curriculum & study guide2. basis of an electromagnetic field 2-1. basic characteristics of an...

26
Curriculum & Study Guide Department of Bioengineering School of Engineering The University of Tokyo 2013

Upload: others

Post on 09-May-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

Curriculum & Study Guide

Department of Bioengineering

School of Engineering

The University of Tokyo

2013

Page 2: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

Contents

1

4

7

10

14

19

Page 3: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

1

Curriculum for MECHANOBIOENGINEERING

1. Definition of mechano-bioengineering

2. Classification of mechano-bioengineering

3. History of mechano-bioengineering

4. Fundamentals of biomechanics

4-1. Definition of biomechanics

4-2. Biomaterial mechanics

4-2-1. Fundamentals of material mechanics

4-2-2. Creep, stress relaxation

4-2-3. Dynamic viscoelasticity

4-3. Bio-fluid mechanics

4-3-1 Fundamentals of fluid mechanics

4-3-2. Hemodynamics

4-3-3. Modeling of cardiovascular system

4-3-4. Lung and respiratory system

4-4. Biothermodynamics

4-4-1. Metabolism and conservation of energy

4-4-2. Energy contents of body fuel

4-4-3. Metabolic energy and energy storage

4-4-4. Loss of body heat

4-5. Biomechanical dynamics

4-5-1. Statics of the body

4-5-2. Dynamics of the body

4-5-3. Sound, auditory sense

4-5-4. The nervous system and control

4-6. Mechatronics technology

4-6-1. Real time control

4-6-2. Interface board and system bus

4-6-3. Sensor

4-6-4. Actuator

Page 4: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

2

4-6-5. AD/DA Conversion

4-6-6. Sampling

4-7. Robot controller technology

4-7-1. Feedback control

4-7-2. Feedforward control

4-7-3. Point-to-point control

4-7-4. Continuous path control

4-7-5. Remote control

4-7-6. Fail-safe

4-8. Computational Mechanics

4-8-1. Fundamental equations in Biomechanics and their discretization

4-8-2. Targets and the numerical methods

4-8-3. Taylor expansion and finite difference method

4-8-4. Variation principal and finite element method

4-8-5. Quantum and molecular simulations

4-8-6. Particle simulation

5. Processing technology

5-1. Introduction of processing technology

5-1-1. Principles of

5-1-2. Light processing technique

5-1-3. Ion beam method technique

5-1-4. Lithography technique

5-1-5. Surface treatment by nanomaterials

5-1-6. Nano-micro processing technique by radiated light

6. Design and production engineering

6-1. Design of therapeutic devices

6-1-1. Classification of therapeutic devices

6-1-2. Structural design of therapeutic devices

6-2. Medical robot

6-2-1. State of the art on Medical robotics

6-2-2. Mechanisms

6-2-3. Flow of system construction

6-2-4. Telemedicine・teletherapy and macro-, micro- controls

Page 5: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

3

6-2-5. Downsizing technique

6-2-6. Classification of telemedicine and the problems

6-3. Design of artificial organs

6-3-1. Processing of medical materials

6-3-2. Structural design of artificial organs

6-4. Design of supporting devices for regenerative medicine

6-4-1. Design of scaffold

6-4-2. Design of bioreactors

6-4-3. Function measurement ( invasive / minimally invasive / non-invasive

measurement )

6-5. Prediction of disease and support of treatment by biomechanical simulation

6-5-1. multiscale and multiphysics simulation

6-5-2. Personalized medicine and simulation

6-5-3. Simulation for circulatory and respiratory systems

6-5-4. Simulation of neuro-muscroskeletal system

6-5-5 Simulation for the design of medical devices

6-5-6. Simulation for supporting therapy

Reference books and supplementary reading books

菅原基晃,前田信治著,血液のレオロジーと血流,コロナ社(ME学会編),(2003).

神谷瞭著,循環器系のバイオメカ二クス,コロナ社,(2005).

片岡一則編,医療ナノテクノロジー ―最先端医学とナノテクの融合―",

ISBN978-4-903453-05-7, 杏林図書, (2007).

YC Fung,Biomechanics, Springer,(1996).

Irving P. Herman , Physics of the Human Body: Biological and Medical

Physics,Biomedical Engineering, Springer,(2007).

「翻訳 人体物理学」,齋藤太朗, 高木建次 共訳,NTS inc. (2010).

谷下一夫,山口隆美編,「生物流体力学」,朝倉書店 (2012).

Page 6: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

4

Curriculum for BIOELECTRONICS

1. Bio and electronics

2. Basis of an electromagnetic field

2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields)

2-2. Energy and electromagnetic-wave propagations

3. Electromagnetic field effects of the living body

3-1. Electric field and the living body

3-2. Magnetic field and the living body

3-3. Electromagnetic field and the living body

4. Electrical characteristics of the living body

4-1. Electrical conductance of the living body

4-2. Dielectric response of the living body

4-3. Heat and the living body

5. Bioelectric phenomena

5-1. Structures of the biological cell and electrical characteristics

5-2. Ion transport of the excitable cell membrane

5-3. Excitable processes and equivalent circuits

5-4. Action potential, action current and associated conductions

5-5. Electrical characteristics of a neuron, skeletal muscle, smooth muscle and heart

muscle

6. Electrical characteristics of the cell membrane

6-1. Basic theory (Faraday’s law)

6-2. Electrochemical thermodynamics and kinetics (Gibbs’s free energy, Nernst

equation, reference electrode and membrane potential)

6-3. Electrode kinetics (Tafel equation: activation rate and Fick’s diffusion equation)

6-4. Electrokinetic phenomena

6-4-1. Electrophoresis, electroendosmosis, streaming potential and migration

potential

Page 7: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

5

6-4-2. Helmholtz-Smoluchowski equation and zeta potential

6-4-3. Electric double layer

6-5. Membrane potential and membrane capacity

6-6. Electrochemical potential and the Nernst equation

6-7. Equivalent circuit model

6-7-1. Hodgkin-Huxley model

6-7-2. Action potential

7. Detailed discussion of the ion channel

7-1. Electrical characteristics of cell membrane

7-2. Static property and membrane potential generation

7-3. Stochastic description of the Hodgkin-Huxley theory

7-4. Ion channel and diversity of synaptic receptors

7-5. Generalization of an ion channel

7-6. Cable theory

8. Neuron and brain

8-1. Neuron

8-2. Layer structure of a neural network and columnar structure

8-3. Retinotopy

8-4. Neuron model

8-5. Average firing rate

8-6. Informational representation in the brain

8-7. Symbolic manipulation and pattern processing

9. Mathematical principles of the brain

9-1. Associative memory

9-2. Hebb's rule

9-3. Associative learning

9-4. Excitatory and inhibitory synaptic couplings

9-5. Cooperation and competition

9-6. Self-organizing map

9-7. Supervised learning and unsupervised learning

9-8. Error back propagation method

Page 8: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

6

10. Energy conversion of the living body

10-1. Electron transport of mitochondria

10-2. ATP synthesis by proton gradient

11. Electric and magnetic measurements of a living substance and body

11-1. SQUID

11-2. MRI

11-3. SPR

11-4. IS-FET

11-5. Hyperthermia

11-6. Patch clamp

11-7. Electrode for a biological sample and amplifier

11-8. Electrocardiograph, electromyograph and electroencephalograph

12. Brain electronics

12-1. How is the brain the same as a computer? How does the brain differ from a

computer?

12-2. History and future of brain hardware

12-3. Possibility of brain devices

12-4. Cerebral function based on coherent electronics

Reference books and supplementary reading books

「生体情報工学」 赤澤堅造(著),東京電機大学出版局 (2001)

「生体情報計測」 星宮望(著),森北出版 (1997)

「生体電磁工学概論」 松木英敏(著),コロナ社 (1999)

「生命現象と物理学」 北原和夫(著),田中豊一,朝倉書店 (1994)

「ニューロンの生物物理」 宮川博義(著),井上雅司(著),丸善 (2003)

「生体計測装置学入門」 木村雄治(著),コロナ社 (2004)

「生命と情報通信」 澤井秀文(編著),オーム社 (2009)

“Physical Biology of the Cell”, Taylor, Rob.Phillips, Jane Hondev, Julie Theirot (2011)

“Bioelectronics”, Itamar Willner (ed), Eugenii Katz (ed), WILEY-VCH (2005)

“Molecular and Cellular Biophysics”, Meyer B. Jackson (Author), Cambridge, University

Press (2006)

“Electrical conduction mechanisms in thin insulating films”, D. R. Lamb (Author),

Methuen and Co. Ltd LONDON (1967)

Page 9: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

7

“Electrochemistry at Metal and Semiconductor Electrodes”, Norio Saito (Author),

Elsevier Science (1998)

Page 10: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

7

Curriculum for BIODEVICES

1. Definition of biodevices

2. Category of biodevices

3. History of biodevices

4. Downsizing and scaling law

5. Fluid dynamics and control in micro/nanospace

5-1. Basics of fluid dynamics

(Newtonian fluid, Navier-Stokes equation, Reynolds number)

5-2. Diffusion, molecule transfer, heat diffusion, heat transfer

5-3. Surface tension, capillary effects

5-4. Electric double layer

5-5. Electrokinetic phenomena

6. Component elements of microfluidic devices

6-1. Nano/microfluidic channel

6-2. Microfilter

6-3. Micropump

6-4. Microvalve

6-5. Micromixer

6-6. Connector

7. Microfabrication technology

7-1. Lithography

7-2. Film deposition, Metallization

7-3. Etching

7-4. Cleaning, Clean technology

7-5. Soft lithography

7-6. Plastic molding

7-7. Bonding

Page 11: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

8

8. Materials and surface/interface technology

8-1. Materials properties (Glass, Polymer and Silicon)

8-2. Wetting on solid surfaces

8-3. Adsorption

8-4. Biomolecular immobilization

9. Fluid control

9-1. Electrokinetic pumping (Electroosmosis, Electrophoresis)

9-2. Pnematic pumping

9-3. Others (Centrifugal, Shear force, Capillary)

10. Detection technology

10-1. Optical measurements

(Laser induced fluorescence, Absorption, Spectroscopy)

10-2. Electrical measurements

(Potentiometry, Electrochemistry, Biosensors, Bio-transistors)

10-3. Mass measurements

(Quartz crystall microbalance, Cantilever)

11. Advanced applications

11-1. Overview

11-2. Topics

・ Separation analysis

・ Electrophoresis

・ DNA microarray

・ PCR chip

・ Immunoassay

・ Protein microarray

・ Micro biochemical synthesis

・ Blood test

・ Cell manipulation

・ Cell analysis

・ Cell culture

・ Droplet or particle formation

Page 12: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

9

・ Single molecule analysis

・ Biofuel cell

・ Fluid properties in nano space

・ Devices using nanospace

Reference books and supplementary reading books 「バイオチップとバイオセンサー」 堀池靖浩(著),宮原裕二(著),共立出版 (2006)

「マイクロ化学チップの技術と応用」 北森武彦(編),庄子習一(編),馬場嘉信(編),藤

田博之(編),丸善出版 (2004)

「バイオチップの技術と応用」 松永是(監修),シーエムシー出版 (2004)

「DNAマイクロアレイ」 Mark Schena(編集),加藤郁之進(翻訳),宝酒造 (2000)

“Extended-Nano Fluidic Systems for Chemistry and Biotechnology” Kazuma

Mawatari (Author), Takehiko Tsukahara (Author), Yo Tanaka (Author), Yutaka Kazoe

(Author), Philip Dextras (Author), Takehiko Kitamori (Author), Imperial College Press

(2012)

Page 13: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

10

Curriculum for CHEMICAL BIOENGINEERING

1. Overview of chemical bioengineering

2. Chemistry of Biomolecules

2-1. Molecular interactions

2-1-1. van der Waals Interactions

2-1-2. Hydrogen-bonding interaction

2-1-3. Ionic interactions

2-1-4. Dipole-dipole and dipole-ion interactions

2-2. DNA and RNA

2-2-1. Properties and biological functions

2-2-2. Chemical structures

2-3. Peptides and proteins

2-3-1. Properties and biological functions

2-3-2. Chemical structures

2-4. Lipids

2-4-1. Properties and biological functions

2-4-2. Chemical structures

2-5. Sugars and polysaccharides

2-5-1. Properties and biological functions

2-5-2. Chemical structures

3. Chemical basis of cells

3-1. Definition of cells

3-2. Classification of cells

3-2-1. Single-cell

3-2-2. Multicellular organisms

3-3. Structures of cells and roles of organelles

3-4. Activity of cells

3-4-1. Metabolism

3-4-2. Energetics

3-4-3. Signal transduction and their regulations in cells

3-4-4. Cellular growth and reaction kinetics

Page 14: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

11

4. Biomolecular engineering and cell engineering

4-1. DNA/RNA engineering

4-1-1. Recombinant DNA technology

4-1-2. DNA/RNA/PNA Fmoc-synthesis

4-1-3. Ribozyme, Aptamer

4-2. Protein engineering

4-2-1. Post-traslational modification

4-2-2. Chemical modification, Enzyme engineering

4-2-3. In vitro cell-free protein synthesis

4-3. Cell engineering for eukaryotic cells

4-3-1. Cell culture engineering and cell fusion

4-3-2. Intracellular delivery technology of DNA/protein

4-3-3. Metabolic engineering

5. Basic physiology for bioengineers

5-1. Metabolic tissues

5-1-1. Human body as a chemical system

5-1-2. Circulatory system sustaining human metabolism

5-1-3. Structure and function of the lung

5-1-4. Structure and function of the gastrointestinal system

5-1-5. Structure and function of the liver

5-1-6. Structure and function of the pancreas

5-1-7. Structure and function of the kidney

5-2. Embryology and aging

5-2-1. Development of humans and animals

5-2-2. Fertilization and embryo development

5-2-3. Development of a fetus and the role of the placenta

5-2-4. Historical alteration of age and cause of death

5-2-5. Current status of age and cause of death

5-2-6. Factors determining human age

5-2-7. Sustainable aging society and contribution of engineering

5-3. Regenerative medicine and tissue engineering of metabolic tissues

5-3-1. Liver

5-3-2. Pancreas

Page 15: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

12

5-4. Hematology

5-3-1. Oxygen and evolution

5-3-2. Respiratory system and lung

5-3-3. Erythrocyte

5-5. Artificial oxygen carrier

5-5-1. Hemoglobin-based carriers

5-5-2. Heme derivatives

5-5-3. Perfluorocarbon

5-6. Mathematical modeling for tissue engineering

5-6-1. Reaction-diffusion equation and Turing model

5-6-2. Cell automaton and cellular potts model

5-6-3. Hybrid model

6. Basic pharmacology for bioengineers

6-1. Basic pharmacology

6-1-1. Receptor and ligands

6-1-2. Agonist and antagonist

6-1-3. Intracellular receptor, allosteric enzyme, tyrosine kinase, ion channel, and

GPCR

6-2. Basic pharmacokinetics

6-2-1. Adsorption, distribution, metabolism, and exertion (ADME)

6-2-2. Volume of distribution and clearance

6-2-3. Area under the curve and half-life

6-2-4. Administration routes and bioavailability

6-3. Drug development and efficacy/toxicity evaluation

6-3-1. Drug development process and its future

6-3-2. Molecular level screening in drug development

6-3-3. Efficacy/toxicity evaluation in cell/tissue levels

6-3-4. Important toxicities in drug development

6-3-5. Tissues/organs determining efficacy/toxicity of drugs and their in vitro

models

6-3-6. Efficacy/toxicity evaluation in a whole body and numerical simulations

6-3-7. Contributions of microtechnologies

6-3-8. Integration of various technologies toward mechanism-based

efficacy/toxicity evaluation

Page 16: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

13

6-4. Drug delivery systems

6-4-1. Basic cancer biology

6-4-2. Compartment and compartment model

6-4-3. Local administration

6-4-4. Peritoneal dissemination

6-4-5. Coagulation and fibrinolytic system, and peritoneal adhesion

Reference books and supplementary reading books

Chapter 2

Biochemistry. Jeremy M. Berg, John L. Tymoczko, Lubert Stryer Jeremy Mark Berg

Chapter 3, 4

Life: The Science of Biology (8th edition), David Sadava, David M. Hillis, H. Craig Heller,

May R. Berenbaum

Chapter 5

Guyton and Hall Textbook of Medical Physiology (Lippincott's Illustrated Reviews

Series), John E. Hall

Chapter 6

Basic and Clinical Pharmacology, 11th Edition (LANGE Basic Science), Bertram

Katzung, Susan Masters, Anthony Trevor

Page 17: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

14

Curriculum for BIOMATERIALS

1. Definition of biomaterials

2. Classification of biomaterials

3. History of biomaterials

4. Requirements for biomaterials

4-1. Mechanical property

4-2. Workability

4-3. Biocompatibility

4-4. Biosafety

4-5. Biodegradability

4-6. Bioactivity

4-7. Sterilization

5. Bulk and surface property

5-1. Bulk property

5-1-1. Mechanical properties of materials

5-1-1-1. Mechanical response

5-1-1-1-1. Elastic and plastic deformations

5-1-1-1-2. Stress and strain

5-1-1-1-3. Viscoelasticity

5-1-1-2. Fracture

5-1-1-2-1. Fracture mechanism

5-1-1-2-2. Atomic perspective

5-1-1-2-3. Fatigue

5-2. Surface / Interface

5-2-1. Introduction of surface and interface

5-2-2. Physical chemistry of surface and interface Wettability / Surface free energy /

Electrokinetic phenomenon

5-2-3. Physicochemical surface modification of materials

5-2-4. Surface-immobilized biomolecules

Page 18: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

15

5-2-4-1. Physical adsorption, Chemical adsorption

5-2-4-2. Protein adsorption and Cell adhesion

5-3. Role of water at biomaterials

5-3-1. Importance of water near biomaterial surface

5-3-2. Analysis of water molecules at biomaterials interface

5-4. Analysis of biointerface

5-4-1. Surface/interface analysis

5-4-2. Protein analysis

6. Biological response

6-1. Inflammatory reaction

6-2. Wound healing

6-3. Foreign-body response

6-4. Innate and adaptive immunity

6-5. Systemic toxicity and hypersensitivity

6-6. Blood coagulation and blood-materials interaction

6-7. Biofilm formation and infection

7. Classes of biomaterials

7-1. Polymer biomaterials

7-1-1. Mechanical properties

7-1-2. Workability

7-1-3. Biocompatibility (surface, mechanical)

7-1-4. Biosafety

7-1-5. Biodegradability

7-1-6. Bioactivity

7-1-7. Sterilization methods

7-2. Metal biomaterials

7-2-1. Mechanical properties

7-2-2. Workability

7-2-3. Biocompatibility (surface, mechanical)

7-2-4. Biosafety

7-2-5. Biodegradability

7-2-6. Bioactivity

7-2-7. Sterilization methods

Page 19: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

16

7-2-8. Examples

7-3. Ceramic biomaterials

7-3-1. Mechanical properties

7-3-2. Workability

7-3-3. Biocompatibility(surface, mechanical)

7-3-4. Biosafety

7-3-5. Biodegradability

7-3-6. Bioactivity

7-3-7. Sterilization methods

7-3-8. Examples

7-4. Composite materials

8. Cutting-edge biomaterials

8-1. Structural biomaterials

8-1-1. Target diseases

8-1-2. Characteristics of target organs

8-1-2-1. Roles

8-1-2-2. Composition

8-1-2-3. Structure(macroscopic, microscopic)

8-1-2-4. Mechanical strength

8-1-2-5. Metabolism

8-1-3. Overview of tissue engineering and regenerative medicine

8-1-4. Characteristic of candidate biomaterials

8-1-4-1. Basic materials properties

8-1-4-2. Raw materials

8-1-4-3. Synthetic methods

8-1-4-4. Requirements met by biomaterials

8-1-4-5. Comparison with other materials

8-1-4-6. 3D modeling methods

8-1-5. Final product image

8-2. Biomaterials for biointerfaces

8-2-1. Target diseases

8-2-2. Characteristics of target organs

8-2-2-1. Roles

8-2-2-2. Composition

Page 20: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

17

8-2-2-3. Structure (macroscopic, microscopic)

8-2-2-4. Mechanical strength

8-2-2-5. Metabolism

8-2-3. Overview of medical devices with biointerfaces

8-2-4. Characteristics of candidate biomaterials

8-2-4-1. Basic materials properties

8-2-4-2. Raw materials

8-2-4-3. Synthetic method (surface modification)

8-2-4-4. Requirements by biomaterials

8-2-4-5. Comparison with other materials

8-2-5. Surface modification technology

8-2-6. Implantable medical devices

8-3. Biomaterials for drug delivery system

8-3-1. Nanotechnology and DDS

8-3-2. Requirements for DDS materials

8-3-2-1. Stealth properties

8-3-2-2. Enhanced permeability and retention effect

8-3-2-3. Tissue permeable properties

8-3-2-4. Intracellular uptake

8-3-2-5. Control on intracellular behavior

8-3-2-6. Stimuli-responsive

8-3-2-7. Active targeting

8-3-3. Clinical applications

8-3-3-1. Cancer therapy

8-3-3-2. Regenerative medicine

8-3-3-3. Therapy for cardiovascular diseases

8-3-3-4. Others

8-3-4. Medical economy and DDS (Ecomedicine)

Reference books and supplementary reading books

“Biomaterials Science, Second Edition: An Introduction to Materials in Medicine”, Buddy

D. Ratner (Author), Allan S. Hoffman (Author), Frederick J. Schoen (Author), Jack E.

Lemons (Author), Academic Press (2004)

“Fundamentals of Modern Manufacturing”, Mikell P. Groover (Author), Wiley (2001)

「バイオマテリアルの基礎」 石原一彦(編集),塙隆夫(編集),前田瑞夫(編集),日

Page 21: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

18

本医学館 (2010)

「ポリマーバイオマテリアル−先端医療のための分子設計−」 石原一彦(著),コロナ社

(2009)

「セラミックバイオマテリアル」 岡崎正之(著),山下仁大(著),コロナ社 (2009)

「金属バイオマテリアル」 塙隆夫(著),米山隆之(著),コロナ社 (2009)

「バイオマテリアルサイエンス」 石原一彦(著),畑中研一(著),山岡哲二(著),大

矢裕一(著),東京化学同人 (2003)

Page 22: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

19

Curriculum for BIOIMAGING

1. Definition of bio-imaging

2. Classification of bio-imaging

3. History of bio-imaging

4. Physical energy, tissue reactions, signals and sensors

4-1. Electric energy

4-1-1. Electric-characteristic features

4-1-2. Passive electric-characteristic features (Electric equivalent circuit of living

tissue, frequency dependence, electrical propagation)

4-1-3. Active electric-characteristic features (equilibrium electric potential, living

tissue reaction for electricity)

4-1-4. Impedance measurement of electric pole, pH electrode

4-2. Magnetic energy

4-2-1. Direct-current electromagnetic field (static electric field, static magnetic field)

4-2-2. Low-frequency electromagnetic field (low-frequency electric field,

low-frequency magnetic field)

4-2-3. High and super-high frequency electromagnetic fields

4-2-4. NMR measurement

4-3. Mechanical energy

4-3-1. Mechanical static properties of living tissues (mechanical models, common

features)

4-3-2. Mechanical dynamic properties of living tissues (structure and features of

muscles, bio-mechanics of bones, joints and musculoskeletal systems)

4-3-3. Fluid dynamical properties of living tissues (vessels and blood flow,

Reynolds number, wall shear stress, pulse wave propagation and arterial sclerosis)

4-3-4. Bridge strain-gauge circuit, pressure sensitive sensor (transducer)

4-4. Acoustic energy

4-4-1. Wave propagation in living tissues (attenuation, phase)

4-4-2. Reflection, refraction and acoustic impedance on surface

4-4-3. Propagation velocity of ultrasound and its dependence on frequency

Page 23: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

20

4-4-4. Transducers

4-5. Thermal energy

4-5-1. Living tissue reaction for high and low heats (constancy of body temperature)

4-5-2. Temperature elevation and conduction of living tissues

4-5-3. Heat generation, propagation and diffusion in living tissues

4-5-4. Thermoelectric couple, platinum resistance temperature detector,

thermograph

4-6. Optical energy

4-6-1. Optical property of eyes (optical transparent property, optical absorption

property)

4-6-2. Optical property of skin and organs (ultraviolet spectroscopy and reaction for

it, spectral property)

4-6-3. Optical property of blood (scatter (multiple scatter, back scatter), and

absorption)

4-6-4. Photo diode, photo transistor, CdS cell, CCD and CMOS

4-6-5. Laser beam and its medical applications

4-7. Radial energy

4-7-1. Radial energy and dose

4-7-2. Radial absorption and transparency properties of living tissues

4-7-3. Scintillator, FOS, ACS/ALS

4-7-4. Living tissue reaction for radiation and medical applications

5. Methods and apparatuses for medical imaging and therapy

5-1. X-ray and DSA

5-2. X-ray CT, PET and SPECT

5-2-1. Image reconstruction methods

5-2-2. Scanning ways

5-2-3. Data value correction and calibration

5-2-4. Artifacts and countermeasure for them

5-2-5. Color CT

5-2-6. Functional imaging (scintigraphy, PET, SPECT)

5-3. MRI

5-3-1. Nuclear magnetic resonance

5-3-2. Excitation and relaxation

5-3-3. Pulse sequence (spin echo method, gradient echo method)

Page 24: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

21

5-3-4. Tagging (frequency encoding, phase encoding)

5-3-5. Artifacts (motion artifact, chemical shift, change of magnetic susceptibility,

aliasing) and countermeasure for them

5-3-6. Functional analysis (diffusion, perfusion, fMRI, MR elastography)

5-4. Ultrasound

5-4-1. Principle

5-4-2. Acoustic impedance of living tissues

5-4-3. Electric scanning

5-4-4. Focusing and multiple focusing

5-4-5. Artifacts (multiple reflection, side lobe, grading lobe) and countermeasure for

them

5-4-6. Doppler imaging and elastography

5-4-7. HIFU

5-5. Endoscope

5-5-1. History

5-5-2. Principle and structure

5-5-3. Downsizing (transnasal endoscopy, capsule endoscopy)

5-5-4. Narrow Band Imaging

5-5-6. Virtual endoscopy and three-dimensional endoscopy

5-5-7. Laparoscopic surgery, surgery assist devices and robots

5-6. Optical microscopes

5-6-1. History

5-6-2. Principle and structure

5-6-3. Visible light imaging

5-6-4. Optical microscope, phase contrast endoscope, differential interference

contrast endoscope, polarization microscope)

5-6-5. Fluorescent imaging

5-6-6. Fluorescent microscope, confocal laser microscope, total internal reflection

fluorescence (TIRF) endoscope, laser Raman microscope)

5-6-7. Electron microscope, atomic force microscope (AFM)

5-7. Near infrared spectroscopy (NIRS) and brain-function imaging

5-8. Impedance measurement of living tissue

5-8-1. Static electric potential of living tissues and action potential

5-8-2. Electromyogram (muscle structure and contractile mechanism, muscle

mechanical characteristic, EMG apparatuses)

Page 25: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

22

5-8-3. Electrocardiogram (anatomy, ECG apparatuses)

5-8-4. Electroencephalogram (neuron model, flip-flops, lateral inhibition, EEG

apparatuses)

5-8-5. TMS

5-9. Radial therapy and gamma knife

6. Data processing

6-1. Discretization

6-1-1. Sampling and quantization

6-1-2. Aliasing and countermeasure for it

6-1-3. Gray level correction

6-2. Noise, perturbation and error

6-3. Orthogonal transformation (Fourier transformation, Laplace transformation,

Z-transformation, wavelet transformation)

6-4. Filter bank (spatial filtering, down-/up-sampling, functional interpolation, multiple

resolution, polyphase, Orthogonal filter bank)

6-5. Data compression and decompression (predictive encoding, Huffman encoding,

discrete cosine transformation, Markov process, Bayes’ theorem, parity)

6-6. Three-dimensional reconstruction (simple layer stack, multiple view measurement

(spatial dimension)) and visualization (surface rendering, volume rendering))

6-7. Multi-dimensional analysis (statistical analysis, multivariable analysis, maximum

likelihood estimation, parametric analysis, level set, graph/network theorem, complexity

modeling, clustering)

7. Living body anatomy, image diagnosis and therapy

7-1. Human body structure and functions

7-2. X-ray image diagnosis

7-3. X-ray CT

7-4. MRI

7-5. Ultrasound imaging and therapy

7-6. Endoscopy

7-7. EMG, ECG and EEG

7-8. PET and SPECT

7-9. Radial therapy and gamma knife

7-10. BCI

Page 26: Curriculum & Study Guide2. Basis of an electromagnetic field 2-1. Basic characteristics of an electromagnetic field (electric and magnetic fields) 2-2. Energy and electromagnetic-wave

23

8. Details for each applications (advanced issues)

8-1. Diagnosis

8-1-1. High-dimensionalization using multiple data measurement (color CT,

three-dimensional endoscopy)

8-1-2. Image fusion, registration and high-dimensionalization

8-2. Therapy

8-2-1. Radial therapy and gamma knife

8-2-2. HIFU

8-2-3. Computer-assisted surgery and therapy

Reference books and supplementary reading books

「情報理論」(1984) 今井 秀樹 著(昭晃堂)

「ディジタル信号処理入門」(1985) 城戸 健一 著(丸善)

“An Introduction to ERROR ANALYSIS,” John R. Taylor, University Science Books

(1982)(訳書 「誤差解析入門」(2000) 林 茂雄・馬場 凉 訳(東京化学同人))

「画像処理アルゴリズム」(1993) 斎藤 恒雄 著(近代科学社)

“Wavelet and Filter Banks,” Gilbert Strang and Truong Nguyen, Wellesley-Cambridge

Press (1997)(訳書 「ウェーブレット解析とフィルタバンク I」(1999) 高橋 進一・

池原 雅章 著(培風館))

「医用画像処理」(1993) 今里 悠一・大橋 昭南 著(昭晃堂)