dale van harlingen sergey frolov, micah stoutimore, martin stehno university of illinois at...

50

Upload: daniela-morton

Post on 18-Dec-2015

219 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly
Page 2: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Dale Van Harlingen

Sergey Frolov, Micah Stoutimore, Martin Stehno

University of Illinois at Urbana-Champaign

Valery Ryazanov

Vladimir Oboznov, Vitaly Bolginov, Alexey Feofanov

Institute of Solid State Physics, Chernogolovka, Russia

10th International Vortex Workshop --- January 14, 2005 --- Mumbai, India

Current-Phase Relations and Spontaneous Vortices

in SFS -Josephson junctions and arrays

Supported by the National Science Foundation and the U. S. Civilian Research Development Fund

                   

I

Page 3: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

-Josephson junction

0-junctionminimum energy at 0

I

-junctionminimum energy at

I

J

Spontaneously-broken symmetry

Spontaneous circulating current for L>1 in zero applied magnetic flux

I = Icsin(+) = -Ic

sin

E = EJ [1 - cos(+)]

= EJ [1 + cos]

E

E

negative critical current

-2-2 0

Page 4: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

THEORY EXPERIMENT

Klapwijk, 1999

Ryazanov, 2000

Testa, 2003

+-

+- Van Harlingen, 1993

YBCO d-wave corner SQUIDs

Non-equilibrium SNS junctions

SFS junctions

d-wave grain boundary junctions

Not (yet) observed

A.F. Volkov (1995)

non-equilibrium Andreev states

Yurii Barash (1996)

zero-energy bound states

Vadim Geshkenbein (1987) --- p-wave

Tony Leggett (1992) --- d-wave

directional phase shift

Lev Bulaevskii (1978)

tunneling via magnetic impurities

Alex Buzdin (1982)

tunneling w/ exchange interaction

FS

x

S

_+

_

+ _+

_ +

NOT a -junction

The History of junctions

Page 5: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

F

p p

E

2Eex

Order parameter oscillations

SF interface: Exchange energy-induced oscillations of the proximity-induced order

parameter

Proximity decay

xSC FM

Ff

ex

f

ex xexpx

v

E2iexpx

v

E2iexp

2

1~)x(

F

ex

v

E2p

RI

xxx

expcos~)(

Exchange energy

Fermi velocity

Page 6: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

FS

x

S

FS

x

S

0-state -state

SFS Josephson junctions: dependence of free energy on ferromagnetic barrier thickness

0 0

~ nd ~ (n+½) d

Page 7: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

R

2

I

2

R

2

I

2

RIRI0cc

dsinh

dsin

dcosh

dcos

dsinh

dsin

dcosh

dcos

II

Variation of critical current with barrier thickness

2/1

exBI,R )iETk(2

Dlengthcoherence

thicknessbarrierd

energyexchangeEex

tcoefficiendiffusionD

Quasiclassical Usadel equations:Buzdin et al., Kontos et al.

Page 8: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Variation of critical current with temperature

2/1

B2/12

ex2

BI,R Tk)E)Tk((

D

IR

1i

11

2/1

exBI,R )iETk(2

D

Control transition by temperature via coherence length:

I

R)nm(

)K(T )K(T

)A(Ic d =

24nm23nm22nm

21nm

20nm

Page 9: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Si

Si

Si

Si

Step 1: Deposit Base Nb layer

Step 2: Deposit CuNi + protective Cu

Step 3: Define SiO window

Step 4: Deposit Top wiring Nb layer

Si

Si

Si

Window Junctions (Chernogolovka) Trilayer Junctions (Urbana)

Step 1: Deposit Nb-CuNi-Nb trilayer

Step 2: Etch top Nb, backfill with SiO2

Step 3: Deposit Top wiring Nb layer

5m x 5m to 50m x

50m

2m x 2m to 20m x 20m

SFS junction fabrication

Page 10: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Critical current measurements: SFS Junctions

0 5 10 15 20 25 3010-2

10-1

100

101

102

103

104

105

fit to Ic vs. d model

Cu0.47Ni0.53

Crit

ical

cur

rent

den

sity

(A

/cm

2)

Barrier thickness (nm)

Page 11: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Critical current measurements: SFS Junctions

SQUID potentiometer measurement

RN ~ 10-5 IcRN ~ 10-10 V

-40 -20 0 20 400

2

4

6

8

T = 5K

I c (

A)

Magnet current (mA)

Page 12: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Current-Phase Relation Measurement

dc SQUID technique: J.R. Waldram et al., Rev. Phys. Appl. 10, 7 (1975)

SQUID

I

Null SQUID current --- measure I and ~

Page 13: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

- junction in an rf-SQUID

0

2

LICL

M

L2sinI

MI

0C

Simulation:

I

Measurement:

• Hysteretic when L > 1

• L varied by changing Ic(T) or L

• CPR is accessible for L < 1

I

MLIC

SQUID detector

6

5

4

3

2

1

0

L=

0M

L2

Page 14: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Near the 0- crossover temperature

0 1 2 3 4 5-10

-5

0

5

10

- junction

Crit

ical

cur

rent

(A

)

Temperature (K)

0 - junction

Study region near crossover

for which -1 < < 1

I

Simulation

Page 15: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

0

Temperature:rf SQUID curves

Slight shift die to a background magnetic field ~ 1-10 mG

Page 16: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Current-Phase Relation measurements

Extracted from rf SQUID characteristics:

• 0- crossover is sharp

• Ic = 0 at the crossover temperature T

• CPR is sinusoidal

• No distortions due to sin(2)

Page 17: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Why do we expect a sin(2) component ?

What is the right experiment to probe sin(2

Theoretical predictions:

Radovic et al. Chtchelkatchev et al.

Hekkila et al. Golubov et al.

Suggestive experiments:

Ryazanov et al. (arrays)

Baselmans et al. (SNS SQUIDs)

Current-phase relation measurements

Critical current diffraction patterns:

extra structure in junctions

higher harmonics in SQUIDs/arrays

Shapiro steps (microwave irradiated) --- subharmonic steps

High frequency rf SQUID structure

• Absence of first-order term makes it possible to observe second-order Josephson tunneling

• Interaction of 0 and states at crossover – competing energies

Page 18: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Secondary Josephson Harmonics ?

Results of data fitting: < 5 %

Ic goes to 0 at T, contrary to

predictions of large sin 2

)2sin()sin()( 2 ccc III

Ic resolution ~ 10 nA

-10 -5 0 5 10-80

-60

-40

-20

0

20

40

60

80

Critical curr

ent (m

A)

SQUID Voltage (mV)

Shapiro steps: only integer steps

Diffraction patterns: Fraunhofer

Page 19: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

1.70 1.75 1.80 1.85 1.900

10

20

30

40

I c (A

)

T (K)

Critical current vs. temperature

Critical current does not vanish --- this suggests sin(2) term in CPR

Page 20: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Shapiro steps

Half-integer Shapiro steps --- consistent with sin(2) term in CPR

Half-integer steps only occur near T where critical current vanishes

Suggests coexisting “0” and “” states that entangle near degeneracy

Page 21: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Critical current diffraction patterns

Junction barrier is not uniform near T

Page 22: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Average film thickness 24nm

Linear thickness variation of 0.4nm

Effect of sloped barrier thickness variation

2.4 2.6 2.8 3 3.2400

200

0

200

4002.9847 10

2

2.5380 102

Ic d r T( ) i T( )( )

nA

0

3.20002.4 T

T = 2.6K

T = 2.8K

T = 3.0K

T (K)

I c (n

A)

I c (n

A)

I c (n

A)

y (m)

Page 23: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Arrays of -Josephson junctions

Motivation:

1. Observe spontaneous currents and vortices

2. Opportunity to explore non-uniform frustration

3. Opportunity to tune through -transition to measure uniformity of junctions and variation of vortex size

0

cLI2where~

a

a

Page 24: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Cluster Mask

2 x 2

6 x 63 x 3

1 x N

Page 25: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Cluster Designs

2 x 2

6 x 6

fully-frustrated checkerboard-frustrated

fully-frustrated unfrustrated checkerboard-frustrated

30m

Page 26: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Scanning SQUID Microscopy (SSM)

x-y scan

hinge

Square arrays Triangle arrays YBCO films

10m 100mSpatial resolution:

10mFlux sensitivity:

10-6 0

MoGe films

Page 27: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Array images: magnetic field-induced vortices

Single vortex f 0 f = 0.03

f = 0.33 f = 0.50 f = 0.66

Page 28: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

-junction array images: spontaneous currents

zero magnetic field

3 x 3

1 x 20

6 x 6

Page 29: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

What determines the current pattern?

1. Distribution of frustrated cells --- to maintain phase coherence, each much generate (approximately) 0/2 flux quantum

2. Disorder in cell areas (small) and critical currents (substantial)

3. Thermal fluctuations during cooling --- closely-spaced metastable states

6 x 6

Page 30: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

T

T = 1.7K T = 4.2KT = 2.75K

Scanning SQUID Microscope images

T

Ic

Page 31: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Checkerboardfrustrated

Fullyfrustrated

2 x 2 arrays: spontaneous vortices

Page 32: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

-1.0 -0.5 0.0 0.5 1.00

1

2

3

4

5

6

-1.0 -0.5 0.0 0.5 1.00

1

2

3

4

5

6

-1.0 -0.5 0.0 0.5 1.00

1

2

3

4

5

6

-1.0 -0.5 0.0 0.5 1.00

1

2

3

4

5

6

-1.0 -0.5 0.0 0.5 1.00

1

2

3

4

5

6

-1.0 -0.5 0.0 0.5 1.00

1

2

3

4

5

6

Ene

rgy

(EJ)

Magnetic flux (0)

Ene

rgy

(EJ)

Magnetic flux (0)

Ene

rgy

(EJ)

Magnetic flux (0)

Ene

rgy

(EJ)

Magnetic flux (0)

Ene

rgy

(EJ)

Magnetic flux (0)

Ene

rgy

(EJ)

Magnetic flux (0)

2 x 2 arrays --- simulations of vortex configurations

all 0-JJ all -JJ

Page 33: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

1D-chain arrays --- simulations of vortex configurations

Page 34: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

T, K

IC

1 2 3 4

6x6 checkerboard frustrated cluster:

Magnetic field applied (to enhance contrast of SC lines)

Page 35: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

T, K

IC

1 2 3 4

6x6 checkerboard frustrated cluster:

Zero magnetic field

Page 36: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

6x6 checkerboard frustrated cluster:

Zero Field

Vortices appear at T. (difficult to determine T precisely since diverges)

Resolution improves as Ic increases --- limits for ~ a

Page 37: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

T, K

IC

1 2 3 4

6x6 checkerboard frustrated cluster:

Magnetic field applied (to enhance contrast of SC lines)

Page 38: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Conclusions

• Measuring Current-Phase Relation (CPR) of SFS junctions

Observe transition between 0-junction and -junction states

Mixed evidence for any sin 2 in the CPR in the 0- crossover region

Considering effects of barrier inhomogeneities

• Imaging arrays of -junctions by Scanning SQUID Microscopy

Observe spontaneous vortices

Studying crossover region

• Develop trilayer process --- materials and fabrication issues

• Engineer superconducting flux qubit incorporating a -junction

• Measure 1/f noise from magnetic domain dynamics on SFS junctions

• Measure CPR in non-equilibrium -SNS junctions

Work in Progress

Page 39: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly
Page 40: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

1. Provides natural and precisely-degenerate two-level

system

Advantages of -junction flux qubits

J

E

Precisely-degenerate two-level system with no flux

bias

Spontaneous circulating current in rf SQUID

2. Decouple qubit from environment since no external field

needed

(always need some field bias to counteract stray fields and to

control qubit state, but does reduce size of fields needed)

Page 41: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

1. Controllability/reproducibility of 0- transition point and

critical currents in multiple-qubit circuits determines

tunneling rate

2. Enhancing normal state resistance of -junction determines decoherence due to quasiparticle dissipation

3. Low frequency magnetic noise in SFS junction barriers source of decoherence

Challenges for -junction flux qubits

Approach: trilayer junction technology

Approach: SIFIS and SFIFS structures

Approach: barrier material engineering

Page 42: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Decoherence from 1/f magnetic domain switching noise

1/f critical current noise modulates tunneling barrier height

Fluctuation of the tunneling frequency causes phase noise decoherence since is different for each successive point of a distribution measurement

t

IC

~ Ic

Magnetic domain switching causes critical current noise

MODEL

S

S

F

SIMULATION

Page 43: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Secondary Josephson Harmonics

Results of data fitting: < 5 %

Ic goes to 0 at T, contrary to

predictions of large sin 2

)2sin()sin()( 2 ccc III

Current

Simulation = 0.5

Ic resolution ~ 10 nA

Page 44: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

1. Existence of Josephson sin(2) component

2. Effect of barrier inhomogeneities and fluctuations

• Clustering of magnetic atoms junction aging effects

• Interface conduction reduction of current density

Barrier thickness variations non-uniform current densities

• Ferromagnetic domain noise decoherence in qubits

3. SFS arrays --- magnetic imaging of spontaneous vortices

4. Implementation of -junctions in superconducting flux qubits

Key Issues

Page 45: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

BSCCO grain boundary junctions

Possible origin: second-order Josephson coupling

non-sinusoidal current-phase relation … I() = Ic1 sin() + Ic2 sin(2)

(cancellation of tunneling into + and – lobes)

Zero-field peak in critical current has ½ width of finite field peaks

_+

_

+ _+

_ +

Page 46: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Evidence for sin(2) in SNS ballistic -junctionsBaselmans et al., PRL 2002

N SS

E

Andreev levels

V

Page 47: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Suggests sin(2) component

Page 48: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

I

I

= =

vortex

Observe half-integer Shapiro steps in a dc

SQUID near 0/2

Page 49: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

Another SFS junction – 4x4 m

Page 50: Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly

1.75 1.76 1.77 1.78 1.790

5

10

15

20

I cn (A

)

T (K)

Ic0

Ic1

Ic1/2

Shapiro step maximum amplitude

Half-integer steps only occur near T where critical current vanishes

Suggests coexisting “0” and “” states that entangle near degeneracy