d. fundamentals of cell movement€¦ · figure 16-81b molecular biology of the cell (© garland...

35
D. Fundamentals of Cell Movement What cell types move? Prokaryotes must find food, evade toxins Freeliving ciliar and flagellar eukaryotes Plants don’t have motile cells but can demonstrate both rapid and slow movements due to cell activity Animals have both ciliar and flagellar cells We also have cells that crawl, rather than swim Many cells during development and growth White blood cells responding to infection Wound healing cells Muscular movements in animals result from individual cell movements ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ What strategies do cells employ to move? Swimming through liquids: oars and propellers Crawling on solid surfaces: grabpullrelease Selectively contracting some cells but not others: some use motor proteins, others water volume Even growing more cells, or letting some die, to move the entire structure closer or farther away! ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Figure 1-18a Molecular Biology of the Cell, Fifth Edition (© Garland Science 2008) Many prokaryotic cells have a structure composed of a membranebound motor complex driving propellerlike movement of the extracellular flagellum The flagellum is composed of the helical protein flagellin ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Upload: others

Post on 21-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • D. Fundamentals of Cell Movement

    What cell types move?

    • Prokaryotes must find food, evade toxins• Free‐living ciliar and flagellar eukaryotes• Plants don’t have motile cells but can demonstrate both 

    rapid and slow movements due to cell activity

    • Animals have both ciliar and flagellar cells• We also have cells that  crawl, rather than swim

    Many cells during development and growthWhite blood cells responding to infectionWound healing cells

    • Muscular movements in animals result from individual cell movements

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    What strategies do cells employ to move?

    • Swimming through  liquids: oars and propellers

    • Crawling on solid surfaces: grab‐pull‐release

    • Selectively contracting some cells but not others: some use motor proteins, others water volume

    • Even ‐ growing more cells, or letting some die,  to move the entire structure closer or farther away!

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 1-18a Molecular Biology of the Cell, Fifth Edition (© Garland Science 2008)

    Many prokaryotic cells have a structure composed of a membrane‐bound motor complex driving propeller‐like movement of the extracellular flagellum

    The flagellum is composedof the  helical protein flagellin

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • The helical structure of flagellin allows for two kinds of movement: coordinated linear vs. stationary ‘tumbling’

    RECEPTOR CHEMOTAXIS

    senses correct direction: will swim in a straight line for a longer time before tumbling

    senses wrong direction: will tumble sooner and try a new direction at random. 

    finds the location with the highest concentration of anattractant (lowest of repellent )

    Even at high concentrations, can distinguish very small differences in concentration. 

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 15-73 Molecular Biology of the Cell (© Garland Science 2008)

    Two levels of regulation:1. Signal transductio to motor2. Control of receptor activation

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Ciliar and Flagellar Eukaryotes

    • The Basic Mechanism– Complex microtubular structures extend out from the cell body under the plasma membrane

    – They extend out from basal bodies rather than centrisomes

    – Immobilized dynein pulls retrograde and bends the microtubule

    – Relaxation or a counter pull creates waving

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 1-32 Molecular Biology of the Cell, Fifth Edition (© Garland Science 2008)

    Free‐living eukaryote Didiniumhas two fringes of cilium used for swimming

    Here it is phagocytosing anothereukaryotic cell as prey

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Airway Epithelium

    ‐ G.I. epithelium‐ Fallopian tubes‐ Epidydimus

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Flagellar Animal Cells

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 16-81a Molecular Biology of the Cell (© Garland Science 2008)

    The structure of microtubules in both cilia and flagella are theclassic 9+2:

    An external ring of 9 doubletsaround 2 full microtubules

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 16-84a Molecular Biology of the Cell (© Garland Science 2008)

    Basal body structure is a ring of nine (9) triplets

    Same as the centriole

    Microtubules are nucleated from γ‐tubulinand are capped and stabilized long‐term.

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Figure 16-81b Molecular Biology of the Cell (© Garland Science 2008)

    They work as a unit by being held together with ‘radial spoke’ and ‘nexin’ proteins.

    As dyneins attached to one doublet attempt to walk on the adjacent one they all bend.

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 16-83b Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Mechanisms of Waving

    • In long flagellum, sequential peristaltic contractions cause a whip‐like back and forth motion

    • In short cilia, alternating side‐to‐side contractions or simple relaxations cause waving

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Cell Migration or “Crawling”

    • The Basic Mechanism– Triggered by signals from outside the cell– Actin‐myosin based movement– Requires attachments to outside to pull against– Gotta’ drag all of the cell contents along for the ride

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 16-20 Molecular Biology of the Cell (© Garland Science 2008)

    In embryo development and wound healing, epithelial cellscan migrate as sheets.

    In general, these types ofmigrations are combinationsof cell division and directedmigration.

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Chemotaxis

    Circumferential receptors

    Rho‐family GTPases (monomeric)

    Rho‐dependent kinases

    1. Actin monomer nucleotide exchange2. Actin fiber polymerization and disassembly3. Myosin motor ATPase activity

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Cell type‐specific migration receptor

    Rho family monomeric GTPase

    Rho‐dependent kinase

    Circumferential distribution of migration‐inducing signaling cascades

    Cell capable of migration

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Source of signal

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    actin fibers

    actin growth blocked

    Leading edge extension is driven by actin polymerization.

    Cell membrane is physically pushed forward by actin1. Core of all structures is very dense actin network2. Completely exclude membrane enclosed organelles.

    Leading edge contains everything needed for migration.1. a cut piece without organelles will continue to migrate

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Actin treadmilling – actin is an ATPase

    g-actin adds to the f-actin chain as ATP-actin

    Comes off as ADP-actin.

    Rate of hydrolysis controls rate of treadmilling

    ATP

    ATPATPATPATPATPATPATP

    ADP

    profilin

    ADP

    ATP

    cofilin

    ADP

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 16-90 Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 16-87a Molecular Biology of the Cell (© Garland Science 2008)

    Ultimately, the length of the f‐actin remains constant but it moves forward 

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Attachment: Microfilament Connections Depend on Migratory Surface

    All the usual suspects: focal adhesions, adherens junctions

    ATP-actin can bind to f-actin chain and to anchor proteins

    Internal binding of cadherins/integrins allows external binding

    ADP-actin loses binding to f-actin and anchor protein

    ATP ATPATPATP ATP ATPATP

    ATPADP

    Direction of travel

    Detachment is as important as attachment for movement!

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Migrating cells tend to follow ECM and/or cell tracts towards their target.

    The original integrins and/or cadherins on the cell surface determine these tracts.

    eg. Fibronectin and cadherins outside of the cell.

    What you could bind to when stationary is what you can bind to when migratory (until you change gene expression)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ATP ATPATPATP ATP ATPATP

    ATPADP

    Direction of travel

    cellular components

    myosin  motors

    Traction: Movement of the Cell Body Across Attached Leading EdgeThe actin structure performs a scaffolding function.

    Myosin pulls against actin bound to extracellular components.

    Myosins transport many cellular components directly.

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Figure 16-87c Molecular Biology of the Cell (© Garland Science 2008)

    One of the principal cargos of myosins that are involved in migration are intermediate filaments and microfilaments

    ‐ nearly everything is already bound to them!

    IF (blue)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 16-96 Molecular Biology of the Cell (© Garland Science 2008)

    Myosin pulls so hard that it realigns the ECM proteins.

    This sets up “game trails”wherein the first cell blazesa trail that is easier for the next cell to follow.

    The later cells reach the destination faster than those that went ahead.

    cell 1

    cell 2

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 16-87c Molecular Biology of the Cell (© Garland Science 2008)

    Realignment of microtubules in the direction of travel allows streaming of mitochondria into the leading edge

    Every g‐actin placed into f‐actinand every myosin powerstrokerequires a fresh ATP!

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • The special case of extravasation

    • Circulating WBC must get out of the vessel• Combines activation of the WBC with ‘Cell Rolling’, ‘Adhesion’ and ‘Diapedesis’1. The presence of environmental cues associated with injury 

    and infection change endothelial surface selectins

    2. These catch closely matched WBC surface oligosaccharides and make them roll to a stop on endothelial surface

    3. The white blood cell then activates an integrin that binds tightly to ICAM on endothelial cells

    4. Diapedesis uses basic migratory mechanisms along with WBC shape change to squeeze between endothelium

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Intercellular Diapedesis

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    TranscellularDiapedesis

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Molecular shortening of the sarcomere shortens the cell because the filaments attach to the plasma membrane

    Each of the cells, or fibers, is attached by ECM to the other cells in its fiber bundle, or fasicle, and pulls on them

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Few to many muscle fasicles make up a muscle, such as the quadriceps, all joined by connective tissue. When cells contract the force is transfered directly to these extracellular structures

    Transference of that force through the tendon to the bone produces motion

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Nastic movements are non‐directional responses to stimuli. The movement can be due to changes in turgor and the rate or frequency of these responses increases as intensity of the stimulus increases.

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Thignonasty/seismonasty: response to touch

    Photonasty: response to light

    Nyctinasty: movements at night or in the dark

    Chemonasty: response to chemicals or nutrients

    Hydronasty: response to water

    Thermonasty: response to temperature

    Geonasty/gravinasty: response to gravity

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Gravitropism: response to  gravity

    Chemotropism: response to chemicals

    Heliotropism: response to sunlight

    Hydrotropism: response to water

    Phototropism: response to lights or colors

    Thermotropism: response to temperature

    Electrotropism: response to an electric field

    Thigmotropism: response to touch or contact

    Host tropism: response to pathogens

    Tropic movements are growth or turning in response to an environmental stimulus that is dependent on the direction of the stimulus. Tropisms may be either positive (towards) or negative (away from) the stimulus.

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    The Endomembrane System and Intracellular Trafficking

    What does a cell do when its mitochondria or lysosomes wear out?

    How does it keep the lysosomal enzymes from digesting everything  in the process?

    How does a cell change  the receptors on its plasma membrane when necessary?

    How does a cell duplicate EVERYTHING when it’s time to divide?

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Fig. 7‐3

    Phospholipidbilayer

    Hydrophobic regionsof protein

    Hydrophilicregions of protein

    Remember what the cytosol and membranes are made up of....

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Fig. 7‐9ac

    (a) Transport (b) Enzymatic activity (c) Signal transduction

    ATP

    Enzymes

    Signal transduction

    Signaling molecule

    Receptor

    And....

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Fig. 7‐9df

    (d) Cell‐cell recognition

    Glyco‐protein

    (e) Intercellular joining (f) Attachment tothe cytoskeletonand extracellularmatrix (ECM)Carbohydrates often play important roles on 

    the plasma membrane. Covalently bonded to lipids (forming glycolipids) or more commonly to proteins (forming glycoproteins)

    And....

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Figure 10-41a Molecular Biology of the Cell (© Garland Science 2008)

    And....

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    How does the cell get all of these hydrophobic molecules to their appropriate locations –

    Right through the middle of an aqueousenvironment?!

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    The endomembrane system allows containment and movement of hydrophobic and dangerous materials

    • Components of the endomembrane system:– Nuclear envelope– Endoplasmic reticulum– Golgi apparatus– Lysosomes– Peroxisomes– Vacuoles– Plasma membrane

    • These are bridged by membrane vesicles

    • This process is called vesicular transport

    Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Fig. 6‐16‐3

    Smooth ER

    Nucleus

    Rough ER

    Plasma membrane

    cisGolgi

    transGolgi

    1. Movement from the nucleus outward

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Fig. 6‐14

    Nucleus 1 µm

    Lysosome

    Digestiveenzymes

    Lysosome

    Plasmamembrane

    Food vacuole

    (a) Phagocytosis

    Digestion

    (b) Autophagy

    Peroxisome

    Vesicle

    Lysosome

    Mitochondrion

    Peroxisomefragment

    Mitochondrionfragment

    Vesicle containingtwo damaged organelles

    1 µm

    Digestion

    2. Movement from theplasma membrane inward

    3. Movement withinthe cytosol

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-3b Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Like everything else in the cell this starts in the nucleus‐ER complex....The Nucleus delivers all RNAs (r,t,m) to ER for translation.

    a. Nuclear pores need be very large, 8 protein subunits.

    b. The outer membrane is continuous with the ER and may even have ribosomes on the nucleus proper.

    c. Free ribosomes direct cytosolic translation.

    1. Free and bound ribosomes are structurally identical

    2. mRNA sequence directs them on or off the RER surface

    3. “Free” is a relative term – they are anchored to the cytoskeleton

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Fig. 5‐26‐3

    mRNA

    Synthesis ofmRNA in thenucleus

    DNA

    NUCLEUS

    mRNA

    CYTOPLASM

    Movement ofmRNA into cytoplasmvia nuclear pore

    Ribosome

    AminoacidsPolypeptide

    Synthesisof protein

    1

    2

    3

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Fig. 6‐11

    Cytosol

    Endoplasmic reticulum (ER)

    Free ribosomes

    Bound ribosomes

    Large subunit

    Small subunit

    Diagram of a ribosomeTEM showing ER and ribosomes

    0.5 µm

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • What kinds of things are made on free ribosomes?

    • Intermediate Filaments, Actin, Tubulin• Myosin, Kinesin, Dynein• Microfilament associated proteins• Microtubular associated proteins• 2nd messengers for signaling cascades• Glycolysis enzymes• Lots and lots of others....

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    What kinds are made on bound ribosomes?

    • Signal Receptors, Transporters, Channels• Cadherins, Integrins• Anchor protein complexes• Enzymes inside organelles• Secreted proteins• Lots and lots of others....

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-3b Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Remember: Principle Functions of the ER

    1. Lipid biosynthesis ‐ phospholipids, steroids, lipoproteins (HDL, LDL)‐ there is great cell‐specificity in lipid enzymes

    2. Membrane-bound translation of mRNA- Amino‐terminus  leader sequences direct placement into proper orientation

    3. Initial integration of lipids and proteins - Lipids associate based on amino acid structures

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    What info is in the Amino Terminus?

    • If you are a transmembrane protein, the amino terminus will get you put in the transmembrane position in the ER

    • If you are a luminal or secreted protein, the amino terminus will get you put into the lumen of the ER

    • If you are a meshwork protein, the amino terminus will get you attached to the ER cytosolic face

    • The information is interpreted by ribosomes and/or chaperonins

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Fig. 7‐8

    N‐terminus

    C‐terminusCYTOSOLICSIDE

    NON‐CYTOSOLICSIDE

    The amino terminus comes off the ribosome first and is thus the first through the ER membrane

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • The Cytosolic v. Non‐Cytosolicrelationship is always maintained in the endomembrane system:

    Once non‐cytosolic,

    always non‐cytosolic, etc.

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Different amino acidside chainshave  binding affinity for different ER lipids

    The Proteins that are Placed into the ER Membrane Determine the Lipids that Assemble from the Mix

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Fig. 6‐16‐3

    Nucleus

    Plasma membrane

    GolgiApparatus

    Vesicles

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Budding, Transport , Targeting and Fusion

    1. Vesicles bud off of a membrane due to coat proteins in the membrane meshwork

    2. Vesicles are transported to their next membrane due to vesicle motor‐binding proteins

    3. Vesicles are specifically targeted to their next membrane due to vesicle membrane proteins

    4. Vesicles fuse to their destination membrane due to their lipid constituents

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-2 Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 10-41a Molecular Biology of the Cell (© Garland Science 2008)

    Budding, Transport and Targeting are dependent on a combination of the transmembrane and meshwork proteins of the source membrane  

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Figure 13-5 Molecular Biology of the Cell (© Garland Science 2008)

    The three major families of coat proteins...

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-8 Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-7a, b Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Figure 13-7c, d Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-12a Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-12b Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Figure 13-2 Molecular Biology of the Cell (© Garland Science 2008)

    Transportation and targeting of vesicles

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-23b Molecular Biology of the Cell (© Garland Science 2008)

    Transportation and targeting of vesicles

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-14 Molecular Biology of the Cell (© Garland Science 2008)

    Transportation and targeting of vesicles

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Table 13-1 Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Fusion of two membranes depends on a reasonably good match between the lipids that they have assembled in the two sheaths of their bilayers.

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Fig. 7‐10

    ER1

    Transmembraneglycoproteins

    Secretoryprotein

    Glycolipid

    2Golgiapparatus

    Vesicle

    3

    4

    Secretedprotein

    Transmembraneglycoprotein

    Plasma membrane:

    Cytoplasmic face

    Extracellular  face

    Membrane glycolipid

    Membranes have distinct inside and outside faces

    The asymmetrical distribution of proteins, lipids, and carbohydrates is determined when the membrane is built by the ER and Golgi apparatus

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Lipid and protein signatures

    • Lipid signature is relatively assymetric• Protein signature is absolutely assymetric• Sugars are also absolutely assymetric

    Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

    The lipids and proteins exposed on the cytosolic face of a membrane are different from those on the non‐cytosolic face. 

    Enough to easily tell them apart. 

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Fig. 7‐5c

    Cholesterol

    Phospholipids     Cholesterol     Cerebrosides Sphingolipids

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Fig. 7‐8

    N‐terminus

    C‐terminusCYTOSOLICSIDE

    NON‐CYTOSOLICSIDEAmino 

    acid sequences exposedon the  cytosolicface are absolutely different from those on the non‐cytosolicface

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • The Role of the Golgi Apparatus

    • Process vesicular proteins and lipids through covalent modifications

    • As the vesicle progresses from cis to trans it undergoes a distinctive series of changes

    • When the product leaves the GA it has new transport, targeting and fusion information

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-25c Molecular Biology of the Cell (© Garland Science 2008)

    Different cisdomains receive distinct ER products

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-25a Molecular Biology of the Cell (© Garland Science 2008)

    Vesicles fuse and bud as they travel along the cisterna

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Many GA alterations but none more important than sugar assembly and glycosylation.

    100’s of human enzymes give great cell‐specificity in glycosylation patterns

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Plasma Membrane Targeting, Transport and Fusion

    • Constituitive Delivery and Secretion– Automatic transport from trans‐GA to PM– Occurs continuously as needed

    • Regulated Secretion– Specialized vesicles dock under PM– Wait for a secondary signal to cause fusion

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-63 Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Figure 19-45 Molecular Biology of the Cell (© Garland Science 2008)

    Focal adhesions

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-66a Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-66b Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Lysosome Targeting, Transport and Fusion

    • Enzymes are potentially deadly to the cell

    • Optimal pH of enzyme activity is ~5.0, while the rest of the cell is maintained at ~7.2

    • They are made in the ER and placed in the lumen, where they are inactive

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Lysosome Targeting, Transport and Fusion

    • Co‐expressed with the standards: MBC, KBC, GA rab, lysosome rab

    • Also with a mannose‐6‐phosphate receptor protein – sugar activated lysosome targeting

    • Also with an inactive hydrogen ion pump –lipid fusion at lysosome ONLY activates it!

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-36 Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Figure 13-42b Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    The Endosomal System

    • Inward flow of vesicular material

    • Phagocytosis and pinocytosis

    • Receptor removal and recycling

    • ECM turnover and remodeling

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-1 Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Fig. 7‐20cRECEPTOR‐MEDIATED ENDOCYTOSIS 

    Receptor Coat protein 

    Coatedpit

    Ligand

    Coatprotein

    Plasmamembrane

    0.25 µm 

    Coatedvesicle

    A coated pitand a coatedvesicle formedduringreceptor‐mediatedendocytosis(TEMs) 

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 13-5 Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Mito Targeting, Transport and Fusion

    • Remember: The Endosymbiotic Theory

    • Their own DNA, divide by binary fission

    • Two membranes– The outer membrane is 50:50 protein:lipid– The inner membrane is 80:20 protein:lipid

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Figure 12-21a Molecular Biology of the Cell (© Garland Science 2008)

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    The lipids and most proteins of the inner membrane arise from expression of genes maintained in the  mitochondrion itself 

    Those of the outer membrane arise from expression of genes maintained in the nucleus and trafficked via ER and GA

    What of the rate limiting step enzymes?

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Figure 12-28d Molecular Biology of the Cell (© Garland Science 2008)

    TOM COMPLEX

    Expressed on free ribosomes from nuclear mRNAs

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • Neurotransmitter Release

    Let’s put it all together....

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    Neurons and muscle cells in animals and phloem cells in plants rely on electrical signaling. 

    • Electricity is the energy created by the movement of charged particles – it’s named for the example of electrons

    • When a cell uses electricity it does it by allowing ions that it has concentrated by active transport to rush from one side of the membrane to the other through channel proteins

    • The opening and closing of the channels determines when the electrical current is flowing

    • Voltage is a measure of how many ions are on the move

    • Membrane potential is a measure of  how many ions have been actively concentrated across a membrane

    Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    • Concentrated ions diffuse faster than uncharged molecules

    • Two combined forces, collectively called the electrochemical gradient, drive the diffusion of ions across a membrane:

    – A chemical force (the ion’s concentration gradient)

    – An electrical force (the effect of the membrane potential on the ion’s movement)

    Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

  • • An electrogenic pump is a transport protein that generates voltage across a membrane

    • The sodium‐potassium pump is the major electrogenicpump of animal cells

    • The main electrogenic pump of plants, fungi, and bacteria is a proton pump

    • Mitochondria and chloroplasts use a proton pump to help make ATP

    Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    • Build the axon electrical gradient• Build the synapse• Build and locate the neurotransmitter vesicles• Depolarize and repolarize the plasmamembrnae• Transduce the signal that causes vesicular fusion

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________

    ___________________________________