data-basedmechanistic modelling of rainfall-runoff ... uno/230_bogner.pdf · data-basedmechanistic...

6
Data-based Mechanistic Modelling of Rainfall-Runoff Processes and Its Application in a Complex Hydrological Context K. Bogner , B. Hingray and A. Musy Swiss Federal Institute of Technology - Lausanne, ENAC-HYDRAM, CH-1015 Lausanne, Switzerland ([email protected]) Abstract: Although the inherent uncertainty associated with rainfall-runoff processes is well known, most mathematical models of such systems are completely deterministic in nature. Stochastic modelling requires that the uncertainty, which is associated with both the model parameters and the stochastic inputs, should be quantified in some manner as an inherent part of the modelling analysis. To achieve these objectives, a Data-based mechanistic (DBM) modelling approach will be tested for the Jura lake system (Switzerland). In DBM modelling, the most parsimonious model structure is first inferred statistically from the available time series. State dependent non-linear dependencies can be identified objectively from the rainfall and runoff data and will be used as the bases for the estimation of non-linear transfer function models of the rainfall-runoff processes. After this the model will be accepted if it can be interpreted in a physically meaningful, mechanistic manner. Before this approach will be applied some preprocessing of the data has been done using Wavelet transformations. Furthermore a simplified snow-melt model has been applied in order to calculate equivalent rainfall. First results of this preprocessing and of the DBM modelling will be shown in this paper. Keywords: Data-based mechanistic modelling; Transfer functions; Snowmelt modelling; Wavelet transforma- tion. 1 INTRODUCTION Rainfall-runoff models are well-established tools that are widely utilized in engineering practice, e.g. for water resource planning. The majority of model structures currently used can be classified as con- ceptual. Usually these kind of models have a lot of parameters, which cannot be estimated without imposing prior restrictions. Recently Beven and Freer [2001] have described these problems using the term equifinality. This means that many differ- ent parameter sets and model structures exist, which are able to explain the observed data equally well, so that no unique solution can be obtained. The data-based modelling methodology of Young and Beven [1994] tries to solve the problems of identifi- cation and over-parametrisation of conceptual hy- drological models by the use of simple and par- simonious mechanistic model structures. Thus no prior assumptions are made about the form of the model other than a general linear transfer function approach can be used to relate an effective rainfall input to the total discharge. This model will be applied to a very large (about 8000 km ) and complex catchment in Switzerland. The overall objective will be to study the impacts of climate variability and change on the sustain- able use of water within a project called SWURVE (Sustainable Water : Uncertainty, Risk and Vulner- abiliy in Europe) funded by the EU and the Swiss Federal Office of Education and Sciences. The aim of SWURVE is the elaboration of a probabilis- tic framework to assess climate change impacts on the sustainable use of water. This methodological framework takes into account the combined uncer- tainty due to the natural variability and the error due to incomplete knowledge of future conditions. The Jura lake system is a complex hydrological system located in the western part of Swiss plain, which will be analysed in detail. This system of three in- terconnected lakes (Neuch` atel, Bienne and Morat) was formed 15,000 year ago, when the huge Rhone glacier had retired. It was significantly modified in 381

Upload: dinhthu

Post on 25-Aug-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Data-basedMechanistic Modelling of Rainfall-RunoffProcessesand Its Application in a ComplexHydr ological

Context

K. Bogner�, B. Hingray

�andA. Musy

�SwissFederalInstituteof Technology- Lausanne,

ENAC-HYDRAM, CH-1015Lausanne,Switzerland([email protected])

Abstract: Although the inherentuncertaintyassociatedwith rainfall-runoff processesis well known, mostmathematicalmodelsof suchsystemsarecompletelydeterministicin nature. Stochasticmodellingrequiresthat the uncertainty, which is associatedwith both the model parametersand the stochasticinputs, shouldbe quantifiedin somemannerasan inherentpart of the modellinganalysis. To achieve theseobjectives,aData-basedmechanistic(DBM) modellingapproachwill be testedfor theJuralake system(Switzerland).InDBM modelling,the mostparsimoniousmodelstructureis first inferredstatisticallyfrom the availabletimeseries.Statedependentnon-lineardependenciescanbeidentifiedobjectively from therainfall andrunoff dataandwill be usedasthe basesfor the estimationof non-lineartransferfunction modelsof the rainfall-runoffprocesses.After this themodelwill beacceptedif it canbeinterpretedin aphysicallymeaningful,mechanisticmanner. Beforethis approachwill be appliedsomepreprocessingof the datahasbeendoneusingWavelettransformations.Furthermorea simplifiedsnow-melt modelhasbeenappliedin orderto calculateequivalentrainfall. First resultsof this preprocessingandof theDBM modellingwill beshown in this paper.

Keywords: Data-basedmechanisticmodelling;Transferfunctions;Snowmeltmodelling;Wavelettransforma-tion.

1 INTRODUCTION

Rainfall-runoff models are well-establishedtoolsthatarewidely utilized in engineeringpractice,e.g.for waterresourceplanning.Themajorityof modelstructurescurrently usedcan be classifiedas con-ceptual. Usually thesekind of modelshave a lotof parameters,which cannotbe estimatedwithoutimposing prior restrictions. RecentlyBeven andFreer[2001] have describedtheseproblemsusingthe termequifinality. This meansthatmany differ-entparametersetsandmodelstructuresexist,whichareableto explain the observed dataequallywell,so that no unique solution can be obtained. Thedata-basedmodelling methodologyof Young andBeven[1994] triesto solve theproblemsof identifi-cation and over-parametrisationof conceptualhy-drological modelsby the use of simple and par-simoniousmechanisticmodelstructures.Thusnoprior assumptionsaremadeaboutthe form of themodelother thana generallinear transferfunctionapproachcanbe usedto relatean effective rainfall

input to thetotal discharge.This model will be appliedto a very large (about8000km

�) andcomplex catchmentin Switzerland.

The overall objective will be to study the impactsof climate variability and changeon the sustain-ableuseof waterwithin a projectcalledSWURVE(SustainableWater: Uncertainty, Risk andVulner-abiliy in Europe)fundedby the EU andthe SwissFederalOffice of Educationand Sciences. Theaim of SWURVE is theelaborationof a probabilis-tic framework to assessclimatechangeimpactsonthe sustainableuseof water. This methodologicalframework takesinto accountthe combineduncer-taintydueto thenaturalvariability andtheerrordueto incompleteknowledgeof futureconditions.TheJuralake systemis a complex hydrologicalsystemlocatedin the westernpart of Swissplain, whichwill be analysedin detail. This systemof threein-terconnectedlakes(Neuch̀atel, BienneandMorat)wasformed15,000yearago,whenthehugeRhoneglacierhadretired. It wassignificantlymodifiedin

381

Bern

Hagneck

Brienzwiler

0�

50�

KILOMETERS�

Lake Geneva�

Lake Neuchatel�

Lake Bienne

Lake Morat�

Figure1: DEM of theJuralakesystem( c�

SwissfederalOfficeof Topography)

the periods1833-1884and1963-1972by the con-truction of channels. Different regulation water-works have beenbuilt, in orderto reducethe risksof inundationand to transformthe former unpro-ductiveareasinto fertile arableland.In thebeginningof thisprojectthehydrologicalsys-tem hasto be analysedfor the presenttimesandarainfall-runoff modelwill beappliedin orderto cal-culatefuturescenariossubsequently. Themostim-portantinflow to the Juralake systemcomesfromthe Aare River (approximately70%) and it drainsan areaof 5128 km

�up to the station Hagneck,

wheretheriverflows in thelakeof Bienne(seeFig-ure 1). The hydrologicalsystemis influencedbyvariouscomponentslike glaciers,artificial andreg-ulatednaturallakes,whichmakeit difficult to applya more physically basedmodel. Furthermoretheessentialcontribution of the snow-melt have to betaken into consideration.Thussomepreprocessingof the dataarenecessary, which will be explainedin thenext chapter. AfterwardstheDBM modellingapproachwill be describedin more detail and thepreliminaryresultswill beshown anddiscussed.

2 PREPROCESSINGTHE DATA

Theobserveddischargeseriesof theAareriver aremostly superposedandalteredby variousdifferentimpacts(e.g. hydropower stationmanagementandregulation of lakes), which can be interpretedasnoise. For the hydrological modelling it will be

necessaryto remove this noiseandto selectrunoffgauges,wherethedischargeseriesaremoreor lessnoise-free. The WaveShrink methodologydevel-opedby Donoho[1995] for estimatinganunknownsignal from data has beenapplied to remove thenoisefrom the discharge series. The advantageofthis procedure,which is basedon Wavelet transfor-mations,is that the peaksare preserved, whereastraditionalnoisereductionmethods,suchassplinesor kernelsmootherswould result in somesmooth-ing of the spikes. In particular, the non-decimateddiscreteWavelet transformationhas beenusedinshrinkingthe Wavelet coefficient towardszero,be-causeit leadsto both betterpredictionand fewerartifacts(e.g. Nasonand Sapatinas[2002]). Ap-plying the WaveShrinkalgorithmto threedifferentdischargeseriesobservedatgaugesat theAareriver(shown in Figure2) indicatesthatthegaugelocatedat Bernwill bebestsuitedfor furtheranalysis.Theresiduals(=noise)of this dataseriesaremuchlessin comparisonto the seriesobserved at Hagneck(downstream)and Brienzwiler (upstream),whichare highly influencedby hydro power production.Thusthecatchmentof Bern is chosenrepresentingapproximately2/3of theAarecatchmentarea(2969km�).

To improve modelling capabilities,rainfall seriesaremodifiedhereto accountfor snowfall andsnow-melt, producingseriesof daily equivalent rainfall,which will be the input for rainfall-runoff mod-elling. Theprocessalsoaccountsfor theorographic

382

0 200 600 1000 1400

Resid

Signal

Data

Brienzwiler

0 200 600 1000 1400

Resid

Signal

Data

Bern

0 200 600 1000 1400

Resid

Signal

Data

Hagneck

Figure2: Signalandnoiseseparationof daily dis-charge series(1996-1999)by the use of Wavelettransformations

enhancementof rainfall, calculatingthe equivalentrainfall for different elevation bandsbefore aver-aging theseseries for the whole catchment(seeFigure3). The degree-dayapproachto snow-meltmodelling provides a simple methodologyfor thesatisfactory calculation of snow-melt, relying ondaily averageair temperatureto representthe ma-jor heat fluxes in operation. As found in an in-ternationalcomparisonof snow-melt runoff mod-els WMO [1986], the degree-daymethodhas anaccuracy comparableto morecomplex energy bud-getformulations(RangoandMartinec[1995]). Themostwidely useddegree-daymodelwasdevelopedby Martinecetal. [1983]andis centeredon thefor-mula

��� �����������(1)

where�

is daily snow-meltrunoff (mm),�

is dailymeantemperature( ˚ C),

���is a basetemperature

(usually0 ˚ C), and

is thedegree-dayor melt fac-tor (mm/˚ C/day).As well astheability to optimiseboth

� �andthedegree-dayfactor

, thereis poten-

tial for modificationof thebasicformulato includefactorssuchasalbedo(for examplebasedontheageof thesnowpack).With the availability of detailedtopographicdatafrom Digital Elevation Models(DEMs), the possi-bility of consideringseparateelevationbandswithina catchmentalsoprovidesopportunityfor improve-ment. The main difficulty encounteredwith the

Grimsel

Interlaken

Guttannen

Jungfraujoch

no data

500-800

801-1500

1501-2500

>2501

Figure 3: Elevation bandsof the Bern catchmentand locationsof the temperaturerecordinggauges( c�

SwissfederalOfficeof Topography)

degree-daymethodis the variability of the degree-dayfactor. Work by Schreideret al. [1997] showedthe ability of a degree-daytype model, used to-getherwith IHACRES (Jakemanand Hornberger[1993]), to modelsnow-affectedcatchmentsin theAustralianalpine region to the sameefficiency assnow-freebasins.Althoughthemodelof Schreideret al. [1997] was initially developedfor usein thesouthernhemisphere,its successwith IHACRES,degree-daymethodologybasis,andincorporationoftopographicdatamadeit a suitablestartingpointin the snowmelt modellingprocess.Its relianceondaily temperatureandprecipitationdatamake it ex-tremelyusefulfor modellingsnow processesin re-gionswith a lack of regular snow observations,orhistoricalperiodswith limited data.Thereareseveralpartsof themodelwhichhasbeenalteredby Steel[1999]andhavebeenappliedin thisstudy. Somechangeswerestructuralsuchaschang-ing thedatesusedfor thestartandendof thesnowseason(and albedofactor) to be suitable for thenorthernhemisphere,and changesto the grid cellsystem.Otherchangesrequiredparametervalueop-timisation,notablywherevalueshadbeenbasedonempiricalobservations(for examplethedegree-dayfactorusedandalbedofactor).Thedaydegreefac-tor hasbeenestimatedby MonteCarlosimulationsusingdifferentvaluesfor � rangingfrom 0.3 to 10.Theresultof thecalculationsof theequivalentrain-fall is shown in Figure4 with ������� � .

383

0 500 1000 15000

10

20

30

40

50

60

70

Time [d]

Pre

cip

ita

tio

n [

mm

/d]

Observed rainfall at Bern (1996−1999)

0 500 1000 15000

10

20

30

40

50

60

Time [d]

Ra

in−

Sn

ow

[m

m/d

]

Equivalent rainfall

Figure 4: Comparisonof observed andcalculatedequivalentdaily rainfall (1996-1999)

3 DATA-BASED MECHANISTIC (DBM)MODELLING

The DBM philosophy (Young and Lees [1994])and its application are discussedfully in Young[1993], Young and Beven [1994], Young et al.[1997], Young [1998], Beven [2001] and the ref-erencestherein. The first stepof the DBM mod-elling approachinvolvesthestatisticalidentificationandestimationof a modelrepresentingthestochas-tic, dynamicsystem. The prior assumptionsaboutthe structureare kept at a minimum. The generalDBM modelfor a singleinput (e.g. effective rain-fall) takestheform:

"! �$# �&%('*)+�, ��% ' ) �.- ! '�/1032 ! (2)

wherethetransferfunctionpolynomialsaredefinedas:

, �&% '*) �4� 5 036() % ' ) 08797:7�0;6.< % ' )# �&% '*) �4� = � 0 = ) % ' ) 0879797>0 =+?@% ' ) (3)

and%

is a backward shift operator(i.e.%�'�A "! � "! '�A ). �CBD� is the measuredrunoff; - �CBD� is the ob-

served input, which is in our casethe equivalentrainfall; E is a time delay and 2 ! is the stochasticnoise.Theorderof theassociatedtransferfunctionmodelis definedby thetriad F G1HJIKHLE�M . Theresiduals

2 ! aredefinedasfollows,

N2 ! � ! �N# ��%�' )+�N, �&% '*) � - ! (4)

whereN, ��%�' )O�

andN# ��%�' )+� aretheestimatesin (3)

and representmeasurementnoiseandunmeasuredeffects.

3.1 Model structur e identification

Thefollowing identificationandoptimisationmeth-ods are implementedin the CAPTAIN Matlabc

�Toolbox1. More informationaboutthis toolboxcanbefoundathttp://www.es.lancs.ac.uk/cres/captain.Appropriate model structures identification, i.e.finding the bestvaluesof F G1HDI�HJE�M and the corre-spondingcoefficients,will bedoneby a processofobjective statisticalinference. Thus in a first stepthe input-outputdatawill be analysedand the pa-rametersin a constantparametertransferfunctionmodel will be estimatedbasedon optimal Instru-mentalVariable(IV) algorithm(seeYoung[1984]andYoungandBeven[1994]). Thiswill oftenresultin a first or secondordermodel(seeFigure5). Theevaluationof the identifiedmodelstructurecanbedoneby applyingdifferentcriteriafor thegoodnessof fit like thecoefficientof determination( P � ), YICand AIC, which are definedin Young and Beven[1994]. Comparingthe two modelswith differentinput (observed and equivalent rainfall) indicatesthattheapplicationof thesnow-meltmodelin frontof thetransferfunctionmodelimprovesthesimula-tion resultsignificantly(seeTable1).

Table1: Criteria of goodnessof fit for 2 different[1,1,1]models

Model-Criteria YIC P � AICobservedrainfall -7.462 0.492 0.998

equivalentrainfall -8.727 0.740 0.329

3.2 Non-linear modelestimation

If standard statistical tests indicate some non-linearity thefixed interval smoothing(FIS) methodwill beusedto obtainnon-parametrictime variableparameterestimates(Young and Beven [1994]).Consideringthecaseof a singleinput variable(e.g.rainfall) a nonlinearmodelcanbeapproximatedbyQthanksto Prof. PeterC. Young,Departmentof Environmen-

tal Science,LancasterUniversity, Lancaster, LA1 4YQ, UnitedKingdomfor makingtheCAPTAIN toolboxavailable

384

0 500 1000 15000

5

10

15

20

Time [d]

Ru

no

ff [

mm

]

observedsimulated

0 500 1000 15000

5

10

15

20

Time [d]

Ru

no

ff [

mm

]

observedsimulated

Figure 5: Simulatedrunoff with observed rainfallasinput (top panel)andequivalentrainfall asinput(lowerpanel).Thestructureof thetransferfunctionmodelis [1,1,1]

the following transferfunction modelwith time orstatedependentparameters:

�CBD�R� # �CB H % '*) �, ��B H % ' ) �.- ! '�/S0T2 !� =U�9V ! 0 = ) V ! %�' ) 0879797>0 = ? V ! %�' ?5 0;6() V ! % ' ) 0879797>036W< V ! % '�<X - ! '�/1032 ! (5)

The model (5) is a time/statedependentparame-ter versionof the standardtransferfunction modelgiven in (2), wherethe polynomialparametersareassumedto be possiblefunctionsof the time

B. In

Figure6 and7 the resultsof this time variablepa-rameterprocedureare shown. The gain parame-ter

=U�is the only parameter, which shows signif-

icant variation over the observation period, whichis likely to be causedby the soil moisture non-linearity.

In Figure 8 the standarderror of this time vari-able parameterare shown also. The advantageofthismethodologyis thepossibilityof evaluatingthestandarderrors,which canbeusedfor thephysicalinterpretationof the model. The final stepwill betheevaluationof thenatureof theparametervaria-tion in relationto othervariablesin orderto identifyanappropriaterainfall filter. Furthermorethetrans-fer function model will be decomposedby partialfractionexpansion.This decompositionin fastand

0 500 1000 15000

5

10

15

20

Time [d]

Ru

no

ff [

mm

]

observedsimulated

0 500 1000 15000

5

10

15

20

Time [d]

Ru

no

ff [

mm

]

observedsimulated

Figure6: Simulatedrunoff (transferfunctionmodelstructureis [3,3,1]) with constantparameters(toppanel)andtimevaryingparameters(lowerpanel)

0 500 1000 1500−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [d]

FIS

est

imat

es o

f the

tim

e va

riabl

e pa

ram

eter

s

1996−1999

a1 + 0.5

a2

a3

b0

b1

b2

Figure7: Estimatedtime variableparameters

0 50 100 150 200 250 300 350 400−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time [d]

FIS

est

imat

es o

f TV

P b

0 +/−

se

Year 1996

b0

b0 + standard error

b0 − standard error

Figure8: Time variableparameterandstandarder-ror boundsof theyear1996

385

slow pathwayshasaninterestinghydrologicalinter-pretation,which couldbeconsideredasa represen-tationof acontributingareafunctionfor thefastre-sponsesin thecatchment,whetherthefastresponsesbedueto surfaceor subsurfaceflow processes.

4 CONCLUSION

In this paperthepreliminaryresultsof theapplica-tion of theDBM approachin a complex hydrologi-cal catchmentareshown. Preprocessingof thedatahasbeendoneby theuseof Wavelettransformationin orderto selectnoise-freerunoff dataseries.Theobservedseasonalityin therunoff series,influencedby snow andsnow-melt processes,have to betakeninto accountalso.Thereforeasnow-meltmodelhasbeenappliedto calculateanequivalentrainfall. Thispreprocessingimprovedthe transferfunction mod-elling significantly. Applying a time variablepa-rametertransferfunction model indicatesthe non-linearity of one parameter, which hasto be inter-pretedin a physical(mechanistic)way at next. Inconsiderationof the complexity of the investigatedcatchmentthis preliminaryresultsarequitesatisfy-ing demonstratingvery well the applicability of aparsimonioustransferfunctionmodel.

ACKNOWLEDGMENTS

Thisstudyis partof theSWURVE projectfundedbythe EU Energy, Environmentand SustainableDe-velopmentProgrammeandby theSwissFederalOf-fice of EducationandSciences.The datahasbeenmadeavailableby the SwissInstituteof Meteorol-ogy andSwissFederalOffice for WaterandGeol-ogy. The authorsacknowledgetheseinstitutesfortheir support.

References

Beven, K. and J. Freer. Equifinality, dataassimi-lation, anduncertaintyestimationin mechanisticmodellingof complex environmentalsystemsus-ing the glue methodology. J. Hydrol., 249(1-4):11–29,2001.

Beven, K. Rainfall-runoff modelling: the primer.Wiley, England,2001.

Donoho, D. L. De-noisingby soft-thresholding.IEEETransactionsonInformationTheory, 41(3):613–627,1995.

Jakeman,A. andG. Hornberger. How muchcom-plexity is warrantedin a rainfall-runoff model?Water Resour. Res., 29(8):2637–2649,1993.

Martinec, J., A. Rango, and E. Major. TheSnowmelt-Runoff Model (SRM)User’s Manual.NASA ReferencePubl.1100,Washington,D.C.,USA, 1983.

Nason,G. andT. Sapatinas.Waveletpackettransferfunction modellingof nonstationarytime series.StatisticsandComputing, 12:45–56,2002.

Rango,A. andJ. Martinec. Revisiting the degree-daymethodfor snowmelt computation.Wat. Re-sour. Bull., 31(4):657–669,1995.

Schreider, S., P. Whetton,A. Jakeman,andA. Pit-tock. Runoff modellingfor snow-affectedcatch-mentsin theaustralianalpineregion,easternvic-toria. J. Hydrol., 200(1-4):1–23,1997.

Steel,M. Historic rainfall, climatic variability andflood risk estimationfor Scotland. PhD thesis,Universityof Dundee,1999.

WMO. Intercomparisonof modelsof snowmeltrunoff. OperationalHydrol. Report23, WMO,Geneva,Switzerland,1986.

Young, P. Recursive Estimationand Time-SeriesAnalysis. Springer-Verlag,Berlin, 1984.

Young,P. Time variableandstatedependentmod-elling of nonstationaryandnonlineartime series.In SubbaRao,T., editor, Developmentsin TimeSeriesAnalysis, pages374–413.ChapmanandHall, 1993.

Young,P. Data-basedmechanisticmodellingof en-vironmental,ecological,economicandengineer-ing systems.EnvironmentalModellingandSoft-ware, 13(2):105–122,1998.

Young, P. and K. Beven. Data-basedmechanisticmodellingandtherainfall-flow non-linearity. En-vironmetrics, 5:335–363,1994.

Young, P., A. Jakeman,and D. Post. Recentad-vancesin the data-basedmodellingandanalysisof hydrologicalsystems.Wat. Sci. Tech., 36(5):99–116,1997.

Young,P. andM. Lees.Theactive mixing volume:a new conceptin modelling environmentalsys-tems. In Barnett,V. andlastnameTurkman,K.,editors,Statisticsfor the Environment, pages3–43,Chichester, 1994.J.Wiley.

386