current status of bunch emission simulation for the pitz gun€¦ · dec. 2013 | tu darmstadt |...

14
19. Dec. 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 1 TUD-DESY Meeting 2013 ROOM 114, Darmstadt, Germany, 19.12.2013 Current Status of Bunch Emission Simulation for the PITZ Gun Ye Chen, Erion Gjonaj, Wolfgang Müller,Thomas Weiland

Upload: others

Post on 23-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 19. Dec. 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 1

    TUD-DESY Meeting 2013 ROOM 114, Darmstadt, Germany, 19.12.2013 Current Status of Bunch Emission Simulation for the PITZ Gun Ye Chen, Erion Gjonaj, Wolfgang Müller,Thomas Weiland

  • 19. Dec. 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 2

    Contents

    Reviews:

    motivation, simulation model and settings, technical problems & solutions, CST simulation logfiles, etc.

    CST Simulation Results:

    emittance studies (convergence studies for r=0.4mm, Q0=1nC, comparisons with ASTRA), charge emission study (r=0.2mm-0.4mm, Q0=1nC)

    Summary and Outlook:

    charge emission study (r=0.3mm, Q0=2nC), inhomogeneous case

  • 19. Dec. 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 3

    Reviews Motivation of this study: investigations on the huge discrepancies between

    the simulation results and experimental data which contribute to understanding on the emittance growth within the PITZ Gun. Problem: Beam uniformity assumption violated few mm away from cathode in the boosted frame The 3D CST PIC Approach can be performed in order to solve the problem.

    see talks from Dr. Erion Gjonaj, @ Hamburg 12.2011 and Zeuthen 12.2013 for details

    Technical Problems Applicable Solutions

    Cavity field interpolation at the cathode plane

    Mirrored gun model Export field data in ascii and

    redefine mesh steps in each direction

    Resolution over the initial bunch length (particle import interface)

    Improve the local mesh steps down to 0.005mm or so

    Apply an initial distribution which spreads in time instead

    Cavity field accuracy Eigenmode calculations with

    comparable high resolution for PIC

    CPU&MEMORY… Cluster…

    • Calculation domain: 3 cm • Meshcell numbers needed with resolution

    of 10μm : 1095 millions • Timescale: 29 hours

    Simulation Parameters Qtot=1nC, XYrms=0.4mm, Bunch length =2ps/21.5ps\2ps, Ekin=0.55eV, field gradient=60.58MV/m, field Ratio=1.04, MaxBz=-0.2279T

    Local Mesh Refinement

    Particle Import Interface Cavity Field Solenoids Field

  • 19. Dec. 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 4 0 200 400 600 800 1000 12000

    50

    100

    150

    200

    250

    300

    Meshcell Numbers / millions

    Pea

    k P

    hys

    ical

    Mem

    ory

    /GB

    Finest Mesh Resolution

    CPU : 2 * Intel Xeon E5-2643 (Quadcore, 3.30 GHz, 2 * 8.0 GT/s QPI, 10 MB L2 Cache)Memory : 256 GBHarddisk: 500 GB SATA RAID1 + 3000 GB

    Computer Configuration Info:

    ∆x ≈ ∆y ≈ ∆z ≈ 0.01mmCalculation domain in z = 3cm

    Meshcell Numbers ≈ 1095millionsPeak Memory Needed ≈ 254 GBMemory

    CPU

    0 200 400 600 800 1000 12000

    5

    10

    15

    20

    25

    30

    Meshcell Numbers /millions

    CS

    T S

    imu

    lati

    on

    Tim

    e /h

    ou

    rs Computer Configuration Info:

    Calculation Domain in CST: z = (0-3) cmPhotocathode @ z=0

    CPU : 2 * Intel Xeon E5-2643 (Quadcore, 3.30 GHz, 2 * 8.0 GT/s QPI, 10 MB L2 Cache)Memory : 256 GBHarddisk: 500 GB SATA RAID1 + 3000 GB ∆x ≈ ∆y ≈ ∆z ≈ 0.01mm

    calculation domain in z direction = 3cmCalculation Time ≈ 29 hours

    Meshcell Numbers ≈ 1095 Millions

    Finest Mesh Resolution

  • 19. Dec. 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 5

    relative error < 1% relative error < 1%

    relative error < 1% relative error < 1%

    r=0.4mm, Q=1nC for Xrms, Zrms, Ekin, ∆E

    Shorten calculation domain to 20 mm for convergence study Simulation results with a high resolution of 10μm for r=0.4mm, Q=1nC case

    CST Simulation Results ---Emittance Studies

  • 19. Dec. 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 6

    Particle Distributions @ z=18.6758 mm

    Transcerse Phase Space at z=18.6758 mm

    3D-XZ 2D-XY

    3D

    x y

    z

    px/p

    z /(r

    ad)

    x /mm

    Part

    icle

    Den

    sity

    /(n

    orm

    aliz

    ed a

    rbitr

    ary

    unit)

    x /mm

    CST Emittance Studies

  • 19. Dec. 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 7

    The relative error is below 1%.

    CST Emittance Studies

    r=0.4mm, Q=1nC for transverse emittance

  • 19. Dec. 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 8

    Comparisons with ASTRA

    relative error : 1.5%

    relative error : 1.5%

    relative error : 0.5%

    relative error : 1%

    r=0.4mm, Q=1nC for Xrms, Zrms, Ekin, ∆E

  • 19. Dec. 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 9

    Comparisons with ASTRA

    r=0.4mm, Q=1nC for transverse emittance

  • 19. Dec. 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 10

    Comparisons with ASTRA

    r=0.25mm, Q=1nC r=0.40mm, Q=1nC

    r=0.30mm, Q=1nC r=0.45mm, Q=1nC

  • 19. Dec. 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 11

    Broaden the calculation domain to 8cm with a relatively medium resolution of 30 μm in x & y and 10 μm in z

    Comparisons with ASTRA

    Transverse Phase Space @ z=77.9 mm

    3D-XZ 2D-XY 3D

    Particle Distributions @ z=77.9 mm px

    /pz

    /(rad

    )

    x /mm

    Part

    icle

    Den

    sity

    /(n

    orm

    aliz

    ed a

    rbitr

    ary

    unit)

    x /mm

  • 19. Dec. 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 12

    Charge Emission Studies --- Space Charge Limit

    Z = 0 mm Z = 2 mm

    r = 0.2mm, Q=1nC Calculation Domain=2mm Simulation Time: only for emission Cathode Plane @ z=0

    Part

    icle

    Den

    sity

    /(arb

    itrar

    y un

    it)

    z

  • 19. Dec. 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 13

    SPCH Limited Qr=0.4mm=1nC Qr=0.3mm=1nC

    Qr=0.2mm=0.84nC

    Qr=0.25mm=0.97nC

    Charge Emission Studies --- Space Charge Limit

  • 19. Dec. 2013 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Ye Chen | 14

    Convergent simulation results obtained for Q=1nC,XYrms=0.4mm case Good agreements on low-order beam quality parameters with ASTRA Discrepancies on the transverse emittance are found compared to ASTRA CST SPCH limit observed for XYrms =0.2mm & 0.25mm case. Exact peak

    emitted charge need to be calculated by use of much finer resolution.

    Summary and Discussions

    − Charge emission study, r=0.3mm, Q0=2nC, Qpeak??

    − Emittance @ z≈8cm for different laser spot size

    − Further emittance study with inhomogeneous distributions

    Qpeak?

    TUD-DESY Meeting 2013�ROOM 114, Darmstadt, Germany, 19.12.2013��Current Status of�Bunch Emission Simulation for the PITZ Gun��Ye Chen, Erion Gjonaj, Wolfgang Müller,Thomas Weiland��Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14