cushing's syndrome

13
Iqra Mumal 17/04/14 The Feedback Mechanism of Cortisol and Its Use in Screening Tests to Help Diagnose Cushing’s Syndrome 1. Introduction Cortisol, also known as the “stress hormone”, is a steroid hormone produced by the zona fasciculata of the adrenal cortex . The release of cortisol can be triggered by a variety of stresses. This includes physical stress such as infection, dehydration or thermal exposure but it can also be physiological stresses such as fear and anticipation. Its function is to regulate metabolism and the body’s reaction to stress and inflammation. This is achieved by increasing blood sugar, suppressing the immune system and aiding in metabolism. 1 2. The Regulation and Feedback Mechanism of Cortisol Cortisol secretion is controlled by the hypothalamicpituitaryadrenal axis (HPA) (see fig. 1). Corticotropinreleasing hormone (CRH), secreted by the hypothalamus, is released into the hypophyseal portal blood vessels. CRH then acts on the anterior pituitary and causes the release of ACTH (adrenocorticotropic hormone). Finally, ACTH stimulates the adrenal gland, which produces and secretes cortisol. After synthesis, cortisol diffuses into blood plasma where it is absorbed by different tissues and implements its regulatory functions as a hormone. Eventually, the liver metabolizes the cortisol in the blood plasma. 2

Upload: iqramumal1222

Post on 28-Dec-2015

15 views

Category:

Documents


1 download

DESCRIPTION

An essay on Cushing's Syndrome

TRANSCRIPT

Iqra  Mumal  

17/04/14  

The  Feedback  Mechanism  of  Cortisol  and  Its  Use  in  Screening  Tests  to  Help  

Diagnose  Cushing’s  Syndrome  

1.  Introduction    

Cortisol,  also  known  as  the  “stress  hormone”,  is  a  steroid  hormone  produced  

by  the  zona  fasciculata  of  the  adrenal  cortex  .  The  release  of  cortisol  can  be  triggered  

by  a  variety  of  stresses.  This  includes  physical  stress  such  as  infection,  de-­‐hydration  

or  thermal  exposure  but  it  can  also  be  physiological  stresses  such  as  fear  and  

anticipation.  Its  function  is  to  regulate  metabolism  and  the  body’s  reaction  to  stress  

and  inflammation.  This  is  achieved  by  increasing  blood  sugar,  suppressing  the  

immune  system  and  aiding  in  metabolism.1    

2.  The  Regulation  and  Feedback  Mechanism  of  Cortisol  

Cortisol  secretion  is  controlled  by  the  hypothalamic-­‐pituitary-­‐adrenal  axis  

(HPA)  (see  fig.  1).  Corticotropin-­‐releasing  hormone  (CRH),  secreted  by  the  

hypothalamus,  is  released  into  the  hypophyseal  portal  blood  vessels.  CRH  then  acts  

on  the  anterior  pituitary  and  causes  the  release  of  ACTH  (adreno-­‐corticotropic  

hormone).  Finally,  ACTH  stimulates  the  adrenal  gland,  which  produces  and  secretes  

cortisol.  After  synthesis,  cortisol  diffuses  into  blood  plasma  where  it  is  absorbed  by  

different  tissues  and  implements  its  regulatory  functions  as  a  hormone.  Eventually,  

the  liver  metabolizes  the  cortisol  in  the  blood  plasma.2    

Cortisol,  like  many  of  the  other  hormones  regulated  by  the  hypothalamus,  

regulates  its  own  secretion  by  negative  feedback  inhibition  (see  fig.  1)  Cortisol  is  

able  to  do  this  by  binding  to  the  receptors  on  the  hypothalamus  and  the  anterior  

pituitary  and  inhibiting  the  secretion  of  CRH  and  ACTH.  Since  cortisol  is  produced  

by  the  action  of  both  CRH  and  ACTH,  a  reduction  in  those  will  inevitably  lead  to  a  

reduction  in  cortisol  levels.  This  allows  the  body  to  remain  in  a  hormonal  

homeostasis.3  This  is  an  incredibly  important  system  in  our  body  and  any  

imbalances  in  the  degree  of  hormone  secretion  can  lead  to  a  variety  of  disorders.  

These  disorders  can  result  from  both  hypercortisolism  (hypersecretion  of  cortisol)  

or  adrenal  insufficiency,  which  is  the  hyposecretion  of  cortisol.  Hyposecretion  of  

cortisol  can  lead  to  Addison’s  disease  while  hypersecretion  of  cortisol  leads  to  

Cushing’s  syndrome.2,4    

 3.  Cushing’s  syndrome    

Cushing’s  syndrome  develops  as  a  result  of  high  cortisol  levels  in  the  body  for  a  

long  time.  Symptoms  have  been  known  to  develop  gradually  so  the  diagnosis  may  

not  be  clear  for  some  time.    There  is  a  wide  range  of  symptoms  that  characterize  a  

patient  with  Cushing’s  syndrome  (see  fig.  2).  Symptoms  include  obesity,  

characterized  by  fat  around  the  main  body  area,  facial  puffiness,  diabetes,  high  

blood  pressure,  muscle  weakness,  tiredness,  aches  and  pains,  mood  swings,  lack  of  

sex  drive,  osteoporosis,  excess  thirst  and  increased  susceptibility  to  infections.4    

There  are  four  main  causes  that  can  lead  to  the  overproduction  of  cortisol.  The  

most  common  endogenous  cause  is  a  pituitary  adenoma,  which  occurs  about  70-­‐

80%  of  the  time.  This  is  a  benign  or  non-­‐cancerous  tumor  of  the  anterior  pituitary,  

which  results  in  the  production  of  too  much  ACTH  and  leads  to  high  volumes  of  

cortisol  (see  fig.  3).  This  form  of  Cushing’s  syndrome  is  known  as  Cushing’s  disease  

and  is  characterized  by  high  ACTH  and  cortisol  levels.5  

Another  tumor  that  can  lead  to  the  overproduction  of  cortisol  is  a  tumor  in  the  

adrenal  gland,  which  occurs  about  10-­‐20%  of  the  time.    This  tumor  can  either  be  

benign,  such  as  adrenal  adenoma  or  micronodular  hyperplasia,  or  malignant,  such  

as  adrenal  carcinoma.  When  this  is  the  cause  of  Cushing’s  syndrome,  increased  

negative  feedback  inhibition  has  the  effect  of  decreasing  the  secretion  of  tropic  

hormones.  However,  cortisol  will  remain  high  as  negative  feedback  inhibition  will  

not  have  an  effect  on  the  adrenal  gland.6  

 Another  cause  of  Cushing’s  syndrome  can  be  ectopic  or  paraneoplastic  Cushing’s  

syndrome.  This  refers  to  tumors  that  are  present  outside  the  normal  pituitary-­‐

adrenal  system  and  produce  ACTH.  Small  cell  lung  carcinoma  is  an  example  of  such  

a  tumor.7  Finally,  the  most  common  type  of  Cushing’s  syndrome  is  iatrogenic  

Cushing’s  syndrome,  which  usually  stems  from  treatment  with  corticosteroids  for  a  

long  time.2  

3.  Screening  Test  for  Cushing’s  syndrome  

There  are  various  reasons  why  the  body  can  produce  too  much  cortisol  and  

there  are  complex  tests  that  have  been  generated  to  find  the  root  cause  of  the  excess  

cortisol.  Due  to  the  fact  that  the  level  of  cortisol  varies  depending  on  the  time  of  the  

day,  a  simple  blood  test  is  not  enough  to  diagnose  Cushing’s  syndrome.8    

  The  first  thing  to  do  is  to  determine  whether  there  is  an  excess  of  cortisol  in  

the  patient’s  body  (see  fig.  4).  The  first  test  that  is  generally  administered  is  the  24-­‐

hour  urine  free  cortisol  level  test,  which  is  a  test  to  measure  the  amount  of  cortisol  

that  is  passed  in  urine.  The  way  this  test  works  is  that  the  patient  needs  to  collect  all  

the  urine  that  is  passed  over  24  hours  into  a  plastic  container.  The  urine  is  then  sent  

to  a  laboratory  to  measure  the  cortisol  levels.  Since  the  secretion  of  cortisol  

normally  follows  a  circadian  rhythm,  patients  with  abnormal  patterns  of  secretion  

can  be  identified  and  diagnosed  with  Cushing’s  syndrome.9    

In  addition,  an  alternative  test  that  can  be  administered  is  a  blood  or  urine  

test  that  can  be  arranged  after  the  patient  takes  a  drug  called  dexamethasone.  This  

drug  suppresses  the  amount  of  cortisol  the  body  is  supposed  to  make  as  

dexamethasone  is  a  human  made  steroid  that  is  similar  to  cortisol.  Normally,  it  

should  reduce  the  level  of  ACTH  and  subsequently  cortisol.  Thus,  if  the  amount  of  

cortisol  in  the  blood  is  still  high  after  taking  this  drug  then  a  diagnosis  of  Cushing’s  

syndrome  can  be  confirmed.  There  are  two  different  kinds  of  dexamethasone  

screening  tests  that  are  administered  to  patients  suspected  of  Cushing’s  syndrome.  

Both  of  these  dexamethasone  suppression  tests  can  be  done  either  overnight  or  a  

standard  (3-­‐day)  way.10    

The  first  is  a  low-­‐dose  dexamethasone  suppression  test.  For  the  overnight  

low-­‐dose  method,  1mg  of  dexamethasone  is  administered  at  11  pm.  The  next  day,  

the  patient’s  blood  cortisol  level  is  measured  at  8  am.  The  standard  low-­‐dose  

method  is  different  in  that  the  cortisol  level  is  measured  in  urine  which  is  collected  

over  3  days.  The  urine  is  stored  in  24-­‐hour  collection  containers.  On  the  first  day,  a  

urine  sample  is  taken  and  then  starting  the  second  day,  0.5mg  of  dexamethasone  is  

administered  every  6  hours  for  48  hours  with  urine  collected  every  day.  The  second  

test  is  a  high-­‐dose  dexamethasone  suppression  test.  The  overnight  high-­‐dose  

method  involves  measuring  the  baseline  cortisol  level  on  day  1  in  the  morning.  

Then,  8mg  dexamethasone  is  administered  at  11pm  the  same  day.  The  blood  

cortisol  is  then  measured  at  around  8am  the  next  day.  For  the  standard  high-­‐dose  

test,  urine  is  collected  for  three  days  every  24  hours.  On  day  2,  2mg  of  

dexamethasone  is  administered  every  6  hours  for  48  hours,  similar  to  the  low-­‐dose  

standard  dexamethasone  suppression.  The  low-­‐dose  test  is  administered  to  help  

determine  whether  the  body  is  producing  too  much  cortisol,  thus  helping  diagnose  

Cushing's  syndrome.  On  the  other  hand,  the  high-­‐dose  test  can  be  administered  in  

order  to  determine  the  root  of  the  problem,  such  as  if  the  patient  has  Cushing’s  

disease.10  

There  is  another  set  of  tests  relating  to  Cushing’s  syndrome  that  can  help  us  

distinguish  between  the  different  types  of  Cushing’s  syndrome  patients  may  have.  

Different  results  from  the  dexamethasone  suppression  test  combined  with  a  blood  

ACTH  test  can  help  determine  where  Cushing’s  syndrome  in  a  patient  stems  from  

(see  table  1).  If  there  is  no  change  in  the  cortisol  level  after  the  administration  of  the  

low-­‐dose  test  and  if  the  ACTH  level  is  low,  then  that  is  indicative  of  Cushing’s  

syndrome  caused  by  an  adrenal  tumor.  If  there  is  no  change  in  cortisol  levels  after  

both  a  low  and  a  high-­‐dose  test  and  the  ACTH  levels  are  high  then  the  Cushing’s  

syndrome  is  a  result  of  an  ectopic  ACTH-­‐producing  tumor.  Finally,  if  there  is  no  

change  in  cortisol  levels  through  a  low-­‐dose  test  but  normal  suppression  through  a  

high-­‐dose  test,  then  it  is  most  likely  Cushing’s  syndrome  caused  by  a  pituitary  

tumor.11  

In  order  to  distinguish  between  ectopic  Cushing’s  syndrome  and  Cushing’s  

disease,  a  CRH  stimulation  test  can  also  be  performed.  Patients  with  Cushing’s  

disease  will  respond  to  the  CRH  stimulation  with  an  increase  in  ACTH  and  cortisol  

but  patients  with  ectopic  Cushing’s  syndrome  won’t  respond.  In  addition,  the  

dexamethasone  suppression  test  can  be  combined  with  the  CRH  stimulation  test  to  

differentiate  patients  with  Cushing’s  syndrome  from  patient’s  with  pseudo-­‐

Cushing’s  syndrome  or  normal  patients.  Patients  with  pseudo-­‐Cushing’s  syndrome  

have  normal  cortisol  levels  after  administration  of  the  test  while  abnormal  results  

point  to  Cushing’s  syndrome.  Finally,  MRI  of  the  pituitary  and  a  CT  scan  of  adrenals,  

chest  and  abdomen  can  also  help  pinpoint  the  source  of  cortisol  overproduction.12    

Lastly,  a  night-­‐time  blood  test  or  saliva  test  can  be  administered  to  measure  

the  level  of  cortisol.  Since  the  secretion  of  cortisol  follows  a  circadian  rhythm,  

cortisol  peaks  in  the  morning  and  reaches  its  low  at  night  time.  Patients  with  

Cushing’s  syndrome  do  not  show  a  change  in  cortisol  levels  throughout  the  day  and  

thus,  administering  a  blood  or  saliva  test  at  night  time  can  help  confirm  the  

diagnosis  of  Cushing’s  syndrome.8,13  

4.  Conclusion  

The  delicate  balance  in  homeostasis  that  is  regulated  by  feedback  inhibition  

can  lead  to  detrimental  consequences  if  it  goes  askew.  Cortisol  provides  negative  

feedback  inhibition  to  both  the  anterior  pituitary  and  adrenal  gland,  which  allows  a  

decrease  in  the  production  of  cortisol.  When  this  system  is  altered,  for  example,  due  

to  the  presence  of  a  tumor  in  the  anterior  pituitary  or  adrenal  gland,  then  that  can  

lead  to  Cushing’s  syndrome.  Screening  tests  such  as  the  24-­‐hour  urine  free  cortisol  

test  or  dexamethasone  suppression  tests  can  not  only  help  confirm  a  diagnosis  of  

Cushing’s  syndrome  but  also  figure  out  where  the  pathology  of  the  disease  lies.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures  and  Tables  

   

Figure  1.  The  components  of  the  hypothalamic  axis  include  the  hypothalamus,  the  anterior  pituitary  and  the  adrenal  gland.  When  the  body  encounters  stress,  it  causes  the  hypothalamus  to  secrete  CRH,  which  acts  on  the  anterior  pituitary  to  produce  ACTH.  ACTH  then  acts  on  the  adrenal  gland  to  produce  cortisol,  which  battles  the  various  stresses  that  are  endured  by  the  human  body.  Cortisol  regulates  its  own  secretion  by  providing  negative  feedback  to  both  the  anterior  pituitary  and  the  hypothalamus.  By  acting  on  the  first  two  components  of  the  hypothalamic  axis,  the  secretion  of  CRH  and  ACTH  gets  decreased.  Eventually,  these  changes  cause  the  cortisol  level  in  the  human  body  to  also  decrease.  +  represents  secretion  of  the  associated  hormone  and  –  represents  a  diminishment  in  secretion  of  the  associated  hormone.14    

 

 

Figure  2.  This  figure  outlines  the  various  different  symptoms  that  can  be  associated  with  Cushing’s  syndrome.  The  range  and  generality  of  many  of  these  symptoms  make  it  hard  to  diagnose  Cushing’s  syndrome.15  

 

Figure  3.  The  presence  of  a  tumor  in  the  anterior  pituitary,  also  known  as  a  pituitary  adenoma,  make  up  for  70-­‐80%  of    endogenous  Cushing’s  syndrome.6      

Results  of  Low-­‐Dose  Test  

Results  of  High-­‐Dose  Test  

ACTH  Level     Likely  Cause  of  Cushing’s  Syndrome  

No  suppression   -­‐-­‐   Low   Caused  by  Adrenal  Tumor  

No  Suppression   No  Suppression   High   Related  to  Ectopic  Tumor  

No  suppression   Normal  suppression  

-­‐-­‐   Caused  by  a  Pituitary  Tumor  

 

Table  1.  The  results  of  low-­‐dose  and  high-­‐dose  dexamethasone  suppression  tests  can  be  combined  with  the  results  of  an  ACTH  level  test  in  order  to  determine  the  likely  cause  of  Cushing’s  syndrome  in  a  patient.11  

 

Figure  4.  When  a  patient  is  suspected  of  Cushing’s  syndrome,  the  first  test  administered  is  the  24-­‐hour  urine  free  cortisol  test.  Depending  on  how  much  the  cortisol  level  is  elevated,  a  diagnosis  of  Cushing’s  disease  can  be  made  or  if  it  is  mildly  elevated  then  further  tests  can  be  done  to  determine  if  a  diagnosis  of  Cushing’s  syndrome  can  be  made.  In  order  to  determine  where  the  Cushing’s  syndrome  stems  from,  many  other  tests  can  be  administered,  such  as  dexamethasone  suppression  test,  test  to  determine  ACTH  levels,  CRH-­‐stimulation  test  and  many  others.  These  tests  can  not  only  diagnose  Cushing’s  syndrome  but  also  determine  where  the  pathology  lies.16  

 

References  

1. Dickerson,  Sally  S.,  and  Margaret  E.  Kemeny.  "Acute  stressors  and  cortisol  responses:  a  theoretical  integration  and  synthesis  of  laboratory  research."  Psychological  bulletin  130.3  (2004):  355.  

2. Dinan,  Timothy  G.,  and  Lucinda  V.  Scott.  "Anatomy  of  melancholia:  focus  on  hypothalamic–pituitary–adrenal  axis  overactivity  and  the  role  of  vasopressin."  Journal  of  anatomy  207.3  (2005):  259-­‐264.  

3. Yehuda,  Rachel,  et  al.  "Alterations  in  cortisol  negative  feedback  inhibition  as  examined  using  the  ACTH  response  to  cortisol  administration  in  PTSD."  Psychoneuroendocrinology  31.4  (2006):  447-­‐451.  

4. Reincke,  Martin.  "Subclinical  Cushing’s  syndrome."  Endocrinology  and  metabolism  clinics  of  North  America  29.1  (2000):  43-­‐56.  

5. Lagerquist,  Lynn  G.,  et  al.  "Cushing’s  disease  with  cure  by  resection  of  a  pituitary  adenoma:  Evidence  against  a  primary  hypothalamic  defect."  The  American  journal  of  medicine  57.5  (1974):  826-­‐830.  

6. Kirschner,  Marvin  A.,  Ralph  D.  Powell  JR,  and  Mortimer  B.  Lipsett.  "Cushing’s  syndrome:  nodular  cortical  hyperplasia  of  adrenal  glands  with  clinical  and  pathological  features  suggesting  adrenocortical  tumor."  The  Journal  of  Clinical  Endocrinology  &  Metabolism  24.10  (1964):  947-­‐955.  

7. Dimopoulos,  Meletios  A.,  et  al.  "Paraneoplastic  Cushing’s  syndrome  as  an  adverse  prognostic  factor  in  patients  who  die  early  with  small  cell  lung  cancer."  Cancer  69.1  (1992):  66-­‐71.  

8. Imai,  Yutaka.,  et  al.  "Altered  circadian  blood  pressure  rhythm  in  patients  with  Cushing’s  syndrome."  Hypertension  12.1  (1988):  11-­‐19.  

9. Yehuda,  Rachel,  et  al.  "Relationship  between  24-­‐hour  urinary-­‐free  cortisol  excretion  and  salivary  cortisol  levels  sampled  from  awakening  to  bedtime  in  healthy  subjects."  Life  sciences  73.3  (2003):  349-­‐358.  

10. Johnson,  Gordon  F.,  et  al.  "Dexamethasone  suppresion  test  (DST)  and  plasma  dexamethasone  levels  in  depressed  patients."  Psychiatry  research  13.4  (1984):  305-­‐313.  

11. Fang,  Victor  S.,  et  al.  "Plasma  ACTH  and  cortisol  levels  in  depressed  patients:  relation  to  dexamethasone  suppression  test."  Life  Sciences  29.9  (1981):  931-­‐938.  

12. Nieman,  L.  K.,  et  al.  "The  ovine  corticotropin-­‐releasing  hormone  (CRH)  stimulation  test  is  superior  to  the  human  CRH  stimulation  test  for  the  diagnosis  of  Cushing’s  disease."  The  Journal  of  Clinical  Endocrinology  &  Metabolism  69.1  (1989):  165-­‐169.  

13. Yaneva,  Maria,  et  al.  "Midnight  salivary  cortisol  for  the  initial  diagnosis  of  Cushing’s  syndrome  of  various  causes."  Journal  of  Clinical  Endocrinology  &  Metabolism  89.7  (2004):  3345-­‐3351.  

14. Tsigos,  Constantine,  and  George  P.  Chrousos.  "Hypothalamic–pituitary–adrenal  axis,  neuroendocrine  factors  and  stress."  Journal  of  psychosomatic  research  53.4  (2002):  865-­‐871.  

15. Ross,  E.  J.,  and  D.  C.  Linch.  "Cushing's  syndrome—killing  disease:  discriminatory  value  of  signs  and  symptoms  aiding  early  diagnosis."  The  Lancet  320.8299  (1982):  646-­‐649.  

16. Nieman,  Lynnette  K.,  et  al.  "The  diagnosis  of  Cushing's  syndrome:  an  endocrine  society  clinical  practice  guideline."  Journal  of  Clinical  Endocrinology  &  Metabolism  93.5  (2008):  1526-­‐1540.