d. l. mcauslan, d. korystov, and j. j. longdell jack dodd centre for photonics and ultra-cold atoms,...

22
D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent Spectroscopy of Coherent Spectroscopy of Rare-Earth-Ion Doped Rare-Earth-Ion Doped Whispering Gallery Mode Whispering Gallery Mode Resonators Resonators avid McAuslan – QIP-REIDS2011 avid McAuslan – QIP-REIDS2011

Upload: cleopatra-glenn

Post on 20-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

D. L. McAuslan, D. Korystov, and J. J. LongdellJack Dodd Centre for Photonics and Ultra-Cold Atoms,

University of Otago, Dunedin, New Zealand.

Coherent Spectroscopy of Coherent Spectroscopy of Rare-Earth-Ion Doped Rare-Earth-Ion Doped

Whispering Gallery Mode Whispering Gallery Mode ResonatorsResonators

David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

Page 2: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

Whispering Gallery Modes (WGMs). Strong Coupling Regime of Cavity QED. Experiments.

◦Atom-Cavity Coupling.◦Coherence Time.◦Population Lifetime.◦Spectral Hole Lifetime.◦Optical Bistability/Normal-Mode Splitting.

David McAuslan – QIP-REIDS2011

OutlineOutline

David McAuslan – QIP-REIDS2011

Page 3: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

Whispering Gallery ModesWhispering Gallery Modes

Electric field confined to equator.

High quality factor.

Small mode volume.

Ideal for strong coupling cavity QED.

[1] S. Arnold et al., Opt. Lett. 28 (2003).

[1]

David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

Page 4: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

Whispering Gallery ModesWhispering Gallery Modes

Microdisk Microtoroid Microsphere Crystalline

r~10-100 μm.

Q=107.r~20-100 μm.

Q=108.r~10-500μm.

Q=109.r~100-5000μm.

Q=1011.

[2] [3]

[1] T. J. Kippenberg, PhD. Thesis (2004).[2] A. Schliesser et al., Nature Physics 4 (2008).[3] Y. Park et al., Nano Lett. 6 (2006).[4] J. Hofer et al., PRA 82 (2010).

[1]

[2] [3][4]

David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

Page 5: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

κ – cavity decay rate:

γ – atomic population decay rate:

γh – atomic phase decay rate:

g – coupling between atoms and cavity:

Strong Coupling RegimeStrong Coupling Regime

David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

Page 6: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

Critical atom number:

Saturation photon number:

N0<1, n0<1. “Good cavity” strong coupling regime: g > κ, γ, γh. “Bad cavity” strong coupling regime: κ > g >> γ, γh.

Strong Coupling RegimeStrong Coupling Regime

David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

Page 7: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

Reversible State Transfer

Single Atom Detection

Why Strong Coupling?Why Strong Coupling?

D. L. McAuslan et al., Physical Review A 80, 062307 (2009)David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

Page 8: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

Measure the properties of a Pr3+:Y2SiO5 resonator.◦ Atom-cavity coupling.◦ Coherence time.◦ Population lifetime.◦ Spectral hole lifetime.

Calculate cavity QED parameters to determine viability of strong-coupling regime.

Aim of ExperimentsAim of Experiments

David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

Page 9: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

Resonator:◦ 0.05% Pr3+:Y2SiO5.

◦ r = 1.95mm.◦ Q = 2 x 106.

Sample:◦ 0.02% Pr3+:Y2SiO5.

◦ 5x5x5mm cube.

Experimental SetupExperimental Setup

D. L. McAuslan et al., ArXiv:1104.4150 (2011)David McAuslan – QIP-REIDS2011

LO

Probe

David McAuslan – QIP-REIDS2011

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

Page 10: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

π = 0.32μs for Pin = 700μW

ππ Pulse LengthPulse Length

D. L. McAuslan et al., ArXiv:1104.4150 (2011)David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

Page 11: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

Rabi frequency:

Atom-Cavity Coupling:

Compare to g calculated from the theoretical mode volume (V = 5.40 x 10-13 m3 for r = 1.95mm):

Atom-Cavity CouplingAtom-Cavity Coupling

D. L. McAuslan et al., ArXiv:1104.4150 (2011)David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

Page 12: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

e-2τ/T2

e-2τ/T2

Through Resonator Coupled into Resonator

Coherence TimeCoherence Time

D. L. McAuslan et al., ArXiv:1104.4150 (2011)David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

Page 13: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

e-2τ/T2

e-2τ/T2

Through Resonator Coupled into Resonator

Coherence TimeCoherence Time

D. L. McAuslan et al., ArXiv:1104.4150 (2011)David McAuslan – QIP-REIDS2011

T2 = 30.8 μs T2 = 21.0 μs

David McAuslan – QIP-REIDS2011

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

Page 14: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

Through Resonator Coupled into Resonator

e-Τ/T1

e-Τ/T1

Population LifetimePopulation Lifetime

D. L. McAuslan et al., ArXiv:1104.4150 (2011)David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

Page 15: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

Through Resonator Coupled into Resonator

e-Τ/T1

e-Τ/T1

Population LifetimePopulation Lifetime

D. L. McAuslan et al., ArXiv:1104.4150 (2011)David McAuslan – QIP-REIDS2011

T1 = 205μs T1 = 187μs

David McAuslan – QIP-REIDS2011

D. L. McAuslan et al., ArXiv:1104.4150 (2011)

Page 16: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

Spectral Hole LifetimeSpectral Hole Lifetime

D. L. McAuslan et al., ArXiv:1104.4150 (2011)David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

Page 17: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

Optical bistability and normal-mode splitting studied by Ichimura and Goto in a Pr3+:Y2SiO5 Fabry-Perot resonator [1].

Theory modified for a WGM resonator.

Fitting to experimental data gives:◦ g = 2π x 2.2 kHz.

Optical BistabilityOptical Bistability800μW 400μW

200μW 100μW

80μW 40μW

Sweep Sweep

[1] K. Ichimura and H. Goto, PRA 74 (2006)David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

Page 18: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

This resonator:◦ κ = 2π x 138 MHz.◦ γ = 2π x 0.851 kHz.

◦ γh= 2π x 2.34 kHz.

◦ g = 2π x 1.73 kHz.

◦ N0 = 2.15 x 105, n0 =0.166.

Need:◦ Smaller resonators.◦ Higher Q factors.◦ Different materials.

Cavity QED ParametersCavity QED Parameters

David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

Page 19: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

Smaller VSmaller V

Single point diamond turning.◦ Crystalline resonators with R = 40 μm.◦ Possible to reduce V by 3 orders of magnitude.

[1]

[1] I. S. Grudinin et al., Opt. Commun. 265 (2006)David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

Page 20: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

Higher QHigher Q

We have measured Q = 2 x 108 in Y2SiO5 resonators.

Q = 3 x 1011 in CaF2 [1].

Bulk losses in Y2SiO5 measured using Fabry-Perot cavity [2].◦ α ≤ 7 x 10-4 cm-1.◦ Max Q ~ 3 x 108.

At least 2 orders of magnitude improvement possible.

Bulk losses should be lower in IR.[1] A. A. Savchenkov et al., Opt Exp. 15 (2007)[2] H. Goto et al., Opt. Exp. 18 (2010)

David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

Page 21: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

N0<1 for different materials.

MaterialsMaterials

David McAuslan – QIP-REIDS2011David McAuslan – QIP-REIDS2011

Page 22: D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent

Performed an investigation into strong coupling cavity QED with rare-earth-ion doped WGM resonators.

Direct measurement of cavity QED parameters of a Pr3+:Y2SiO5 WGM resonator.◦ g = 2π x 1.73 kHz.◦ γ = 2π x 0.851 kHz.◦ γh = 2π x 2.34 kHz.

Observed optical bistability and normal-mode splitting in resonator.

Achieving the strong coupling regime of cavity QED is feasible based on existing resonator technology.

ConclusionsConclusions

David McAuslan – QIP-REIDS2011