d7.1 – ex vivo kidney and liver model with pulsatile blood ... · fusimo d7.1 – ex vivo kidney...

20
FUSIMO Project, 270186, 20111230 Page 1 of 20 D7.1 – Ex vivo kidney and liver model with pulsatile blood flow and respiratory motion Authors: Timur Saliev, Helen McLeod, Alexander Volovick, Ioannis Karakitsios, Professor Andreas Melzer Status: Released Date: 20111230 Project cofunded by the European Commission Service under the 7th Framework Programme Dissemination Level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services)

Upload: others

Post on 05-Feb-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO Project, 270186, 2011‐12‐30    Page 1 of 20 

D7.1–Exvivokidneyandlivermodelwithpulsatilebloodflowand

respiratorymotion 

Authors: Timur Saliev, Helen McLeod, Alexander Volovick,  

Ioannis Karakitsios, Professor Andreas Melzer 

Status: Released 

Date: 2011‐12‐30 

Project co‐funded by the European Commission Service under the 7th Framework Programme 

Dissemination Level 

PU  Public  X 

PP  Restricted to other programme participants (including the Commission Services)   

RE  Restricted to a group specified by the consortium (including the Commission Services)   

CO  Confidential, only for members of the consortium (including the Commission Services)   

Page 2: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 2 of 20 

TableofContents

VERSION HISTORY ...................................................................................................................... 2 

OVERVIEW OF THE DELIVERABLE ................................................................................................ 3 

DESCRIPTION OF WORK ......................................................................................................................... 3 

INTRODUCTION .......................................................................................................................... 3 

REPERFUSION TECHNIQUES ........................................................................................................ 4 

REPERFUSION OF VENOUS AND ARTERIAL SYSTEMS ..................................................................................... 4 

FORMING A CONNECTION ...................................................................................................................... 5 

ARTIFICIAL ANASTOMOSIS CREATION ....................................................................................................... 8 

EXPERIMENTATION OF PERFUSED LIVER MODEL ........................................................................ 9 

IMAGING IN WHOLE CADAVERS SUPPORTED BY THE MRC GRANT DPFS ................................... 11 

IMAGING OF TARGET ORGANS IN WHOLE EMBALMED CADAVERS ................................................................. 12 

SUMMARY ............................................................................................................................... 13 

EXPERIMENTAL WORK: SONICATION OF ORGAN (LIVER) OF EMBALMED CADAVER WITH MR–

GUIDED FOCUSED ULTRASOUND (MRGFUS) DURING RESPIRATORY MOTION ........................... 13 

THE SIMULATION OF RESPIRATORY MOTION ON CADAVERS .................................................... 14 

IMAGES OF ORGANS DURING RESPIRATORY MOTION .............................................................. 15 

DESCRIPTION OF SONICATION PROCEDURE .............................................................................. 16 

EXPERIMENTAL RESULTS .......................................................................................................... 17 

CONCLUSION AND PLANS ......................................................................................................... 20 

 

VersionHistory2011‐12‐30   Released as FUSIMO Deliverable 7.1 

   

Page 3: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 3 of 20 

OverviewoftheDeliverable

DescriptionofWorkTask 7.1 – Development of ex‐vivo model of kidney and liver with respiratory motion and 

reperfusion (M1 –M18) UNIVDUN 

This task will concern the design and manufacture of the hard and software of the simulator and 

includes 

(i) Flow pump and choice of the pipe, connectors and sensors for flow;   

(ii) Design of connecting parts to the liver portal vein, arteries and veins, Kidney arteries 

and veins; 

(iii) Manufacturing or required specialized connector and tubing by technicians at IMSaT; 

(iv) Connection of the components (pump, compressed air, hydraulic to the anatomy); 

(v) Reperfusion including thrombolectomy (removal of blood clots) and vascular occlusion 

in the case of leakages; 

(vi) Installation of respiratory motion and assessment of movement of organs and MR 

ultrasound imaging testing; 

(vii) Approval of preclinical experimental procedure for interventions and focussed 

ultrasound. 

(viii) Adjustment of the simulator and computer control to the findings.  In this phase the 

function, MRI –compatibility and signal behaviour and angiography of the bodies will 

be investigated.  Testing use of available prototype models, and pulsatile systems from 

the other research project will be followed by testing in the 1.5T in the experimental 

MRI with MRgFUS unit and angio/surgical suite at IMSaT. 

The MRI compatible robotic system Innomotion which is installed at UNIVDUN and going to be 

produced by IBSMM will be utilised to position the MR compatible Ultrasound system and the 

mobile MRg Focused Ultrasound array CBS (ExAblate2001, Insightec). This setup would allow also 

evaluating dual source sonication combining the table system and the mobile system and the 

value for motion compensation.”  (Seventh Framework Programme – Annex 1 –“Description of 

work”, FUSIMO, pp27). 

IntroductionThe primary aim of deliverable WP 7.1 was to develop an ex‐vivo liver (and kidney model: at the 

kick off meeting 1st March 2011 in Dundee the consortium decided to work primarily on liver) with 

respiratory motion and reperfusion.  UNIVDUN has successfully achieved the key elements of this 

deliverable, with some alterations due to insurmountable problems with certain aspects of the 

Thiel embalmed cadavers, and the more specific direction of the project as agreed by the 

consortium which has evolved over time guiding the direction of this research toward the liver as 

primary target organ. 

UNIVDUN has developed the required ex vivo model with perfusion on a Thiel embalmed cadaver 

liver. The experience gained has been used to establish these techniques of perfusion to be 

combined with respiratory motion in whole embalmed cadavers.  

Page 4: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 4 of 20 

Establishing the model with the liver and kidney conjoined, in the explanted embalmed organs has 

been problematic (as described in the description of work).  The liver and right kidney are “joined” 

in the human body by the hepato‐renal ligament, and the surrounding anatomy such as the 

vasculature of these systems, peri‐renal fat, diaphragm and intestine.  The removal of the liver and 

kidney from a cadaver to produce the individual organ destroys these structures; therefore, the 

close geographical association between the two organs and the biological attachments are lost.  To 

reconstruct the functional and natural relationship between the two organs artificially has as yet 

been impossible, and for the purposes of the project, considered inappropriate.  Aside from the 

time and cost, the development of an artificial structure would require, it was hypothesized that 

this structure would not necessarily imitate the natural in vivo structure and would possibly 

introduce air or other impermeable barrier which would prohibit the successful use of MRgFUS, 

which is ultimately the purpose of developing this model.  This rationale has driven the focus of 

the experimentation within UNIVDUN to the development of the “model” within a whole, intact 

embalmed cadaver; with the explanted organ models developed being separate liver and kidney 

models. 

In addition to the difficulty simulating the anatomical relationship between the liver and kidney, 

the FUSIMO consortium agreed that the primary focus of the project would be to develop the liver 

model(FUSIMO Kick off meeting Dundee, 1st March 2011, and annual Project Meeting Tel Aviv, 12 

– 13th September 2011).  Therefore, the focus of the UNIVDUN group has been to establish the 

fully functional cadaver, which will fulfil the project requirements adequately. 

This report details the methodology developed at UNIVDUN to fulfil the deliverable requirements.  

ReperfusionTechniques

ReperfusionofvenousandarterialsystemsTo establish any perfusion of embalmed tissue, there has to be a mechanism of transferring fluid 

from an external source into the tissue.  To achieve this, UNIVDUN has developed various devices 

and techniques to gain access to the blood vessels and to simultaneously connect to a source of 

fluid, either mechanical such as a flow‐rig or a manual or gravitational perfusion source.  The 

devices which make a connection to the tissue to produce perfusion or flow, form an anastomosis, 

between a synthetic tube and the embalmed blood vessel, essentially an artificial anastomosis. 

The key problem to overcome was that cadaver tissue does not heal and that there is no blood 

clotting mechanism that facilitates the sealing of vascular connections and leakages. 

The development of these specialised connectors and tying techniques has facilitated the 

development of fluid delivery into the blood vessels and demonstrated perfusion within target 

tissues within explanted organs such as liver.  These techniques have also been used in whole 

embalmed cadavers to perfuse targeted organs such as liver and kidney.  The types of flow or 

“reperfusion” that is created are varied and can be selected according to the experimental aim.  

Three primary methods have been developed. 

Manual flow:  a continuous slow flow which is physically pushed by the researcher using a 

device such as a syringe.  This has been used to perfuse contrast media, X‐ray or MR 

contrast into the target tissue.  This can also be used in conjunction with gravitational flow 

Page 5: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 5 of 20 

or pump derived flow to deliver bolus of required fluid. Fig 1 show an explanted organ 

with syringes attached to deliver flow to allow X‐ray to be taken. 

Gravitational flow: a reservoir of the perfusate that is driven by gravity down to the target 

tissue.   

Pump driven flow:  pump system such as Braveheart (Fig2) can introduce continuous or 

pulsatile flow into blood vessels.  This technique has been established in small vessels such 

as the superficial femoral artery.  Future plans at UNIVDUN are to introduce flow into the 

entire vasculature of cadaver; this will require more pump development to achieve this 

aim. 

Figure 1. a) Flow established through the explanted embalmed liver via hepatic artery. b) Visualised on GE 

OEC9900 C‐Arm via X‐ray spot and Digital Subtraction Angiography using 50% diluted Ultrasvist (Schering) 

Figure 2. Braveheart Flow‐rig. a) Braveheart  flow‐rig has been modified allows MR; Ultrasound and X‐ray 

imaging and blood mimicking   fluids to be pumped at various velocities, with continuous flow or   pulsatile 

flow    delivered  in  specific  waveforms  into  the  target  tissue.    b)  The  pump  can  be  connected  to  the 

artificialanastomosis developed at IMSaT to re‐perfuse embalmed cadaver organs. 

FormingaconnectionTo facilitate reperfusion with the aim to reproduce physiological flow in vasculature of embalmed 

organs and whole embalmed cadavers, the following process and equipment was developed at 

UNIVDUN.  The images demonstrate the method of connecting a vessel (either artery or vein) to a 

synthetic tube soft silicone and sealed with modified cable ties.  The tube is connected to either a 

gravitational, manual device or a flow rig to create the flow.  This connection is a synthetic 

Page 6: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 6 of 20 

anastomosis, essentially a connection formed between two tubes, one silicone (other materials 

can be selected depending upon the properties required) and one embalmed blood vessel. 

Figure 3. a) Modified Silione Tubing which  is the basis of the artificial anastomosis. Tubing of various sizes 

has  been  used  to  provide  access  to  vasculature  (3,  5  and  7mm).    The  image  above  is  of  5mm  internal 

diameter tubing. b) This tubing is adapted by the addition of two mounts, the blood vessel is pushed along 

passed both mounts and a cable tie  is used  in between these two mounts to secure the vessel and secure 

the anastomosis. 

Coupling mounts sealed with silicone 

Page 7: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 7 of 20 

Figure 4. a) Check‐Flo 12Fr and Check‐Flo 16Fr introducer sets (Cook Medical, Bloomington, USA)  each 

adapted  and then joined to manufacture the artificial anastomosis with the cadaver vessel  b) which has the 

tube to make an external connection to a flow device. 

The two vascular access devices have been modified and joined to form the access.  This 

adaptation also has the advantage of having a port to add fluids such as contrast medium 

depending on the desired effect. 

These innovative solutions have enabled a system of perfusion of embalmed organs and sections 

of whole embalmed cadavers. 

12Fr and 16 Fr altered and joined to provide vascular access and connection for pump tubing 

PTFE tape to make secure seal with flow‐rig connection tubes  

Part of 16Fr Introducer set 

12 Fr Sheath set (with introducer port present).  Blue section of sheath cut short to reduce length in vessel. 

 

port 

Page 8: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 8 of 20 

ArtificialAnastomosisCreationThe technique developed has been used to create an artificial anastomosis, in most cases between 

the proximal vessel and the silicone tubing.  Depending upon the type of tissue and the 

experimental aim, the anastomosis is secured with cable ties or sutures, depending upon the 

pressure created from flow, and the resilience of the tissue to withstand the pressure created by 

cable tie. The following images show the process for connecting an explanted embalmed liver. 

Image shows insertion of silicone tube (7mm internal diameter) into the inferior vena cava, using 

the guide‐wire. 

Figure  5.  Location  of  inferior  vena  cava.  The 

inferior  vena  cava  is  located  and  has  guide‐wire 

inserted  to allow  the artificial anastomosis  to be 

formed  with  the  silicone  tubing  (7 mm  internal 

Figure 6. Insertion of connection to vessel. Synthetic 

anastomosis formation between silicone tubing and 

inferior vena cava of embalmed human liver 

Figure 7. Anastomosis is secured to vena cava: it is sealed 

using cable ties in this example. The pipes can be 

attached to return to the pump reservoir in a similar 

fashion to venous blood returning to the vena cava. 

 

Figure 8. Artificial Anastomosis of liver portal vein: 

synthetic anastomosis formation between portal artery 

and silicone tubing. 

Page 9: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 9 of 20 

Figure 9. a) Preparation of synthetic anastomosis in hepatic artery of embalmed liver. Small yellow cable tie 

is used to secure anastomosis and allows easy identification of the hepatic artery; b) Balloon catheter used 

for intra hepatic sealing of branches. 

A balloon catheter can be inserted to seal right or left hepatic artery for selective filling of the 

respective live lobe. This technique similar to super selective catheterization will used in the whole 

cadaver and allow embolization to provide marking of a liver territory for sonication. 

Currently these techniques and equipment have been successfully used in explanted embalmed 

liver.  The explanted organs have the advantage of having blood vessels which are easily accessed 

for this technique (providing they have been excised sympathetically to permit easy access).  

Arguably, this approach does not fit as easily in the whole cadavers, where normally all the blood 

vessels are internal and a vessel has to be excised and exposed to gain access in this fashion.  

Deeper vessels cannot be accessed to prepare this anastomosis without resulting in damage to the 

cadaver, which is at times possible, depending upon the “life‐cycle” of the cadaver.  However, in 

most cases it is not desirable to create a huge amount of damage to get access to vessels near the 

target organ the liver. Currently the approach selected is determined by the experimental aim, 

UNIVDUN has successfully accessed the liver and kidneys of whole cadavers via the femoral artery 

with guide‐wires and other radio‐graphical interventions, to produce both X‐ray contrast images 

and MR images. 

In addition interventional radiological techniques have been assessed and established to 

catheterize liver veins and hepatic artery and renal arteries, for selective perfusion of organs, 

described in the next section. 

ExperimentationofperfusedlivermodelOnce the vascular access was established the explanted liver was prepared for perfusion.  In this 

model, the liver has been perfused with manual flow, which allowed DSA angiograms to be 

prepared.  The characteristics of hepatic flow and portal flow are being researched, once 

identified; experimentation can begin to re‐create the desired flow and filling of the liver. 

Manual reperfusion using syringes ranging from 2.5ml to 50ml have been used to re‐perfuse the 

tissue using the above connections.  This has allowed DSA series to be produced and with the 

further development of the MR techniques to image tissue this future work will enable the 

identification of landmarks, essential to the development of the liver model by other groups in the 

consortium. 

Page 10: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 10 of 20 

Figure  10.  a)  Digital  Spot  Angiogram  of  cadaver  embalmed  liver.  X‐ray  contrast  (Omnipaque  300,  GE 

Healthcare, Princetown, USA), 50:50 dilutions with Thiel fluid, perfused via the portal vein to the liver tissue. 

b) DSA post perfusion image

Figure 11. a) Partialperfusion ofright  liver  lobevia righthepatic artery selective catheterization with balloon 

catheter. b) DSA post perfusion  image  (Omnipaque 300, GE Healthcare, Princetown, USA), 50:50 dilution 

with Thiel Fluid) 

This image shows hepatic artery perfusion, of the right liver lobe and sub‐segment so only a small 

portion was visualised by the X ‐ray contrast.  The image shows a PTA balloon catheter which is 

being used to seal the arterial branch. This technique will be further explored to selectively mark 

certain liver areas for sonication. 

This image demonstrates the success of the catheterization technique. During the experiment the 

artery was sealed using a 4 cm PTA balloon catheter (TEGwire, Medi‐tech,Boston Scientific, 

Watertown).  Standard radiological techniques have been successfully used at IMSaT to remove 

coagulations, to block leaking and vessels and to direct flow, to the target tissue.  These 

techniques have been established in both explanted organs and whole cadaver tissue. 

Page 11: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 11 of 20 

ImaginginwholecadaverssupportedbytheMRCgrantDPFSUsing the flow connectors previously described (Fig. 3, Fig. 4) to produce an artificial anastomosis, 

to the embalmed blood vessels has been successful in full cadavers.  Initial experimentation 

selected the superficial femoral artery of whole cadavers as it allows easy access and causes 

minimal damage to the cadaver.

 

After this preparation the artificial anastomosis can be connected to a source of flow.  Many 

experiments have used the Braveheart pump to create pulsatile flow in a femoral waveform.  The 

following figures show X‐ray contrast of flow in the superficial femoral artery of whole cadavers. 

Figure 14. a) Digital Spot imaging of Xray contrast enhanced left superficial femoral artery of a whole 

embalmed cadaver b) DSA (Omnipaque 300, GE Healthcare, Princetown, USA), 50:50 dilution with  Thiel 

fluid 

Figure 12. The proximal and distal artificial anastomosis to 

the superficial femoral artery in whole cadaver 

Figure 13. A close‐up image of the distal artificial 

anastomosis 

Page 12: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 12 of 20 

The technique of accessing the superficial femoral artery in whole cadavers has been established 

at UNIVDUN in the MRC funded DPFS project.  This vessel was selected for initial experimentation 

because of the relative ease of access, the minimal trauma to cadaver, the vessel size, (diameter is 

approximately 4 – 6 mm.  The adapted Check Flo Introducers (size 12 Fr and 16 Fr, Cook Medical, 

Bloomington, USA) allow a direct connection between the Braveheart flow‐rig and the blood 

vessel.  This has allowed pulsatile flow to be established and both angiographic, and 1.5 T MR 

images of this vessel to be obtained. 

The further development of flow in whole cadaver liver is planned at UNIVDUN for the next stage 

of the project.   

Imagingoftargetorgansinwholeembalmedcadavers

Figure15. a) X‐ray contrast digital spot image of left accessed by “standard” radiological techniques 

b)DSA(Omnipaque 300, GE Healthcare, Princetown, USA), 50:50 dilution with Thiel fluid 

The arterial system of the left kidney of an embalmed cadaver was accessed from the right 

superficial femoral artery using a guide‐wire ( TEGwire, Medi‐tech,Boston Scientific, Watertown).  

The aorta was accessed via the right superficial femoral artery.  This vessel was perfused with fluid  

and contrast until the left kidney was reached.  The X‐ray contrast was injected to visualise the 

arterial system of the kidney. In a similar manner selective catherization of the kidney arteries can 

take place to mark certain areas for sonication 

Page 13: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 13 of 20 

SummaryIn summary, both the reperfusion of embalmed organs and targeted organs within whole 

embalmed cadavers has been achieved.  Improvements to these techniques are planned, 

particularly in the whole cadaver which is the primary focus of research.  UNIVDUN plans to 

develop a method of reperfusing the liver in a whole intact embalmed cadaver over a longer 

period of time, to improve the MR imaging which is pivotal to the liver model development. 

Experimentalwork:Sonicationoforgan(liver)ofembalmedcadaverwithMR–guidedFocusedUltrasound(MRgFUS)duringrespiratorymotionObjectives:  

Improve cadaver MR planning imaging properties. 

Improve cadaver MR thermal feedback. 

Assess feasibility of trans‐costal sonications to liver using embalmed Cadavers. 

Assess possible treatment techniques (to sonicate with the lungs full of air ‐> increasing 

trans‐costal space vs no air in lungs). 

Assess feasibility of using the Body (UF) system for trans‐costal treatments. 

Cadavers: Thiel embalming technique makes the cadaver an ideal model for validation, testing and 

training  of the MRgFUS technique with the ExAblate system due to its distinctive properties such 

as life‐like colouring, muscle‐joint flexibility and relative long‐time preservation.Four embalmed 

cadavers were used for the experiments. 

Equipment: 

MRI GE Signa 1.5 Tesla (Figure 16) 

High Intensity Focused Ultrasound (HIFU) of Conformal Bone System (CBS) ExAblate 2100 

and ExAblate 2000 system(InSightec, Haifa, Israel) (Figure1). 

Figure 16.a) The HIFU ExAblate2100 Conformal Bone System (CBS). b) The HIFU ExAblate2000system 

(InSightec, Haifa, Israel) 

Page 14: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 14 of 20 

ThesimulationofrespiratorymotiononcadaversThe ventilation technique of embalmed cadaver (under MR‐control) has been established at 

UNIVDUN in the MRC funded DPFS project. For that purpose, the cadavers were intubated by 

using laryngoscope with Macintosh blade and endotracheal tube (size 7 or 8) (Figure 17). The 

orotracheal route was used for intubation, where the tube was inserted through the mouth and 

then the vocal cords into trachea.  

 

        

Figure 17. a) Laryngoscope with Macintosh blade and cuffed endotracheal tube b) Manual resuscitator 

(Ambu® SPUR® II, UK) to establish breathing motion in  embalmed cadavers. The user can easily apply 

constant and uniform compression, through the compression bag, allowing air pass through the tube inside 

the body. 

After this, the tube was connected to a bag‐resuscitator (Ambu® SPUR® II, UK) for manual 

ventilation, imitating breathing motion of a human body (Figure17).  

As to confirm the placement of endotracheal tube the cadaver’s lungs were inflated under MR‐

supervision.  

After visual MR‐confirmation of correct position, the tube was fixed and experiment was 

performed. 

During experiments, free breathing and breath‐hold imaging methods were used. The MR images 

demonstrated an excursion of lungs along with organ displacement during breathing cycle 

(Fig.18and 19). 

Besides of manual breathing, it is planned to use the portable MR‐compatible ventilator VentiPAC 

200 D (PneuPAC Ltd, UK) for further experiments.  

 

Page 15: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 15 of 20 

Imagesoforgansduringrespiratorymotion

Coronal MR images 

Figure 18. a) lung during inhalation phase; b) exhalation phaseMR parameters: Echo Time (TE) = 1.68 msec, 

Repetition Time (TR) = 5.976 msec. Slice thickness= 8 mm, spacing = 8 mm, and an acquisition matrix of 256 

x 256. Liver has been shifted during respiration cycle 

Axial MR images  

    

 

Figure 19. lung during a) inhalation phase; b) exhalation phaseMR parameters: Echo Time (TE) = 1.68 msec, 

Repetition Time (TR) = 5.976 msec, and FOV= 480mm x 480mm. Slice thickness= 8 mm, spacing = 8 mm, and 

an acquisition matrix of 256 x 256. 

Page 16: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 16 of 20 

DescriptionofsonicationprocedureMRI provides an ability to locate abnormal tissue and precise positioning of the HIFU transducer 

over a desired site. After obtaining MR images the P (posterior), S (superior), and R (right) 

coordinates of the transducer can be derived and accurately located so as to avoid the beam 

passing through obstacles (air or ribs), which would reflect the ultrasound signal. Stitches and 

implants also need to be excluded from the beam path.  

Two types of HIFU transducers were used for sonication: ExAblate 2100 Conformal Bone 

System(Figure 21) and ExAblate 2000 Body (UF) system (Figure 22). 

Figure 20. a) The HIFU water  transducer  (ExAblate2100,  InSightec, Haifa,  Israel) b)The HIFU  transducer  is 

covered with plastic transparent film to avoid contact with fluid. 

Figure 21. a) The UF table, where the interface has been created, with coupling gel, phantom, and degassed 

water.  b) Maximized picture of the interface. ‘Pillows’ have been placed at the sides to facilitate the moving 

of cadavers on the table. 

For each cadaver (4 in total) the sonication procedure was performed in the following order: 

After establishing the respiratory motion and planning MR imaging, the liver was sonicated at two 

different breath holding positions: lungs full (with air) and empty lungs. The experiments were 

repeated both for Conformal Bone (ExAblate 2100) and Body (ExAblate 2000) systems. 

 

Page 17: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 17 of 20 

ExperimentalResults1. The optimal parameters for the  embalmed cadavers MR imaging were identified as: 

a. Planning imaging: Fast Spoiled Gradient Echo (FSPGR), TE=min, TR>1000msec. It 

was established that the Bandwidth (BW) value plays a crucial role in optimization 

of image quality (up to 5kHz). This is basically proton density imaging with short 

BW. The short BW results in long scanning time, which makes this technique 

unsuitable for real time imaging. Planning images using 8channel body coil (with 

CBS) and Single channel InSightec Pelvic coil (with the Body system) are presented 

in Figures 20and 21 respectively. 

b. Temperature measurements Pelvic Coil: for the thermometry mapping using the 

body system, the lowering BW made a significant difference (Figure 22), However, 

it increased the acquisition time to 20.5 sec (instead of 3.5sec). We are using long 

time sonications with small power, to reduce cavitation activity; such long 

acquisition time is tolerable. 

c. Temperature measurements 8ch body coil: Using standard InSightec EPI protocol 

for 3 slices scan provided acceptable images (Figure 24). 

2. We have observed heating of the liver behind the rib‐cage using both (CBS and Body HIFU) 

systems. For the same acoustic powers the heating of the Body system (UF) is higher (as 

expected) due to high ultrasonic frequency (1 MHz). 

3. Sonication through the rib‐cage without elements closure causes the rib heating. In this 

case, the heat of the ribs by the body system is higher due to higher energy density on the 

ribs. 

The positions of HIFU transducer relative to organ‐target (liver) are depicted on Figures22and 23:

Figure 22. Planning imaging using 8ch body coil and CBS system.Scan parameters:  FSPGR, BW=5kHz, 

TE=3.8msec, TR=400msec 

HIFU 

transducer 

Liver 

Page 18: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 18 of 20 

Figure 23. Planning imaging using InSightec Pelvic coil and Body system. Scan parameters:  FSPGR, BW=2kHz, 

TE=7.5msec, TR=600msec.

The sonication of liver and temperature rise at the focal point (liver) are presented on figures 24 

and 25: 

 

Figure 24:Typical trans‐costal sonication, using the Body system a) Thermal map of the sonication. b) 

Magnitude image of the sonication. c) Thermal rise in the focus. 

a

b

c

HIFU 

transducer

Liver 

Rib 

Page 19: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 19 of 20 

Figure  25.  Typical  trans‐costal  sonication,  using  the  CBS  system:  a)  Thermal  map  of  the  sonication.  

b) Magnitude image of the sonication. c) Thermal rise in the focus.

 

a

b

c

Page 20: D7.1 – Ex vivo kidney and liver model with pulsatile blood ... · FUSIMO D7.1 – Ex vivo kidney and liver model Released FUSIMO Project, 270186, 2011‐12‐30 Page 4 of 20 Establishing

FUSIMO D7.1 – Ex vivo kidney and liver model    Released 

FUSIMO Project, 270186, 2011‐12‐30    Page 20 of 20 

ConclusionandplansThe functional cadaver model has been established at UNIVDUN, which incorporates the 

respiratory motion and reperfusion of embalmed organs. The experiments with MR‐guided high‐

focused ultrasound ablation of abdominal organ demonstrated feasibility and reliability of Thiel 

embalmed cadavers as a preferable model for validation studies. 

The next steps will involve the sonication of explanted tissue followed by the assessment and 

monitoring of thermal effect so as to optimize the treatment protocol. It will include evaluation of 

heat conductivity, acoustic propagation and impedance. The effect of blood perfusion and 

absorption rate on ultrasound treatment will be assessed as well. After establishing the model for 

extracted organ, the experiments for sonication of perfused organ inside the cadaver will be 

performed (Fig.26). In this case, the liver will be connected to the perfusion machine for simulation 

of pulsatile flow, while the lungs will be inflated in a controlled manner. This set‐up will provide 

the perfect model of respiratory organ motion for further validation of ultrasound treatment. 

 

Figure 26. Sonication of perfused liver inside the body with combination with lungs ventilation. 

            

Acoustic Energy 

Heating effect 

Organ perfusion machine 

Lungs ventilation