Đa thức đối xứng và ứng dụng trong đại số.pdf

Upload: 1110004

Post on 31-Oct-2015

1.178 views

Category:

Documents


21 download

TRANSCRIPT

  • I HC THI NGUYN

    TRNG I HC KHOA HC

    PHM VN TH

    MT S TNH CHT CA A THC

    I XNG V NG DNG

    TRONG I S

    LUN VN THC S TON HC

    Chuyn ngnh : PHNG PHP TON S CP

    M s : 60. 46. 40.

    Ngi hng dn khoa hc: TS. NGUYN VN MINH

    THI NGUYN 2012

    S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Mc lc

    M u 3

    1 Khi nim c bn v a thc i xng 5

    1.1 a thc i xng hai bin . . . . . . . . . . . . . . . . . . 5

    1.1.1 Cc khi nim c bn . . . . . . . . . . . . . . . . . 5

    1.1.2 Tng ly tha v cng thc Waring . . . . . . . . . 6

    1.1.3 Cc nh l v a thc i xng hai bin . . . . . . 9

    1.2 a thc i xng ba bin . . . . . . . . . . . . . . . . . . . 11

    1.2.1 Cc khi nim c bn . . . . . . . . . . . . . . . . . 11

    1.2.2 Tng ly tha v tng nghch o . . . . . . . . . . 12

    1.2.3 Qu o ca n thc . . . . . . . . . . . . . . . . . 14

    1.2.4 Cc nh l ca a thc i xng ba bin . . . . . . 16

    1.2.5 a thc phn i xng . . . . . . . . . . . . . . . . 19

    2 ng dng tnh cht ca a thc i xng gii mt s

    bi ton i s 21

    2.1 Mt s bi tp tnh ton . . . . . . . . . . . . . . . . . . . 21

    2.2 Phn tch a thc thnh nhn t . . . . . . . . . . . . . . . 24

    2.3 Phng trnh i xng v phng trnh hi quy . . . . . . . 27

    2.4 Gii h phng trnh . . . . . . . . . . . . . . . . . . . . . 33

    2.4.1 H phng trnh i xng hai n v ng dng . . . . 33

    2.4.2 H phng trnh i xng ba n . . . . . . . . . . . 37

    2.5 Tm nghim nguyn ca cc phng trnh i xng . . . . . 42

    2.6 Chng minh cc ng thc . . . . . . . . . . . . . . . . . . 44

    2.7 Chng minh bt ng thc . . . . . . . . . . . . . . . . . . 50

    3 a thc i xng n bin v ng dng 58

    3.1 Cc khi nim . . . . . . . . . . . . . . . . . . . . . . . . . 58

    3.2 Biu din cc tng ly tha qua cc a thc i xng c s 60

    3.3 Cc nh l ca a thc i xng nhiu bin . . . . . . . . 63

    1S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 3.4 a thc phn i xng nhiu bin . . . . . . . . . . . . . . 66

    3.5 Phng trnh v h phng trnh . . . . . . . . . . . . . . . 68

    3.6 Chng minh ng thc. Phn tch a thc thnh nhn t . 72

    Kt lun 79

    Ti liu tham kho 80

    2S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • M u

    Cc bi ton i s lun chim mt v tr quan trng i vi ton ph

    thng, cng l lnh vc m cc nh nghin cu sng to ra rt y

    v hon thin. Tnh i xng trong i s l mt trong nhng phn quan

    trng ca i s s cp, cng l bi ton quen thuc trong cc ti liu lin

    quan n i s s cp, cc k thi hc sinh gii quc gia v quc t.

    Trong qu trnh gii nhiu bi ton i s hoc dng trc tip hoc

    dng gin tip mi nhn ra l bi ton lin quan n a thc i xng,

    nu gii mi bi ton ny mt cch n l s gp khng t kh khn v

    tnh hiu qu khng cao khi gii cc bi ton cng loi. Vic nm bt c

    y khi nim v cc tnh cht c bn ca a thc i xng, thng qua

    p dng gii mt s bi ton lin quan n a thc i xng l vn

    c nhiu ngi quan tm.

    Lun vn ny gii thiu cc khi nim, tnh cht ca a thc i xng

    v cc ng dng c bn gii cc bi ton i s thng gp trong chng

    trnh ton s cp. Lun vn "Mt s tnh cht ca a thc i xng v

    ng dng trong i s" gm c phn m u, ba chng ni dung, kt

    lun v ti liu tham kho.

    Chng 1. Cc khi nin c bn v a thc i xng.

    Trong chng ny tc gi trnh by cc khi nim, tnh cht ca a thc

    i xng hai bin, ba bin. Mt ng gp nh c ngha trong chng

    ny l H qu 1.1 ca cng thc Newton. Cng thc ny thng c s

    dng trong cc bi ton tnh gi tr biu thc.

    Chng 2. ng dng tnh cht ca a thc i xng gii mt s bi

    ton i s.

    Chng ny tc gi trnh by cc ng dng ca a thc i xng bng

    cc v d minh ha c th. Cc ng dng ny rt ph bin trong cc ti

    liu v i s trong chng trnh ton ph thng.

    3S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng 3. a thc i xng n bin v ng dng.

    Chng ny tc gi trnh by cc kin thc ca a thc i xng n bin

    v mt s ng dng ph bin thng gp.

    Lun vn nghin cu mt phn rt nh ca i s v thu c mt s

    kt qu nht nh. Tuy nhin, lun vn chc chn cn nhiu thiu xt, nn

    rt mong c s gp ca cc thy c, cc bn ng nghip v c gi

    quan tm n ni dung lun vn lun vn ca tc gi c hon thin

    hn.

    Lun vn c hon thnh ti trng i hc Khoa hc - i hc Thi

    Nguyn di s hng dn ca TS. Nguyn Vn Minh. Tc gi xin by t

    lng bit n su sc ti s quan tm ca thy, ti cc thy c trong Ban

    Gim hiu, Phng o to v Khoa Ton - Tin trng i hc Khoa hc.

    ng thi tc gi xin cm n ti S GD - T tnh Yn Bi, Ban Gim

    hiu, cc bn ng nghip ti trng THPT Hong Vn Th huyn Lc

    Yn - Yn Bi v gia nh to iu kin cho tc gi hc tp v hon

    thnh bn lun vn ny.

    Thi Nguyn, ngy 10 thng 06 nm 2012.

    Tc gi

    Phm Vn Th

    4S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng 1

    Khi nim c bn v a thc ixng

    1.1 a thc i xng hai bin

    1.1.1 Cc khi nim c bn

    nh ngha 1.1 (Theo [2]). Mt n thc f(x,y) ca cc bin c lp x,

    y (trng hp chung nht c th l cc s phc) c hiu l hm s c

    dng

    f(x, y) = aklxkyl,

    trong akl 6= 0 l mt s (hng s), k, l l nhng s nguyn khng m.S akl c gi l h s, cn k+l c gi l bc ca n thc f(x,y) v

    c k hiu l

    deg[f(x, y)] = deg[axkyl] = k + l.

    Cc s k, l tng ng c gi l bc ca n thc i vi cc bin x, y.

    Nh vy, bc ca n thc hai bin bng tng cc bc ca cc n thc

    theo tng bin.

    Chng hn: 3x4y2 v x2y l cc n thc theo x, y vi bc tng ng

    bng 6 v 3.

    nh ngha 1.2 (Theo [2]). Hai n thc ca cc bin x, y c gi l

    ng dng (tng t), nu chng ch c h s khc nhau. Nh vy, hai n

    thc c gi l ng dng, nu chng c dng: Axkyl, Bxkyl(A 6= B).nh ngha 1.3 (Theo [2]). Gi s Axkyl v Bxmyn l hai n thc ca

    cc bin x, y. Ta ni rng n thc Axkyl tri hn n thc Bxmyn theo

    th t ca cc bin x, y, nu k > m, hoc k = m v l > n.

    5S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng hn: n thc 3x4y2 tri hn n thc 3x2y7, cn n thc x4y5

    tri hn n thc x4y3.

    nh ngha 1.4 (Theo [2]). Mt hm s P(x,y) c gi l mt a thc

    theo cc bin s x, y, nu n c th biu din c di dng tng ca hu

    hn cc n thc. Nh vy, a thc P(x,y) theo cc bin s x, y l hm s

    c dng

    P (x, y) =

    k+l

  • Nh vy

    sk = 1sk1 2sk2. (1.1)Cng thc (1.1) c gi l cng thc Newton, n cho php tnh sk theo

    sk1 v sk2.Vi m=1, m=2, nh l 1.1 ng v

    s1 = x+ y = 1,

    s2 = x2 + y2 = (x+ y)2 2xy = 21 22.

    Gi s nh l ng cho m < k. Khi sk1 v sk2 ln lt l cc athc bc k-1, k-2 ca 1 v 2. Theo cng thc (1.1) ta suy ra sk l a

    thc bc k ca 1 v 2. Theo nguyn l quy np ta c iu phi chng

    minh.

    H qu 1.1. Vi m > n, ta c

    sm+n = sm.sn n2 .smn. (1.2)Tht vy,

    sm+n = xm+n + ym+n = (xm + ym)(xn + yn) xnyn(xmn + ymn) =

    sm.sn n2 .smnS dng cng thc (1.1) v cc biu thc ca s1, s2 chng minh trn,

    ta nhn c cc biu thc sau

    s1 = x+ y = 1,

    s2 = 21 22,

    s3 = 31 312,

    s4 = 41 4212 + 222,

    s5 = 51 5312 + 5122.

    Vic tnh cc tng ly tha sk theo cng thc lp (1.1) khng c thun

    tin v phi bit trc cc tng sk v sk1. i khi ta cn c biu thc skch ph thuc vo 1 v 2. Cng thc tng ng c tm ra nm 1779

    bi nh ton hc ngi Anh E.Waring.

    nh l 1.2 (Cng thc Waring (Theo [2])). Tng ly tha sk c biu

    din qua cc a thc i xng c s 1 v 2 theo cng thc

    1

    ksk =

    [k/2]m=0

    (1)m (k m 1)!m! (k 2m)!

    k2m1

    m2 , (1.3)

    trong [k/2] k hiu l phn nguyn ca k/2.

    7S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng minh. Ta chng minh cng thc (1.3) bng phng php quy np.

    Vi k=1, k=2 cng thc tng ng c dng

    s1 = 1,1

    2s2 =

    1

    221 2.

    Nh vy, vi k=1, k=2 cng thc (1.3) ng. Gi s cng thc Waring

    ng cho s1, s2, ...., sk1. chng minh cng thc ng cho sk ta sdng cng thc (1.1). Ta c

    1

    ksk =

    1

    k[1sk1 2sk2] =

    =k 1k

    1.m=0

    (1)m (k m 2)!m! (k 2m 1)!

    k2m11

    m2

    k 1k

    2.n

    (1)n (k n 3)!n! (k 2n 2)!

    k2n21

    n2 =

    =1

    k

    m

    (1)m (k m 2)! (k 1)m! (k 2m 1)!

    k2m1

    m2

    1k

    n

    (1)n (k n 3)! (k 2)n! (k 2n 2)!

    k2n21

    n+12

    Trong tng th hai thay n+1 bi m. Khi hai tng c th kt hp thnh

    mt nh sau:

    1

    ksk =

    1

    k

    (1)m (k m 2)! (k 1)m! (k 2m 1)!

    k2m1

    m2

    1k

    m

    (1)m1 (k m 2)! (k 2)(m 1)! (k 2m)!

    k2m1

    m2 =

    1

    k

    m

    (1)m (k m 2)![

    k 1m! (k 2m 1)! +

    k 2(m 1)! (k 2m)!

    ]k2m1

    m2 .

    S dng cng thc

    1

    (m 1)! =m

    m!,

    1

    (k 2m 1)! =k 2m

    (k 2m)! ,

    ta c

    (k 1)(k 2m)m!(k 2m)! +

    (k 2)mm!(k 2m)! =

    k(k m 1)m!(k 2m)! .

    Cui cng, v

    (k m 1).(k m 2)! = (k m 1)!nn ta c cng thc cn phi chng minh:

    8S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 1ksk =

    [k/2]m=0

    (1)m (k m 1)!m! (k 2m)!

    k2m1

    m2 ,

    Cng thc Waring cho biu thc ca sn = xn + yn theo

    1 = x+ y, 2 = xy sau ys1 = 1;s2 =

    21 22;

    s3 = 31 312;

    s4 = 41 4212 + 222;

    s5 = 51 5312 + 5122;

    s6 = 61 6412 + 92122 232;

    s7 = 71 7512 + 143122 7132;

    s8 = 81 8612 + 204122 162132 + 242;

    s9 = 91 9712 + 275122 302132 + 9142;

    s10 = 101 10812 + 356122 504132 + 252142 252;

    .......................................................................

    1.1.3 Cc nh l v a thc i xng hai bin

    nh l 1.3 (Theo [2]). Mi a thc i xng P(x,y) ca cc bin x, y u

    c th biu din c di dng a thc p(1, 2) theo cc bin 1 = x+ y

    v 2 = xy, ngha l

    P (x, y) = p(1, 2) (1.4)

    Chng minh. Trc ht ta xt trng hp n thc, trong ly tha ca

    x v y cng bc, ngha l n thc dng axkyk. Hin nhin l

    axkyk = a(xy)k = ak2 .

    Tip theo, xt n thc dng bxkyl(k 6= l). V a thc l i xng, nn cs hng dng bxlyk. xc nh, ta gi s k < l v xt tng hai n thc

    trn

    b(xkyl + xlyk) = bxkyk(xlk + ylk) = bk2slk.

    Theo cng thc Waring slk l mt a thc ca cc bin 1, 2, nn nhthc ni trn l mt a thc ca 1, 2.

    V mi a thc i xng l tng ca cc s hng dng axkyk v

    b(xkyl + xlyk), nn mi a thc i xng u biu din c dng a

    thc theo cc bin 1 v 2.

    9S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • nh l 1.4 (Tnh duy nht (Theo [2])). Nu cc a thc (1, 2) v

    (1, 2) khi thay 1 = x + y, 2 = xy cho ta cng mt a thc i xng

    P(x,y), th chng phi trng nhau, ngha l (1, 2) (1, 2) .Chng minh. t (1, 2) = (1, 2) (1, 2). Khi theo gi thitta c:

    (x+ y, xy) = (x+ y, xy) (x+ y, xy) = P (x, y) P (x, y) = 0.Ta s chng t rng (1, 2) 0. D thy rng, sau khi m ngoc thbiu thc

    f (x, y) := (x+ y)k(xy)l

    l mt a thc ca cc bin x, y v c s hng tri nht theo th t cc

    bin x, y l xk+lyl.

    Gi s (1, 2) c dng

    (1, 2) =k,l

    Aklk1

    l2.

    tm s hng tri nht, ta chn trong (1, 2) cc s hng c k+l l

    ln nht. Tip theo, trong cc s hng ni trn, chn ra cc s hng vi

    gi tr ln nht ca l. V d, nu

    (1, 2) = 3412 42132 + 142 6122 + 1132 71 + 52 + 8

    th s hng c chn s l 142.

    Nh vy, gi s chn c n thc Am1 n2 . Khi , nu thay

    1 = x+ y, 2 = xy, th s hng tri nht ca s l Axm+nyn. Tht vy,

    gi s Bk1l2 l n thc ty khc vi Ax

    m+nyn. Khi theo cch chn

    c hoc m+n > l+l, hoc m+n = k+l, nhng n > l. Trong c hai trng

    hp th Axm+nyn tri hn Bxk+lyl.

    Vy chng t rng Axm+nyn l n thc tri nht ca (x + y, xy), nn

    (x+ y, xy) 6= 0,x, y nu (1, 2) 6= 0. Vy, ta c (1, 2) 0.V d 1.1. Biu din a thc sau theo cc a thc i xng c s

    f (x, y) = x5+3x3y2x3y3+2xy47x2y2+y5+3x2y35xy35x3y+2x4y= x3y3 7x2y2 + (x5 + y5)+ 3 (x3y2 + x2y3)+ 2 (xy4 + x4y)

    5(xy3 + x3y

    )=

    = x3y37x2y2+(x5 + y5)+3x2y2 (x+ y)+2xy (y3 + x3)5xy (y2 + x2)= 32 722 + s5 + 3221 + 22s3 52s2 =

    = 32722+(515312+5122)+3122+22(31312)52(2122)= 51 3312 5212 + 2122 32 + 322.

    10S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 1.2 a thc i xng ba bin

    1.2.1 Cc khi nim c bn

    nh ngha 1.9 (Theo [2]). Mt n thc (x, y, z) ca cc bin x, y, z

    c hiu l hm s c dng

    (x, y, z) = aklmxkylzm,

    trong k, l,m N c gi l bc ca cc bin x, y, z;s aklm R = R\ {0} c gi l h s ca n thc, cn s k+l+m gil bc ca n thc (x, y, z).

    nh ngha 1.10 (Theo [2]). Mt hm s P(x,y,z) ca cc bin x, y, z

    c gi l mt a thc, nu n c th c biu din dng tng hu hn

    cc n thc:

    P (x, y, z) =

    k+l+mnaklmx

    kylzm.

    Bc ln nht ca cc n thc trong a thc c gi l bc ca a thc.

    nh ngha 1.11 (Theo [2]). a thc P(x,y,z) c gi l i xng ca

    cc bin x, y, z, nu n khng thay i vi mi hon v ca x, y, z, ngha

    l

    P (x, y, z) = P (x, z, y) = P (y, x, z) = P (y, z, x) = P (z, y, x) = P (z, x, y).

    Chng hn cc a thc di y l nhng a thc i xng theo cc

    bin x, y, z

    x4 + y4 + z4 2x2y2 2x2z2 2y2z2;(x+ y)(x+ z)(y + z);

    (x y)2(y z)2(z x)2.

    nh ngha 1.12 (Theo [2]). a thc i xng P(x,y) c gi l thun

    nht bc m, nu:

    P (tx, ty, tz) = tmP (x, y, z),t 6= 0nh ngha 1.13 (Theo [2]). Cc a thc

    1 = x+ y + z, 2 = xy + yz + zx, 3 = xyz,

    c gi l cc a thc i xng c s ca cc bin x, y, z.

    11S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 1.2.2 Tng ly tha v tng nghch o

    nh ngha 1.14 (Theo [2]). Cc a thc sk = xk+yk+zk, (k = 0, 1, ...),

    c gi l tng ly tha bc k ca cc bin x, y, z.

    nh l 1.5 (Cng thc Newton (Theo [2])). Vi mi k Z, ta c hthc

    sk = 1sk1 2sk2 + 3sk3 (1.5)Chng minh. Tht vy, ta c

    1sk1 2sk2 + 3sk3 =

    = (x+ y + z)(xk1 + yk1 + zk1)

    (xy + xz + yz)(xk2 + yk2 + zk2) + xyz(xk3 + yk3 + zk3) =

    = (xk + yk + zk + xyk1 + xk1y + xzk1 + xk1z + yzk1 + yk1z)

    (xk1y + xyk1 + xk1z + xzk1 + yk1z + yzk1+

    +xyzk2 + xyk2z + xk2yz) + (xk2yz + xyk2z + xyzk2) =

    = xk + yk + zk = sk.

    nh l 1.6 (Theo [2]). Mi tng ly tha sk = xk + yk + zk u c th

    biu din c di dng mt a thc bc n theo cc bin 1, 2, 3.

    Chng minh. Ta chng minh nh l bng phng php quy np. Ta c

    s0 = 3, s1 = x+ y + z = 1s2 = x

    2 + y2 + z2 = (x+ y + z)2 2(xy + yz + zx) = 21 22.Nh vy, nh l ng vi n = 0, n = 1, n = 2. Gi s nh l ng vi

    n = k 1, n = k 2, n = k 3(k > 3). Khi , theo cng thc Newton,nh l cng ng vi n = k.

    Cng thc (1.5) cho php biu din cc tng ly tha sk theo cc a

    thc i xng c s 1, 2, 3, nu bit trc cng thc biu din ca

    sk1, sk2. nh l sau cho ta cng thc biu din trc tip sk theo cc athc i xng c s 1, 2, 3.

    12S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • nh l 1.7 (Cng thc Waring (Theo [2])). Tng ly tha sk c biu

    din qua cc a thc i xng c s theo cng thc

    1

    ksk =

    l+2m+3n=k

    (1)klmn (l +m+ n 1)!l!m!n!

    l1m2

    n3 . (1.6)

    Cng thc (1.6) c chng minh bng phng php quy np vi s tr

    gip ca cng thc (1.5). Nh cng thc Waring chng ta c th tm c

    cc cng thc sau

    Biu thc ca sn = xn + yn + zn tnh theo 1, 2, 3.

    s0 = 3;s1 = 1;s2 =

    21 22;

    s3 = 31 312 + 33;

    s4 = 41 4212 + 222 + 413;

    s5 = 51 5312 + 5122 + 5213 523;

    s6 = 61 6412 + 92122 232 + 6313 12123 + 323;

    s7 = 71 7512 + 143122 7132 + 7413 212123 + 7123 + 7223;

    s8 = 81 8612 + 204122 162132 + 242 + 8513 323123+

    +122123 + 241

    223 8223;

    s9 = 91 9712 + 275122 302132 + 9142 + 9613454123 + 5421223 + 183123 9323 271223 + 333;

    s10 = 101 10812 + 356122 504132 + 252142 252 + 10713605123 + 10031223 + 254123 401323 6021223 + 10133 + 152223;

    .......................................................................

    nh ngha 1.15 (Theo [2]). Cc biu thc

    sk = xk + yk + zk =1

    xk+

    1

    yk+

    1

    zk, (k = 1, 2, ...)

    c gi l tng nghch o ca cc bin x, y, z.

    Do cng thc (1.5) ng vi k Z, nn nu trong cng thc thayk bi 3 k, ta c

    sk =23s1k 1

    3s2k +

    1

    3s3k (1.7)

    S dng cng thc (1.7) c th tm c cc biu thc ca cc tng nghch

    o theo cc a thc i xng c s. Chng hn:

    13S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • s1 =23s0 1

    3s1 +

    1

    3s2 =

    23.3 1

    3.1 +

    1

    3(21 22) =

    23

    ;

    s2 =23s1 1

    3s0 +

    1

    3s1 =

    23.23 13.3 +

    1

    31 =

    22 21323

    ;

    s3 =23s2 1

    3s1 +

    1

    3s0 =

    23.22 213

    23 13.23

    +1

    3.3 =

    =32 3123 + 323

    33;

    s4 =23s3 1

    3s2 +

    1

    3s1 =

    =23.32 3123 + 323

    33 13.22 213

    23+

    1

    3.23

    =

    =42 41223 + 4223 + 22123

    43

    1.2.3 Qu o ca n thc

    nh ngha 1.16 (Theo [2]). a thc i xng vi s cc s hng ti

    thiu, mt trong cc s hng ca n l n thc xkylzm c gi l qu

    o ca n thc xkylzm v c k hiu l O(xkylzm).

    R rng l tm qu o ca n thc xkylzm cn phi b sung vo n

    thc tt c cc hon v ca x, y, z. Vi k 6= l 6= m, ta c:O(xkylzm) = xkylzm + xkymzl + xlykzm + xlymzk + xmykzl + xmylzk.

    V d 1.2 (Theo [5]). Ta c

    O(x5y2z) = x5y2z + x5yz2 + x2y5z + x2yz5 + xy5z2 + xy2z5;

    O(x3y) = O(x3yz0) = x3y + xy3 + x3z + xz3 + y3z + yz3.

    Nu trong n thc xkylzm c hai s m no bng nhau, chng hn

    k = l 6= m, thO(xkykzm) = xkykzm + xkymzk + xmykzk

    Chng hn: O(xyz5) = xyz5 + xy5z + x5yz,

    O(xy) = xy + yz + zx,

    O(x3y3) = x3y3 + x3z3 + y3z3.

    Cc trng hp ring ca qu o:

    14S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • O(x) = O(xy0z0) = x+ y + z = 1,

    O(xy) = O(xyz0) = xy + yz + zx = 2,

    O(xyz) = xyz = 3, O(xk) = O(xky0z0) = xk + yk + zk = sk, k N.

    nh l 1.8 (Theo [2]). Qu o ca mi n thc biu din c di

    dng a thc theo cc n thc i xng c s.

    Chng minh. Trc ht ta c O(xk) = sk, nn theo nh l (1.6), O(xk)

    biu din c theo cc a thc i xng c s.

    Trng hp qu o c dng O(xkyl). Ta c cng thc

    O(xkyl) = O(xk)O(xl)O(xk+l)(k 6= l). (1.8)Tht vy, ta c

    O(xk)O(xl)O(xk+l) = (xk+yk+zk)(xl+yl+zl)(xk+l+yk+l+zk+l) =

    = (xk+l + yk+l + zk+l) + (xkyl + xlyk + xkzl + xlzk + ykzl + ylzk)(xk+l + yk+l + zk+l) =

    = xkyl + xlyk + xkzl + xlzk + ykzl + ylzk = O(xkyl).

    Nu k = l th cng thc (1.8) c thay bi cng thc sau:

    O(xkyk) =1

    2[(O(xk))2 O(x2k)]. (1.9)

    T (1.8) v (1.9), suy ra cc qu o O(xkyl) biu din c di dng

    a thc theo cc bin 1, 2, 3.

    Cui cng, nu n thc xkylzm ph thuc vo c ba bin x, y, z, ngha

    l k 6= l 6= m 6= 0, th n thc xkylzm s chia ht cho ly tha vi s mno ca xyz. V vy trong a thc O(xkylzm) c th a ly tha vi

    s m no ca xyz = 3 ra ngoi ngoc, khi trong ngoc ch l qu

    o ph thuc vo s bin t hn ba. Do , qu o O(xkylzm) biu din

    c di dng a thc ca 1, 2, 3.

    Bng cch trn ta d dng nhn c cc cng thc sau:

    15S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Qu o O(xkyl) biu din dng a thc theo 1, 2, 3.O(xy) = 2;O(x2y) = 12 33;O(x3y) = 212 222 13;O(x2y2) = 22 213;O(x4y) = 312 3122 213 + 523;O(x3y2) = 1

    22 2213 23;

    O(x5y) = 412 42122 33 + 7123 + 232 323;O(x4y2) = 21

    22 232 2313 + 4123 323;

    O(x3y3) = 32 + 323 3123;

    .......................................................................

    S dng cc cng thc biu din ca tng nghch o theo cc a thc c

    s, d dng tm c cc qu o O(xkyk). Tht vy, ta c

    sk =1

    xk+

    1

    yk+

    1

    zk=ykzk + xkzk + xkyk

    xkykzk=O(xkyk)

    k3.

    Suy ra

    O(xkyk) = k3sk;O(x2y2) = 23s2 =

    22 213;

    O(x3y3) = 33s3 = 32 3123 + 323;

    O(x4y4) = 43s4 = 42 41223 + 4223 + 22123;

    1.2.4 Cc nh l ca a thc i xng ba bin

    nh l 1.9 (Theo [2]). Mi a thc i xng ba bin x, y, z u c th

    biu din di dng a thc theo cc bin 1 = x+y+z, 2 = xy+yz+zx,

    3 = xyz.

    Chng minh. Gi s f(x, y, z) l a thc i xng v axkylzm l mt

    trong cc s hng ca f(x, y, z). Do tnh i xng, cng vi s hng trn,

    f(x, y, z) cha qu o O(xkylzm) vi tha s chung l a. Nh vy ta c

    f(x, y, z) = a.O(xkylzm) + f1(x, y, z), (1.10)

    trong f1(x, y, z) l a thc i xng no vi t s hng hn. i vi

    f1(x, y, z) ta li c cng thc tng t nh cng thc (1.9). Theo mt s

    hu hn bc ni trn, ta c th phn tch a thc f(x, y, z) thnh tng

    cc qu o. Theo nh l (1.8), mi qu o li l mt a thc theo cc

    a thc i xng c s, do mi a thc i xng c th biu din c

    dng a thc theo cc a thc i xng c s.

    16S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • nh l 1.10 (nh l duy nht (Theo [2])). Nu cc a thc (1, 2, 3)

    v (1, 2, 3) khi 1 = x + y + z, 2 = xy + yz + zx, 3 = xyz cho ta

    cng mt a thc i xng P(x,y,z), th chng phi trng nhau, ngha l

    (1, 2, 3) (1, 2, 3) .Chng minh. thun tin ta t

    t1 = 1, t2 = 2, t3 = 3; x1 = x, x2 = y, x3 = z.

    (t1, t2, t3) = (t1, t2, t3) (t1, t2, t3).Theo gi thit ta c

    (1, 2, 3) = P (x1, x2, x3) P (x1, x2, x3) = 0.1 = x1 + x2 + x3, 2 = x1x2 + x1x3 + x2x3, 3 = x1x2x3

    Ta chng minh l a thc khng, ngha l ng nht bng khng. t

    Q(x1, x2, x3) = (x1 +x2 +x3, x1x2 +x1x3 +x2x3, x1x2x3) = (1, 2, 3).

    R rng Q(x1, x2, x3) l a thc i xng. Ta vit li (t1, t2, t3) dng

    (t1, t2, t3) = 0(t1, t2) + 1(t1, t2)t3 + 2(t1, t2)t23 + ...+ m(t1, t2)t

    m3

    v k hiu 1, 2 l nhng a thc i xng c s ca cc bin x1, x2. D

    thy rng

    k(x1, x2, 0) = k(x1, x2) (k=1, 2), 3(x1, x2, 0) = 3(x1, x2) = 0.

    Theo iu kin ca bi ton ta c

    Q(x1, x2, x3) = 0(1, 2)+1(1, 2)3+2(1, 2)23+...+m(1, 2)

    m3 =

    0, x1, x2, x3.Khi th

    R(x1, x2) := Q(x1, x2, 0) = 0(1, 2) = 0,x1, x2.V R(x1, x2) l a thc i xng hai bin, nn theo nh l tnh duy nht

    ca a thc i xng hai bin (1.4) suy ra 0 ng nht bng khng. Nh

    vy ta c

    Q(x1, x2, x3) = 3[1(1, 2) + 2(1, 2)3 + ...+ m(1, 2)m13 ] = 0,

    x1, x2, x3.v 3 6= 0, nn a thcQ(x1, x2, x3) = 1(1, 2) + 2(1, 2)3 + ...+ m(1, 2)

    m13 = 0,

    x1, x2, x3.

    17S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Lp lun tng t nh trn suy ra 1 ng nht bng khng. Tng t c

    2, 3, ..., m l nhng a thc khng. Vy l a thc khng.

    biu din mt a thc i xng qua cc a thc i xng c s, mt

    cch tng qut, ta tin hnh theo cc bc nh trong chng minh nh l

    (1.9). Tuy nhin, trong trng hp a thc l thun nht, ta c th dng

    phng php " h s bt nh". C s ca phng php ny l mnh

    sau.

    Mnh 1.1 (Theo [2]). Cho fm(x, y, z) l mt a thc i xng thun

    nht bc m. Khi fm(x, y, z) c biu din qua cc a thc i xng c

    s theo cng thc

    fm(x, y, z) =

    i+2j+3k=m

    aijki1

    j2

    k3 , (i, j, k N).

    Mnh 1.1 c suy ra t cc nh l ca a thc i xng vi

    1, 2, 3 ln lt c bc l 1, 2, 3 i vi cc bin x, y, z. Di y l mt

    s trng hp ring ca mnh .

    f1(x, y, z) = a11;

    f2(x, y, z) = a121 + a22;

    f3(x, y, z) = a131 + a212 + a33;

    f4(x, y, z) = a141 + a2

    212 + a3

    22 + a413;

    f5(x, y, z) = a151 + a2

    312 + a31

    22 + a4

    213 + a523;

    trong , ai(i = 1, 2, ...) l cc hng s c xc nh duy nht (theo nh

    l 1.10) v tm cc h s ny, ta cho x, y, z nhn cc gi tr c th thch

    hp no .

    V d 1.3. Biu din a thc sau y theo cc a thc i xng c s

    f(x, y, z) = x4 + y4 + z4 2x2y2 2x2z2 2y2z2.Li gii. Ta c

    f(x, y, z) = O(x4) 2O(x2y2) == (41 4212 + 222 + 413) 2(22 213) = 41 4212.

    V d 1.4. Biu din a thc sau y theo cc a thc i xng c s

    f(x, y, z) = (x y)2(y z)2(z x)2.Li gii. Do f(x, y, z) l a thc thun nht bc 6, nn theo mnh (1.1)

    ta c

    18S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • f(x, y, z) = a161 + a2

    412 + a3

    21

    22 + a4

    32 + a5

    313 + a6

    23 + a7123.

    Nhn xt rng, f(x, y, z) c bc cao nht i vi tng bin l 4, nn

    a1 = a2 = 0. tm cc h s cn li, ta cho (x,y,z) ln lt cc gi tr

    (0, 1,1), (0, 1, 1), (1, 1,2), (1, 1, 1), (1, 1, 1), ta tm c a3 = 1,a4 = 4, a5 = 4, a6 = 27, a7 = 18. Vy ta c kt qu

    f(x, y, z) = 2122 432 4313 2723 + 18123.

    1.2.5 a thc phn i xng

    nh ngha 1.17 (Theo [2]). a thc phn i xng l a thc thay i

    du khi thay i v tr ca hai bin bt k.

    V d: Cc a thc x y v x4y2 y4x2 + x4y y4x+ x3y2 x2y3, lcc a thc phn i xng hai bin, cn a thc (x y)(x z)(y z) la thc phn i xng ba bin n gin.

    nh l 1.11 (nh l Benzout (Theo [2])). Gi s f(t) l a thc bc

    n > 1 . Khi s d trong php chia ca a thc cho t a bng f(a). athc f(t) chia ht cho t a khi v ch khi f(a) = 0 .Chng minh. Tht vy, thc hin php chia a thc f(t) cho ta, ta c

    f(t) = g(t)(t a) + r(t).V t a c bc bng 1, nn a thc d r(t) c bc bng khng, ngha lr(t)=r l hng s. Trong ng thc trn cho t = a, ta c r = f(a). T

    suy ra f(t) chia ht cho t a khi v ch khi f(a) = 0.nh l 1.12 (Theo [2]). Mi a thc phn i xng hai bin f(x, y) u

    c dng:

    f(x, y) = (x y)g(x, y), (1.11)trong g(x, y) l a thc i xng theo cc bin x, y.

    Chng minh. Ta thy rng f(x, y) l a thc phn i xng th

    f(x, x) = 0, v theo nh ngha ta c

    f(x, y) = f(y, x).Trong ng thc trn t y = x, th f(x, x) = f(x, x), suy ra f(x, x) = 0.Ta k hiu Fy(x) = f(x, y) l a thc ch theo bin x (coi y l tham s).

    Theo nhn xt trn, ta c Fy(y) = 0. Theo nh l Bezout, a thc Fy(x)

    chia ht cho x y, do f(x, y) chia ht cho x y, ngha l c19S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • f(x, y) = (x y)g(x, y),trong g(x, y) l a thc no . Trong cng thc (1.11) i ch ca x

    v y ta c

    f(y, x) = (y x)g(y, x),V theo gi thit f(x, y) = f(y, x) v cng v x y = (y x) , nn tac:

    f(x, y) = (x y)g(y, x), (1.12)T (1.11) v (1.12), suy ra g(x, y) l a thc i xng theo cc bin x,y.

    nh l 1.13 (Theo [2]). Mi a thc phn i xng ba bin f(x, y, z)

    u c dng

    f(x, y, z) = (x y)(x z)(y z)g(x, y, z),trong g(x, y, z) l a thc i xng theo cc bin x, y, z.

    nh l (1.13) c chng minh tng t nh l (1.12). Trong a thc

    phn i xng, cc a thc x y v T = (x y)(x z)(y z) ng vaitr rt quan trng v c gi l cc a thc phn i xng n gin nht

    tng ng i vi a thc phn i xng hai bin v ba bin.

    i vi a thc phn i xng thun nht, ta c kt qu sau.

    Mnh 1.2 (Theo [2]). Cho fm(x, y, z) l mt a thc i xng thun

    nht bc m. Khi

    f3(x, y, z) = aT (x, y, z),

    f4(x, y, z) = aT (x, y, z)1,

    f5(x, y, z) = T (x, y, z)(a21 + b2),

    f6(x, y, z) = T (x, y, z)(a31 + b12 + c3), trong a, b, c l cc

    hng s.

    nh ngha 1.18 (Theo [2]). Bnh phng ca a thc phn i xng n

    gin nht gi l bit thc.

    Nh vy, trong trng hp hai bin, bit thc ca cc bin x, y l

    (x, y) = (x y)2cn trong trng hp ba bin, th bit thc ca cc bin x, y, z l

    (x, y) = T 2 = (x y)2(x z)2(y z)2.D thy rng : (x, y) = 21 42. Theo v d (1.3), ta c

    (x, y, z) = 4313 + 2122 + 18123 432 2723, (1.13)trong 1, 2, 3 l cc a thc i xng c s.

    20S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng 2

    ng dng tnh cht ca a thc ixng gii mt s bi ton i s

    2.1 Mt s bi tp tnh ton

    Bi 2.1. Cho x+1

    x= a. Tnh M = x13 +

    1

    x13.

    ( thi HSG lp 8, tnh Thi Nguyn nm 1997 - 1998).

    Li gii. S dng cng thc Waring ta tnh s13 = x13 +

    1

    x13theo 1 =

    x+1

    x= a;2 = x.

    1

    x= 1 c:

    M = s13 = 13.6

    m=0

    (1)m (13m 1)!m! (13 2m)!

    132m1

    m2 =

    = 131 13111 2 + 659122 1567132 + 1825142 913152 + 13162 == a13 13a11 + 65a9 156a7 + 182a5 91a3 + 13a.Bi 2.2. Tm hai ch s tn cng ca phn nguyn s (

    29 +

    21)2010.

    Li gii. t

    a = (

    29 +

    21)2 = 50 + 2

    609,

    b = (

    2921)2 = 50 2609,sn = a

    n + bn.

    Ta c s1 = 1 = 100, 2 = ab = 64. Theo cng thc Newton th

    sn+2 = 1sn+1 2snhay

    sn+2 = 100sn+1 64sn

    21S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Do s1 = 100 nn sn+2 chia ht cho 100, vi n l 3,5,7,... (n l s l). Suy

    ra s1005 = (

    29 +

    21)2010 + (

    2921)2010 chia ht cho 100.Do 0 < (

    2921)2010 < 1, nn 2 ch s tn cng ca phn nguyn ca

    s (

    29 +

    21)2010 l 99.

    Bi 2.3. Cho dy s Un = (3 +

    5

    2)n + (

    352

    )n 2 (n = 1, 2, 3, ..., n)1. Tnh 5 s hng u ca dy.

    2. Lp cng thc tnh Un+2 theo Un+1 v Un.

    Li gii. t a = (3 +

    5

    2); b = (

    352

    ); sn = an + bn.

    Ta c s1 = 1 = a+ b = 3;2 = a.b = 1; s2 = 21 22.

    p dng cng thc Newtn sn+2 = 1sn+1 2sn. Ta cs3 = 1s2 2s1 = 3.7 1.3 = 18s4 = 1s3 2s2 = 3.18 1.17 = 37s5 = 1s4 2s3 = 3.37 1.18 = 93

    M Un = sn 2 nn U1 = 1;U2 = 5;U3 = 16;U4 = 35;U5 = 91. Dosn = Un+2 nn bng cch thay vo cng thc Newtn sn+2 = 1sn+12snta c

    Un+2 + 2 = 3(Un+1 + 2) 1.(Un + 2)hay

    Un+2 = 3Un+1 Un + 2Bi 2.4. Cho cc s thc dng a, b tha mn: a100 + b100 = a101 + b101 =

    a102 + b102. Tnh a2008 + b2008.

    Li gii. t s1 = 1 = a + b = 3;2 = a.b; sn = an + bn. S dng cng

    thc Newtn ta c s102 = 1.s101 2.s100 m s102 = s101 = s100 nn1 2 = 1 hay a+ b ab 1 = 0 (a 1)(b 1) = 0 a = b = 1 do s2008 = a

    2008 + b2008 = 2.

    Bi 2.5. Cho x1, x2 l nghim ca phng trnh x2 2x 2 = 0. Tnh

    x71 + x72.

    Li gii. t sn = xn1 +x

    n2 , ta c s1 = 1 = 2;2 = 2; s2 = 2122 = 8,

    nn theo cng thc Newtn sn+2 = 1sn+1 2sn ta c s3 = 20; s4 = 56T h qu ca cng thc Newtn sm+n = smsn n2 smn vi m > n cs7 = s4s3 32s1 = 56.20 (2)3.2 = 1136.Bi 2.6 (Vit Nam, 1975 (Theo [2])). Khng gii phng trnh x3x+1 =0, hy tnh tng cc ly tha bc tm ca cc nghim.

    22S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Li gii. Gi x1, x2, x3 l cc nghim ca phng trnh cho. Theo cng

    thc Vite, ta c 1 = x1 + x2 + x3 = 0, 2 = x1x2 + x2x3 + x1x3 =

    1, 3 = x1x2x3 = 1. S dng cng thc Waring, ta cx81 + x

    82 + x

    83 = s8 = s8 =

    81 8612 + 204122 162132 + 242 + 8513

    323123 + 122123 + 241223 8223 = 10.

    Bi 2.7. Tm a thc bc 7 c h s nguyn nhn x = 7

    3

    5+ 7

    5

    3lm

    nghim.

    Li gii. t a = 7

    3

    5; b = 7

    5

    3.

    t sn = an + bn, ta c s1 = 1 = a+ b = x, 2 = ab = 1.

    Theo cng thc Waring c

    s7 = 71 7512 + 143122 7132

    35

    +5

    3= x7 7x5 + 14x3 7x

    15x7 105x5 + 210x3 105x 34 = 0.Vy a thc bc 7 cn tm l 15x7 105x5 + 210x3 105x 34.Bi 2.8. Cho x1, x2 l nghim ca phng trnh x

    2 6x + 1 = 0.Chngminh rng sn = x

    n1 + x

    n2 , n N l s nguyn khng chia ht cho 5.

    Li gii.

    Ta chng minh sn Z bng phng php quy np.Vi n=0 c s0 = 2 ZVi n=1 c s1 = 6 ZGi s sk, sk+1 Z, (k N) ta cn chng minh sk+2 Z.Tht vy, do s1 = 1 = 6, 2 = 1 m sk+2 = 1sk+1 2skhay sk+2 = 6sk+1 sk. Vy sk+2 Z.T kt qu sk+2 = 6sk+1 sk m

    sk+1 = 6sk sk1nn

    sk+2 = 6(6sk sk1) sk = 35sk 5sk1 sk1,do sk+2 chia ht cho 5 khi v ch khi sk1 chia ht cho 5 m s0 = 2;s1 = 6; s2 = 34 khng chia ht cho 5 nn sn khng chia ht cho 5.

    23S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 2.2 Phn tch a thc thnh nhn t

    Lun vn trnh by hai phng php phn tch a thc i xng thnh

    nhn t. Phng php th nht ta biu din a thc cho theo cc a

    thc i xng c s 1, 2. Phng php th hai l phng php h s bt

    nh.

    Cc Bi tp trong mc ny c trch dn t [5].

    Bi 2.9. Phn tch a thc sau thnh nhn t

    f(x, y) = 2x4 + 7x3y + 9x2y2 + 7xy3 + 2y4

    Li gii.Ta c

    f(x, y) = 2(x4 + y4) + 7xy(x2 + y2) + 9x2y2 = 2s4 + 71s2 + 922

    Thay s2 = 21 22, s4 = 41 4212 + 222 vo biu thc trn ta c

    f(x, y) = 241 212 22a thc trn c bc hai i vi 2 v c cc nghim l: 2 = 221, 2 = 21,do

    f(x, y) = (221 2)(21 2) = (x2 xy + y2)(2x2 + 3xy + y2).Bi 2.10. Phn tch a thc sau thnh nhn t

    f(x, y) = 3x4 8x3y + 14x2y2 8xy3 + 3y4.Li gii. Ta c

    f(x, y) = 3(x4 + y4) 8xy(x2 + y2) + 14x2y2 = 3s4 82s2 + 1422Thay s2 =

    21 22, s4 = 41 4212 + 222 vo biu thc trn ta c

    f(x, y) = 341 20212 + 3622y l mt a thc bc hai theo 2 v khng c nghim (nghim thc). V

    vy ta khng th phn tch a thc thnh tch hai nh thc theo 2, ta vn

    dng phng php h s bt nh th biu din a thc cho dng

    f(x, y) = 3x4 8x3y + 14x2y2 8xy3 + 3y4

    = (Ax2 +Bxy + Cy2)(Cx2 +Bxy + Ay2) (2.1)

    ng thc (2.1) tha mn vi mi x, y, nn ta s tm cc h s A, B, C

    bng phng php h s bt nh nh sau:

    Vi x=y=1, ta c

    24S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 4 = (A+B + C)2

    suy ra

    A+B + C = 2Nhn xt rng cc h s A, B, C c xc nh chnh xc n du ca

    chng, v nu thay i du ca tt c cc s ny thnh ngc li th ng

    thc (2.1) khng thay i. V vy, khng lm mt tnh tng qut, ta c

    A+B + C = 2

    Tip theo, vi x = 1, y = 1, ta c36 = (AB + C)2 suy ra A+B + C = 6.

    Tip theo, vi x = 0, y = 1 , ta c AC = 3

    Vy xc nh cc h s A, B, C ta gii cc h phng trnh{A+B + C = 2AB + C = 6AC = 3

    v

    {A+B + C = 2AB + C = 6AC = 3

    H phng trnh th nht cho ta nghim A = 1, B = 2, C = 3. H thhai v nghim (nghim thc). Vy ta c kt qu

    f(x, y) = 3x4 8x3y + 14x2y2 8xy3 + 3y4 == (x2 2xy + 3y2)(3x2 2xy + y2).

    Tip sau y, ta t 1, 2, 3 l cc a thc i xng c s ca b ba

    s x, y, z hoc a, b, c. Chng hn, vi b ba s x, y, z ta c 1 = x+ y+ z,

    2 = xy + xz + yz, 3 = xyz.

    Bi 2.11. Phn tch a thc sau thnh nhn t

    f(x, y, z) = (x+ y)(y + z)(z + x) + xyz

    Li gii. Ta c

    f(x, y, z) = (1 z)(1 x)(1 y) + 3 =

    = 31 21(x+ y + z) + 1(xy + yz + zx) 3 + 3 =

    = 31 31 + 12 3 + 3 = 12 =

    = (x+ y + z)(xy + yz + zx).

    25S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Bi 2.12. Phn tch a thc sau thnh nhn t

    f(a, b, c) = (a+ b+ c)3 (b+ c a)3 (c+ a b)3 (a+ b c)3

    Li gii. Ta c

    f(a, b, c) = 31 (1 2a)3 (1 2b)3 (1 2c)3 =

    = 231 + 621(a+ b+ c) 121(a2 + b2 + c2) + 8(a3 + b3 + c3) =

    = 231 + 631 121s2 + 8s3 =

    = 231 + 631 121(21 22) + 8(31 312 + 33) =

    = 243 = 24abc

    Vy

    f(a, b, c) = (a+ b+ c)3 (b+ ca)3 (c+a b)3 (a+ b c)3 = 24abc.Bi 2.13. Phn tch a thc sau thnh nhn t

    f(x, y, z) = 2x2y2 + 2y2z2 + 2z2x2 x4 y4 z4.Li gii. Ta c

    f(x, y, z) = 2O(x2y2)s4 = 2(22213)(414212 +222 +413) =

    = 41 + 4212 813 = 1(31 + 412 83)

    Ta thy, a thc trn l a thc bc bn i vi 1 v chia ht cho 1. Hn

    na, a thc cho l hm chn i vi x, y, z nn khi ta thay x bi -x

    ( hoc y bi -y, hoc z bi -z) th a thc khng thay i, nhng x+y+z tr

    thnh -x+y+z (hoc x-y+z hoc x+y-z), do a thc cng chia ht cho

    -x+y+z , x-y+z , x+y-z. Cng v a thc cho bc bn, nn ta c:

    f(x, y, z) = (x+ y + z)(x+ y + z)(x y + z)(x+ y z).Ptrong P l hng s no .

    Hng s P c xc nh bng phng php h s bt nh, bng cch cho

    x = y = z = 1, ta c 3 = 3P hay P=1.

    Vy ta c kt qu:

    f(x, y, z) = (x+ y + z)(x+ y + z)(x y + z)(x+ y z).

    26S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 2.3 Phng trnh i xng v phng trnh hi quy

    a thc i xng l cng c hu hiu gii cc phng trnh i s

    bc cao, c bit l phng trnh h s i xng v phng trnh hi quy.

    nh ngha 2.1 (Theo [2]). a thc

    f(z) = a0zn + a1z

    n1 + ...+ an; (a0 6= 0)c gi l a thc i xng, nu cc h s cch u hai u bng nhau,

    ngha l

    a0 = an, a1 = an1, a2 = an2, ...

    Phng trnh ca a thc i xng c gi l phng trnh i xng.

    Chng hn, cc a thc sau y l a thc h s i xng :

    9z6 18z5 73z4 + 164z3 73z2 18z + 9,z8 + 4z6 10z4 + 4z2 + 1,10z6 + z5 47z4 47z3 + z2 + 10z.

    nh l 2.1 (Theo [2]). a thc f(z) bc n l a thc i xng khi v ch

    khi

    znf(1

    z) = f(z), z 6= 0. (2.2)

    Chng minh. Gi s f(z) c dng

    f(z) = a0zn + a1z

    n1 + ...+ an. (2.3)

    Vi z 6= 0, trong (2.3) thay z bi 1z, ta c

    znf(1

    z) = anz

    n + an1zn1 + ...+ a1z + a0. (2.4)

    So snh (2.3) v (2.4) ta thy h thc (2.2) xy ra khi v ch khi

    a0 = an, a1 = an1, a2 = an2, ...

    ngha l f(z) l a thc i xng. nh l c chng minh.

    nh ngha 2.2 (Theo [2]). Cc a thc

    a0z2n +a1z

    2n1 + ...+an1zn+1 +anzn +an1zn1 + ...+n1a1z+na0,a0z

    2n+1 + a1z2n + ...+ an1zn+2 + anzn+1 + anzn + 2an1zn1 + ...+

    2n1a1z + 2n+1a0,

    27S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • trong a0 6= 0 v 6= 0 c gi l cc a thc hi quy. Phng trnhca a thc hi quy c gi l phng trnh hi quy.

    Khi = 1 th a thc hi quy tr thnh a thc h s i xng. V d,

    phng trnh

    2x5 + 6x4 2x3 + 4x2 48x 64 = 0l phng trnh hi quy = 2, cn phng trnh

    4x6 + 5x5 3x4 + 10x3 9x2 + 45x+ 108 = 0l phng trnh hi quy = 3.

    nh l 2.2 (Theo [2]). Mi a thc hi quy bc chn 2k

    f(z) =

    a0z2k + a1z

    2k1 + ...+ ak1zk+1 + akzk +ak1zk1 + ...+k1a1z+ka0,

    u biu din c dng f(z) = zkh(), trong = z +

    z, h() l

    mt a thc no theo bin v c bc k.

    Mi a thc hi quy bc l f(z) u c dng f(z) = (z + )g(z), trong

    g(z) l a thc hi quy bc chn.

    Chng minh. Trc ht xt a thc h s i xng f(z) c bc 2k. Vi

    z 6= 0 ta bin i f(z) nh sau:

    f(z) = zk[a0(zk +

    k

    zk) + a1(z

    k1 +k1

    zk1) + ...+ ak1(z +

    z) + ak].

    t = z +

    z, sk = z

    k +k

    zk. Ta s chng t rng sk l a thc bc k

    theo . Tht vy, nu t x = z, y =

    zth ta c = x + y = 1, =

    xy = 2, sk = xk + yk. Do theo nh l 1.1, cc tng ly tha sk l cc

    a thc bc k theo cc bin 1, 2, hay l theo cc bin v , ngha l

    ch theo bin .

    Li xt a thc i xng bc l 2k+1:

    f(z) = a0z2k+1 + a1z

    2k + ...+ ak1zk+2 + akzk+1 + akzk + 2ak1zk1 +...+ 2k1a1z + 2k+1a0,

    Vi z 6= 0 ta bin i f(z) nh sau:f(z) = a0(z

    2k+1 + 2k+1) + a1z(z2k1 + 2k1) + ...+ akzk(z + k).

    28S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • S dng hng ng thc

    z2m+1 + 2m+1 = (z + )(z2m z2m1+ ...+ z22m2 z2m1 + 2m),ta c

    a0(z2k+1 +2k+1) = a0(z+)(z

    2k z2m1+ ...+ z22k2 z2k1 +2k),a1z(z

    2k1 + 2k1) = a1(z + )(z2k1 z2m2+ ... z22k3 + z2k2,..............................................................

    akzk(z + ) = ak(z + )z

    k.

    Cng tng v cc ng thc trn v a ra ngoi du ngoc nhn t chung

    z + , ta c

    f(z) = (z + )g(z),

    trong g(z) l tng ca cc a thc

    a0(z2k z2m1+ ...+ z22k2 z2k1 + 2k),

    a1(z2k1 z2m2+ ... z22k3 + z2k2,

    ..................................................

    akzk.

    D dng thy g(z) l a thc hi quy bc 2k. nh l c chng minh.

    Bi 2.14 (Theo [5]). Gii phng trnh

    9z6 18z5 73z4 + 164z3 73z2 18z + 9 = 0.Li gii. Phng trnh cho l phng trnh i xng bc 6. V z = 0

    khng phi l nghim ca phng trnh nn chia hai v ca phng trnh

    cho z3 v bin i phng trnh ny v dng

    9(z3 +1

    z3) 18(z2 + 1

    z2) 73(z + 1

    z) + 164 = 0

    S dng cc cng thc

    z +1

    z= , z2 +

    1

    z2= 2 2, z3 + 1

    z3= 3 3

    ta a c phng trnh trn v dng

    93 182 100 + 200 = 0.Nghim ca phng trnh ny l

    = 2, = 103, =

    10

    3.

    29S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Do , tm nghim ca phng trnh cho, ta c cc phng trnh

    z +1

    z= 2, z +

    1

    z= 10

    3, z +

    1

    z=

    10

    3.

    T cc phng trnh trn ta tm c cc gi tr ca x l nghim ca

    phng trnh l:

    z = 1, z = 13, z = 3.

    Bi 2.15 (Theo [5]). Gii phng trnh

    2x11 + 7x10 + 15x9 + 14x8 16x7 22x6 22x5 16x4 + 14x3++15x2 + 7x+ 2 = 0.

    Li gii. y l phng trnh i xng bc l. Theo nh l 2.2, phng

    trnh cho tng ng vi phng trnh

    (x+1)(2x10+5x9+10x8+4x720x62x520x4+4x3+10x2+5x+2) = 0Nh vy, phng trnh cho c phn r thnh hai phng trnh

    x+ 1 = 0

    2x10 + 5x9 + 10x8 + 4x7 20x6 2x5 20x4 + 4x3 + 10x2 + 5x+ 2 = 0Phng trnh th nht c nghim x=-1.

    Phng trnh th hai l phng trnh i xng bc 10. V x = 0 khng phi

    l nghim ca phng trnh nn chia hai v ca phng trnh cho x5 v

    bin i phng trnh ny v dng

    2(x5 +1

    x5) + 5(x4 +

    1

    x4) + 10(x3 +

    1

    x3) + 4(x2 +

    1

    x2) 20(x+ 1

    x) 2 = 0

    S dng cc cng thc

    x+1

    x= , x2 +

    1

    x2= 2 2, x3 + 1

    x3= 3 3,x4 + 1

    x4= 4 42 + 2,

    x5 +1

    x5= 5 53 + 5,

    ta a c phng trnh trn v dng

    25 + 54 162 40 = 0 (2 + 5)(3 8) = 0.Nghim ca phng trnh ny l

    = 0, = 52, = 2.

    30S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Do , tm nghim ca phng trnh cho, ta c cc phng trnh

    x+1

    x= 0, x+

    1

    x= 5

    2, x+

    1

    x= 2.

    T cc phng trnh trn ta tm c cc gi tr ca x l nghim ca

    phng trnh cho l:

    x = 1, x = 12, x = 2.

    Bi 2.16 (Theo [2]). Gii phng trnh

    2x8 9x7 + 20x6 33x5 + 46x4 66x3 + 80x2 72x+ 32 = 0.Li gii. y l phng trnh bc 8 truy hi vi = 2 v c th vit li

    phng trnh dng

    2x8 9x7 + 20x6 33x5 + 46x4 33.2x3 + 20.22x2 9.23x+ 2.24 = 0.R rng x = 0 khng phi l nghim ca phng trnh cho. Chia hai v

    ca phng trnh cho x4 v bin i v dng

    2(x4 +16

    x4) 9(x3 + 8

    x3) + 20(x2 +

    4

    x2) 33(x+ 2

    x) + 46 = 0.

    t = x+

    x= x+

    2

    x. Khi

    x2 +4

    x2= 2 4, x3 + 8

    x3= 3 6, x4 + 16

    x4= 4 82 + 8.

    Nn phng trnh cui c dng

    24 93 + 42 + 21 18 = 0.Phng trnh ny c cc nghim l

    = 1, = 2, = 3, = 32, .

    Nh vy phng trnh cho tng ng vi t hp cc phng trnh:

    x+2

    x= 1, x+

    2

    x= 2, x+

    2

    x= 3, x+

    2

    x= 3

    2, .

    Gii cc phng trnh trn ta tm c nghim ca phng trnh cho l

    x = 1, x = 2.

    31S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Bi 2.17 (IMO, 1982, Hungari ngh (Theo [2])). Hy xc nh tt c

    cc tham s a sao cho phng trnh

    16x4 ax3 + (2a+ 17)x2 ax+ 16 = 0.c bn nghim thc lp thnh mt cp s nhn.

    Li gii. D thy rng x = 0 khng phi l nghim ca phng trnh

    cho. Vi x 6= 0, phng trnh cho tng ng vi

    16(x2 +1

    x2) a(x+ 1

    x) + 2a+ 17 = 0.

    t t = x+1

    x. Khi |t| 2 v phng trnh trn tr thnh

    16t2 at+ 2a 15 = 0.Trc ht ta tm iu kin cn ca tham s a. Gi s phng trnh

    cho c 4 nghim thc lp thnh mt cp s nhn. Khi phng trnh

    cui cng phi c hai nghim t1, t2, trong t1 cho hai nghim x1,1

    x1,

    cn nghim t2 cho hai nghim x2,1

    x2. Khng mt tnh tng qut, ta gi s

    |x1| 1, |x2| 1. Khi c cp s nhn x1, x2, 1x2,

    1

    x1. Theo tnh cht

    ca cp s nhn ta c

    x1x2

    = x22 x1 = x32 x1 +1

    x1= x32 +

    1

    x32 t1 = t32 3t2.

    Mt khc, theo nh l Vite ta c

    t1 + t2 =a

    16, t1t2 =

    2a 1516

    .

    T ta tm c a=170. Vi a=170 phng trnh cho tr thnh

    16x4 170x3 + 357x2 170x+ 16 = 0.Phng trnh ny c bn nghim thc lp thnh mt cp s nhn l :

    8, 2,1

    2,1

    8.

    Vy gi tr ca tham s a l a=170.

    32S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 2.4 Gii h phng trnh

    2.4.1 H phng trnh i xng hai n v ng dng

    Bi 2.18 (Theo [5]). Gii h phng trnh x5 + y5

    x3 + y3=

    31

    7x2 + xy + y2 = 3

    Li gii. Vi iu kin x, y 6= 0. t x+ y = 1, xy = 2. Ta cx2 + y2 = s2 =

    21 22, x3 + y3 = s3 = 31 312,

    x5 + y5 = s5 = 51 5312 + 5122

    Do ta c h{7(51 5312 + 5122) = 23(31 312),21 2 = 3.

    T h phng trnh ny, thc hin php th v gii phng trnh ta tm

    c

    {1 = 12 = 2 hoc

    1 = 6

    7

    2 =15

    7

    Khi x, y l cc nghim ca cc h phng trnh

    {x+ y = 1xy = 2 hoc

    x+ y = 6

    7

    xy =15

    7

    Gii cc h phng trnh ny ta c cc nghim ca h cho l{x1 = 2,y1 = 1, ;

    {x2 = 1,y2 = 2,

    {x3 = 2,y3 = 1,

    ;

    {x4 = 1,y4 = 2.

    Bi 2.19 (Theo [5]). Gii h phng trnh{x+ y = ax4 + y4 = a4

    Li gii. t x+ y = 1, xy = 2.

    Ta c

    33S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • x4 + y4 = s4 = 41 4212 + 222

    Do ta c h {1 = a,41 4212 + 222 = a4.

    T h phng trnh ny, thc hin php th v gii phng trnh ta tm

    c {1 = a2 = 0;

    hoc

    {1 = a2 = 2a

    2.

    Khi x, y l cc nghim ca cc h phng trnh{x+ y = axy = 0 hoc

    {x+ y = axy = 2a2

    Gii cc h phng trnh ny ta c cc nghim ca h cho l{x1 = a,y1 = 0,

    ;

    {x2 = 0,y2 = a.

    Bi 2.20 (Theo [5]). Gii h phng trnhx

    a+y

    b= 1

    a

    x+b

    y= 4

    Li gii. Phng trnh cho khng phi l l h i xng, tuy nhin bng

    cch tx

    a= u,

    y

    b= v ta c h i xng{

    u+ v = 11

    u+

    1

    v= 4

    t u+ v = 1, uv = 2, ta c h phng trnh{1 = 112

    = 4 {1 = 1

    2 =1

    4

    T ta c h phng trnh{u+ v = 1

    u.v =1

    4

    u =

    1

    2

    v =1

    2

    x =

    a

    2

    y =b

    2

    34S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Bi 2.21 (Theo [4]). Gii h phng trnh{x5 y5 = 3093x y = 3

    Li gii. Phng trnh cho khng phi l l h i xng, tuy nhin bng

    cch t y = z ta c h i xng{x5 + z5 = 3093x+ z = 3

    t x+ z = 1, xz = 2, ta c h phng trnh{51 5312 + 5122 = 30931 = 3

    {1 = 32 = 10 hoc

    {1 = 32 = 19

    T ta c x, y l nghim ca cc h phng trnh{x+ z = 3xz = 10 hoc

    {x+ z = 3xz = 19

    Gii cc h phng trnh trn ta c{x1 = 5z1 = 2 ;

    {x2 = 2z2 = 5.

    T ta c nghim ca h phng trnh cho l{x1 = 5y1 = 2

    ;

    {x2 = 2y2 = 5.

    Bi 2.22 (Theo [3]). Gii h phng trnh{4y3 1 +x = 3

    x2 + y3 = 82.

    Li gii. tx = u, 4

    y3 1 = v ta c h phng trnh{

    u+ v = 3u4 + (v4 + 1) = 82

    Gii h phng trnh trn, ta c{u1 = 3v1 = 0

    ;

    {u2 = 0v2 = 3.

    T ta c nghim ca h phng trnh cho l

    35S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • {x1 = 9y1 = 1

    ;

    {x2 = 0y2 =

    3

    83.

    Bi 2.23 (Theo [3]). Gii phng trnh

    5

    1

    2+ x+ 5

    1

    2 x = 1

    Li gii. t 5

    1

    2+ x = u, 5

    1

    2 x = v. Khi ta c h{u+ v = 1u5 + v5 = 1

    Gii h phng trnh trn, tm c

    {u1 = 1,v1 = 0;

    {u2 = 0v2 = 1.

    T kt qu trn v u5 =1

    2+ x tm c cc nghim ca phng trnh

    cho l x1 =1

    2, x2 = 1

    2.

    Vy nghim ca phng trnh cho l x1 =1

    2, x2 = 1

    2.

    Bi 2.24 (Theo [3]). Gii phng trnh

    x+ 2

    17 x2 + x 217 x2 = 9Li gii. t 2

    17 x2 = y. Khi ta c h{

    x2 + y2 = 17x+ y + xy = 9

    Gii h phng trnh trn,tm c

    {x1 = 1,y1 = 4;

    {x2 = 4y2 = 1.

    T kt qu trn ta tm c cc nghim ca phng trnh cho l

    x1 = 1, x2 = 4.

    Vy nghim ca phng trnh cho l x1 = 1, x2 = 4.

    Bi 2.25 (Theo [4]). Gii phng trnh

    x.19 xx+ 1

    .(x+19 xx+ 1

    ) = 84.

    Li gii. t19 xx+ 1

    = y th 19 x = xy + y. Khi ta c h{x+ y + xy = 19xy(x+ y) = 84

    36S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Gii h phng trnh trn,tm c{x1 = 3,y1 = 4;

    {x2 = 4y2 = 3.

    {x3 = 6 +

    29,

    y3 = 6

    29;

    {x4 = 6

    29

    y4 = 6 +

    29.

    T kt qu trn ta tm c cc nghim ca phng trnh cho l

    x1 = 3, x2 = 4, x3 = 6 +

    29, x4 = 6

    29.

    Vy nghim ca phng trnh cho l

    x1 = 3, x2 = 4, x3 = 6 +

    29, x4 = 6

    29.

    Bi 2.26 (Theo [5]). Gii phng trnh

    x+xx2 1 =

    35

    12.

    Li gii. Vi iu kin |x| > 1,t 1x

    = u,

    x2 1x

    = v . Khi ta c h{u2 + v2 = 11

    u+

    1

    v=

    35

    12

    Gii h phng trnh trn,tm cu1 =

    4

    5,

    y1 =3

    5;

    u2 =

    3

    5

    v2 =4

    5.

    T kt qu trn ta tm c cc nghim ca phng trnh cho l

    x1 =3

    5, x2 =

    4

    5.

    Vy nghim ca phng trnh cho l x1 =3

    5, x2 =

    4

    5.

    2.4.2 H phng trnh i xng ba n

    Gi s P(x,y,z), Q(x,y,z), R(x,y,z) l cc a thc i xng. Xt h

    phng trnh {P (x, y, z) = 0Q(x, y, z) = 0R(x, y, z) = 0

    (2.5)

    Bng cch t

    x+ y + z = 1, xy + yz + zx = 2, xyz = 3,.

    37S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • trn c s cc nh l 1.9, 1.10 ta a h 2.5 v dng{p(1, 2, 3) = 0q(1, 2, 3) = 0r(1, 2, 3) = 0

    (2.6)

    H phng trnh (2.6) thng n gin hn h (2.5) v c th d dng

    tm c nghim 1, 2, 3. Sau khi tm c cc gi tr ca 1, 2, 3, cn

    phi tm cc gi tr ca cc n s x, y, z. iu ny d dng thc hin c

    nh nh l sau y

    nh l 2.3 (Theo [2]). Gi s 1, 2, 3 l cc s thc no . Khi

    phng trnh bc ba

    u3 1u2 + 2u 3 = 0 (2.7)v h phng trnh {

    x+ y + z = 1,xy + xz + yz = 2,xyz = 3.

    (2.8)

    lin h vi nhau nh sau: nu u1, u2, u3 l cc nghim ca phng trnh

    (2.7), th h (2.8) c cc nghim{x1 = u1,y1 = u2,z1 = u3;

    {x2 = u1,y2 = u3,z2 = u2;

    {x3 = u2,y3 = u1,z3 = u3;{

    x4 = u2,y4 = u3,z4 = u1;

    {x5 = u3,y5 = u1,z5 = u2;

    {x6 = u3,y6 = u2,z6 = u1.

    v ngoi ra khng cn cc nghim no khc. Ngc li, nu x=a, y=b, z=c

    l nghim ca h (2.8) th cc s a, b, c l nghim ca phng trnh (2.7).

    Chng minh. Gi s u1, u2, u3 l cc nghim ca phng trnh (2.7). Khi

    ta c ng nht thc

    u3 1u2 + 2u 3 = (u u1)(u u2)(u u3).T ta c cc h thc Vite:{

    u1 + u2 + u3 = 1,u1u2 + u1u3 + u2u3 = 2,u1u2u3 = 3.

    Suy ra u1, u2, u3 l nghim ca h (2.8). Ngoi ra cn nm nghim na

    nhn c bng cch hon v cc gi tr ca cc n s. Vn h (2.8)

    khng cn nghim no khc c chng t nh sau

    Gi s x=a, y=b, z=c l nghim ca h (2.8), ngha l

    38S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • {a+ b+ c = 1,ab+ bc+ ca = 2,abc = 3.

    Khi ta c

    u3 1u2 + 2u 3 = u3 (a+ b+ c)u2 + (ab+ bc+ ca)u abc =(u a)(u b)(u c).

    iu chng t rng cc s a, b, c l nghim ca phng trnh bc ba

    (2.7). nh l c chng minh.

    nh l 2.4 (Theo [2]). Gi s 1, 2, 3 l cc s thc cho. cc s

    x, y, z xc nh bi h phng trnh (2.8) l cc s thc, iu kin cn v

    l

    4 = 4313 + 2122 + 18123 432 273 0. (2.9)Ngoi ra, cc s x, y, z l khng m th

    1 0, 2 0, 3 0.Chng minh. Gi s x, y, z l nghim ca h (2.8). Khi theo nh l

    (2.3) x, y, z l cc nghim ca phng trnh (2.7). Phng trnh (2.7) c

    nghim thc khi v ch khi bit thc ca n khng m, ngha l (2.9) c

    tha mn. Ngoi ra, nu cc s x, y, z khng m, th hin nhin i 0(i=1,2,3). Ngc li, nu i 0 (i=1,2,3) v (2.9) c tha mn, thphng trnh (2.7) khng th c nghim m. Tht vy, trong (2.7) thay

    u=-v ta c phng trnh

    v3 + 1v2 + 2v + 3 = 0 (2.10)

    V i 0 (i=1,2,3), nn phng trnh (2.10) khng th c nghim dng,do phng trnh (2.7) khng th c nghim m. T suy ra x, y, z l

    cc s khng m. nh l c chng minh.

    Bi 2.27 (Theo [5]). Gii h phng trnhx3 + y3 + z3 =

    73

    8,

    xy + yz + zx = x+ y + z,xyz = 1.

    Li gii. t x + y + z = 1, xy + yz + zx = 2, xyz = 3. H phng

    trnh cho tr thnh

    39S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • s3 =

    31 312 + 33 =

    73

    8,

    2 = 1,3 = 1.

    Gii h phng trnh ny ta tm c 1 = 2 =7

    2, 3 = 1. Theo nh l

    (2.3), ta c x, y, z l nghim ca phng trnh

    u3 72u2 +

    7

    2u 1 = 0 (u 1)(u2 5

    2u+ 1) = 0

    Nghim ca phng trnh ny l u1 = 1, u2 = 2, u3 =1

    2. T suy ra

    nghim ca h cho l cc b (x, y, z):

    (1, 2,1

    2), (2, 1,

    1

    2), (2,

    1

    2, 1), (1,

    1

    2, 2), (

    1

    2, 1, 2), (

    1

    2, 2, 1).

    Bi 2.28 (Theo [5]). Gii h phng trnhx+ y + z =

    13

    3,

    1

    x+

    1

    y+

    1

    z=

    13

    3,

    xyz = 1.

    Li gii. t x + y + z = 1, xy + yz + zx = 2, xyz = 3. H phng

    trnh cho tr thnh 1 =

    13

    3,

    23

    =13

    3,

    3 = 1.

    Gii h phng trnh ny ta tm c 1 = 2 =13

    3, 3 = 1. Theo nh l

    (2.3), ta c x, y, z l nghim ca phng trnh

    u3 133u2 +

    13

    3u 1 = 0 (u 1)(u2 10

    3u+ 1) = 0

    Nghim ca phng trnh ny l u1 = 1, u2 = 3, u3 =1

    3. T suy ra

    nghim ca h cho l cc b (x, y, z):

    (1, 3,1

    3), (3, 1,

    1

    3), (3,

    1

    3, 1), (1,

    1

    3, 3), (

    1

    3, 1, 3), (

    1

    3, 3, 1).

    40S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Bi 2.29 (Theo [2]). Gii h phng trnh{x+ y + z = a,x2 + y2 + z2 = b2,x3 + y3 + z3 = a3.

    trong a, b l cc s thc cho trc.

    Li gii. t x + y + z = 1, xy + yz + zx = 2, xyz = 3. H phng

    trnh cho tr thnh {1 = a,21 22 = b2,31 312 + 33 = a3.

    Gii h phng trnh ny ta tm c1 = a,

    2 =1

    2(a2 b2),

    3 =1

    2a(a2 b2).

    Theo nh l (2.3), ta c x, y, z l nghim ca phng trnh

    u3 au2 + 12

    (a2 b2)u 12a(a2 b2) = 0

    (u a)[u2 + 12

    (a2 b2)] = 0

    T phng trnh trn, ta c

    a) Nu |a| > |b|, th phng trnh trn ch c mt nghim thc u=a, do h cho khng c nghim thc. Trong phm vi s phc, th phng trnh c

    cc nghim u1 = a, u2 = i

    a2 b2

    2, u3 = i

    a2 b2

    2, trong i l n v

    o. Khi h cho c nghim (x,y,z) l b s (a, i

    a2 b2

    2,i

    a2 b2

    2)

    v tt c cc hon v ca n.

    b) Nu |a| |b| , th phng trnh trn c ba nghim thc u1 = a, u2 =b2 a2

    2, u3 =

    b2 a2

    2. Khi h phng trnh cho c nghim

    (x,y,z) l b s (a,

    b2 a2

    2,

    b2 a2

    2)v tt c cc hon v ca n.

    41S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 2.5 Tm nghim nguyn ca cc phng trnh i

    xng

    Bi 2.30 (Theo [2]). Tm nghim nguyn ca phng trnh

    x3 + y3 + 1 = 3xy

    Li gii. t 1 = x+ y, 2 = xy. Phng trnh tr thnh

    31 312 + 1 = 32 (1 + 1)(21 1 + 1 32) = 0.Trng hp 1: 1 + 1 = 0, ta c x + y + 1 = 0, phng trnh c v s

    nghim nguyn (x Z, y = 1 x).Trng hp 2: 21 1 + 1 32 = 0. Ta vit phng trnh ny di dng

    21 1 + 1 = 32T vic t 1 = x + y, 2 = xy, th iu kin tn ti hai s x, y l

    1 42. S dng iu kin ny ta c

    21 1 + 1 3

    421 21 41 + 4 0

    (1 2)2 0 1 = 2 2 = 1.

    Trong trng hp ny ta c h{x+ y = 2,xy = 1.

    H ny lun c nghim nguyn duy nht l x = y = 1. Nh vy, nghim

    ca phng trnh cho l{x = 1,y = 1;

    {x Z,y = 1 x.

    Bi 2.31. Tm nghim nguyn ca phng trnh

    x+ y = x2 xy + y2

    Li gii. t 1 = x+ y, 2 = xy. Phng trnh tr thnh

    1 = s2 22 1 = 21 32 21 1 = 32.T vic t 1 = x + y, 2 = xy, th iu kin tn ti hai s x, y l

    1 42. S dng iu kin ny ta c42S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 21 1 3

    421 21 41 0 0 1 4

    Mt khc, t phng trnh

    21 1 = 32. (21 1)2 = 122 + 1

    thy 122 + 1 l s chnh phng, nn t chn c

    +) 1 = 2 = 0, phng trnh c nghim nguyn: x = y = 0.

    +) 1 = 1, 2 = 0, phng trnh c cc nghim nguyn l{x = 1,y = 0;

    {x = 0,y = 1.

    +) 1 = 2, 122 + 1 = 9, phng trnh khng c nghim nguyn.

    +) 1 = 3, 2 = 2, phng trnh c cc nghim nguyn l{x = 1,y = 2;

    {x = 2,y = 1.

    +) 1 = 4, 2 = 4, phng trnh c cc nghim nguyn l{x = 2,y = 2;

    Vy phng trnh cho c cc nghim nguyn l:{x = 0,y = 0;

    {x = 0,y = 1. ;

    {x = 1,y = 0. ;

    {x = 1,y = 2. ;

    {x = 2,y = 1. ;

    {x = 2,y = 2.

    Bi 2.32 (Theo [1]). Tm cc nghim nguyn dng ca h phng trnh{x+ y = z,x3 + y3 = z2.

    Li gii.t 1 = x+ y, 2 = xy. H phng trnh tr thnh{1 = z,s3 = z

    2. {1 = z,31 312 = z2.

    Th phng trnh th nht vo phng trnh th hai, ta c

    31 312 = 21 1(21 1 32) = 0Trng hp 1: 1 = 0 z = 0 x = y, r rng khng tha mn, donghim cn tm nguyn dng.

    Trng hp 2:

    43S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 21 1 32 = 0Tng t bi tp 2.30, d dng tm c cc nghim nguyn dng ca h

    l {x = 2,y = 1,z = 3;

    {x = 1,y = 2,z = 3

    ;

    {x = 2,y = 2z = 2.

    2.6 Chng minh cc ng thc

    Bi 2.33. Cho x+ y = 1, x3 + y3 = a, x5 + y5 = b. Chng minh rng

    5a(a+ 1) = 9b+ 1

    Li gii. t 1 = x+ y = 1, 2 = xy. Ta c:

    x3 + y3 = a 31 312 = a 2 =1 a

    3

    V

    x5 + y5 = s5 = 51 5312 + 5122

    nn

    b = 1 5.1 a3

    + 5.(1 a)2

    9

    hay

    5a(a+ 1) = 9b+ 1

    Bi 2.34 (Theo [5]). Chng minh ng nht thc

    (x+ y)3 + 3xy(1 x y) 1 = (x+ y 1)(x2 + y2 xy + x+ y + 1).Li gii. Theo cng thc Waring, ta c

    (x+ y)3 + 3xy(1 x y) 1 = 31 + 32(1 1) 1 == 31 + 32 312 1.

    Mt khc, cng c

    (x+ y 1)(x2 + y2 xy + x+ y + 1) = (1 1)(21 32 + 1 + 1) == 31 312 + 21 + 1 21 + 32 1 1 =

    = 31 + 32 312 1.T hai h thc trn, ta c iu phi chng minh.

    44S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Bi 2.35 (Theo [5]). Chng minh ng nht thc

    (x+ y)7 x7 y7 = 7xy(x+ y)(x2 + xy + y2)2.Li gii. Theo cng thc Waring, ta c

    (x+ y)7 x7 y7 = 71 s7 = 71 (71 7512 + 143122 7132) == 7512 143122 + 7132 = 712(41 2212 + 22) =

    = 712(21 2)2 = 7xy(x+ y)(x2 + xy + y2)2.

    Bi 2.36 (Theo [5]). Chng minh ng nht thc

    (x+ y + z)(xy + yz + zx) xyz = (x+ y)(y + z)(z + x).Li gii. S dng cc cng thc qu o, khai trin v phi, ta c

    (x+ y)(y + z)(z + x) = x2y + x2z + y2x+ y2z + z2x+ z2y + 2xyz =

    = O(x2y) + 23 = (12 33) + 23 = 12 3 == (x+ y + z)(xy + yz + zx) xyz.

    Bi 2.37 (Theo [5]). Chng minh rng, nu

    x+ y + z = xy + yz + zx = 0.

    th

    3(x3y3 + y3z3 + z3x3) = (x3 + y3 + z3)2.

    Li gii. S dng cc cng thc qu o, khai trin v phi vi lu iu

    kin ca bi l 1 = 0, 2 = 0, ta c

    3(x3y3 + y3z3 + z3x3) = 3O(x3y3) = 3(32 + 323 3123) = 923.

    Tng t vi v tri, ta c

    (x3 + y3 + z3)2 = s23 = (31 312 + 33)2 = 923.

    T cc khai trin trn, suy ra iu phi chng minh.

    Bi 2.38 (Theo [2]). Chng minh rng, nu cc s thc x, y, z, a, b, c

    tha mn cc h thc{x+ y + z = a+ b+ c,x2 + y2 + z2 = a2 + b2 + c2,x3 + y3 + z3 = a3 + b3 + c3.

    th vi mi s t nhin n:

    45S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • xn + yn + zn = an + bn + cn.

    Li gii. K hiu 1, 2, 3 l cc a thc i xng c s theo cc bin x,

    y, z; cn 1, 2, 3 l cc a thc i xng c s theo cc bin a, b, c. S

    dng cc cng thc Waring, theo gi thit ta c

    1 = 1,

    21 22 = 21 22,31 312 + 33 = 31 312 + 33,

    Suy ra

    1 = 1,2 = 2,3 = 3,

    Khi vi mi a thc (t1, t2, t3) ta c

    (t1, t2, t3) = (1, 2, 3).

    Gi s f(x,y,z) l mt a thc i xng v theo nh l duy nht f(x, y, z) =

    (1, 2, 3), f(a, b, c) = (1, 2, 3). T suy ra f(x, y, z) = f(a, b, c).

    Trong trng hp ring ta c

    xn + yn + zn = an + bn + cn.

    Bi 2.39 (Theo [5]). Chng minh rng nu a + b + c = 0, th cc ng

    sau y ng

    1. a3 + b3 + c3 = 3abc;

    2. a3 + b3 + c3 + 3(a+ b)(b+ c)(c+ a) = 0;

    3. a2(b+c)2+b2(c+a)2+c2(a+b)2+(a2+b2+c2)(ab+bc+ca) = 0;

    4. a4 + b4 + c4 = 2(a2b2 + b2c2 + c2a2) =1

    2(a2 + b2 + c2)2;

    5.a5 + b5 + c5

    5=a3 + b3 + c3

    3.a2 + b2 + c2

    2= abc.

    a2 + b2 + c2

    2;

    6.a7 + b7 + c7

    7=a5 + b5 + c5

    5.a2 + b2 + c2

    2=a4 + b4 + c4

    2.a3 + b3 + c3

    3;

    7.a7 + b7 + c7

    7.a3 + b3 + c3

    3= (

    a5 + b5 + c5

    5)2,

    8. (a7 + b7 + c7

    7)2 = (

    a5 + b5 + c5

    5)2.a4 + b4 + c4

    2Li gii. K hiu 1, 2, 3 v sk tng ng l cc a thc i xng c s

    v tng ly tha ca cc bin a, b, c. Theo cng thc Waring ta c

    46S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Cng thc tnh sk = xk + yk + zk, theo 2 3 khi c 1 = 0

    a+ b+ c = s1 = 1 = 0;a2 + b2 + c2 = s2 = 22;a3 + b3 + c3 = s3 = 33;a4 + b4 + c4 = s4 = 2

    22;

    a5 + b5 + c5 = s5 = 523;a6 + b6 + c6 = s6 = 3

    23 232;

    a7 + b7 + c7 = s7 = 7223;

    a8 + b8 + c8 = s8 = 242 8223;

    a9 + b9 + c9 = s9 = 333 9323;

    a10 + b10 + c10 = s10 = 252 + 152223;.........................................................

    Li gii.

    1. Theo cng thc trn, hin nhin ng.

    2. Theo cng thc trn v kt qu bi 2.28, hin nhin ng.

    3. a2(b+ c)2 + b2(c+ a)2 + c2(a+ b)2 + (a2 + b2 + c2)(ab+ bc+ ca) =

    = 2O(a2b2) + 2O(a2bc) + s22 = 222 2.0 + (22)2 = 0;

    4. T cng thc trn, ta c

    a4 + b4 + c4 = s4 = 222

    2(a2b2 + b2c2 + c2a2) = 2.O(a2b2) = 2(22 213) = 2221

    2(a2 + b2 + c2)2 =

    1

    2s22 =

    1

    2(22)2 = 222

    T suy ra iu phi chng minh.

    5.a3 + b3 + c3

    3.a2 + b2 + c2

    2= 2.3 = a

    5 + b5 + c5

    5=

    = 3.22

    2= abc.

    a2 + b2 + c2

    2;

    6.a5 + b5 + c5

    5.a2 + b2 + c2

    2= (23).(2) = 223 =

    a7 + b7 + c7

    7=

    =2222.3 =

    a4 + b4 + c4

    2.a3 + b3 + c3

    3;

    7.a7 + b7 + c7

    7.a3 + b3 + c3

    3= 223.3 = (23)

    2 = (a5 + b5 + c5

    5)2,

    8.(a7 + b7 + c7

    7)2 = (223)

    2 = (23)2.22 = (

    a5 + b5 + c5

    5)2.a4 + b4 + c4

    2.

    Bi 2.40 (Theo [5]). Chng minh ng nht thc

    (a+ b)7 a7 b7(a+ b)3 a3 b3 =

    7

    6[(a+ b)4 + a4 + b4].

    47S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Li gii. t x = a, y = b, z = a b. Khi 1 = a+ b+ (a b) = 0,nn theo cng thc Waring ta c

    (a+ b)7 a7 b7(a+ b)3 a3 b3 =

    z7 x7 y7z3 x3 y3 =

    s7s3

    =722333

    =7

    322.

    Ta bin i v phi ca ng thc cn chng minh nh sau:

    7

    6[(a+ b)4 + a4 + b4] =

    7

    6[(z)4 + a4 + b4] = 7

    6s4 =

    7

    6.222 =

    7

    3.22.

    T suy ra iu phi chng minh.

    Phng php trnh by trn thng c p dng khi trong bi ton

    c cc hiu ab, bc, ca. Khi nu t x = ab, y = bc, z = cath 1 = x + y + z = 0. Trong trng hp ny cc cng thc Waring i

    vi tng ly tha tr nn n gin hn rt nhiu. Xt cc v d sau.

    Bi 2.41 (Theo [5]). Chng minh ng nht thc

    (b c)3 + (c a)3 + (a b)3 3(b c)(c a)(a b) = 0.Li gii.

    t x = a b, y = b c, z = c a th 1 = x + y + z = 0 v ng thccn chng minh tr thnh

    x3 + y3 + z3 3xyz = s3 33 = 33 33 = 0.Bi 2.42 (Theo [5]). Chng minh ng nht thc

    25[(b c)7 + (c a)7 + (a b)7].[(b c)3 + (c a)3 + (a b)3] =21[(b c)5 + (c a)5 + (a b)5]2.

    Li gii. t x = a b, y = b c, z = c a th 1 = x + y + z = 0 vng thc cn chng minh tr thnh

    25(x7 + y7 + z7).(x3 + y3 + z3) = 21(x5 + y5 + z5)2

    hay

    25s7.s3 = 21s25

    S dng cc cng thc ca tng ly tha vi ch 1 = 0, ta c

    25s7.s3 = 25.7223.33 = 525(23)

    2; 21s25 = 21(523)2 = 525(23)2

    T suy ra iu phi chng minh.

    48S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Bi 2.43 (Theo [5]). Vi a+ b+ c = 2p, chng minh rng

    1. a(p b)(p c) + b(p a)(p c) + c(p a)(p b)++2(p a)(p b)(p c) = abc.

    2. (p a)3 + (p b)3 + (p c)3 + 3abc = p3Li gii

    1. Khai trin v phi, s dng cng thc Waring vi ch

    1 = a+ b+ c = 2p, ta c

    p2(a+ b+ c) 2p(ab+ ac+ bc) + 3abc++2[p3 p2(a+ b+ c) + p(ab+ ac+ bc) abc] =

    = (12

    )21 12 + 33 + 2(31

    8+122 3) = 3 = abc.

    2. Vit ng thc cn chng minh nh sau

    (a+ b+ c

    2)3 + (

    a b+ c2

    )3 + (a+ b c

    2)3 + 3abc = (

    a+ b+ c

    2)3.

    Theo kt qu ca bi 2.12, suy ra iu phi chng minh.

    Bi 2.44 (Theo [5]). Chng minh rng, nu xy + yz + zx = 1, th

    x

    1 x2 +y

    1 y2 +z

    1 z2 =4xyz

    (1 x2)(1 y2)(1 z2) .

    Li gii. Bin i biu thc cho, ta nhn c biu thc sau

    x(1 y2)(1 z2) + y(1 z2)(1 x2) + z(1 x2)(1 y2) = 4xyz.S dng cc cng thc ca tng ly tha v qu o vi ch

    2 = xy + yz + zx = 1 bin i v phi ng thc trn ta c

    O(x)O(x2y) +O(x2y2z) = 1 (1 33) + 3 = 4xyz.Bi 2.45 (Theo [2]). Chng minh rng, nu

    1

    a+

    1

    b+

    1

    c=

    1

    a+ b+ c,

    th vi mi s l n, ta c

    (1

    a+

    1

    b+

    1

    c)n =

    1

    an + bn + cn=

    1

    (a+ b+ c)n.

    Li gii. T gi thit ca bi ton, ta c

    23

    =1

    1,

    49S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • hay

    12 3 = 0,Theo kt qu ca bi 2.11 ta c ng thc

    (a+ b)(a+ c)(b+ c) = 0,

    T ng thc trn, ta c

    a = b, a = c, b = c.Thay vo ng thc cn chng minh, ta thy ng thc

    (1

    a+

    1

    b+

    1

    c)n =

    1

    an + bn + cn=

    1

    (a+ b+ c)n.

    lun ng vi mi s l n.

    2.7 Chng minh bt ng thc

    Vi hai s thc x, y, t x+ y = 1, xy = 2. Khi ta c

    (x+ y)2 0 (x+ y)2 4xy 0 21 42 0.Mnh 2.1 (Theo [2]). Cho x, y R. t x+ y = 1, xy = 2. Khi

    1 42. (2.11)ng thc xy ra khi v ch khi x = y.

    Gi s cn chng minh bt ng thc f(x, y) 0 (vi mi x 0, y 0hoc x + y = a, ty thuc vo bi ton), trong f(x, y) l a thc i

    xng. Trc ht ta biu din f(x, y) theo 1, 2. Sau trong a thc va

    nhn c thay 2 bi 1 bng cch t 2 =1

    4(21 z) vi z 0. Hoc

    cng c th biu din 1 bi 2 bng cch vit 21 = z + 42.

    Bi 2.46 (Theo [2]). Chng minh rng, nu a,b v c l ba s thc tha

    mn iu kin a+ b c 0, th

    a2 + b2 c2

    2, a4 + b4 c

    4

    8, a8 + b8 c

    8

    128

    Li gii. t a+ b = 1, ab = 2.Ta c

    50S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • s2 = a2 + b2 = 21 22 = 21 2.

    1

    4(21 z) =

    1

    221 +

    1

    2z,

    v z 0 v theo gi thit 1 c 0, nn s2 12c2, ngha l

    a2 + b2 c2

    2

    Vn dng bt ng thc trn , ta c

    a4 + b4 = (a2)2 + (b2)2 12

    (1

    2c2)2 c

    4

    8.

    Tng t d dng chng minh

    a8 + b8 c8

    128

    Mt cch tng qut, ta c bi ton

    Nu a, b v c l ba s thc tha mn iu kin a+ b c 0, th vi min nguyn dng, ta c

    a2n + b2n 122n1

    .c2n

    Lu : Cho c nhn cc gi tr thc khc nhau, ta nhn c cc bi

    ton khc nhau. Chng hn cho c=1, ta c bi ton

    Chng minh rng, nu a, b l cc s thc tha mn iu kin a + b 1,th

    a2 + b2 12, a4 + b4 1

    8, a8 + b8 1

    128

    Bi 2.47 (Theo [5]). Cho a, b R. Chng minh rng1. 8(a4 + b4) (a+ b)4,2. a6 + b6 a5b+ ab5Li gii

    1. Ta c

    8(a4 + b4) (a+ b)4 = 8s4 41 = 8(41 4212 + 222) 41 == 741 3221.

    1

    4(21 z) + 16.

    1

    16(21 z)2 = 621z + z2 0

    2. Ta c

    51S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • a6 + b6 a5b+ ab5 = s6 2s4 = 61 7412 + 13 1222 432 == 61 741.

    1

    4(21 z) + 1321.

    1

    16(21 z)2 4.

    1

    64(21 z)3 =

    =5

    1641z +

    5

    821z

    2 +1

    16z3 0

    Bi 2.48 (Theo [5]). Chng minh rng vi mi a, b khng m c cc bt

    ng thc

    1.

    a2

    b+

    b2

    a a+b,

    2. (a+b)8 64ab(a+ b)2.

    Li gii.

    1. ta = u,

    b = v. Ta c bt ng thc

    u2

    v+v2

    u u+ v hay u3 + v3 uv(u+ v)

    T gi thit ca bi ton, ta c u 0, v 0 t cng c1 0, z = 1 42 0

    Do

    u3 +v3uv(u+v) = 3131212 = 31412 = 1(2142) 0.2. t

    a = u,

    b = v. Ta c bt ng thc (u+ v)8 64u2v2(u2 + v2)2.

    T gi thit ca bi ton, ta c u 0, v 0, do bt ng thc trn cth vit thnh

    (u+ v)4 8uv(u2 + v2)Ta c:

    (u+ v)4 8uv(u2 + v2) = 41 82(21 22) = 41 8212 + 1622 == 41 821.

    1

    4(21 z) + 16.

    1

    16(21 z)2 = z2 0.

    T ta c iu phi chng minh.

    Vi cc b s thc (x, y, z) hay (a, b, c) v.v.. ta lun hiu 1, 2, 3 l cc

    a thc i xng c s ca cc b . Chng hn vi b s thc (x, y, z)

    ta c

    1 = x+ y + z, 2 = xy + xz + yz, 3 = xyz.

    Mnh 2.2 (Theo [2]). Vi cc s thc x, y, z lun c :

    a) 21 32 b) 22 313. (2.12)Du ng thc xy ra khi v ch khi x=y=z.

    52S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng minh. Vi mi s thc x, y, z ta lun c bt ng thc

    (x y)2 + (y z)2 + (z x)2 0.Du ng thc xy ra khi v ch khi x=y=z. Khai trin v tri ca bt

    ng trn v thu gn ta c s2 2 0. Thay s2 = 21 22, ta c btng thc th nht trong (2.12).

    Theo bt ng thc th nht trong (2.12), ta c

    (x+ y + z)2 3(xy + xz + yz).Trong bt ng trn thay x = ab, y = ac, z = bc ta c

    (ab+ ac+ bc)2 3(a2bc+ ab2c+ abc2) = 3abc(a+ b+ c).T suy ra bt ng thc th hai trong (2.12) vi cc s thc a, b, c.

    Mnh 2.3 (Theo [2]). Vi cc s thc dng x, y, z lun c :

    a) 12 93 b) 31 273 c) 32 2723. (2.13)Du ng thc xy ra khi v ch khi x = y = z.

    Chng minh. V x, y, z l cc s thc dng nn 1, 2, 3 cng l cc s

    dng. Nhn hai v tng ng ca cc bt ng thc trong (2.12) ta c

    2122 9123. Gin c hai v ta nhn c bt ng thc 12 93.

    T bt ng thc th nht trong (2.12), ta c

    41 = 21.

    21 21.32 = 31(12) 31.93 = 2713.

    Gin c hai v bt ng thc trn, vi lu 1 dng, ta nhn c bt

    ng thc 31 273.T bt ng thc th hai trong (2.12) v bt ng thc th nht trong

    (2.13) ta c

    32 = 2.22 2.313 = 33(12) 33.93 = 2723.

    Nhn xt. Cc bt ng trong (2.13) vn cn ng vi x, y, z l cc s

    khng m.

    T bt ng thc th nht v th hai trong (2.13), ta c cc bt ng

    thc quen thuc

    (x+ y + z)(1

    x+

    1

    y+

    1

    z) 9 v

    (x+ y + z)3 27xyz hay x+ y + z3

    3xyz.

    53S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Mnh 2.4 (Theo [2]). Vi mi s thc khng m x, y, z ta lun c cc

    bt ng thc

    a) 31 + 93 412 b) 231 + 93 712. (2.14)Du ng thc xy ra khi v ch khi x = y = z.

    Chng minh. Trc ht, vi mi x, y, z khng m, ta chng minh c bt

    ng thc

    x(x y)(x z) + y(y x)(y z) + z(z x)(z y) 0Tht vy, do tnh cht i xng ca x, y, z nn khng lm mt tnh tng

    qut ta gi s rng x y z. Khi bt ng thc cho c vit linh sau

    (x y)[x(x z) y(y z)] + z(x z)(y z) 0Bt ng thc ny ng.

    Khai trin v tri bt ng trn ta c

    x(x y)(x z) + y(y x)(y z) + z(z x)(z y) == (x3 + y3 + z3) + 3xyz (x2y + x2z + y2x+ y2z + z2x+ z2y) == s3 + 33 O(x2y) = (31 312 + 33) + 33 (12 33) =

    = 31 412 + 93.T ta c kt qu ca bt ng thc th nht trong cng thc (2.14).

    T bt ng thc th nht trong (2.12) v (2.14), ta c

    231 + 93 = (31 + 93) +

    31 412 + 312 = 712.

    Vy cc bt ng thc trong (2.14) c chng minh.

    Bi 2.49 (Anh, 1999 (Theo [2])). Cho x, y, z l cc s khng m tha mn

    iu kin x+ y + z = 1. Chng minh rng

    7(xy + yz + zx) 2 + 9xyz.Li gii. V x+y+z = 1, nn ta c th vit bt ng thc cn chng minh

    dng

    7(x+ y + z)(xy + yz + zx) 2 + 9xyz.t 1 = x+ y+ z, 2 = xy+xz+ yz, 3 = xyz, bt ng thc cn chng

    minh tr thnh

    712 231 + 9354S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Theo 2.10 ta c iu phi chng minh.

    Bi 2.50 (Theo [5]). Chng minh rng vi mi s thc a, b, c ta c cc bt

    ng thc sau

    1. a2 + b2 + c2 ab+ bc+ ca,2. a2 + b2 + c2 1

    3(a+ b+ c)2,

    3. a2b2 + b2c2 + c2a2 abc(a+ b+ c),4. (ab+ bc+ ca)2 3abc(a+ b+ c),5. a2 + b2 + 1 ab+ a+ b,Li gii. t 1 = a+ b+ c, 2 = ab+ bc+ ca, 3 = abc. Ta c

    1. Bt ng thc cho tng ng vi 21 22 2 hay 21 32.Theo (2.12) ta c iu phi chng minh.

    2. Bt ng thc cho tng ng vi 21 22 1

    321 hay

    21 32.

    Theo (2.12) ta c iu phi chng minh.

    3.Bt ng thc cho tng ng vi O(a2b2) 13hay 22 213 13. Theo (2.12) ta c iu phi chng minh.4.Theo (2.12) ta c iu phi chng minh.

    5.Trong bt ng thc 1, cho c = 1, ta c iu phi chng minh.

    Bi 2.51 (Theo [5]). Chng minh rng vi mi s thc dng a, b, c ta c

    cc bt ng thc sau

    1. (a+ b+ c)(a2 + b2 + c2) 9abc,2. ab(a+ b 2c) + bc(b+ c 2a) + ac(a+ c 2b) 0,3. ab(a+ b) + ac(a+ c) + bc(b+ c) 6abc,4. 2(a3 + b3 + c3) ab(a+ b) + ac(a+ c) + bc(b+ c),5.

    a3 + b3 + c3

    a2 + b2 + c2 x+ y + z

    3,

    Li gii. t 1 = a+ b+ c, 2 = ab+ ac+ bc, 3 = abc.Khi

    1. Bt ng thc cho tng ng vi

    1(21 22) 93 hay 31 212 + 93.

    Theo cng thc (2.12) trong mnh (2.2) v cng thc (2.13) trong mnh

    (2.3) th

    31 312 v 12 93.T suy ra iu phi chng minh.

    2. Bt ng thc cho tng ng vi

    55S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • ab(1 3c) + bc(1 3a) + ac(1 3b) 0 12 93 0.

    Bt ng thc cui cng ng theo cng thc (2.13) trong mnh (2.3).Vy

    bt ng thc cho c chng minh.

    3. Bt ng thc cho tng ng vi

    ab(1 c) + bc(1 a) + ac(1 b) 63 12 33 63 12 93.

    Bt ng thc cui cng ng theo cng thc (2.13) trong mnh (2.3).Vy

    bt ng thc cho c chng minh.

    4. Bt ng thc cho tng ng vi

    2s3 O(a2b) 2(31 312 + 33) 12 33 231 712 + 93 0 231 + 93 712.

    Bt ng thc cui cng ng theo cng thc (2.14) trong mnh (2.4).Vy

    bt ng thc cho c chng minh.

    5. Bt ng thc cho tng ng vi

    3s3 s1s2 3(31 312 + 33) 1(21 22) 231 712 + 93 0 231 + 93 712.

    Bt ng thc cui cng ng theo cng thc (2.14) trong mnh (2.4).Vy

    bt ng thc cho c chng minh.

    Bi 2.52 (Theo [5]). Chng minh rng, nu a, b, c l di cc cnh ca

    mt tam gic th ta c cc bt ng thc

    1. 2(ab+ bc+ ca) > a2 + b2 + c2,

    2. (a2 + b2 + c2)(a+ b+ c) > 2(a3 + b3 + c3).

    Li gii.

    1. V a, b, c l ba cnh ca mt tam gic, nn ta c th t

    x = a+ b c, y = a b+ c, z = a+ b+ ctrong x, y, z l cc s dng. Khi a, b, c c biu th theo x, y, z nh

    sau:

    a =x+ y

    2, b =

    x+ z

    2, c =

    y + z

    2

    Thay vo bt ng thc cn chng minh ta c bt ng thc

    56S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 2(x+ y

    2.x+ z

    2+x+ y

    2.y + z

    2+x+ z

    2.y + z

    2) >

    > (x+ y

    2)2 + (

    x+ z

    2)2 + (

    y + z

    2)2

    t 1 = x+ y+ z, 2 = xy+ xz + yz, 3 = xyz, s2 = x2 + y2 + z2 l cc

    a thc i xng c s v tng ly tha ca x, y ,z. Ta c

    2(s2 + 32) > 2s2 + 22 42 > 0D thy bt ng thc cui cng l bt ng thc ng. Vy bt ng thc

    cho c chng minh.

    2. V a, b, c l ba cnh ca mt tam gic, nn ta c th t

    x = a+ b c, y = a b+ c, z = a+ b+ ctrong x, y, z l cc s dng. Khi a, b, c c biu th theo x, y, z nh

    sau:

    a =x+ y

    2, b =

    x+ z

    2, c =

    y + z

    2

    Thay vo bt ng thc cn chng minh ta c bt ng thc

    [(x+ y

    2)2 + (

    x+ z

    2)2 + (

    y + z

    2)2](x+ y + z) >

    > 2[(x+ y

    2)3 + (

    x+ z

    2)3 + (

    y + z

    2)3].

    t 1 = x+ y + z, 2 = xy + xz + yz, 3 = xyz, s2 = x2 + y2 + z2,

    O(x2y) = x2y + x2z + y2x + y2z + z2x + z2y l cc a thc i xng c

    s, tng ly tha v cng thc qu o ca x, y, z. Ta c

    2(s2 + 22)1 > 2s3 + 3O(x2y)

    2(21 22 + 22)1 > 2(31 312 + 33) + 3(12 33) 12 + 3 > 0.

    D thy bt ng thc cui cng l bt ng thc ng. Vy bt ng thc

    cho c chng minh.

    57S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng 3

    a thc i xng n bin v ngdng

    3.1 Cc khi nim

    nh ngha 3.1 (Theo [2]). Gi s x = (x1, x2, ..., xn) Rn.a thc f(x) = f(x1, x2, ..., xn) c hiu l hm s c dng

    f(x) =mk=0

    Mk(x),

    trong

    Mk(x) = Mk(x1, x2, ..., xn) =

    j1+j2+...+jn=k

    aj1j2...jnxj11 x

    j22 ...x

    jnn ,

    ji N, (i = 0, 1, 2, ..., n).nh ngha 3.2 (Theo [2]). a thc f(x1, x2, ..., xn) theo cc bin x1, x2, ..., xnc gi l i xng nu n khng thay i khi i ch gia hai bin bt

    k.

    nh ngha 3.3 (Theo [2]). a thc f(x1, x2, ..., xn) theo cc bin x1, x2, ..., xnc gi l thun nht bc m, nu

    f(tx1, tx2, ..., txn) = tmf(x1, x2, ..., xn),t 6= 0.

    nh ngha 3.4 (Theo [2]). K hiu

    sk = xk1 + x

    k2 + ...+ x

    kn, k Z.

    0 = 1, 1 =ni=1

    xi, 2 =n

    i,j=1,i

  • n = x1x2.....xn.

    Ta gi sk l cc tng ly tha, cn r(x)(r = 1, 2, 3, ..., n) l cc a thc

    i xng s cp bc r.

    Chng hn, vi n = 4, ta c

    1 = x1 + x2 + x3 + x4,

    2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,

    3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4,

    4 = x1x2x3x4.

    S cc s hng trong a thc i xng bc k: k bng

    Ckn =n!

    k!(n k)! .

    nh ngha 3.5 (Theo [2]). a thc vi s hng ti thiu, mi s hng l

    mt n thc c dng xk11 xk22 ...x

    knn c gi l qu o ca n thc (orbit)

    v c k hiu l

    O(xk11 xk22 ...x

    knn )

    Chng hn vi n = 4, ta c

    O(x21x32) = x

    21x

    32 + x

    21x

    33 + x

    21x

    34 + x

    22x

    31 + x

    22x

    33 + x

    22x

    34 + x

    23x

    31+

    +x23x32 + x

    23x

    34 + x

    24x

    31 + x

    24x

    32 + x

    24x

    33.

    T nh ngha v qu o suy ra, nu cc s m k1, k2, ..., kn khc nhau th

    s cc s hng ca qu o O(xk11 xk22 ...x

    knn ) bng n!. M rng cho trng

    hp cc s m k1, k2, ..., kn khng nht thit phi khc nhau ta c khi

    nim qu o ton phn.

    nh ngha 3.6 (Theo [2]). a thc bng tng tt c cc hon v theo cc

    bin x1, x2, ..., xn ca n thc xk11 x

    k22 ...x

    knn c gi l qu o ton phn

    v c k hiu l

    O(xk11 x

    k22 ...x

    knn )

    Qu o ton phn ch khc qu o thng thng bi h s, c th l:

    Nu trong cc s m k1, k2, ..., kn c m1 s bng nhau, sau li c m2 s

    bng nhau,..., v cui cng cn li ml s bng nhau, th

    O(xk11 x

    k22 ...x

    knn ) = m1!m2!....ml!O(x

    k11 x

    k22 ...x

    knn ) (3.1)

    T cng thc (3.1) ta thy, nu cc s m k1, k2, ..., kn khc nhau, th qu

    o ton phn trng vi qu o thng thng.

    59S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Cc cng thc di y cho php biu din cc qu o ton phn qua cc

    tng ly tha

    O(xk1x

    l2) = (n 2)!(sksl sk+l), (3.2)

    (n 2)O(xk1xl2xm3 ) = O(xk1xl2)sm O(xk+m1 xl2)O(xk1xl+m2 ), (3.3)......................

    (n r)O(xk11 xk22 .....xkrr xkr+1r+1 ) =

    = O(xk11 x

    k22 .....x

    krr )skr+1

    O(xk1+kr+11 xk22 .....xkrr )O(xk11 xk2+kr+12 .....xkrr )

    ..........................

    O(xk11 xk22 .....xkr+kr+1r ). (3.4)nh ngha 3.7 (Theo [2]). Xt hai n thc Axk11 x

    k22 ...x

    knn , Bx

    l11 x

    l22 ...x

    lnn .

    Ta ni n thc th nht tri hn n thc th hai, nu k1 > l1; hoc

    k1 = l1 v k2 > l2; ...; hoc k1 = l1, k2 = l2, ..., ks = ls v ks+1 > ls+1.

    Chng hn, so snh hai a thc f = x31x42x

    23, g = x

    31x

    42x

    54 ta vit

    chng dng f = x31x42x

    23x

    04, g = x

    31x

    42x

    03x

    54. Theo nh ngha ta thy f tri

    hn g.

    3.2 Biu din cc tng ly tha qua cc a thc i

    xng c s

    nh l 3.1 (Cng thc truy hi Newton (Theo [2])). Cc tng ly tha

    v cc a thc i xng c s lin h vi nhau theo cng thc

    sk = 1sk1 2sk2 + 3sk3 ...+ (1)k1kk (3.5)(trong cng thc (3.5) s hng (1)i1isni = 0 khi i > n).Chng minh. Xt a thc mt bin theo x

    P (x) =ni=1

    (x xi) = xn 1xn1 + ...+ (1)n1n1x+ (1)nnv cc a thc Qi(x) c xc nh theo cng thc

    Qi (x) =n

    j=1,j 6=i(x xj) = P (x)

    x xi (1 i n)

    60S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • K hiu

    k(x) = k(x1, x2, ..., xn), k(x0i ) = k(x1, x2, ..., xi1, 0, xi+1, ..., xn).

    R rng l

    k = k(x0i ) + xik1(x

    0i ), (3.6)

    Qi (x) =n1k=0

    (1)kk(x0i )xn1k (3.7)

    T (3.6), suy ra

    0(x0i ) = 1, 1(x

    0i ) = 1 xi,

    2(x0i ) = 2(x) xi1(x) + x2i ,

    3(x0i ) = 3(x) xi2(x) + x2i1(x) x3i .

    Bng phng php quy np ta c cng thc

    k(x0i)

    =kj=0

    (1)jxjikj (x) (3.8)

    (k=0, 1, ..., n-1).

    Ta c cng thc

    ni=1

    P (x)

    x xi = P (x) =

    n1k=0

    (1)k (n k)k (x)xnk1. (3.9)

    Mt khcni=1

    P (x)xxi =

    ni=1

    Qi (x) =ni=1

    n1k=0

    (1)kk(x0i)xnk1 =

    =n1k=0

    (1)k(

    ni=1

    k(x0i))

    xnk1 (3.10)

    T (3.9) v (3.10), suy ra

    ni=1

    k(x0i)

    = (n k)k (x) , (0 k n 1) . (3.11)

    T (3.9) v (3.11), suy ra

    ni=1

    kj=0

    (1)jxjik(x0j)

    = (n k)k (x) , (k n 1) ,

    61S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • kj=0

    (1)jsjkj (x) = (n k)k (x), (k n 1) . (3.12)

    Ch rng s0 = n, t (3.12) d dng suy ra (3.5). nh l 3.1 c chng

    minh.

    Nhn xt. Trn y trnh by mt chng minh ca nh l 3.1 tuy

    cha c n gin nhng li cho mt s cng thc cn thit cho sau

    ny. nh l trn c th c chng minh bng cch n gin sau. V

    x1, x2, ...., xn l nghim ca a thc P(x), nn ta c cc ng thc sau

    xn1 1xn11 + 2xn21 ...+ (1)nn = 0xn2 1xn12 + 2xn22 ...+ (1)nn = 0

    ...............................................

    xnn 1xn1n + 2xn2n ...+ (1)nn = 0Cng theo tng ct v vi v cc ng thc trn ta c cng thc (3.5).

    S dng cng thc (3.5) d dng thu c cc cng thc sau y

    s1 = 1.1;

    s2 = 1s1 22;s3 = 1s2 2s1 + 33;s4 = 1s3 2s2 + 3s1 44;s5 = 1s4 2s3 + 3s2 4s1 + 55;s6 = 1s5 2s4 + 3s3 4s2 + 55s1 66;........................................................

    T cc cng thc trn, mt cch lin tip ta nhn c cc cng thc

    sau

    s1 = 1;

    s2 = 21 22;

    s3 = 31 312 + 33;

    s4 = 41 4212 + 222 + 413 44;

    s5 = 51 5312 + 5122 + 5213 523 514 + 55;

    s6 = 61 6412 + 92122 232 + 6313 12123+

    +323 6214 + 624 + 615 66;........................................................

    62S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • nh l 3.2 (Cng thc Waring (Theo [2])). Tng ly tha sk c biu

    din qua cc a thc i xng c s theo cng thc

    skk

    =

    m1+2m2+...+kmk=k

    (1)km1m2...mk.(m1 +m2 + ...+mk 1)!m1!m2!...mk!

    .m11 m22 ...

    mkk

    (3.13)

    Cng thc (3.13) c th c chng minh bng phng php quy np vi

    s tr giy ca cng thc truy hi (3.5) v c gi l cng thc Waring.

    Ngoi ra c th chng minh c rng cc tng ly tha sk c biu

    din theo cc a thc i xng c s j bi cng thc

    sk = (1)k1

    1 0 0 ... 0 111 1 0 ... 0 12 1 1 ... 0 1... ... ... ... ... ...k2 k3 k4 ... 1 (k 1)1k1 k2 k3 ... 1 kk

    3.3 Cc nh l ca a thc i xng nhiu bin

    nh l 3.3 (nh l tn ti (Theo [2])). Gi s f(x1, x2, ..., xn) l a

    thc i xng ca n bin. Khi tn ti a thc (1, 2, ..., n), sao cho

    nu vo ch 1, 2, ..., n thay cc biu thc

    1 = x1 + x2 + ...+ xn,

    2 = x1x2 + ...+ x1xn + x2x3 + ...+ xn1xn,..................

    n = x1x2....xn,

    th ta nhn c a thc f(x1, x2, ..., xn).

    Chng minh. Gi s a.xk11 xk22 ...x

    knn l mt n thc ca f(x1, x2, ..., xn).

    V f(x1, x2, ..., xn) c tnh i xng, nn cng vi n thc ni trn n

    cha qu o ton phn O(xk11 x

    k22 ...x

    knn ) vi h s a. Nh vy

    f(x1, x2, ..., xn) = a.O(xk11 x

    k22 ...x

    knn ) + f1(x1, x2, ..., xn),

    trong f1(x1, x2, ..., xn) l mt a thc i xng c s cc s hng t

    hn f(x1, x2, ..., xn). T f1(x1, x2, ..., xn) li c th chn ra mt qu o

    b.O(xl11 x

    l22 ...x

    lnn ) c h s b v v.v... Sau mt s hu hn bc ta c th

    phn tch f(x1, x2, ..., xn) thnh tng ca cc qu o ton phn.

    f(x1, x2, ..., xn) = a.O(xk11 x

    k22 ...x

    knn ) + ....+ b.O(x

    l11 x

    l22 ...x

    lnn ).

    63S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Theo cng thc (3.2) v (3.4), cc qu o ton phn c biu din qua

    cc tng ly tha. Cui cng, trn c s cng thc truy hi (3.5), bng

    phng php quy np, cc tng ly tha c biu din qua cc a thc

    i xng c s. nh l c chng minh.

    Nhn xt. nh l trn cn c th c chng minh bng phng php

    s dng khi nim "n thc tri". Tht vy, gi s a.xk11 xk22 ...x

    knn l mt

    n thc tri nht ca f. Khi k1 k2 ... kn vf1(x1, x2, ..., xn) := f(x1, x2, ..., xn) ak1k21 k2k32 ...knn

    l mt a thc i xng c n thc tri thp hn a.xk11 xk22 ...x

    knn (nu vo

    ch 1, 2, ..., n thay cc biu thc ca chng theo x1, x2, ..., xn. i vi

    a thc ny li chn ra n thc tri nht b.xl11 xl22 ...x

    lnn v li xt hiu

    f2(x1, x2, ..., xn) = f1(x1, x2, ..., xn) bl1l21 l2l32 ...lnn == f(x1, x2, ..., xn) ak1k21 k2k32 ...knn bl1l21 l2l32 ...lnn .

    Sau mt s bc hu hn cui cng ta c

    0 = f(x1, x2, ..., xn) ak1k21 k2k32 ...knn ... cm1m21 m2m32 ...mnn .T suy ra

    f(x1, x2, ..., xn) = ak1k21

    k2k32 ...

    knn + ...+ c

    m1m21

    m2m32 ...

    mnn .

    nh l 3.4 (nh l duy nht (Theo [2])). Nu hai a thc (1, 2, ..., n),

    (1, 2, ..., n) sau khi thay

    1 = x1 + x2 + ...+ xn, 2 =

    1ijnxixj, n = x1x2...xn

    cng cho mt a thc i xng f(x1, x2, ..., xn) th

    (1, 2, ..., n) (1, 2, ..., n).Chng minh nh l ny hon ton tng t trng hp hai bin.

    Biu din mt a thc i xng nhiu bin f(x1, x2, ..., xn) qua a thc

    (1, 2, ..., n) ca cc a thc i xng c s theo phng php nh

    trong chng minh nh l 3.2 rt phc tp v phi lin tip biu din cc

    qu o ca cc n thc nhiu bin qua cc qu o ca cc n thc vi

    s bin t hn. V vy khi s bin ln hn 3 tm (1, 2, ..., n) thng

    s dng phng php h s bt nh. Xt v d sau y.

    64S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • V d 3.1 (Theo [5]). Biu din a thc i xng ca cc bin x1, x2, x3, x4sau y theo cc a thc i xng c s 1, 2, 3, 4:

    f(x1, x2, x3, x4) = (x1 + x2)(x1 + x3)(x1 + x4)(x2 + x3)(x2 + x4)(x3 + x4).

    Li gii. V f c bc 6 nn khi biu din qua cc a thc i xng c s th

    ta s c mt tng ca cc n thc dng Ak11 k22

    k33

    k44 , vi

    k1 + 2k2 + 3k3 + 4k4 = 6,

    trong k1, k2, k3, k4 l cc s nguyn khng m. Do ta tm f dng:

    f(x1, x2, x3, x4) = A161 + A2

    412 + A3

    313 + A4

    21

    22+

    +A5214 + A6123 + A7

    32 + A824 + A9

    23, (3.14)

    trong

    1 = x1 + x2 + x3 + x4, 2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,

    3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4, 4 = x1x2x3x4.

    tm cc h s A1, A2, ..., A9 ta cho cc bin x1, x2, x3, x4 nhn cc gi

    tr c th no .

    Vi x1 = x2 = x3 = 0, x4 = 1, ta c f = 0, 1 = 1, 2 = 3 = 4 = 0 v

    t (3.14) suy ra A1 = 0

    Vi x1 = x2 = 0, x3 = 1, x4 = 1, ta c f = 0, 1 = 0, 2 = 1,3 = 4 = 0 v t (3.14) suy ra A7 = 0

    Vi x1 = x2 = 0; x3 = x4 = 1, ta c f = 0, 1 = 2, 2 = 1, 3 = 0, 4 = 0

    v t (3.14) vi ch A1 = A7 = 0 suy ra

    4A2 + A4 = 0

    Vi x1 = x2 = 0; x3 = 1, x4 = 2, ta c f = 0, 1 = 3, 2 = 2, 3 = 4 = 0

    v t (3.14) vi ch A1 = A7 = 0 suy ra

    9A2 + 2A4 = 0

    Do t hai phng trnh trn suy ra A2 = A4 = 0. Nh vy by gi f c

    dng

    f(x1, x2, x3, x4) = A3313++A5

    214+A6123+A824+A9

    23, (3.15)

    Vi x1 = 0, x2 = x3 = 1, x4 = 2, ta c f = 4, 1 = 0, 2 = 3,3 = 2, 4 = 0 v t (3.15) suy ra A9 = 1.Vi x1 = 1, x2 = 1, x3 = 1, x4 = 1, ta c f = 0, 1 = 0, 2 = 2,

    65S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 3 = 0, 4 = 1 v t (3.15) suy ra A8 = 0.

    Vi x1 = 0, x2 = 2, x3 = 1, x4 = 2, ta c f = 16, 1 = 3, 2 = 0,3 = 4, 4 = 0 v t (3.15) vi ch A9 = 1 suy ra A3 = 0.Vi x1 = 1, x2 = 1, x3 = x4 = 1, ta c f = 0, 1 = 2, 2 = 0,3 = 2, 4 = 1 v t (3.15) vi ch A3 = 0, A9 = 1 suy ra A5 = 1.Vi x1 = x2 = x3 = 1, x4 = 0, ta c f = 8, 1 = 3, 2 = 3, 3 = 1, 4 = 0

    v t (3.15) vi ch A3 = 0, A9 = 1 suy ra A6 = 1.Vy ta c kt qu

    f(x1, x2, x3, x4) = 214 + 123 23.

    3.4 a thc phn i xng nhiu bin

    nh ngha 3.8 (Theo [2]). a thc phn i xng nhiu bin l a thc

    thay i du khi thay i v tr ca hai bin bt k.

    Chng hn, a thc

    (x y)(x z)(x t)(y z)(y t)(z t)l a thc phn i xng theo cc bin x, y, z, t.

    a thc

    T (x1, x2, ..., xn) =i

  • f(a, b, c, d) = (b+cad)4(bc)(ad)+(c+abd)4(ca)(bd)++(a+ b c d)4(a b)(c d).

    Li gii. Ta thy f l a thc phn i xng. Tht vy, i ch a v b ta

    c

    f(b, a, c, d) = (a+cbd)4(ac)(bd)+(c+bad)4(cb)(ad)++(b+ a c d)4(b a)(c d) =

    = (b+ c a d)4(b c)(a d) (c+ a b d)4(c a)(b d)(a+ b c d)4(a b)(c d) = f(a, b, c, d).

    Nh vy khi i ch a v b th f i du. i ch hai bin bt k khc cng

    cho kt qu tng t. Vy f l a thc phn i xng theo cc bin a, b, c,

    d. Mt khc, f l a thc bc 6, nn theo nh l (3.5) trn, ta c

    f(a, b, c, d) = k.T (a, b, c, d) = k.(a b)(a c)(a d)(b c)(b d)(c d),trong k l mt hng s no . xc nh k ta c th cho a, b, c, d

    cc gi tr bt k no i mt khc nhau, chng hn a = 0, b = 1, c =

    2, d = 3. Khi ta c

    f(0, 1, 2, 3) = 192, T (a, b, c, d) = 12

    suy ra k=16. Vy ta c kt qu

    f(a, b, c, d) = (b+cad)4(bc)(ad)+(c+abd)4(ca)(bd)++(a+ b c d)4(a b)(c d) =

    = 16.(a b)(a c)(a d)(b c)(b d)(c d).nh ngha 3.9 (Theo [2]). Bnh phng ca a thc phn i xng n

    gin nht T (x1, x2, ..., xn) c gi l bit thc ca cc bin x1, x2, ..., xn:

    4(x1, x2, ..., xn) = T 2(x1, x2, ..., xn) =i

  • Khi s bin ln hn 3, bit thc c biu din qua cc tng ly tha bng

    cng thc sau

    nh thc sau y c gi l nh thc Vandermonde

    Vn =

    1 x1 x

    21 ... x

    n11

    1 x2 x22 ... x

    n12

    ... ... ... ... ...1 xn x

    2n ... x

    n1n

    Khi ta c

    4(x1, x2, ..., xn) =

    ijn(xi xj)2 = V 2n .

    Cng thc trn cn c th c vit nh sau

    (x1, x2, ..., xn) =

    1 1 1 ... 1x1 x2 x3 ... xn... ... ... ... ...xn1