darmon points in mixed signature

39
Darmon points for fields of mixed signature Number Theory Seminar, University of Warwick Xavier Guitart 1 Marc Masdeu 2 Mehmet Haluk Sengun 3 1 Institut f ¨ ur Experimentelle Mathematik 2,3 University of Warwick January 27, 2014 Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 0/1

Upload: mmasdeu

Post on 13-Dec-2014

40 views

Category:

Science


3 download

DESCRIPTION

Number Theory Seminar, Warwick University, Jan. 2014

TRANSCRIPT

Page 1: Darmon Points in mixed signature

Darmon points for fields of mixed signatureNumber Theory Seminar, University of Warwick

Xavier Guitart 1 Marc Masdeu 2 Mehmet Haluk Sengun 3

1Institut fur Experimentelle Mathematik

2,3University of Warwick

January 27, 2014

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 0 / 1

Page 2: Darmon Points in mixed signature

The Hasse-Weil L-function

Let F be a number field.Let E/F be an elliptic curve of conductor N = NE .Let K/F be a quadratic extension of F .

I Assume for simplicity that N is square-free, coprime to disc(K/F ).

Hasse-Weil L-function of the base change of E to K (<(s) >> 0)

L(E/K, s) =∏p|N

(1− ap|p|−s

)−1 ×∏p-N

(1

ap(E) = 1 + |p| −#E(Fp).

− ap|p|−s + |p|1−2s)−1.

Assume Modularity conjecture (see Samir’s talk in 4 weeks) =⇒I Analytic continuation of L(E/K, s) to C.I Functional equation relating s↔ 2− s.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 1 / 1

Page 3: Darmon Points in mixed signature

The BSD conjecture

Brian Birch Sir Peter Swinnerton-Dyer

Coarse version of BSD conjecture

ords=1 L(E/K, s) = rkZE(K).

So L(E/K, 1) = 0BSD=⇒ ∃PK ∈ E(K) of infinite order.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 2 / 1

Page 4: Darmon Points in mixed signature

The main tool for BSD: Heegner points

Kurt Heegner

Exist for F totally real and K/F totally complex (CM extension).I recall the definition of Heegner points in the simplest setting:

I F = Q (and K/Q imaginary quadratic), andI Heegner hypothesis: ` | N =⇒ ` split in K.

F This ensures that ords=1 L(E/K, s) is odd (so ≥ 1).

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 3 / 1

Page 5: Darmon Points in mixed signature

Heegner Points (K/Q imaginary quadratic)

Attach to E a holomorphic 1-form on H = z ∈ C : =(z) > 0.

ΦE = fE(z)dz =∑n≥1

ane2πinzdz ∈ H0(Γ0(N)

Γ0(N) = (a bc d

)∈ SL2(Z) : N | c

,Ω1H).

Given τ ∈ K ∩H, set Jτ =

∫ τ

∞ΦE ∈ C.

Well-defined up to the lattice ΛE =∫

γ ΦE | γ ∈ H1

(Γ0(N)\H,Z

).

I There exists an isogeny η : C/ΛE → E(C).I Set Pτ = η(Jτ ) ∈ E(C).

Fact: Pτ ∈ E(Hτ ), where Hτ/K is a class field attached to τ .

Theorem (Gross-Zagier)

PK = TrHτ/K(Pτ ) nontorsion ⇐⇒ L′(E/K, 1) 6= 0.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 4 / 1

Page 6: Darmon Points in mixed signature

Heegner Points: revealing the trick

So why does this work?

1 The Riemann surface Γ0(N)\H has an algebraic model X0(N)/Q.

2 There is a morphism φ defined over Q:

φ : Jac(X0(N))→ E.

3 The CM point (τ)− (∞) ∈ Jac(X0(N)) gets mapped to:

φ((τ)− (∞)) = Pτ ∈ E(Hτ ).

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 5 / 1

Page 7: Darmon Points in mixed signature

Computing in practice: an example of Mark WatkinsLet E be the elliptic curve of conductor NE = 66157667:

E : y2 + y = x3 − 5115523309x− 140826120488927.

Watkins worked with 460 digits of precision and 600M terms of theL-series. Took less than a day (in 2006). The x-coordinate of the pointhas numerator:3677705371866775066140056423418271700879322694922855847262187700616535463492710 15805365134370326743061141306464500052886704651998399766478840791915307861741507273933802628157325092479708268760217101755385871816780548765478502284415627682 84719275268189909496265993787063003676035929357702180623748397107493122841634650785238169688322765007203996448159721599599329974493411710628985038936400655249 78358777402575345331137752028822100483561636459193457948120745710296608971732243703377010561657350085906402970902987091215062666972664619932018253973699995508 68142294312756322177410730532828064759604975369242350993568030726937049911607264109782746847951283794119298941214490794330902986582991229569401523519938742746 37610719077020401051381834901278663788925471105945555517381090491192761989903185514929232533858983197973702640271104974259411600038060148083998297555750603585 17280356452410442291650296493470492891191885968694011593251313633459625795031323398472754224400945538247051892256536774595128631179117218385529343091245081344 93366437408093924362039749911907416973504142322111757058584200725022632116164720164998641729522677460525999499077942125820428879526063735692685991018516862938 79604759732398653715417124831694379637321719199399699371465462953688439605792479093864765666328159617814572211609821650093033382432180672693701819013619055657 32088070483553355670787931266569286578590367793505932745987173797308807240343018677394437498418094567158841937203289014615526598826284058422097567571678166621 39945081864642108533595989975716259259240152834050940654479617147685922500856944449822045386092122409096978544817218847897640513477806598329177604246380812377 73904918447555077734162098597657039303788028276496701955240840073075482267644148171538534400197983223265241488833586556737721436045600329696166817748194480906 62574425967723478296641269729319041016852811289447800746467967609424309596170222574798740894035649650388853798178669200489298145202684936775070590737659026716 38087366488496702836326268574593123245107420348878101763123893347657020275591248824247800594270862052082185973393290009189867677259458080676065098703453539525 57697563954370050762564072987234078940631439446840058445592068336197620012183443075123390147322849749056199807848625107499352887131879740334808737042690099755 64425770812549105721851078566051398773310150428421211060806907435781732684894004990568983126219539479670123584145477528970810970917957442036976840460662556632 01242292760126759871266004516377432961917272040217147083563399987612420595275792033855676991823368254862159558450043808051481533297270035287382247038279293223 94638507011808230695898726860339692405440310385744405884860558741540051767003263112120612773248134039108827779648854441573815655301476840624615466600513969042 80851450982725007914162147746734845018267225005270911649442625371695958489316807540967747128604905727462240940311870432045261072392010796034682975228951065985 67437015083348797875364162797693968819804139548885751282687152237078260358705230284426203064493684250614282879918107733796207067250003823959412935677624093236 04703863736557732639958900880450778601197315592773107303470653655746144380662270762241108780937187215721045683689249361383679202676182038221716548199892412360 47827879232297391719205754470070995016783807950770131133259898013857299939208183016544242513395646068768201219283722462133998592132827925111680439534438397939 01139974194479300297566097664539199384651908436188732428818373302383046388859427937893841888014266685177616605644783704135794931830750265686335934066565240944 04944821300559199712898556076026039921427863591263435158676235486935402153074618999289958255459763210830963856929696480004698307273623848314901471460089605655 20296427479914190634547491420595642742982546549258938664049551469033300244757461635437149962496524201711710542317263364935415869714317789440514810596337383994 11418574323811770949729726843612672925000631355659834164200554441315451003433452466204707123811663623662837296862948061758759928631763661985185615801886205770 72103200630414486778734705831639229567158009165587208720948591328693012885864044258912545426858039748457192101231887231162489831761560762817646009744133632354 90318282359656362779508273280875479395111123742164365842033792484501226474060940351711307406637235476759398859593638811358930351020183894442127461462503283482 42610673524022378994978392020098814721974502062692815736689229759065822093942795318705345275598989426335235935505605311411301560321192269430861733743544402908 58649730535360090943121493320252252871710921449295933001606581028762314417928846666488854062270234670421375245637257444956397921578240656693788535294587199454 17708388719305422203077716714984665181087226221094216767415449456954035098669531672776282802324648392150034740488969680375446600297557400655812701390832499032 12572230417942249795467100700393944310325009677179182109970943346807335014446839612282508824324073679584122851208360459166315484891952299449340025896509298935 93935772172354393310874324199738744701839592532016763764032840795706984543950138123460586749500340201672462640085536963652115500914717624590414906922543864692 85490723376533487049319017648474397724320252756489646813872102340708493063301917903804123961154462408325834813663721323008490608352621368323153110529033675038 57437920508931305283143379423930601369154572530677278862066638884250221791647123563828956462530983567929499493346622977494903591722345188975062941907415400740 881

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 6 / 1

Page 8: Darmon Points in mixed signature

Darmon’s insight

Henri DarmonDrop hypothesis of K/F being CM.

I Simplest case: F = Q, K real quadratic.However:

I There are no points on Jac(X0(N)) attached to such K.I In general there is no morphism φ : Jac(X0(N))→ E.I When F is not totally real, even the curve X0(N) is missing!

Nevertheless, Darmon constructed local points in such cases. . .I . . . and hoped that they were global.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 7 / 1

Page 9: Darmon Points in mixed signature

Goals of this talk

1 Review some history.2 Sketch a general construction of Darmon points.3 Give some details of the construction.4 Explain the algorithmic challenges we face in their computation.

“ The fun of the subject seems to me to be in the examples.B. Gross, in a letter to B. Birch, 1982”

5 Illustrate with fun examples.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 8 / 1

Page 10: Darmon Points in mixed signature

Basic notation

Consider an infinite place v | ∞F of F .I If v is real, then:

1 It may extend to two real places of K (splits), or2 It may extend to one complex place of K (ramifies).

I If v is complex, then it extends to two complex places of K (splits).

n = #v | ∞F : v splits in K.

K/F is CM ⇐⇒ n = 0.I If n = 1 we call K/F quasi-CM.

S(E,K) =v | N∞F : v not split in K

, s = #S(E,K).

Sign of functional equation for L(E/K, s) should be (−1)#S(E,K).I From now on, we assume that s is odd.

Fix a place ν ∈ S(E,K).1 If ν = p is finite =⇒ non-archimedean case.2 If ν is infinite =⇒ archimedean case.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 9 / 1

Page 11: Darmon Points in mixed signature

Goals of this talk

1 Review some history.2 Sketch a general construction of Darmon points.3 Give some details of the construction.4 Explain the algorithmic challenges we face in their computation.

“ The fun of the subject seems to me to be in the examples.B. Gross, in a letter to B. Birch, 1982”

5 Illustrate with fun examples.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 10 / 1

Page 12: Darmon Points in mixed signature

Non-archimedean History

These constructions are also known as Stark-Heegner points.

H. Darmon (1999): F = Q, quasi-CM, s = 1.I Darmon-Green (2001): special cases, used Riemann products.I Darmon-Pollack (2002): same cases, overconvergent methods.I Guitart-M. (2012): all cases, overconvergent methods.

M. Trifkovic (2006): F imag. quadratic ( =⇒ quasi-CM)), s = 1.I Trifkovic (2006): F euclidean, E of prime conductor.I Guitart-M. (2013): F arbitrary, E arbitrary.

M. Greenberg (2008): F totally real, arbitrary ramification, s ≥ 1.I Guitart-M. (2013): F = Q, quasi-CM case, s ≥ 1.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 11 / 1

Page 13: Darmon Points in mixed signature

Archimedean History

Initially called Almost Totally Real (ATR) points.I But this name only makes sense in the original setting of Darmon.

H. Darmon (2000): F totally real, s = 1.I Darmon-Logan (2003): F quadratic norm-euclidean, NE trivial.I Guitart-M. (2011): F quadratic and arbitrary, NE trivial.I Guitart-M. (2012): F quadratic and arbitrary, NE arbitrary.

J. Gartner (2010): F totally real, s ≥ 1.I ?

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 12 / 1

Page 14: Darmon Points in mixed signature

Goals of this talk

1 Review some history.2 Sketch a general construction of Darmon points.3 Give some details of the construction.4 Explain the algorithmic challenges we face in their computation.

“ The fun of the subject seems to me to be in the examples.B. Gross, in a letter to B. Birch, 1982”

5 Illustrate with fun examples.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 13 / 1

Page 15: Darmon Points in mixed signature

Our construction

Xavier Guitart M. Haluk Sengun

Available for arbitrary base number fields F (mixed signature).Comes in both archimedean and non-archimedean flavors.All of the previous constructions become particular cases.We can provide genuinely new numerical evidence.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 14 / 1

Page 16: Darmon Points in mixed signature

Overview of the construction

We define a quaternion algebra B/F and a group Γ ⊂ SL2(Fν).I The group Γ acts (non-discretely in general) on Hν .

We attach to E a unique cohomology class

ΦE ∈ Hn(Γ,Ω1

Hν).

We attach to each embedding ψ : K → B a homology class

Θψ ∈ Hn

(Γ,Div0Hν

).

I Well defined up to the image of Hn+1(Γ,Z)δ→ Hn(Γ,Div0Hν).

Cap-product and integration on the coefficients yield an element:

Jψ = 〈Θψ,ΦE〉 ∈ K×ν .

Jψ is well-defined up to a multiplicative lattice

L =〈δ(θ),ΦE〉 : θ ∈ Hn+1(Γ,Z)

.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 15 / 1

Page 17: Darmon Points in mixed signature

Conjectures

Jψ = 〈Θψ,ΦE〉 ∈ K×ν /L.

Conjecture 1 (Oda, Yoshida, Greenberg, Guitart-M-Sengun)There is an isogeny β : K×ν /L→ E(Kν).

Proven in some non-arch. cases (Greenberg, Rotger–Longo–Vigni).Completely open in the archimedean case.

The Darmon point attached to E and ψ : K → B is:

Pψ = β(Jψ) ∈ E(Kν).

Conjecture 2 (Darmon, Greenberg, Trifkovic, Gartner, G-M-S)1 The local point Pψ is global, and belongs to E(Kab).2 Pψ is nontorsion if and only if L′(E/K, 1) 6= 0.

We predict also the exact number field over which Pψ is defined.Include a Shimura reciprocity law like that of Heegner points.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 16 / 1

Page 18: Darmon Points in mixed signature

Goals of this talk

1 Review some history.2 Sketch a general construction of Darmon points.3 Give some details of the construction.4 Explain the algorithmic challenges we face in their computation.

“ The fun of the subject seems to me to be in the examples.B. Gross, in a letter to B. Birch, 1982”

5 Illustrate with fun examples.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 17 / 1

Page 19: Darmon Points in mixed signature

The group Γ

Let B/F = quaternion algebra with Ram(B) = S(E,K) \ ν.I B = M2(F ) (split case) ⇐⇒ s = 1.I Otherwise, we are in the quaternionic case.

E and K determine a certain ν-arithmetic subgroup Γ ⊂ SL2(Fν):I Let m =

∏l|N, split in K l.

I Let RD0 (m) be an Eichler order of level m inside B.

I Fix an embedding ιν : RD0 (m) →M2(ZF,ν).

Γ = ιν

(RD

0 (m)[1/ν]×1

)⊂ SL2(Fν).

I e.g. S(E,K) = p and ν = p give Γ ⊆ SL2

(OF [ 1p ]

).

I e.g. S(E,K) = ∞ and ν =∞ give Γ ⊆ SL2 (OF ).

Remark: We also write ΓD0 (m) = RD

0 (m)×1 .

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 18 / 1

Page 20: Darmon Points in mixed signature

Path integrals: archimedean setting

H = (P1(C) \ P1(R))+ has a complex-analytic structure.SL2(R) acts on H through fractional linear transformations:(

a bc d

)· z =

az + b

cz + d, z ∈ H.

We consider holomorphic 1-forms ω ∈ Ω1H.

Given two points P and Q in H, define:∫ Q

Pω = usual path integral.

Compatibility with the action of SL2(R) on H:∫ γQ

γPω =

∫ Q

Pγ∗ω.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 19 / 1

Page 21: Darmon Points in mixed signature

Path integrals: non-archimedean setting

Hp = P1(Kp) \ P1(Fp) has a rigid-analytic structure.SL2(Fp) acts on Hp through fractional linear transformations:(

a bc d

)· z =

az + b

cz + d, z ∈ Hp.

We consider rigid-analytic 1-forms ω ∈ Ω1Hp

.Given two points P and Q in Hp, define:∫ Q

Pω = Coleman integral.

Compatibility with the action of SL2(Fp) on Hp:∫ γQ

γPω =

∫ Q

Pγ∗ω.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 20 / 1

Page 22: Darmon Points in mixed signature

Coleman Integration

Coleman integration on Hp can be defined as:∫ τ2

τ1

ω =

∫P1(Fp)

logp

(t− τ2

t− τ1

)dµω(t) = lim−→

U

∑U∈U

logp

(tU − τ2

tU − τ1

)resA(U)(ω).

Bruhat-Tits tree of GL2(Fp), |p| = 2.Hp having the Bruhat-Tits as retract.Annuli A(U) for a covering of size |p|−3.tU is any point in U ⊂ P1(Fp).

P1(Fp)

U ⊂ P1(Fp)

If resA(U)(ω) ∈ Z for all U , then have a multiplicative refinement:

×∫ τ2

τ1

ω = lim−→U

∏U∈U

(tU − τ2

tU − τ1

)resA(U)(ω)

∈ K×p .

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 21 / 1

Page 23: Darmon Points in mixed signature

Cohomology

Recall that S(E,K) and ν determine:

Γ = ιν

(RD

0 (m)[1/ν]×1

)⊂ SL2(Fν).

Choose “signs at infinity” s1, . . . , sn ∈ ±1.

Theorem (Darmon, Greenberg, Trifkovic, Gartner, G.–M.–S.)There exists a unique (up to sign) class

ΦE ∈ Hn(Γ,Ω1

Hν)

such that:

1 TlΦE = alΦE for all l - N.2 UqΦE = aqΦE for all q | N.3 WσiΦE = siΦE for all embeddings σi : F → R which split in K.4 ΦE is “integrally valued”.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 22 / 1

Page 24: Darmon Points in mixed signature

Homology

Let ψ : O → RD0 (m) be an embedding of an order O of K.

I Which is optimal: ψ(O) = RD0 (m) ∩ ψ(K).

Consider the group O×1 = u ∈ O× : NmK/F (u) = 1.I rank(O×1 ) = rank(O×)− rank(O×F ) = n.

Choose a basis u1, . . . , un ∈ O×1 for the non-torsion units.I ; ∆ψ = ψ(u1) · · ·ψ(un) ∈ Hn(Γ,Z).

K× acts on Hν through K×ψ→ B×

ιν→ GL2(Fν).

I Let τψ be the (unique) fixed point of K× on Hν .Have the exact sequence

Hn+1(Γ,Z)δ // Hn(Γ,Div0Hν) // Hn(Γ,DivHν)

deg // Hn(Γ,Z)

Θψ ? // [∆ψ ⊗ τψ] // [∆ψ]

Fact: [∆ψ] is torsion.I Can pull back a multiple of [∆ψ ⊗ τψ] to Θψ ∈ Hn(Γ,Div0Hν).I Well defined up to δ(Hn+1(Γ,Z)).

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 23 / 1

Page 25: Darmon Points in mixed signature

Goals of this talk

1 Review some history.2 Sketch a general construction of Darmon points.3 Give some details of the construction.4 Explain the algorithmic challenges we face in their computation.

“ The fun of the subject seems to me to be in the examples.B. Gross, in a letter to B. Birch, 1982”

5 Illustrate with fun examples.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 24 / 1

Page 26: Darmon Points in mixed signature

Commutator Decomposition

Goal

H2(Γ,Z)δ // H1(Γ,Div0Hp) // H1(Γ,DivHp)

deg // H1(Γ,Z)

Θψ ? // [γψ ⊗ τψ] // [γψ]

Theorem (word problem)Given a presentation F Γ giving

Γ = 〈g1, . . . , gs | r1, . . . , rt〉,

There is an algorithm to write γ ∈ Γ as a word in the gi’s.

Effective version for quaternionic groups: John Voight, Aurel Page.γ ∈ [Γ,Γ] =⇒ γ has word representation W , with W ∈ [F, F ].We use gh⊗D ≡ g ⊗D + h⊗g−1D (as 1-cycles).

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 25 / 1

Page 27: Darmon Points in mixed signature

Commutator Decomposition: example

G = R×1 , R maximal order on B = B6.

F = 〈X,Y 〉 G = 〈x, y | x2 = y3 = 1〉.

Goal: write g ⊗ τ as∑gi ⊗Di, with Di of degree 0.

Take for instance g = yxyxy. Note that wt(x) = 2 and wt(y) = 3.First, trivialize on Fab: g = yxyxyx−2y−3.To simplify γ ⊗ τ0 in H1(Γ,DivHp), use:

1 gh⊗D ≡ g ⊗D + h⊗g−1D.2 g−1 ⊗D ≡ −g ⊗gD.

g ⊗ τ0

= yxyxyx−2y−3 ⊗ τ0

= y ⊗ τ0

+ xyxyx−2y−3 ⊗y−1τ0 = y ⊗ τ0

+ xyxyx−2y−3 ⊗ τ1 = y ⊗ τ0 + x⊗ τ1

+ yxyx−2y−3 ⊗x−1τ1 = y ⊗ τ0 + x⊗ τ1

+ yxyx−2y−3 ⊗ τ2 = y ⊗ τ0 + x⊗ τ1

+ y ⊗ τ2 + xyx−2y−3 ⊗y−1τ2 = y ⊗ (τ0 + τ2) + x⊗ τ1

+ xyx−2y−3 ⊗ τ3 = y ⊗ (τ0 + τ2) + x⊗ τ1

+ x⊗ τ3 + yx−2y−3 ⊗x−1τ3 = y ⊗ (τ0 + τ2) + x⊗ (τ1 + τ3)

+ yx−2y−3 ⊗ τ4 = y ⊗ (τ0 + τ2) + x⊗ (τ1 + τ3)

+ y ⊗ τ4 + x−2y−3 ⊗y−1τ4 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3)

+ x−2y−3 ⊗ τ5 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3)

+ x−1 ⊗ τ5 + x−1y−3 ⊗xτ5 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3)

− x⊗xτ5 + x−1y−3 ⊗xτ5 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3)

− x⊗ τ6 + x−1y−3 ⊗ τ6 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3 − τ6)

+ x−1 ⊗ τ6 + y−3 ⊗xτ6 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3 − τ6)

− x⊗xτ6 + y−3 ⊗xτ6 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3 − τ6)

− x⊗ τ7 + y−3 ⊗ τ7 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3 − τ6 − τ7)

+ y−3 ⊗ τ7 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3 − τ6 − τ7)

+ y−1 ⊗ τ7 + y−2 ⊗yτ7 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3 − τ6 − τ7)

− y ⊗yτ7 + y−2 ⊗yτ7 = y ⊗ (τ0 + τ2 + τ4) + x⊗ (τ1 + τ3 − τ6 − τ7)

− y ⊗ τ8 + y−2 ⊗ τ8 = y ⊗ (τ0 + τ2 + τ4 − τ8) + x⊗ (τ1 + τ3 − τ6 − τ7)

+ y−2 ⊗ τ8 = y ⊗ (τ0 + τ2 + τ4 − τ8) + x⊗ (τ1 + τ3 − τ6 − τ7)

+ y−1 ⊗ τ8 + y−1 ⊗yτ8 = y ⊗ (τ0 + τ2 + τ4 − τ8) + x⊗ (τ1 + τ3 − τ6 − τ7)

− y ⊗yτ8 + y−1 ⊗yτ8 = y ⊗ (τ0 + τ2 + τ4 − τ8) + x⊗ (τ1 + τ3 − τ6 − τ7)

− y ⊗ τ9 + y−1 ⊗ τ9 = y ⊗ (τ0 + τ2 + τ4 − τ8 − τ9) + x⊗ (τ1 + τ3 − τ6 − τ7)

+ y−1 ⊗ τ9 = y ⊗ (τ0 + τ2 + τ4 − τ8 − τ9) + x⊗ (τ1 + τ3 − τ6 − τ7)

− y ⊗yτ9 = y ⊗ (τ0 + τ2 + τ4 − τ8 − τ9) + x⊗ (τ1 + τ3 − τ6 − τ7)

− y ⊗ τ10 = y ⊗ (τ0 + τ2 + τ4 − τ8 − τ9 − τ10) + x⊗ (τ1 + τ3 − τ6 − τ7)

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 26 / 1

Page 28: Darmon Points in mixed signature

Overconvergent Method (I) (F = Q, p = fixed prime)

We have attached to E a cohomology class Φ ∈ H1(Γ,Ω1Hp).

Goal: to compute integrals∫ τ2τ1

Φγ , for γ ∈ Γ.Recall that ∫ τ2

τ1

Φγ =

∫P1(Qp)

log

(t− τ1

t− τ2

)dµγ(t).

Expand the integrand into power series and change variables.I We are reduced to calculating the moments:∫

Zp

tidµγ(t) for all γ ∈ Γ.

Note: Γ ⊇ ΓD0 (m) ⊇ ΓD

0 (pm).Technical lemma: All these integrals can be recovered from∫

Zptidµγ(t) : γ ∈ ΓD

0 (pm)

.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 27 / 1

Page 29: Darmon Points in mixed signature

Overconvergent Method (II)

D = locally analytic Zp-valued distributions on Zp.I ϕ ∈ D maps a locally-analytic function h on Zp to ϕ(h) ∈ Zp.I D is naturally a ΓD

0 (pm)-module.

The map ϕ 7→ ϕ(1Zp) induces a projection:

ρ : H1(ΓD0 (pm),D)→ H1(ΓD

0 (pm),Zp).

Theorem (Pollack-Stevens, Pollack-Pollack)

There exists a unique Up-eigenclass Φ lifting ΦE .

Moreover, Φ is explicitly computable by iterating the Up-operator.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 28 / 1

Page 30: Darmon Points in mixed signature

Overconvergent Method (III)

But we wanted to compute the moments of a system of measures. . .

PropositionConsider the map Ψ: ΓD

0 (pm)→ D:

γ 7→[h(t) 7→

∫Zph(t)dµγ(t)

].

1 Ψ belongs to H1(ΓD0 (pm),D).

2 Ψ is a lift of µ.3 Ψ is a Up-eigenclass.

Corollary

The explicitly computed Φ knows the above integrals.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 29 / 1

Page 31: Darmon Points in mixed signature

Examples

Where arethe examples ??

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 29 / 1

Page 32: Darmon Points in mixed signature

Available Code

SAGE code for non-archimedean Darmon points when n = 1.

https://github.com/mmasdeu/darmonpoints

I Compute with “quaternionic modular symbols”.F Need presentation for units of orders in B (J. Voight, A. Page).

I Implemented overconvergent method for arbitrary B.I We obtain a method to find algebraic points.

SAGE code for archimedean Darmon points (in restricted cases).

https://github.com/mmasdeu/atrpoints

I Only for the split (B = M2(F )) cases, and:1 F real quadratic, and K/F ATR (Hilbert modular forms)2 F cubic (1, 1), and K/F totally complex (cubic automorphic forms).

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 30 / 1

Page 33: Darmon Points in mixed signature

Archimedean cubic Darmon point (I)

Let F = Q(r) with r3 − r2 + 1 = 0.F has discriminant −23, and is of signature (1, 1).Consider the elliptic curve E/F given by the equation:

E/F : y2 + (r − 1)xy +(r2 − r

)y = x3 +

(−r2 − 1

)x2 + r2x.

E has prime conductor NE =(r2 + 4

)of norm 89.

K = F (w), with w2 + (r + 1)w + 2r2 − 3r + 3 = 0.I K has class number 1, thus we expect the point to be defined over K.I The computer tells us that rkZE(K) = 1

S(E,K) = σ, where σ : F → R is the real embedding of F .I Therefore the quaternion algebra B is just M2(F ).

The arithmetic group to consider is

Γ = Γ0(NE) ⊂ SL2(OF ).

Γ acts naturally on the symmetric space H

Hyperbolic 3-space

×H3:

H×H3 = (z, x, y) : z ∈ H, x ∈ C, y ∈ R>0.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 31 / 1

Page 34: Darmon Points in mixed signature

Archimedean cubic Darmon point (II)

E ; ωE , an automorphic form with Fourier-Bessel expansion:

ωE(z, x, y) =∑

α∈δ−1OFα0>0

a(δα)(E)e−2πi(α0z+α1x+α2x)yH (α1y) ·(−dx∧dzdy∧dzdx∧dz

)

H(t) =

(− i

2eiθK1(4πρ),K0(4πρ),

i

2e−iθK1(4πρ)

)t = ρeiθ.

I K0 and K1 are hyperbolic Bessel functions of the second kind:

K0(x) =

∫ ∞0

e−x cosh(t)dt, K1(x) =

∫ ∞0

e−x cosh(t) cosh(t)dt.

ωE is a 2-form on Γ\H ×H3.The cocycle ΦE is defined as (γ ∈ Γ):

ΦE(γ) =

∫ γ·O

OωE(z, x, y) ∈ Ω1

H with O = (0, 1) ∈ H3.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 32 / 1

Page 35: Darmon Points in mixed signature

Archimedean cubic Darmon point (III)

Consider the embedding ψ : K →M2(F ) given by:

w 7→(−2r2 + 3r r − 3

r2 + 4 2r2 − 4r − 1

)Let γψ = ψ(u), where u is a fundamental norm-one unit of OK .γψ fixes τψ = −0.7181328459824 + 0.55312763561813i ∈ H.

I Construct Θ′ψ = [γψ ⊗ τψ] ∈ H1(Γ,DivH).Θ′ψ is equivalent to a cycle

∑γi ⊗ (si − ri) taking values in Div0

H.

Jψ =∑i

∫ si

ri

ΦE(γi) =∑i

∫ γi·O

O

∫ si

ri

ωE(z, x, y).

We obtain, summing over all ideals (α) of norm up to 400, 000:

Jψ = 0.0005281284234 + 0.0013607546066i; Pψ ∈ E(C).

Numerically (up to 32 decimal digits) we obtain:

Pψ?= −10×

(r − 1, w − r2 + 2r

)∈ E(K).

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 33 / 1

Page 36: Darmon Points in mixed signature

Non-archimedean cubic Darmon point (I)

F = Q(r), with r3 − r2 − r + 2 = 0.F has signature (1, 1) and discriminant −59.Consider the elliptic curve E/F given by the equation:

E/F : y2 + (−r − 1)xy + (−r − 1) y = x3 − rx2 + (−r − 1)x.

E has conductor NE =(r2 + 2

)= p17q2, where

p17 =(−r2 + 2r + 1

), q2 = (r) .

Consider K = F (α), where α =√−3r2 + 9r − 6.

The quaternion algebra B/F has discriminant D = q2:

B = F 〈i, j, k〉, i2 = −1, j2 = r, ij = −ji = k.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 34 / 1

Page 37: Darmon Points in mixed signature

Non-archimedean cubic Darmon point (II)

The maximal order of K is generated by wK , a root of the polynomial

x2 + (r + 1)x+7r2 − r + 10

16.

One can embed OK in the Eichler order of level p17 by:

wK 7→ (−r2 + r)i+ (−r + 2)j + rk.

We obtain γψ = 6r2−72 + 2r+3

2 i+ 2r2+3r2 j + 5r2−7

2 k, and

τψ = (12g+8)+(7g+13)17+(12g+10)172+(2g+9)173+(4g+2)174+· · ·

After integrating we obtain:

Jψ = 16+9·17+15·172+16·173+12·174+2·175+· · ·+5·1720+O(1721),

which corresponds to:

Pψ = −3

2× 72×

(r − 1,

α+ r2 + r

2

)∈ E(K).

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 35 / 1

Page 38: Darmon Points in mixed signature

Thank you !

Bibliography, code and slides at:http://www.warwick.ac.uk/mmasdeu/

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 35 / 1

Page 39: Darmon Points in mixed signature

Bibliography

H. Darmon and A. Logan. Periods of Hilbert modular forms and rational points on elliptic curves.Int. Math. Res. Not. (2003), no. 40, 2153–2180.

H. Darmon and P. Green. Elliptic curves and class fields of real quadratic fields: Algorithms and evidence.Exp. Math., 11, No. 1, 37-55, 2002.

H. Darmon and R. Pollack. Efficient calculation of Stark-Heegner points via overconvergent modular symbols.Israel J. Math., 153:319–354, 2006.

J. Gartner. Darmon points and quaternionic Shimura varieties.Canad. J. Math. 64 (2012), no. 6.

X. Guitart and M. Masdeu. Elementary matrix Decomposition and the computation of Darmon points with higher conductor.Math. Comp. (arXiv.org, 1209.4614), 2013.

X. Guitart and M. Masdeu. Computation of ATR Darmon points on non-geometrically modular elliptic curves.Exp. Math., 2012.

X. Guitart and M. Masdeu. Computation of quaternionic p-adic Darmon points.(arXiv.org, 1307.2556), 2013.

M. Greenberg. Stark-Heegner points and the cohomology of quaternionic Shimura varieties.Duke Math. J., 147(3):541–575, 2009.

D. Pollack and R. Pollack. A construction of rigid analytic cohomology classes for congruence subgroups of SL3(Z).Canad. J. Math., 61(3):674–690, 2009.

M. Trifkovic. Stark-Heegner points on elliptic curves defined over imaginary quadratic fields.Duke Math. J., 135, No. 3, 415-453, 2006.

Marc Masdeu Darmon points for fields of mixed signature January 27, 2014 35 / 1