current trends in optical mems - eecs at uc berkeleywu/presentations/ofc2005.pdf · ming wu @ ofc...

Download Current Trends in Optical MEMS - EECS at UC Berkeleywu/Presentations/ofc2005.pdf · Ming Wu @ OFC 2005 1 Current Trends in Optical MEMS Ming C. Wu University of California, Berkeley

If you can't read please download the document

Upload: hadiep

Post on 06-Feb-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 1Ming Wu @ OFC 2005

    Current Trends in Optical MEMSCurrent Trends in Optical MEMS

    Ming C. Wu

    University of California, BerkeleyEECS Department &

    Berkeley Sensor and Actuator Center (BSAC)[email protected]

    OFC 2005Tutorial

  • 2Ming Wu @ OFC 2005

    AcknowledgmentAcknowledgment

    Providing viewgraphs Thomas Ducellier (Metconnex) Li Fan (Formfactor) Andres Fernandez (Glimmerglass) Roger Helkey, Olivier Jerphagnon (Calient) Dan Marom (Lucent) Katsu Okamoto (Okamoto Lab) Olav Solgaard (Stanford University) Rod Tucker (Univ. Melborne)

    Graduate students and Postdocs at Berkeley and UCLA WSS: J.C. Ted Tsai, Dooyoung Hah, Sophia Huang PhC switch: M.C. Mark Lee MEMS Microdisk: M.C. Mark Lee, Jin Yao MEMS PLC switch: Josh C.H. Chi, Jin Yao

  • 3Ming Wu @ OFC 2005

    OUTLINEOUTLINE

    Introduction

    Optical design considerations

    Space division switches 2D MEMS optical switches 3D MEMS optical switches

    Spectral domain processors Wavelength-selective switches

    Planar lightwave circuits (PLC)-MEMS Integration

    Diffractive optical MEMS

    New directions

    Summary

  • 4Ming Wu @ OFC 2005

    25 Years of Optical MEMS25 Years of Optical MEMS

    1980 1990 2000

    Scanning Mirror (Petersen, IBM)

    Digital Micromirror Device (DMD, TI)

    TIsTIs DMDDMD

    Free-Space Optical Bench(UCLA/Berkeley)

    3D MEMSSwitches

    Micromotoers(Berkeley)

    ?

    Grating Light Valve(GLV, Stanford)

    2D MEMS Switches(Tokyo U)

    TITI Silicon Light MachineSilicon Light Machine

  • 5Ming Wu @ OFC 2005

    Bulk MicromachiningBulk Micromachining

    Anisotropic wet chemical etching (restricted to fixed crystalline orientations)

    VerticalSidewall

    Deep reactive ion etching (DRIE or ICP-RIE)

    Combine with silicon-on-insulator (SOI) or III-V epi wafer

    Suspended structure in one-step etching + releasing

    Multi-layer structure by additional wafer bonding

    High aspect ratio (> 20:1) Independent of crystal orientation More efficient use of real estate of

    substrate (e.g., can produce closely spaced structures)

  • 6Ming Wu @ OFC 2005

    SurfaceSurface--MicromachiningMicromachining::2 2 StandardStandard Foundry ProcessFoundry Process

    MUMPsMUMPs SUMMiTSUMMiT

    Poly 1Poly 2

    2 um

    Poly 0

    6.25 um

    Poly 2Poly 1

    Poly 4

    Poly 3

    0.5 um1 um

    CMP1

    CMP2

    12.75 um

    Poly 0

    MEMSCAP Sandia National Lab

    Fairchild (SUMMiT-4)

    Si Substrate Si Substrate

  • 7Ming Wu @ OFC 2005

    MEMS Technologies and Optical Element Size MEMS Technologies and Optical Element Size

    ElectromagneticActuation Electrostatic Actuation

    1 cm 1 mm 1 m100 m 10 m

    Scanning displayImaging

    3D-MEMSOXC

    DiffractiveMEMS

    2DMEMSSwitch

    2x2 SwitchesVOA

    Projectiondisplay

    OpticalElement

    Size

    Applications

    MainActuation

    Mechanisms

    Micro-resonators

    PhotonicCrystals

    Bulk-Micromachining(Single Crystalline Si, DRIE, Wafer Bonding)

    Surface-Micromachining(Poly-Si, Al)

    MainFabrication

    Technologies

    Mirror-basedVOA

    OADMWSS

    Gain equalizerDispersion

    compensator

  • 8Ming Wu @ OFC 2005

    Optical DesignsOptical Designs

  • 9Ming Wu @ OFC 2005

    Direct Coupling Without LensesDirect Coupling Without Lenses

    0 200 400 600 800 1000-5

    -4

    -3

    -2

    -1

    0

    Inse

    rtion

    Los

    s (d

    B)

    Distance (um)

    Single Mode Fiber (SMF)

    Thermally Expanded Core(TEC) Fiber

    SMF

    TECAirAir

    Index-Matching

    Fluid

    Short propagation distance May be used for small switches or VOAs

    d

  • 10Ming Wu @ OFC 2005

    Example: 2x2 SwitchExample: 2x2 Switch

    Marxer, et al., J-MEMS, vol.6, 1997. p.277-85.

    CrossState

    BarState

  • 11Ming Wu @ OFC 2005

    FreeFree--Space Optics: Space Optics: GaussianGaussian BeamBeam

    Larger beam waist Long collimation length System size ~ 2b Mirror diameter ~ 2aw0, a ~ 1.5 to 2

    20wb =

    02w 022 w

    +=

    22

    02 1)(

    bzwzw (Confocal Parameter)

    b

  • 12Ming Wu @ OFC 2005

    Space Division Switches:Space Division Switches:

    (1) 2D MEMS Optical Switches

    (2) 3D MEMS Optical Switches

  • 13Ming Wu @ OFC 2005

    Scaling of 2D MEMS Optical SwitchesScaling of 2D MEMS Optical Switches

    Input Channels

    OutputChannels

    ADD Channels

    DROPChannels

    CollimatorArrays

    2D MEMSSwitchChip

    22

    2

    0

    0

    20

    2

    2

    22

    NaLwa

    N

    awRPR

    wbNPL

    PN

    =

    =

    =

    ==

    2 ~ a (vertical) Radius Mirror :

    rMicromirro of Factor Fill :

    Length Chip :

    Pitch Fiber : Count Port :

    PL = 2b

    02w 022 w

    b2

  • 14Ming Wu @ OFC 2005

    Port Count of 2D MEMS SwitchesPort Count of 2D MEMS Switches

    0

    20

    40

    60

    80

    0 50 100 150 200

    1/e Beam Waist (m)

    Max

    imum

    Por

    t Cou

    nt

    Fill Factor =

    30%

    50%

    70%

    0

    1

    2

    3

    4

    5

    0 50 100 150 200

    1/e Beam Waist (m)

    Loss

    due

    to M

    irror

    Tilt

    (dB

    ) Mirror Tilt =

    0.05

    0.1

    0.2

    Port Count vs Beam Size Loss Due to Mirror Tilt

    Accuracy and uniformity of mirror angles impose a loss penalty, which limit the maximum port count2

    2

    2

    0

    2 NaL

    wa

    N

    =

    :Size Chip

    :Count Port

    1/e2 Beam Waist (m) 1/e2 Beam Waist (m)

    Max

    imum

    Por

    t Cou

    nt

    Loss

    due

    to M

    irror

    Tilt

    (dB

    )

  • 15Ming Wu @ OFC 2005

    SurfaceSurface--MicromachinedMicromachined2D MEMS Optical Switches (16x16)2D MEMS Optical Switches (16x16)

    L. Fan, et al., OFC 200216x16 Switch

    L. Fan, et al., OFC 2002

    010203040506070

    89.8

    0

    89.8

    4

    89.8

    8

    89.9

    2

    89.9

    6

    90.0

    0

    90.0

    4

    90.0

    8

    90.1

    2

    90.1

    6

    90.2

    0

    Mirror Angle (degree)

    Num

    ber

    Absolute angular uniformity ~ 0.05

  • 16Ming Wu @ OFC 2005

    Scaling of 3D MEMS OXCScaling of 3D MEMS OXC

    02 w

    022 w

    ( )

    ( )

    WaistBeam : 2) ~ ( Radius Mirror :

    AngleScan Mechanical :

    :Length Path Optical

    size System

    :Count Port

    0

    0

    20

    2

    2

    2

    2

    22

    33

    ~

    9

    waawR

    wbL

    NaLa

    LN

    =

    ==

    =

    =

    3~ L

    InputCollimators

    InputCollimators

    2D Array of 2-Axis Micromirrors

    OutputCollimators

    2D Array of 2-Axis Micromirrors

    OutputCollimators2D Array of 2-Axis

    Micromirrors

  • 17Ming Wu @ OFC 2005Calient Network proprietary and confidential. Do not copy or distribute without permission

    Evolutionary Networking

    Revolutionary Technology

    ASIC Voltage drivers

    MEMS mirror array

    Collimator array0

    2400

    4800

    7200

    9600

    12000

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Insertion Loss (dB)

    Num

    ber o

    f Con

    nect

    ions

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%100%

    Cum

    ulat

    ive

    Perc

    enta

    ge

    320x320 connections below 3.5 dB

    Transparent from 1260 to 1625nmTypical Wavelength Dependent Loss

    Note: the higher loss peak around 1400 nm is due to OH water absortion and can vary.

    00.5

    11.5

    22.5

    33.5

    44.5

    5

    1250 1300 1350 1400 1450 1500 1550 1600 1650

    Wavelength (nm)

    Inse

    rtio

    n Lo

    ss (d

    B)

    PX

    O E S C L

    Transparent from 1260-1625 nm

    3D-MEMS Switching Technology

  • Glimmerglass 2005

    Glimmerglass 3D-MEMS Switches

    32x32 to 80x80 OEM Module 16x16 to 24x24 2U Chassis 32x32 to 160x160 8U Chassis

    3D-MEMS Architecture

    2 x 6 x 7

    MEMSMirror Array

    CollimatorArray

  • Glimmerglass 2005

    Glimmerglass MEMS Module

    Electrostatic Actuation Electrode

    Gimbaled Mirror

    Mirror Wafer

    Multi-Layer Ceramic

    Snap Guard Wafer

    V

    Snap Guard Prevents Electrostatic Snap-Down Failure Mirror Material Is Highly Reliable Single-Crystal Silicon on Insulator (SOI) Ceramic Substrate Contains Electrodes, Routing, And Hermetic Seal Ring

    SPIE Vol. 5604, pp. 208-217

    (Scan Angle ~ 3.5 @ ~ 200V)

  • 20Ming Wu @ OFC 2005

    WavelengthWavelength--Selective Switches (WSS)Selective Switches (WSS)

  • 21Ming Wu @ OFC 2005

    Fourier Transform Pulse ShaperFourier Transform Pulse Shaper

    Shaping femtosecond pulses by modulating the phases and amplitudes of their spectral components

    A. M. Weiner, J. P. Heritage, and E. M. Kirschner, J. Opt. Soc. Am. 1988

  • 22Ming Wu @ OFC 2005

    Dynamic WDM FunctionsDynamic WDM Functions

    f

    f

    Grati

    ngColli

    mators

    Femtosecond pulse shaperPiston Mirrors

    Tunable dispersion compensator

    Deformable mirrors

    Wavelength-Selective Switch

    (WSS)

    1xN analog micromirrors

    Optical add-drop multiplexer (OADM)

    1x2 Digital micromirrors

    Spectral (or gain) equalizer

    Variable reflectivity

    mirror

    Wavelength blocker

    ON-OFF reflectors

    DynamicWDM

    Functions

    MEMS Spatial Light Modulator

    Array

    MEMS

    Spati

    al

    Light

    Modu

    lator

    Array

  • 23Ming Wu @ OFC 2005

    1x4 Wavelength1x4 Wavelength--Selective Switch (WSS)Selective Switch (WSS)

    f

    f

    Grati

    ng

    Y

    X Collimato

    rs

    Analog Micromirror

    Array

  • 24Ming Wu @ OFC 2005

    1x4 WSS1x4 WSS

    D. Marom et al. (Lucent), OFC 2002 1x4 WSS Channel spacing: 50 or 100 GHz MEMS performance: 12 ( > 55 V )

    T. Ducellier et al. (JDS-U), ECOC 2002

    1x4 WSS Channel spacing: 100 GHz MEMS performance: 2

  • 25Ming Wu @ OFC 2005

    WSS provides: Port switching Wide passbands 10 dB DSE Blocking Low insert loss Low PDL, DGD

    64 Channel, Wavelength-Selective 41 Switch (D. Marom)Free-Space Implementation

  • 26Ming Wu @ OFC 2005

    Analog Micromirror Array (UCLA)Analog Micromirror Array (UCLA)

    Fixed fingers

    Movable fingers

    Hidden springs

    Mirror

    Anchor

    zy

    x

    +/- 6 (mechanical)Scan Angles

    0.0035dBSystem (3hr)0.00085Stability (3hr)

    3.4 kHzRes. Freq.98%Fill Factor6 VVoltage

    0 5 10 15 20 250

    2

    4

    6

    8

    Rot

    atio

    n A

    ngle

    (deg

    )

    Applied Voltage (V)

    0.5m 1m2m

    3m

    DMD-Like

    Comb Finger Spacing

    Hah, et al (UCLA) J. MEMS, 2004, p. 279 Tsai, et al (UCLA) IEEE PTL 2004, p. 1041

  • 27Ming Wu @ OFC 2005

    Scaling of WSSScaling of WSS

    Grating

    spatial

    =

    #22 f

    fNColl

    MEMS wfw

    =

    System size ~ 2 f

    Total capacity (Nspatial x N )is constant

    Proportional to f

    Collimators

    f f

    AnalogMicromirror

    Array

    CollwMEMSw

    Gratingspatial

    =

    #22 ffBWNN

  • 28Ming Wu @ OFC 2005

    Approach for Increasing Port Count (1)Approach for Increasing Port Count (1)

    Use anamorphic prism pair to compress lateral beam size on MEMS micromirrors

    Elliptical beams on MEMS mirrors Rectangular micromirror

    D. Marom(Lucent)

  • 29Ming Wu @ OFC 2005

    Approach for Increasing Port Count (2)Approach for Increasing Port Count (2)

    1xN2 WSS: 2D collimator array 1D array of 2-axis

    micromirror array

    Port count is increased from N to N2

    N is the diffraction-limited linear port count

    High port count WSS 1x32 WSS has been

    demonstrated

    f

    f

    Grating

    Resolution lens

    Y

    X

    J.-C. Tsai, et al., (UCLA) ECOC 2004, Paper Tu1.5.2

  • 30Ming Wu @ OFC 2005

    HighHigh--Fill Factor 2Fill Factor 2--Axis Micromirror ArrayAxis Micromirror Array

    2-DOF mirror joint

    Mirror

    Lever

    Vertical combdrive actuators

    Gimbal-less High Fill factor (> 98%)

    Large scan angle 3x leverage Powerful vertical combdrive

    actuatorsxy

    Original mirror position

    Tsai, Fan, Hah, Wu, Optical MEMS 2004

  • 31Ming Wu @ OFC 2005

    SEM of SEM of GimbalGimbal--less 2less 2--Axis Analog Micromirror Axis Analog Micromirror ArrayArray

    SUMMiT-V 5-layer surface micromachining process Mirror pitch: 200 um Large scan angles: 6.7 (mechanically) @ 75 V Fill factor: 98% Resonant frequency = 5.9 kHz

  • 32Ming Wu @ OFC 2005

    Planar Lightwave Circuit (PLC) MEMS Planar Lightwave Circuit (PLC) MEMS

  • 33Ming Wu @ OFC 2005

    (a) Configuration of 16ch-100GHz OADM (b) Photograph of OADM

    K. Okamoto et al., Electron. Lett., vol. 31, pp.723-724, 1995

    Drop Main outputport port

    Main Addinput portport

    ReconfigurableReconfigurable Optical Add/Drop Optical Add/Drop MultiplexerMultiplexer(ROADM)(ROADM)

    (VG courtesy of K. Okamoto)

  • 34Ming Wu @ OFC 2005

    PLC 1x9 WSSPLC 1x9 WSS

    1x9 WSS

    Thermal optic switch 450 mW / switch Total power ~ 14W

    Loss ~ 5.4 dB

    Isolation > 46 dBInput

    Output 1

    Output 2

    Output 3

    Output 4

    Output 5

    1x2

    C.R. Doerr, et al. (Lucent), OFC 2002 Postdeadline Paper, FA3

  • 35Ming Wu @ OFC 2005

    2x2 MEMS 2x2 MEMS WaveguideWaveguide WSXCWSXC

    D.T. Fuchs, et al (Lucent) IEEE PTL, Jan. 2004

    100 GHz channel spacing 10.6 dB insertion loss 20 dB extinction ratio

    3 diffraction orders by AWG Optical phases of (+1, 0, -1) orders

    modulated by MEMS piston mirrors Chip ~ 5 x 9 mm2

  • 36Ming Wu @ OFC 2005

    40 Channel, Wavelength-Selective 12 Switch (D. Marom)

    Port 1

    Input

    Port 2Cylindricalcollimators

    PLC 1 and PLC 2

    Fourierlens

    MEMSmicro-mirrorarray

    Hybrid PLC and Free-Space Implementation

    0

    < 0

    > 0

    Switch to Port 1 Switch to Port 2

    Hybrid WSS provides: Same benefits as free space WSS Compact implementation Integration of additional functionality

  • 37Ming Wu @ OFC 2005

    Compact Spectral Pulse Shaper (D. Marom)

    Hybrid PLC and Free-Space Implementation

    Pulse Shaper provides: Spectral domain processing Polarization independent Gateway to optical arbitrary

    waveform synthesis

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    0 20 40 60 80

    Voltage

    Phas

    e [

    ]

    MEMS piston motion micromirror array >2 phase modulation Polarization insensitive

    Input Pulse Thru shaper Dispersion Compensated Shaped signal

  • 38Ming Wu @ OFC 2005

    2D arrangement of ports for scalable 1x9 2D arrangement of ports for scalable 1x9 WSSWSS

    Array of Waveguide Dispersive Elements

    Collimating/Focusing lenses MEMS mirror

    linear array

  • 39Ming Wu @ OFC 2005

    Interleaved spectrum switched to all Interleaved spectrum switched to all output portsoutput ports

  • 40Ming Wu @ OFC 2005

    1x8 PLC MEMS Optical Switches1x8 PLC MEMS Optical Switches

    Slab

    CoreCladding

    Cladding

    Theoretical loss ~ 0.5 dB, primarily due to vertical diffraction loss

    Compact, no bulk optical elements

    C.H. Chi, et al. (UCLA and Okamoto Lab), OFC 2004

    4.5 mm

    3 mm

    FiberRibbon

    Low-LossButt Coupling

    Deep-EtchedCylindricalMicrolens

    Micromirror

    Fan-ShapedWaveguide Array

    Free PropagationSlab Region

    50 um

  • 41Ming Wu @ OFC 2005

    Tunable Tunable FabryFabry--Perot FiltersPerot Filters

  • 42Ming Wu @ OFC 2005

    Tunable Tunable FabryFabry--Perot (FP) FiltersPerot (FP) Filters

    FixedMirror MovableMirror

    FreeSpectralRange(FSR)

    Frequency,

    Tran

    smis

    sion

    f

    f

    d

    Tuning Efficient nm

    GHz 40

    TunableBroadly nm 260 3 ~ d For

    =

    =

    df

    FSR

    ddcd

    dff

    mdcfmkd

    ddcFSR

    ==

    =

    =

    ==

    22222

    22

    2

    :Condition Resonance

    h) wavelengt(in freq.) (in

    FinesseFSRf dB =3

  • 43Ming Wu @ OFC 2005

    Tunable FP FiltersTunable FP Filters

    Has been demonstrated in many material systems III-V Dielectric (e.g., Si/SiO2) Semiconductor Air gap DBR

    Various actuation mechanisms Electrostatic (parallel plate actuators) Thermal actuators Piezoelectric actuators

  • 44Ming Wu @ OFC 2005

    Nonlinear Optical ResponseNonlinear Optical Response

    Optical Power

    VG courtesy of Prof. Rod Tucker (Univ. Melbourne)

    Data supplied by CoreTek

  • 45Ming Wu @ OFC 2005

    k xFE

    PoutcR

    PF outR )1(2

    =

    Keff xFE

    Pout

    dfdG

    RcFSRPkk ineff

    =)1(

    4

    Filter Response Slope

    Pout

    Effective Spring Constant due to Effective Spring Constant due to Radiation PressureRadiation Pressure

    VG courtesy of Prof. Rod Tucker (Univ. Melbourne)

  • 46Ming Wu @ OFC 2005

    Diffractive Optical MEMSDiffractive Optical MEMS

  • 47Ming Wu @ OFC 2005

    Grating Light ValveGrating Light Valve

    Applications Projection display Variable optical attenuators (VOA) Gain equalizers Wavelength blockers

    Companies Silicon light machine (Cypress),

    Lightconnect, Polychromix, Kodak

    Nitride withAl coating

    Incident Light Reflected Incident Light Diffracted

    O. Solgaard, F. S. A. Sandejas, D. M. Bloom, "A deformable grating optical modulator", Optics Letters, vol. 17, no. 9, pp. 688-690, 1 May 1992.

    PolychromixSilicon Light Machine

  • 48Ming Wu @ OFC 2005

    Telecommunications ApplicationsTelecommunications Applications

    Dynamic Spectral Equalizer (DSE)

    Reconfigurable Channel Blocking Filter Dynamic Gain Equalizer

  • 49Ming Wu @ OFC 2005

    MEMS MEMS SwitchableSwitchable WDM WDM DeinterleaverDeinterleaver Based on Based on GiresGires--TournoisTournois InterferometerInterferometer

    FocusingLens

    OutputFiber Array

    PowerDetectorPower

    Detector

    TunableLaser

    TunableLaser

    MEMSMirrorArray

    BeamSplitter

    Input fiber

    Olav Solgaard, Stanford University

    http://wdm.stanford.edu/snrc/kyoungsik12_10_01.ppt

  • 50Ming Wu @ OFC 2005

    Nanophotonic MEMSNanophotonic MEMS

  • 51Ming Wu @ OFC 2005

    ON

    Defect

    1D and 2D 1D and 2D PhotonicPhotonic Crystal SwitchesCrystal Switches

    1D Photonic Crystal:ON-OFF Switch

    2D Photonic Crystal:1x2 Switch

    ( NxN Switch)OFF

    Waveguide

    Waveguide

    Left Path Right Path

  • 52Ming Wu @ OFC 2005

    1D MEMS 1D MEMS PhotonicPhotonic SwitchSwitch

    FDTD Transfer Matrix

    Wavelength ( m)

    Tran

    smitt

    ance FDTD

    Transfer Matrix

    Wavelength ( m)

    Tran

    smitt

    ance

    FDTD Transfer Matrix

    Wavelength ( m)

    Tran

    smitt

    ance

    FDTD Transfer Matrix

    Wavelength ( m)

    Tran

    smitt

    ance

    TransmissionState

    ReflectionState

  • 53Ming Wu @ OFC 2005

    Experimental ResultsExperimental Results

    100-nm-wide beam with < 5 nm tolerance

    ON-OFF switching with 11 dB extinction ratio

    0.5 ms switching time

    Wavelength ( m)

    Tran

    smitt

    ance

    (dB

    )

    Transmission

    Reflection

    11dB

    Wavelength ( m)

    Tran

    smitt

    ance

    (dB

    )

    Transmission

    Reflection

    Wavelength ( m)

    Tran

    smitt

    ance

    (dB

    )

    Wavelength ( m)

    Tran

    smitt

    ance

    (dB

    )

    Transmission

    Reflection

    11dB

    M.C. Lee, et al (UCLA) OFC 2002

    Anchor

    PC Slider

    ActuatorV

    Waveguide(WG)

    Waveguide(WG)Lightwave

    Anchor

    PC Slider

    ActuatorV

    Waveguide(WG)

    Waveguide(WG)Lightwave

    Anchor

    PC Slider

    ActuatorVV

    Waveguide(WG)

    Waveguide(WG)Lightwave

  • 54Ming Wu @ OFC 2005

    Microring ResonatorMicroring Resonator--Based PICBased PIC

    S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo and J. Shanton (Little Optics) OFC 2004

    Thermally Tuned with Vernier Architecture

    42 m

  • 55Ming Wu @ OFC 2005

    MEMS Tunable MicroresonatorsMEMS Tunable Microresonators

    Change resonant wavelength Thermal tuning Free-carrier injection

    Change effective Q Increase cavity loss (e.g.,

    electroabsorption) Change waveguide-disk coupling

    Change resonant wavelength Move mirror

    Change effective Q Increase media loss Tune mirror reflectivity (Hard)

    Fabry-Perot Resonators

    0

    0

    0

    Microdisk Resonators

    Input

    Drop

    Drop

    Input

  • 56Ming Wu @ OFC 2005

    Microdisk Resonator with MEMS Tunable Microdisk Resonator with MEMS Tunable CouplersCouplers

    Microdisk

    Waveguides

    Microdisk

    Waveguides

    VV

    VV

    VV

    VV

    M.C.M. Lee and M.C. Wu, Optical MEMS 2003

  • 57Ming Wu @ OFC 2005

    Dynamic Optical AddDynamic Optical Add--Drop MultiplexersDrop Multiplexers

    0 0.2 0.4 0.6 0.80

    0.2

    0.4

    0.6

    0.8

    1

    Gap Spacing (um)

    Tran

    smitt

    ance

    ThroughPort

    DropPort

    Input Through

    AddDrop

  • 58Ming Wu @ OFC 2005

    Spoiling Q by MEMS Metal MembraneSpoiling Q by MEMS Metal Membrane

    Use a metal membrane to spoil the Q of microring resonator Low loss resonant wavelength sent to Drop port High loss all wavelengths transmitted to Through port

    Enable resonance Disabled resonance

    Gregory N. Nielson, et al., (MIT) MEMS based wavelength selective optical switching for integrated photonic circuits, CLEO 2004

  • 59Ming Wu @ OFC 2005

    SUMMARYSUMMARY

    Tremendous progresses have been made in MEMS devices and manufacturing Micro-optics Packaging Control

    New trends in Optical MEMS -- Integration Higher level of integration, less free-space alignment MEMS-PLC integration MEMS-nanophotonics integration Electronics integration Single-chip optical MEMS system