csl3 19 j15

23
ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION Mathematical Modeling Mechanical translational system 1

Upload: kodam2512

Post on 11-Aug-2015

40 views

Category:

Engineering


2 download

TRANSCRIPT

Page 1: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

1

Mathematical Modeling

Mechanical translational system

Page 2: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

2

Review

• Transfer Function– Def.: The ratio of output by input– Gives the mathematical characteristic of the system being analyzed

• Laplace transform– Converting time domain equation to frequency domain– Time domain – signals defined as function of time– Frequency domain –

• signals defined as function of frequency• s=σ+jω• All signals are a property of frequency rather than representing the instant of

time.

Page 3: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

3

Mechanical system modeling

• Translational• RotationalExample

Automobile suspension systemAlong the road1. The vertical displacements at the tires act as the motion

excitation to the automobile suspension system2. Motion consists of a translational motion of the center of

mass3. Rotational motion about the center of mass

Page 4: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

4

Mechanical system modeling

• Mechanical system model components– Mass – representing the mass of the system to be

modeled– Spring – represents the repetitive action of the

system– Damper-represents the friction of the system

Page 5: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

5

Translational system

Example 1

Page 6: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

6

Element Law Expression Laplace

Spring Spring Force α change in length

F(t) = K x(t)K – Stiffness constant in N/m

F(s) = K X(s)

Viscous Damper or Dashpot

Force α velocity F(t) = fv v(t)F(t) =fv (dx/dt) fv - Friction or damping coefficient ,Ns/m

F(s) = fvsX(s)

Mass Newton’s second lawForce α acceleration

F(t) = M (d2x/dt2) F(s) = Ms2X(s)

Translational system

Page 7: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

7

Step 1: Decide input and output

Input variable:

)(tf

Output variable:

)(txMass position

)(txMass velocity

)(txMass acceleration

Applied force

Page 8: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

8

Translational systems

Newton’s second law

𝑀𝑑2𝑥 (𝑡)𝑑𝑡 2 ¿− Kx( t)− 𝑓 𝑣

𝑑𝑥 (𝑡)𝑑𝑡 + 𝑓 (𝑡 )

Page 9: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

9

Step 2: The Time and frequency response representation

dt

tdxftKxtf

dt

txdM v

)()()(

)(2

2

Taking Laplace Transform

𝑀𝑠2 𝑋 (𝑠 )+ 𝑓 𝑣 𝑠𝑋 (𝑠 )+𝐾𝑋 (𝑠 )=𝐹 (𝑠)

Page 10: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

10

Step3. Write the transfer function

With x(t) as the output

𝑋 (𝑠)𝐹 (𝑠)

= 1𝑀 𝑠2+ 𝑓 𝑣 𝑠+𝐾

𝑀𝑠2 𝑋 (𝑠 )+ 𝑓 𝑣 𝑠𝑋 (𝑠 )+𝐾𝑋 (𝑠 )=𝐹 (𝑠)

Write the equation with velocity as output.

Page 11: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

11

Example 2

F(t)

x1(t) x2(t)

x3(t)

Page 12: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

12

Modeling Steps:

1. Decide the input and the output2. The free body diagram of the mass M (optional)3. The frequency-domain representation of the forces4. The transfer function

Example 2

F(t)

x1(t) x2(t)

x3(t)

In a multi mass system, consider each mass separately to write the equation.

Page 13: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

13

Equation for Mass M1

2

12

1

)(

dt

txdM

0))()((

))()(()()()(

31

21211112

1

3

1

ssXssXf

sXsXKsXKssXfsXsM

v

v

dt

tdxfv

)(11

)(11 txK ))()(( 212 txtxK

))()(

( 313 dt

tdx

dt

tdxfv

Taking Laplace Transform

Page 14: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

14

Step2: Free Body diagram of Mass M1 (Optional)

ssXfv )(33

)(1 tx

1M )(12 sXk)(11 sXk

ssXfv )(13

ssXfv )(11

211 )( ssXM

)(22 sXk

Page 15: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

15

2

22

2

)(

dt

txdM

Equations for Mass M2

)(tFdt

tdxfv

)(22

))()(( 122 txtxK

))()(

( 324 dt

tdx

dt

tdxfv

)())()((

))()(()()(

32

122222

2

4

2

sFssXssXf

sXsXKssXfsXsM

TransformLaplaceTaking

v

v

Page 16: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

16

)(2 tx

2M

)(tF

)(22 txK

)(2

.

4 txfv

)(2

.

2 txfv

)(2

..

2 txM

)(3

.

4 txfv

)(1

.

2 txK

Free Body Diagram for Mass M2 (Optional)

Page 17: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

17

Equations for Mass M3

2

32

3

)(

dt

txdM )

)()(( 23

4 dt

tdx

dt

tdxfv )

)()(( 13

3 dt

tdx

dt

tdxfv

0))()((

))()(()(

23

1332

3

4

3

ssXssXf

ssXssXfsXsM

TransformLaplaceTaking

v

v

Page 18: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

18

)(3 tx

3M

)(3

.

3 txfv )(3

.

4 txfv

)(3

..

3 txM

)(2

.

4 txfv

)(1

.

3 txfv

The free body diagram-M3

Page 19: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

19

Step 2– Mass M1, M2 and M3

)(1 sX

)(1 sX

)(1 sX

)(2 sX

)(2 sX

)(2 sX

)(3 sX

)(3 sX

)(3 sX

2K 211321 sMsfsfKK vv

22422 sMsfsfK vv 2K sfv4 )(sF

0

2343 sMsfsf vv 0 sfv4 sfv3

Example 2

Page 20: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

20

Example 3 – Car suspension system

Automobile suspension systemAlong the road1. The vertical displacements at the tires act as the

motion excitation to the automobile suspension system

2. Motion consists of a translational motion of the center of mass

3. Rotational motion about the center of mass

Page 21: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

21

Example 3 – Car suspension system

1. Assuming that the motion xi at point P is the input to the system

2. The vertical motion x0 of the body is the output3. Transfer function = ?

X0(s)/Xi(s)

Page 22: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

22

Example 3 – Car suspension system

- ¿Taking Laplace Transform

(𝑀𝑠2+𝑏𝑠+𝑘 ) 𝑋 0 (𝑠)=(𝑏𝑠+𝑘) 𝑋 𝑖(𝑠)

𝑋 0 (𝑠)𝑋𝑖 (𝑠 )  

= 𝑏𝑠+𝑘𝑀 𝑠2+𝑏𝑠+𝑘

Transfer Function

Page 23: Csl3 19 j15

ELECTRICAL ELECTRONICS COMMUNICATION INSTRUMENTATION

23

Next Class

Rotational and electrical system Mathematical modeling