d. habs lmu m ünchen • fakult ät f. physik max-planck-institut f. quantenoptik

42
Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 1 D. Habs LMU München Fakultät f. Physik Max-Planck-Institut f. Quantenoptik Scientific Case of ELI Nuclear Physics

Upload: oscar-workman

Post on 30-Dec-2015

17 views

Category:

Documents


0 download

DESCRIPTION

Scientific Case of ELI Nuclear Physics. D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik. Outline. g beam + ELI high-power laser + electron beam New nuclear physics with the g beam Nuclear resonance fluorescence – radioactive waste measurement - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 1

D. Habs

LMU München • Fakultät f. PhysikMax-Planck-Institut f. Quantenoptik

Scientific Case of ELI Nuclear Physics

Page 2: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 2

beam + ELI high-power laser + electron beam New nuclear physics with the beam

• Nuclear resonance fluorescence – radioactive waste measurement• Chaos in nuclear physics• Pygmy resonance• Parity-violating nuclear forces

Applications• New medical radioisotopes• Brilliant, intense positron beams• A new, brilliant neutron source• NRF + radioactive waste management

New nuclear physics with the APOLLON laser• From TNSA to light pressure acceleration of ions• Relativistic electron mirrors and beams• Fission fusion and the N = 126 waiting point of the r-process

Fundamental physics = physics of the vacuum• Brilliant high-energy production and pair creation in vacuum• Real part of the index of refraction: changed phase velocity

Outline

Page 3: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 3

Major components of ELI-NP

APOLLON laser stand alone

• 2·10 PW

• 15 fs

• ~ 1/min

• 1024 W/cm2

• 2.5×1015 V/m

beam stand-alone

• Emax = 13 MeV (19 MeV)

• 12 kHz

• ring-down cavity for photons

• warm electron linac, 600 MeV

• high brilliance (E/E ≥ 10–3)

• high flux (I = 1013 s–1)

APOLLON + e beam

• E ≈ 100–500 MeV

• ~ 1/min

• flux: I = 106 / 15 fs

• pair creation: 1024 W/cm2 + 500 MeV

Page 4: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 4

Layout of ELI-NP

2 ×APOLLON

Gamma beam + Electron beam

Page 5: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 5

Compton scatteringLinear + non-linear

0

202

0

2

2

41

cos12 E

mcE

anE

ee

e

e

00

0

020 ; ; small) (parameter recoil

4 ;number harmonic

Em

eEa

mc

En e

Large produces blue shift → (a0 < 1) good

Large a0 produces red shift ; dressed electron with

electron gains weight, recoils less,and transfers less energy to final photonlarge a → higher harmonics n

0201* maamm

, , ,

0

0

0

0

e

e

E

E

E

EHigh resolution

For large laser forces: 108 × higher gamma energies

Page 6: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 6

beams and new nuclear physics

Backshifted Fermi gas model orConstant temperature modelT.v.Egidy et al., Phys.Rev. C 80, 059310 (2010).

Gamma strength functionM. Guttormsen et al., Phys. Rev. C 63, 044313 (2001).

E1: milli Weisskopf unitsM1: strong scissors mode ~ 1 W.U.

Integrated excitation cross section32 ; EE

Page 7: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 7

High brilliance vs. high fluxGamma beam

Best: high brilliance + high flux: In 4-5 years ERLs with 100 mA will be available

(D. Bilderhack et al., Synchr. Rad. News 23, 32 (2010).Nuclear spectroscopy:

• 10-3 BW (Barty: 10-4 possible) extremely important to explore individual

resonances, variable resolution best• beam intensity has to be reduced to 109/s

new MHz rates of fast risetime nuclear detectors with flash ADCs• high resolution reduces strong atomic background (20-30 b/atom)

In general one has to compare high brilliance and high flux for each experiment,e.g. positrons: energy resolution of gamma beam is not important, but emittancePositron moderation efficiency from 10-6 to 10-3.

Crystal monochromator:Conversion of high flux to high resolution beam is less efficient, since crystal monochromator requires also good beam divergence.

Page 8: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 8

Single crystal – resolution is defined by beam divergence: h/L TOO LARGE for eV resolutionSingle crystal – resolution is defined by beam divergence: h/L TOO LARGE for eV resolution

R() sin2 A 1 y 2

1 y 2

y

, A , E hc

FWHM 2hc

E

FWHM

2d sin( ) nhc

E

nhc

E

Double Crystal Spectrometer:• First Crystal defines beam axis with nrad• Bragg Angle is measured @ second crystal• Resolution is energy independent• Resolution: E/E ~ 10-6

Double Crystal Spectrometer:• First Crystal defines beam axis with nrad• Bragg Angle is measured @ second crystal• Resolution is energy independent• Resolution: E/E ~ 10-6

~ 10 nrad

~ 1 mrad

Double crystal monochromator(GAMS, M. Jentschel (ILL))

Page 9: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 9

Diffraction efficiency of a 2.5mm Si220 @ 0.8 MeVDiffraction efficiency of a 2.5mm Si220 @ 0.8 MeV

Energy Resolution of a 2.5mm Si220 @ 1.1 MeVEnergy Resolution of a 2.5mm Si220 @ 1.1 MeV

4.5 eV @ 1.1 MeV4.5 eV @ 1.1 MeV22% @ 0.8 MeV22% @ 0.8 MeV

Performance of GAMS(GAMS, M. Jentschel (ILL))

Page 10: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 10

GAMS monochromator

Starting with 1013 /s and 10-3 bandwidthwe get for a reflectivity per crystal of 10%:

Bandwidth Intensity

10-5 107 /s

10-6 105 /s

Page 11: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 11

Nano-focusing refractive lens

For hard -rays (200 keV) refractive lenses have been successfully tested.

Concave lenses: in 1

Extension to MeV energies for new brilliant beams.

Focal length

A

Zr

N

Rf

e

2

22

density

2 beam oflength wave

radiuselectron classical

5000-1000 lenses-nano ofnumber

beam of radius

1010index refractive real 86

Ec

r

N

R

e

Test of d theory for higher energies: M. Jentschel et al., ILL proposal 3-03-731Test of nano-lens array at MEGa-ray facilityC.G. Schroer et al., Phys. Rev. Lett. 94, 054802 (2005).

Page 12: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 12

Nuclear res. fluorescence

Extension up to 4 MeV: 239Pu and 235U Minor actinides: 237Np, 241Am, 243Am, 244Cm, 247Cm Fission fragments: 137Cs, 129I, 99Tc

T. Hayakawa et al., NIM A 261, 695 (2010).

Page 13: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 13

Regular motion and chaosin nuclear physics

Wigner distribution:

Porter-Thomas distribution:

Random matrix theory = chaosGeneric spectra

H.A. Weidenmüller et al., Rev. Mod. Phys. 81, 539 (2009).G.M. Mitchell et al., arXiv:1001.2422v1 (2010).

2/ exp2

)( 2sssP

2/exp2

1)( y

yyP

Compound nucleus (N. Bohr, Nature, 1936)

50 levels with the same mean level spacing

Page 14: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 14

Nuclear resonancesPygmy and giant resonance

Average valuesand

fluctuating quantities

With GAMS monochromator we can study individual resonances at PDR.

Page 15: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 15

Parity violating NN-force (I)

fm 02.00

cM Z

Z

extremely short-range

Very weak contribution

GF = 1.166×10–5/GeV2 ; nuc ≈ fm–3 = nuclear density

pF/M = nuclear velocity at the Fermi level ≈ 0.3 (v/c) ;

U0 = 50 MeV = strength of nucleon-nucleus interaction

70nuc 10

U

Mp

G FF

fm 3.1 ; F

MeV 2970

0

rr

pF

Page 16: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 16

Parity-violating NN-force (II)

We need tricks to enhance PNC-effects in nuclei:

a) Suppression of regular transitions

b) Use close-lying parity doublets

Aim: measure different components of PNC-NN interaction

Status: present coupling constants are inconsistent due to insufficient data accuracy.

→ reliable experiments with new more brilliant, intense beam are required!

E

V

PNC

~

Page 17: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 17

New experiments (II) Basic doublet parameters of 20Ne

Present data:

11270 keV: = 0.716 eV

11262.3 keV: ≈ 11 eV

E = (7.7 ± 5.7) keV

cascades from separate experiments.

We can switch linear polarization shot after shot and can compare 11270 keV and 11262.3 keV difference, and can compensate for small drift of Ge detector.

→ E to better than 0.7 keV.

We can compare E1 and M1 excitation from shot to shot and determine values to better than 0.1 eV.

20Ne

Page 18: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 18

Applications

-beams

Med. radioisotopes• 195mPt labeled chemo• 117mSn Auger electrons• 225Ra/225Ac α chains• 44Ti/44Sc generator

γ-PET• Matched pairs

diagnostics + therapy

Radioactive waste manag.• Nuclear resonance

fluorescence

• Radioactive waste management

• Better use of reactor fuel elements

Thermal neutron beams• Neutron scattering:

structure + dynamics

• Small samples, extreme conditions

• Neutron reflectrometry

• Small angle scattering

Brilliant positron beam• Positron-induced Auger

spectroscopy (PAES)

• Scanning microbeams

• Fast coincident Doppler broadened spectroscopy (DDBS)

Page 19: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 19

Positron source (I)NEPOMUC at reactor FRM II + ELI-NP

I = 9∙1015/sIe+ = 9·108 s–1

B = 4∙105/(mm2 mrad2 eV s)mod = 3∙10-6

C. Hugenschmidt et al., NIM A 554, 384 (2005).

I = 1013/sIe+ = 3·109 s–1

B = 2∙106/(mm2 mrad2 eV s)mod = 2∙10-3 t = 1-2 ps (pulsed)Switchable polarization

C. Hugenschmidt, K. Schreckenbach, D. Habs, P. Thirolf, Appl. Phys. B, submittedarXiv:1103.0513 v1 [nucl-ex]

e+

W-foil

Self-moderation, negative electron affinitye+ range = 100 m

Page 20: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 20

Medical radioisotopes (I)

Production of 50 new medical isotopes with gamma beams.

D.Habs, U.Koester, Appl. Phys. BDOI: 10.1007/S00340-010-4278-1

Page 21: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 21

195mPt Labeled chemotherapy and therapy against resistances

Chemotherapy: Treatment of tumors before and after other cancer therapiesmany (80%) cytotoxic Pt compounds: cisplatin, carbonplatin

Aim: label chemotherapy and study anti-tumor efficiencyapplication: intravenously, intraarterially, orally

temperature (hyperthermic treatment)non-responding patients: identified in advance (30%)treat multi-resistant cancer cells with therapeutic dose of 195mPt

Importance: in Germany (~ 80 mio. people) we have:1.5 mio. chemotherapies/yearaverage cost: 20 k€ = 30 bill. €/year

Improvements: Identify optimum gateway state; cross section ↑ 104

verify labeled chemotherapy with 195mPt from reactor(but 13000 b destruction cross section)

Page 22: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 22

Medical radioisotopes (II) 44Ti

46Ti(,2n)44Ti (60 a)generator

Page 23: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 23

44Ti/44Sc generator (I)

Long-lived generator for hospital,

Continuous production of 44Sc

2∙511 keV + 1157 keV

Page 24: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 24

44Ti/44Sc generator (II) -PET

Better resolution, less dose

Measure momentum of Compton electron in strongly pixeled detectors

Determine direction and position of 1157 keV γ

3D reconstruction of decaying 44Sc

2D reconstruction of collinear line with PET

PET = Positron Emission Tomography

Page 25: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 25

Nuclear resonance fluorescenceApplications

• Radioactive waste management- study 238U/235U and dominant fission fragments in barrels- isotope-specific identification of location and quantity (735 keV transition in 235U), 239Pu, fast detection without destruction of sample

• Nuclear material detection (homeland security)- scan containers in harbors for nuclear material and explosives- detect specific small isotopic amounts (like 210Po)

• Burn-up of nuclear fuel rods- fuel elements are frequently changed in position to obtain a homogeneous burn-up- measuring the final 235U, 238U content may allow to use fuel elements 10% longer- more nuclear energy without additional radioactive waste

• Medical applications: no activity- NRF does not appear very important compared to PET

Page 26: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 26

Notch-detectors for nuclear resonance fluorescence

Narrow beam

Hole burning,ultra-highresolution

Isotope

sample

NRF

isotopesecond scatterer

change inscattering rate

-raybeam dump

• Tomography

• 235U/238U ratio

Page 27: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 27

Brilliances of -rays and neutron beams

ILL reactor, Grenoble

1023 / (mm2 mrad2 s 0.1%BW) 102 / (mm2 mrad2 s 0.1%BW)

Page 28: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 28

2-step neutron production Neutron halo isomer, dissociation of n-halo isomer

D. Habs et al., arXiv-1008.5324 [nucl-ex] (2010), accepted by Appl. Phys. BDOI: 10.1007/S00340-010-4276-3

Page 29: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 29

Neutron halo wave function

wave function

potential

Weakly bound neutron tunnels far out and lives for ns.

Page 30: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 30

Neutron experiments

Page 31: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 31

New neutron beam Pulsed, brilliant

Big advance in neutron scattering:

structure of biological samples, heterostructures, new functional materials only available as very small samples micro neutron beam H and light materials strong scattering functionality of biomaterials collective states, e.g. magnons, phonons – relaxation, diffusion short pulses dynamics, time dependence

Many new possibilities in:

biology hard condensed matter geoscience nuclear physics

Page 32: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 32

Ion accelerationTNSA

(target-normal sheath acceleration)

• Low conversion efficiency• Huge lasers are required

Laser acceleration schemesFormer schemes

S.C. Wilks et al., Phys. Plasmas 8, 542 (2001).

Laserion IE

Page 33: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 33

Normalized areal electron density: essdimensionl /

D

n

nnDn

c

ece

Normalized vector potential:2 2 18 2 2/1.38 10La I Wcm m

Optimum ion acceleration

La

4D nm 5La for

Optimum electron acceleration

0.65D nm 5La for

ions electrons

New Acceleration MechanismRadiation Pressure Acceleration (RPA)

= dimensionless

S.G. Rykovanov et al.,New J. Phys. 10, 113005 (2008).

O. Klimo et al.,Phys. Rev. ST AB 11, 031301 (2008).

2La

Page 34: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 34

Radiation pressure acceleration(RPA)

Cold compression of electron sheet.

Rectified dipole field between electrons and ions.

Neutral bunch of ions + electrons accelerated.

Solid-state density: 1024 e cm–3

Classical bunches: 108 e cm–3

Very efficient!

Laserion IE

Page 35: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 35

Fission-fusion reaction very neutron-rich nuclei

a) Fission H, C, O + Th → FL + FH fission fragments in target232Th + 232Th → fission of beam in FL + FH

Reaction of radioactive short-lived light fission fragments of beam +Radioactive short-lived light fission fragments of the target

b) Fusion: FL + FL → AZ ≈ 18580 nuclei close to N=126 waiting pointFL + FH → 232Th old nucleiFH + FH → unstable

Page 36: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 36

Chart of the Nuclides r-process and waiting points

• Superheavies: Z = 110, T1/2 = 109 a ?

• recycling of fission fragments ?

Fission-fusion with very dense beamsRadioactive targets + radioactive beam

Page 37: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 37

Experimental setup neutron-rich nuclei in fission-fusion

Page 38: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 38

eE

mEeR

ee

2

3

22

exp4

Nonperturbative tunneling processFor E << ES exponentially strong suppression

m

V105 ;

cm

W103.4 ;

m

V 103.1 15

2292

SS18

2

S EEIe

mE

100010exp

E

ES

Pair creation

Dynamically assisted pair creation: 350102exp

E

ES

High field + high energy: 12

103

8exp

E

cm

E

E eS

R. Schützhold et al., Phys. Rev. Lett. 101, 130404 (2008)G.V. Dunne et al., Phys. Rev. D 80, 111301(R) (2009)

N.B. Narozhny, Zh. Eksp. Teo. Fiz. 54, 676 (1968).

Page 39: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 39

Hard + pair production

N. Elkina + H. Ruhl

Page 40: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 40

Phase contrast imagingPhase velocity of probe laser in polarized vacuum

Optical intense probe laser, deflection angle shift phase , 2

y

K. Homma, D. Habs, T. Tajima, arXiv:1006.4533 [quant-ph] (2010)

focusing

Page 41: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 41

ELI-NP coupling-mass limit per shotELI-NP coupling-mass limit per shot

2011/3/11@Bucharest for ELI-NP workshop

Kensuke Homma 41 log m [eV]

Log

g/M

[1

/GeV

]

GravitationalCoupling ( Dark Energy)

SHG200J15fs

QCD axion (Dark matter)

OPG200J 1.5ns200J 1.5ns(induce)

OPG200J15fs200J15fs(induce)

Page 42: D. Habs LMU M ünchen • Fakult ät f. Physik Max-Planck-Institut f. Quantenoptik

Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011 42

ELI-NP the way aheadNext steps

Build a nano-structured target for a positron source at 2 MeVtogether with C. Hugenschmidt

Build a nano-structured -ray lens at 1 MeVtogether with M. Jentschel

Build a “flying” GAMS crystal spectrometer monochromatortogether with M. Jentschel

Test production of new medical radioisotope 195mPt at ~ 2 MeVtogether with U. Koester

Test MHz detectors + electronics together with K. Sonnabend and D. Savran

Flying start of ELI-NP beam at MEGa-ray