, PhD dissertation Hun.Ac.Sci., Budapest,1995, p. 70.

    [Henkin,L. Monk,J.D. 74] Cylindric Algebras and Related Structures, Proc. Tarski Symp., Amer. Match. Soc., 25 (1974),105121.

    [HMT I] Henkin,L. Monk,J.D. Tarski,A., Cylindric Algebras Part I, North-Holland, Amsterdam, 1971,p. 508.

    [HMT II] Henkin,L. Monk,J.D. Tarski,A., Cylindric Algebras Part II, North-Holland, Amsterdam, 1985,p. 302.

    [Monk,J.D. 70] On an Algebra of Sets of Finite Sequences, Journal of Symbolic Logic 35 (1970), 1928.

    [Nemeti,I. 91] Algebraization of Quantifier Logics: An Introductory Overview, shortened version in StudiaLogica L 3/4 (1991), no. (a special devoted to Algebraic Logic), 485569.

    [Nemeti,I. Tit1] Strong Representability of Fork Algebras, a Set Theoretic foundation, Journal of the IGPL (toappear).

    [Nemeti,I. Tit2] Ontology can turn negative results to positive (an overview of recent results) , Bulletin of theSection of Logic, Univ. of Lodz 25 (1996), no. 1, 29-40.

    [Pinter,C.C. 73] A Simple Algebra of First Order Logic, Notre Dame Journal of Formal Logic XIV (1973),no. 3, 361366.

    [Sagi,G. 95] A non-effectiveness in the standard axiomatozation of polyadic algebras, MKI Preprint (1995,december), Budapest.

    [Sagi,G. Nemeti,I. 95] Non-schematizability of the equational theory of representable polyadic-equality algebras, MKIPreprint (1995, december), Budapest.

    [Sain,I. 87] On the Search for a Finitizable (with respect to the representable) Algebraization of First OrderLogic I., II., Preprints Math. Inst. Hungar. Acad. Sci. (1987), no. 53, Budapest, 78.

    [Sain,I. 93] On the Search for a Finitizable Algebraization of First Order Logic (Shortened Version A) ,Preprint of Math. Inst. Hungar. Acad. Sci. (1988), no. revised in April 1993, Budapest, 72.

    [Sain,I. Gyuris,V. 94] Finite Schematizable Algebraic Logic, Algebraic Logic and the Methodology of Applying it(Tempus Summer School) (July,1994), Budapest, 29.

    [Sain,I. Gyuris,V. 95] Finite Schematizable Algebraic Logic, Journ. IGPL (February,95), Budapest, 56.

    [Sain,I. Thompson,R.J. 88] Strictly Finite Schema Axiomatization of Quasi-poliadic Algebras, Colloquia Mathematica So-cietatis Janos Bolyai (Algebraic Logic) 54 (1988), Budapest, 539571.

    [Simon A. Nemeti,I.] Weakly Higher Order Cylindric Algebras and Finite Axiomatization of the Representables,MAKI prepint, Budapest, 1995.

    [Tarski,A. 66] What are Logical Notions, Lecture at Bedford College, London, 1966, History and Philosophyof Logic (ed J.Corcoran), available also in A.Tarski: Collected Papers, Birkhouser, 1986. 7(1986), 143154.

    20