data book on hydrocarbons

263

Click here to load reader

Upload: emebu-samuel

Post on 25-Oct-2014

314 views

Category:

Documents


82 download

DESCRIPTION

chemical engineering physical property handbook.

TRANSCRIPT

Page 1: Data Book on Hydrocarbons
Page 2: Data Book on Hydrocarbons

DATA BOOK ON

HYDROCARBONSAPPLICA TION TO PROCESS ENGINEERING

by

J. B. MAXWELLNINTH PRINTING

ROBERT E. KRIEGER PUBLISHING COMPANYMALABAR, FLORIDA

Page 3: Data Book on Hydrocarbons

ORIGINAL EDITION 1960REPRINTED 1977 FROM NINTH PRINTING 1968

Printed and Published byROBERT E. KRIEGER PUBLISHING COMPANY, INC.KRIEGER DRIVEMALABAR, FLORIDA 32950

© Copyright 1950 bySTANDARD OIL DEVELOPMENT COMPANYReprinted by Arrangement withVAN NOSTRAND REINHOLD CoMPANY

All rights reserved. No reproduction in any formof this book, in while or in part (except for briefquotation in critical articles or reviews), may bemade without written authorization frOm thepublisher.

PRINTED IN THE UNITED STATES OF AMERICA

Library of Congress Cataloging in Publication Data

Maxwell, J B 1902-Data book on hydrocarbons.

Reprint of the 9th printing published in 1968 by VanNostrand, Princeton, N. J., in The Esso series.

Includes bibliographies.1. Hydrocarbons. I. Title.

TP690.M35 1975 661'.81 74-30163ISBN 0-88275-257-X

Page 4: Data Book on Hydrocarbons

PREFACEThe primary purpose of this book is to provide (1) basic data on hydro­

carbons and petroleum fractions, (2) methods of applying these data to processengineering, including illustrative examples and some fundamental theory, and(3) applications of a few of the unit operations of chemical engineering uscdextensively in the petroleum industry.

Earlier editions of the present volume have been used in the Standard OilDevelopment Company and other affiliates of the Standard Oil Company (New.Jersey). Because this book has proved to be quite valuable to technical personnel,the Standard Oil Development Company has decided to make it available forpracticing engineers and students of petroleum technology.

The author is very much indebted to many associates in the preparation ofthis book and, in particular, to W. H. Hatch for invaluable assistance in editingthe text and preparing the charts for publication, to C. O. Rbys, Sr., for thederivation of the .Mollier diagrams and other charts, to C. J. Robrecht (orconstructive criticism and advice during the preparation of the manuscript. Fur­thermore, any list of acknowledgments would be incomplete without mentioningR. S. Piroomov who was responsible for the early development of a companydata book.

J. B. MAXWELL

Standard Oil Development CompanyLinden, New Jersey

Page 5: Data Book on Hydrocarbons

CONTENTSPHYSICAL DATA

SElCTIOl\ PAGE

1. PHYSICAL CONSTANTS....................................... 1

Hydrocarbons, 2-Miscellaneous Organic Compounds, 6--MisceIla­neous Gases, 9

2. CHARACTERISTICS OF PETROLEUM FRACTIONS... . . . . . . . .. 10

Average Boiling Point, 14-Characterization Factor, Hi-Gravity, 18

3. MOLECULAR WEIGHT. . . . . . . . . . . . . . . . . .. . . . . .. ... ... . . . . . . . . . 19

Paraffins, 20-Petroleum Fractions, 21

4. VAPOH PRESSURE .

Paraffins and Olefins, 27-Diolefins and Acetylenes, 35-Aromatics, 37-Cycloparaffins, 39-Hydrocarbons, 40-Gasolines, 44

5. FUGACITY .

Fugacity Function of Individual Hydrocarbons, 49-Fugacity Func­tion of Hydrogen, Ol-Fugacity of Hydrocarbon Vapors, 62-RelativeVolatility of LigM Hydrocarbons, 6~-Fugacity Correction Factor forLight Hydrocarbons in Absorber Oib, 67

24

45

6. CRITICAL PROPERTIES....................................... 68

Critical Temperature of Pure Hydrocarbons, 69-Critical Temperatureof Light Hydrocarbon Mixtures, 'i'O-Critical Pressure of Kormal Par­affins, 71-Critical Temperature and Pressure of Petroleum Fractions,72

7. THEHMAL PHOPERTlES .

Specific Heats of Gases and Vapors, 88-Enlhalpy-Presoure Rela­tionship for Hydrocarbon Vapors, 92-Bpecifjr Heats of Liquid Hydro­carbons and Petroleum Fractions, 93-Latenl Ileat of Vaporization ofLight Hydrocarbons and Normal Paraffins, 94-Enthalpy of IndividualHydrocarbons, 98-Enthalpy of Petroleum Fractions, 114-MollierDiagrams for Light Hydrocarbons, 128

VII

75

Page 6: Data Book on Hydrocarbons

viii

SECTION

CONTENTS

PAGE

8. DENSITy........................... . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Conversion Charts for 0 API Gravity, 138-Specific Gravity of Satu­rated Hydrocarbon Liquids, 14o-Thermal Expamlion of LiquidPetroleum Fractions, 143-P-V-T Relations of Hydrocarbon Vapors,148

9. VISCOSITY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Conversion Charts, 158-Viscosity of Hydrocarbons and Crude Frac­tions, 161-Viscosity-Temperature Charts, 166--Viscosity Index ofLubricating Oils, 168-Viscosity Blending Index, 173-Viscosity ofHydrocarbon Vapors and Miscellaneous Gases, 174

10. COMBUSTION. . . 178

Heat of Combustion of Petroleum Fractions and Hydrocarbon Gases,18o-Enthalpy of Flue Gas Components, 182-Heat Available fromthe Combustion of Refinery Gases and Fuel Oils, 184-Properties ofFlue Gases, 189

UNIT OPERATIONS

11. FLOW OF FLUIDS............................................. 193

Friction Factor for Fluid Flow, 19B-Pressure Drop in CommercialPipes, 199-Equivalent Length of Fittings, 202-Friction Loss Dueto Contraction and Enlargement, 204-Discharge Characteristics ofWeirs, 205-Pressure Drop Across Tube Banks, 206

12. FLOW OF HEAT. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . 207

Heat Loss by Radiation and Natural Convection, 209-Heat Transferto Fluids Inside Tubes, 211-Heat Transfcr to Fluids Outside Tubes,212-Thermal Conductivity of Petroleum Fractions, Water, andGases, 213-Logarithmic Mean Temperatme Difference, 217

13. EQUILIBRIUM FLASH VAPORIZATION.. . . . . . . . . . . . . . . . . . . . . .. 222

14. FRACTIONATING TOWERS.. .. 230

Minimum Reflux Ratio and Theoretical Steps, 23O-Correlation ofTheoretical Steps with Reflux Ratio, 244-0verall Plate Efficiency,245-Packed Towcrs, 246

CONVERSIOX FACTORS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 249

INDEX............................................................ 253

Page 7: Data Book on Hydrocarbons

Section I

PHYSICAL CONSTANTS

In the following tables the more common physical constants are given forhydrocarbons, certain other organic series, and miscellaneous gases. While theseconstants, in general, are based upon reliable data, estimated "alues were includedin a few instances where available data were considered questionable. Where noreasonably good basis was available for either estimating or calculating the con­stants, they are omitted.

The density, boiling point, melting point, and heat of eo'mbustion for mostof the hydrocarbons are those given in the Burea1t of Standards Circular C461. 1

GENERAL REFERENCES

Annual Tables of Physical Constants, Nat. Research Council (19-11, 1942).Beattie, Poffenberger and Hadlock, J. Chem. Phys. 3, 96 (1935).Beattie, Simard and Su, J. Alii. Chem. Soc. 61, 24 (1939); 61,924 (1939).Cole and Cole, J. Chem. Phys. 9, 341 (1941).Doss, "Physical ~nstants of the Principal Hydrocarbons," 4th Edition, The Texas Co.,

New York, N.Y. (1943).Ginnings, J. Am. Cltell/. Soc. 62, 1923 (1940).Ginnings and Baum, J. Am. Chem. Soc. 59, 1111 (1937).Ingersoll, Thesis, ~Iass. Inst. Tech. (1930).International Critical Tables, Vols. I and III.Kay, Ind. Eng. Chem. 30, 459 (1938).Kharasch, J. Research Nat. Bur. Standards 2,359 (1929).Krase and Goodman, Ind. Eng. Chelll. 22, 13 (1930).Meyers, Scott, Brickwede and RAnds, Unpublished Data, Nat. Bur. Standards.Pickering, Bur. Standards Sci. Paper 511 (1926).Rintelen, Gross and Saylor, J. Am. Chelll. Soc. 62, 1923 (19-10).Tables anntlelles de wnstantes et dunnee nUllteriqlte, Vols. VII to XIII (1925-1939).

I' "Sclcdcd Values of Propertips of Hydrocarbons," Nal. Bur. ~lalldards Circular Cl,61(947).

1

Page 8: Data Book on Hydrocarbons

PHYSICAL CONSTANTS OF HYDROCARBONS

DENSITY CRITICAL CONSTANTSHEAT OF COMBUSTION.

BOILING :.fELTING @ 60°F-BTU /IbMOLEC.FOR~tULA POINT POINT

WT. of of Sp Gr t P D°API60°/60° Lb/gal of Atm G/ml

Gross Net

NORMAL PARAFFINSMethane ................... CH, 16.0 -258.9 -296.5 340 0.30 2.50 -116.3 45.8 0.162 23,860" 21,500"Ethane .................... C,H. 30.1 -128.0 -297.8 247 .374 3.11 + 90.1 48.2 .203 22,300" 20,420-Propane ................... C,H, 44.1 - 43.8 -305.7 147 .508 4.23 206.3 42.0 .226 21,650" 19,930"Bu~no .................... C,H,o 58.1 + 31.1 -216.9 111 .584 4.86 306 37.4 .225 21,290' 19,670"

Pentane ................... C,H 12 72.1 96.9 -201. 5 92.7 .631 5.25 386.5 32.6 .232 21,070" 19,500"Hexane .................... C,H" 86.2 155.7 -139.5 81.6 .664 5.53 455.0 29.4 .234 20,780 19,240Heptane ................... C,H 16 100.2 209.2 -131. 1 74.2 .688 5.73 512.5 26.8 .234 20,670 19,160Octane ...... '" ........... C,H,s 114.2 258.2 - 70.3 6ti,{j .707 5.89 565 24.6 .233 20,590 19,100

Nonane .................... C,H,o 128.2 303.4 - 64.5 64.5 -.).) 6.01 612' 23" - 20,530 19,050. ,- ...Decane .................... C1oH" 142.3 345.2 - 21.5 61.3 .734 6.11 654' 22" - 20,480 19,020Undecane .................. C"H,. 156.3 384 .4 - 14.1 58.7 .744 6.19 695' 20" - 20,450 19,000Dodecane .... , ............. C12H " 170.3 421.3 + 14.7 56.4 ,753 6.27 731" lb' - 20,420 18,980

ISO-PARAFFINSIsobutane .................. C,H 1o 58.1 10.9 -255.0 120 .563 4.69 275 36 .234 21,240' 19,610"

2-Methylbutane (Isopentane), C,H 12 72.1 82.2 -255.5 94.9 .625 5.20 369.5 32.4 .234 21,030" 19,450"2,2-Dimeth:dpropane (~eo-

pentane). . .............. C,H" 72.1 49.0 + 2.1 105 .597 4.97 329" 35' - 20,960' 19,330"

2-Methylpentanc (Isohexane) , C,H" 86.2 140.5 -245 83.5 .658 5.48 437' 31' - 20,750 19,2103-Methylpcnt,ane, ........ C,H" 86.2 145.9 -180 80.0 ,669 5.57 443' 30" - 20,760 19,2202,2-Dimethylbutane ();eo-

hexane) . ' .. , ......... , ... C,H" 86.2 121.5 -147 6 84.9 .654 5.44 415' 31' - 20,700 19,1602,3-Dimethylbutane (Di-

isopropyl) ............... C.H" 86.2 136.4 -198.8 81.0 .666 5.54 441 31 . 241 20,740 19,200

2-Met,hylhexane (Isoheptane) . C,H I6 100.2 194.1 -180.8 75.i . 68:l 5.68 496 28" - 20,650 19,1403-Methylhexanc ............ C,H" 100.2 197.5 -182.9 73.0 .692 5.76 504 28.5" - 20,660 19,1503-Ethylpentane .... ...... (',H" 100.2 200.2 -181.5 69.ti .703 5.85 508' 28.5 - 20.670 19,1602,2-Dimethylpentane ....... ' (',H" 100.2 174.6 -190.8 77.'2 .678 5.64 475' 28.5 - 20,600 19,090

2,3·Dimethylpentane ........ C,H" 100.2 193.6 - 70.6 .700 5.83 498' 29 - 20,540 19,1302,4-Dimethylpentane ........ C,H" 100.2 176.9 -183.1 -- ') .678 5.54 477 28.5' - 20,620 19,110, I ._

3,3-Dimethylpentane ....... , C,H" 100.2 186.9 -211.0 71.2 .698 5.81 487' 28' - 20,620 19,110

..

~

d;.:->-3;.:-tpoo~

oZ

:I:><d

So;.:-~tpoz00

Page 9: Data Book on Hydrocarbons

2,2,3-Trimethylbutane (Trip-tane) .................... C 7H 1S 100.2 177.6 - 13.0 72.1 0.695 5.78 480~ 29.5 - 20,620 19,110

2-Methylheptane (lsooctane) . CSH 18 114.2 243.8 -165.1 70.1 .702 5.84 549< 25~ - 20,570 19,0803-Ethylhexane .............. CsH 18 114.2 245.4 - 65.6 .718 5.98 551c 25" - 20,570 19,0802,5-Dimethylhexane (Di-

isobutyl) ................. CSHl~ 114.2 228.4 -130 71.2 .698 5.81 530 25 0.237 20,550 19,0602,2,4-Trimethylpentane ("lso-

octane") ................. C SH 18 114.2 210.6 -161. 2 71.8 .69u 5.79 515' 27" - 20,540 19.050

OLEFINSEthylene ........••......... C 2H. 28.0 -154.7 -272.5 2n . ;J;j 2.91 50 51 .22 21,640" 20,290Q

Propylene .......•.......... C 3H s 42.1 - 53.9 -301.4 140 .522 4.35 196.5 45.4 .2:~3 21,040Q 19,690Q

Butene-I ............. C,Hs 56.1 20.7 - 104 .601 5.00 293' 39" - 20,840" 19,490Q

Cis-Butene-2 ......•...... C.Hs 56.1 38.6 -218.0 94.2 .627 5.22 316' 37" - 20,780" 19,430Q

Trans-Butene-2 ............. C.Hs 56.1 33.6 -157.7 100 .610 5.08 310' 37" - 20,750" 19,400"Isobutene ........ , ...... C.Hs 56.1 19.6 -220.5 104 .600 4.99 292.5 39.5 .234 20,720" 19,370"

Pentene-1 (Amylene). CbH lO 70.1 86.2 -216.4 87.2 .647 5.38 385" 36" - 20,710Q 19,360"Cis-Pentene-2 ............ C;H1o 70.1 98.6 -290.2 82.6 .661 5.50 398' 35" - 20,660Q 19,310"

Trans-Pentene-2 ............ CbH lO 70.1 96.8 -211.0 84.9 .654 5.44 396' 35~ - ~O,640Q 19,290Q

2-Methylbutene-1 ........... C;H1o 70.1 88.0 - 84.5 .655 5.45 387" 36" - 20,610Q 19,260"3-Methylbutene-1 (lso-

amylene) .......... " ..... C;H lO 70.1 , 68.4 -292.0 92.0 . 6:~3 5.27 363' 37" - 20,660Q 19,310"2-Methylbutene-2 ........... C;H lO 70.1 101.2 -207.0 80.6 .667 5.55 401" 35" - 20,570" 19,220"

Hexene-1 ............. C 6H 12 84.2 146.4 -218.0 77.2 .678 5.64 463' 34" - 20,450 19,100Cis-Hexene-2 ............. C 6H 12 84.2 155.4 -231.0 73.9 .689 5.73 473' 34" - 20,420 19,070

Trans-Hexene-2 ............. C 6H 12 84.2 154.2 -207.0 75.7 .683 5.68 472' 34" - 20,400 19,050Cis-Hexene-3 ............. C SH l2 84.2 153.7 -211.0 75.4 .684 5.69 4i2' 34" - 20,420 19,070

Trans-Hexene-3 ......•...... C aH 12 84.2 154.6 -171 76.0 .682 5.68 473' 34" - 20,400 19,050

DIOLEFINSPropadiene .....•........... C 3H. 40.1 - 30.1 -213.0 106 .595 4.95 249 70 - 20,880Q 19,930"

Butadiene-l ,2 .............. C.H s 54.1 + 50.5 - 83.5 .658 5.48 343' - - - -Butad.iene-1,3 .............. C.H s 54.1 24.1 -1.64.0 94.2 .627 5.22 308 45 - 20,230" 19,180Q

Pentadiene-1.2 ..... : .. C;Hs 68.1 112.8 - 85.0 71.5 .697 5.80 420" - - - -Cis-Pentadiene- L3 ........ C;Hs 68.1 111.6 - 71.8 .696 5.79 420C - - 20,150" 19,040"

Trans-Pentadiene-l,3 ........ C;Hs 68.1 108.1 - 76.0 .682 5.68 415' - - 20,150Q 19,04QQ

Pentadiene-I,4 ....... CsHs 68.1 78.9 -234.0 81. 3 .665 5.53 350C - - 20,320Q 19,210Q3-Methylbutadiene-l,2 ....... CsHs 68.1 104 -184.0 82.9 .685 5.70 410" - - - -2-Methylbutadiene-l,3 (Iso-

prene) ................... C6H S 68.1 93.3 -231.0 74.8 .686 5.71 395' - - 20,060" 18,950Q

~

=:r:-<lfJ....(1;>t"'i

(1oZlfJ~;>Z~lfJ

Q Heat of combustion as a gas-otherwise as a liquid.• Estimated.

c Critical temperature-boiling point correlation." Vapor pressure curve or correlation.

* Mixture of cis- and trans-isomers.** Sublimes.

...

(J,j

Page 10: Data Book on Hydrocarbons

PHYSICAL CONSTANTS OF HYDROCARBONS (Cont.)

DENSITY CRITICAL CONSTANTS HEAT OF COMBUSTIONBOILING MELTING @ 60°F-BTU libMOLEC.FORMULA POINT POINT

WT. OF OF Sp Gr t P D°API Lb Igal Gross Net600 /60 0 OF Atm G/rol

DIOLEFINS (Cont.)Hexadiene-1,2 .... : ..•.•.... CSHlO 82.1 172 - 64.5 0.722 6.01 495" - - - -Hexadiene-1,3* ..•.••....... CsH lO 82.1 163 - 67.8 .710 5.91 485" - - - -Hexadiene-l,4* ......•...•.. CaRlO 82.1 149 - 70.6 .700 5.83 470" - - - -Hexadiene-l.5 ...•.•••...... CSHlO 82.1 139.3 -221.4 71.8 .696 5.79 454 - - 20,130 18,980Hexadiene-2,3 ..... : .•...... CSH lO 82.1 154.4 - 75.1 .685 5.70 475' - - - -Hexadiene-2,4* ............. CsH lo 82.1 176 - 63.7 .725 6.03 500" - - - -3-Methylpentadiene-1,2 ...... CSH lO 82.1 158 - 65.0 .720 5.99 4W' - - - -4-Methylpentadiene-l,2 ...... CSH lO 82.1 158.0 - 67.0 .713 5.93 480" - - - -2-Methylpentadie:le-1,3* ..... CSH lO 82.1 169 - 63.9 .724 6.03 490" - - - -3-Methylpentadiene-l.3* ..... CSH 10 82.1 171 - 59.7 .740 6.16 495' - - - -4-Methylpentadiene-1,3 ...... CsH lo 82.1 169.3 - 94.0 63.9 .724 6.03 490" - - - -2-Methylpentadiene-1.4 ...... CSH IO 82.1 133 - 70.9 .699 5.82 445' - - - -2-Methylpentadiene-2,3 ...... ~HIO 82.1 162.0 - 66.1 .716 5.96 485' - - - -2,3-Diroethylbutadiene-1,3 ... CSH lO 82.1 155.7 -105 62.1 .731 6.08 475' - - 19,880 18.7302-Ethylbutadiene-1,3 ........ CaRlO 82.1 167 - 61.0 .735 6.12 490' - - - -

ACETYLENESAcetylene .................. CzHz 26.0 -119** -114 209 .416 3.46 103.5 62.0 0.231 21,47(}l1 20,74~

Methylacetylene ............ CaH. 40.1 - 9.8 -153 94.9 .625 5.20 275' 65~ - 20.810" 19.8W

Butyne-1 (Ethylacetylene) ... C.Hs 54.1 + 47.7 -188.5 86.2 .650 5.41 375 65~ - 20.65QQ 19,6oog

Butyne-2 (Dimethylacetylene) C.Hs 54.1 80.4 - 26.0 71.2 .698 5.81 420 60~ - 20.51QQ 19,46()Q

Pentyne-1 (Propylacetylene). CsHs 68.1 104.4 -159 71.8 .696 5.79 429 - - 20,550g 19,440g

Pentyne-2 .................. CsHs 68.1 132.8 -148 66.1 .716 5.96 460" - - 20,45QQ 19,340g

3-Methylbutyne-1 (Isopropyl-acetylene) ................ CsHs 68.1 82 - 79.7 .670 5.58 410" - - 20.5W 19,390"

Hexyne-1 (Butylacetylene) ... CsH lo 82.1 160.9 -205.6 65.0 .720 5.99 - - - - -Hexyne-2 .................. CSH lO 82.1 184.1 -126.4 60.8 .736 6.13 - - - - -Hexyne-3 ...............•.. CsHlO 82.1 179.2 -149.8 63.1 .727 6.05 - - - - -4-Methylpentyne-1 .......... CSHlO 82.1 142.1 -157.1 67.5 .711 5.92 - - - - -4-Methylpentyne-2.......... CSH lO 82.1 162 - 65.3 .719 5.98 - - - - -3,3-Diroethylbutyne-1 ....... CaRlO 82.1 100.0 -114.2 78.7 .673 5.60 - - - - -

OLEFINS-ACETYLENESButen-3-yne-1 (VinylAcety-

lene) .................•.. C.H. 52.1 42 - 73.9 .689 5.73 365" 75.; - - -

~

tj>~c;oo~

oZ::t:~tj~oo>~c;CZen

Page 11: Data Book on Hydrocarbons

Penten-l-yne-3 . ............ C.He 66.1 138.6 - 58.7 0.744 6.19 - - - - -Penten-l-yne-4 (Allylacety-

lene) . ................... C,He 66.1 107 - 49.4 .782 6.51 - - - - -2-Methylbuten·l-yne·3 . ..... CoHo 66.1 90 - - - - - - - - -Hexen-l-yne-3 . ............. C.H. 80.1 185 - 56.4 .753 6,27 - - - - -Hexen-l-yne-5 .. ............ CoHo 80.1 158 - 32.8 .861 7.17 - - - - -2-Methylpenten-l-yne-3 ..... CoHo 80.1 169 - - - - - - - - -3--Methylpenten-3-yne-l* ..... CoHo 80.1 156 - - - - - - - - -

AROMATICSBenzene ... ................. CoHo 78,1 176.2 41.9 28.6 .884 7.36 551.3 47.9 0.304 17,990 17.270

Toluene ..... ............... C,H. 92.1 231.1 -139.0 30.8 .872 7.26 609.1 41.6 .292 18,270 17,450

o-Xylene .... ............... C.H IO 106.2 292.0 - 13.3 28.4 .885 7,37 675 37 .288· 18.500 17,610m-Xylene .........•....... . CaHlo 106.2 282,4 - 54.2 31.3 .869 7.24 655· 36' .288· 18,500 17,610;p-Xylene . .............. , ... CaHlo 106.2 281.0 + 55.9 31.9 .866 7.21 652 35' .270' 18,430 17,540Ethylbenzene .... ........... CaHlo 106.2 277 .1 -138.9 30.8 .872 7.26 655 38 - 18,490 17.600

1,2,3-Trimethylbenzene . ..... C,Hu 120.2 349.0 - 13.8 25.7 .900 7.49 72C/' 32' - - -1,2,4-Trimethylbenzene (Pseu·

documene) . .............. C,Hu 120.2 336.5 - 47.3 29.1 .881 7.34 708' 33 - 18,570 17.6201,3,5·Trimethylbenzene (Me-

sitylene) . ................ C,H" 120.2 328.3 - 48.6 31.1 .870 7.24 700' 33 - 18,620 17,670

Propylbenzene . ............./'

C9H l2 120.2 318.6 -147,1 31.9 .866 7,21 690 34' - 18,660 17,710lsopropylbenzene (Cumene) .. C9Hn 120.2 306.3 -140.8 31.9 .866 7.21 68C/' 35' - 18.670 17,720I-Methyl-2-Ethylbenzene .... C,H" 120.2 329.2 -126,6 28.7 .883 7.35 702< 34' - - -I-Methyl-3-Ethylbenzene .... C,H" 120.2 322.7 - 31.1 .870 7.24 695' 34' - - -I-Methyl-4-Ethylbenzene .... C,R" 120.2 324.5 - 82.7 31.5 .868 7.23 696' 34' - - -

CYCLOPARAFFINSCyclopropane ... ............ C,H. 42.1 - 27.0 -196.6 98.6 .615 5.12 256 54 - - -Cyclobutane . ............... C.H. 56.1 + 54.7 - 58.0 74.8 .686 5.71 385' 50' - - -Cyclopentane . ...•.......... CeHlo 70.1 120,7 -136.7 56,9 .751 6.25 470' 46' - 20,350' OOסס.19

Methylcyc1opentane . ........ CtHn 84.2 161.3 -224.4 56.2 .754 6.28 520' 42' - 20,110 18.7601, I-Dimethylcyclopentane .... C,Hu 98.2 189.5 -105 54.7 .760 6.33 550' 42' - - -l,2··)imethylcyc1opentane-cis. C7Hu 98.2 210.7 - 62 50.4 .778 6.48 570' 40' - 20,020 18,6701,2-Dimethylcyclopentane-

trans . ................... C,Hu 98.2 197.4 -182 65.4 .757 6.30 560' 41' - 20.020 18,6701,3-Dimethylcyclopentane-

trans . ................... C7H 14 98.2 195.4 -213 57.2 .750 6.24 555' 41' - - -Ethylcyclopentane .......... C7H u 98.2 218.2 -217 52.0 .771 6.42 580' 40' - 20,110 18.760

Cyclohexane ................ CeRn 84.2 177.3 + 44 49.0 .784 6,53 538 40.4 .273 20.030 18.680Methylcyclohexane . ......... C7H 14 98.2 213.6 -195.6 61.3 .774 6.44 575 40' - 20.000 18.650

, Heat of combustion &8 a gas-otherwise &8 a liquid.• Estimated.

C Critical temperature-boiling point correlatioil.., Vapor pressure curve or correlation.

• Mixture of cis- and trans' isomers.•• Sublimes.

"'d

~......~oo

~cB

o:n

Page 12: Data Book on Hydrocarbons

PHYSICAL CONSTANTS OF ORGANIC COMPOUNDS

DENSITYCRITICAL HEAT OF COMBUSTION

MELT- HEAT OF @60°F-BTU /lbBOILING CONSTANTSMOLEC. ING VAPORIZ.

FORMULA POINTWT. of POINT Sp Gr t P D @B.P.

of 600 j600 Lb jgal of Atm Gjml BTU lib Gross Net

----ALCOHOLS

Methanol (Methyl Alcohol) .. CHaOH 32.0 148.1 -143.7 0.796 6.63 464.0 78.7 0.272 474 9760 8580

Ethanol (Ethyl Alcohol) ..... CHaCH20H 46.1 173.0 -174 .794 6.61 469.6 63.1 .275 361 12,780 11,550

Propanol-1 (Normal PropylAlcohol) ................. CHaCH2CH20H 60.1 207.0 -195 .808 6.73 506.7 50.0 .273 296 14,450 13,190

Propanol-2 (Isopropyl Alco-hoi) ........ , ............ (CHa),CHOH 60.1 180.2 -129 .789 6.57 - - - 289 14.350 13.090

Butanol-1 (Normal ButylAlcohol) ................. CHa(CH2hCH2OH 74.1 243.9 -129.6 .814 6.78 549 48 - 254 15.500 14,220

Butanol-2 (Sec. Butyl Alcohol) CHaCH2CH(OH)CHa 74.1 211.1 - .811 6.75 - - - 242 - -2-Methylpropanol-l (Isobutyl

,

Alcohol) ................. (CHahCHCH2OH 74.1 226.4 -162 .806 6.71 - - - 249 15.450 14.1702-Methylpropanol-2 (Tert.

Butyl Alcohol) ........... (CHa)aCOH 74.1 180.7 77.9 (.793) (6.60) - - - 235 15,290 14,010

Pentanol-1 (Normal AmylAlcohol) ................. CHa(CH2)aCH20H 88.1 280.4 -109.8 .819 6.82 - - - 223* 16,220 14,930

Pentanol-2 (Sec. Amyl Alco-hoi) ..................... CHa(CH2hCH(OH)CHa 88.1 247.1 - .814 6.78 - - - 213* -

Pentanol-3 (Diethyl Carbinol) (CH.CH2hCHOH 88.1 240 - .826 6.88 - - - 211* - ...2-Methylbutanol-l (Sec. Butyl

Carbinol) ................ CHaCH2CH(CHa)CHIOH 88.1 264 - .820 6.83 - - - 218* - -- .825 -6.87

2-Methylbutanol-2 (Tert.Amyl Alcohol) ........... CHaCH2C(OH) (CHah 88.1 215.8 15 .815 6.79 - - - 203* 16,030 14,740

3-Methylbutanol-1 (IsoamylAlcohol) ........ , ........ (CHahCHCH2CH t OH 88.1 269.2 -179 .814 6.78 - - - 216 16.150 14,860

3-Methylbutanol-2 (MethylIsopropyl Carbinol) ....... (CHahCHCH(OmCH. 88.1 233 - .825 6.87 - - - 209* - -

2.2-Dimethylpropanol-l (Tert.Butyl Carbinol) .......... (CHa)aCCH20H 88.1 236 120-125 - - - - - 210* - -

GLYCOLS AND GLYCEROLEthanediol-l,2 (Ethylene Gly-

col) ..................... CH2(OH)CH2OH 62.1 387.5 9 1.118 9.31 - - - 344 8250 7340- ..

0:.

tj>~tooo~

oZ:I:

~~o

§oZ00

Page 13: Data Book on Hydrocarbons

Propanediol-1,2 (PropyleneGlycol) ................. CH3CH(OH)CH2OH 76.1 371 - 1.042 8.68 - - - 273* 10,350 9350

Propanediol-1,3 (Trimethy- CH2(OH)CH2CH2(OH) 76.1 850 - - - - - - 266* 10,450 9450lene Glycol) (appr .)

Propanetriol-1,2,3 (Glycerol). CH2(OH)CH(OH)CH2OH 92.1 554 65.0 1.265 10.53 - - - - 7760 6940

ETHERSMethyl Ether .............. CH,OCH3 46.1 -11.5 -217 - - 260 52 0.271 187 13,570u 12,340u

Ethyl Ether ............... CH,CH2OCH2CH, 74.1 94.1 -177 .3 0.719 5.99 381 35 .262 151 15,840 14,560

Propyl Ether .............. CH3(CH2)20(CH2)2CH3 102.2 194.2 -188 .752 6.26 - - - 129 16,930 15,630Isopropyl Ether ........ '.' .. (CH')2CHOCH(CH,)2 102.2 155.3 -122 .729 6.07 - - - 120 16,870 15,570

Butyl Ether ............... CH3(CH2)30(CH2)3CH3 130.2 288.0 -144 .773 6.44 - - - 115* 17,560 16,250Sec. Butyl Ether ........... [CH3CH2CH (CH,) 120 130.2 250 - .760 6.33 - - - 109* - -

ALDEHYDESMethanal (Formaldehyde) ... HCHO 30.0 - 3 -180 - - - - - 320* 8050U 7420U

Ethanal (Acetaldehyde) ..... CHaCHO 44.0 68.5 -190.3 .786 6.54 - - - 257* 11,400 10,540

Propanal lPropionaldehyde) CH,CH2CHO 58.1 120 -114 .812 6.76 - - - 215*' 13,400 12,420

Butanal (Butyraldehyde) .... CH3CH2CH2CHO 72.1 167.2 -144 .809 6.74 - - - 189* 14,640 13,5902-Methylpropanal (Isobuty-

raldehyde) ............... (CH3)2CHCHO 72.1 142 - 87 .799 6.65 - - - 180* 14,600 13,550

KETONESPropanone (Acetone) ....... CH3COCHa 58.1 133.0 -138.8 .795 6.62 - - - 220 13,260 12,280

Butanone (Methyl EthylKetone) ................. CH3COCH2CH, 72.1 175.5 -123.5 .810 6.74 - - - 190 14,540 13,490

Pentanone-2 (Methyl PropylKetone) ................. CH3COCH2CH2CH, 86.1 216.1 -108.0 .812 6.76 - - - 168* 15,430 14,330

Pentanone-3 (Diethyl Ketone) (CH3CH2hCO 86.1 215.2 - 40 .820 6.83 - - - 168* 15,380 14,2803-Methylbutanone-2 (Methyl

Isopropyl Ketone) ........ CH3COCH (CHa)2 86.1 200.7 -134 .820 6.83 - - - 165* 15,350 14,250

4-Methyl Pentanone-2(Methyl Isobutyl Ketone) . CH,COCH~H(CH,h 100.2 240.6 -119 .806 6.71 - - - 152* 15,980 14,840

~

P::~00......(1

>~

(1o~00~>Z;1

* Calculated or estimated with a probable accuracy of ±2%.u Heat of combustion as a gas-otherwise as a liquid.

..

"'-J

Page 14: Data Book on Hydrocarbons

PHYSICAL CONSTANTS OF GASES

DENSITY CRITICAL CONSTANTSHEAT OF COMBUSTION

MOLEC.BOILING MELTING @ 60°F-BTU j1b

FOn~ULA POINT POINT

,~~WT. of of Sp Gr t P D°API 60°/60° Lb/gal of Atm G /ml Gross

Ammonia ............ NH3 17.0 - 28.1 -107.9 97.5 0.617 5.15 270.3 111.5 0.235 9670 8000

Carbon Dioxirle ...... COz 44.0 -109.3* - 69.9 '42.0 .815 6.78 88.0 73.0 .460 - -

Carbon Monoxirle .... CO 28.0 -312.7 -::137.0 - - - -220.4 34.5 .301 4345 4345

Chlorine ............. Ch 70.9 - 30 -151 - - - 291 76 .57 - -

Ethyl Chloride ....... CzH~CI 64.5 54.1 -214 25.5 .901 7.51 369 51.6 .33 - -

Hydrogen ........... Hz 2.0 -423.0 -434.5 - - - -400 12.8 .031 61,100 51,600

Hydrogen Chloride ... HCl 36.5 -121.0 -173.6 - - - 124.5 81.6 .42 - -

Hydrogen Sulfide ..... H 2S 34.1 - 76.5 -122.0 46.0 .797 6.64 212.7 88.9 - 7100 6550

Methyl Chloride ..... CH3Cl 50.5 - 11.6 -143.8 20.3 .931 7.76 289.6 65.8 .37 - -

Nitrogen ............ N2 28.0 -320.5 -346.0 - - - -232.8 33.5 .31 - -

Oxygen ............. Oz 32.0 -297.4 -362.0 - - - -181. 9 49.7 .43 - -

Sulfur Dioxide ....... S02 64.1 14.0 - 98.9 - 1.394 11.62 315.0 77.7 .52 - -

* .Sublimes.

..

"'tl~

~~o>~

oozU1"-3>Z"-3U1

~

Page 15: Data Book on Hydrocarbons

Section 2

CHARACTERISTICS OF PETROLEUMFRACTIONS

Average Boiling Point of Petroleum Fractions

Many physical properties of pure hydrocarbons can be correlated with specificgravity and normal boiling point as independent variables. However, for use in thepetroleum industry, these correlations must also be applicable to petroleum frac­tions which are mixtures of a large number of components, usually having a widevariation in boiling points.

While the average specific gravity is a property of the petroleum fractionwhich can be measured directly, just as in the case of pure compounds, there is notan analogous average normal boiling point for a mixture. By integrating or averag­ing its distiUation curve (temperature vs. liquid volume percent distilled), avolume average boiling point can be determined for the mixture. However, asWatson and Nelson! and Smith and Watson 2 have pointed out, this has no specialsignificance as a true average boiling point and many physical properties can bebetter correlated by the use of some other average boiling point, i.e., weightaverage, molal average, etc. Consequently, in all correlations involving boilingpoints of petroleum fractions, the proper average should be used. For the follow­ing physical properties, these are:

Average Boiling Point Physical Property

Volume average ViscosityLiquid specific heat

Weight average True critical temperature

Molal average Pseudo-critical temperatureThermal expansion of liquids

Mean average Molecular weightCharacterization factorSpecific gravityPseudo-critical pressureHeat of combustion

1 Watson and Nelson, Ind. Eng. Chem. 26, 880 (1933).2 Smith and Watson, Ind. Eng. Chem. 29,1408 (1937).

10

,.

Page 16: Data Book on Hydrocarbons

CHARACTERISTICS OF PE'l'ROLEUM FRACTIONS 11

Since a distillation curve is usually available and a volume average boilingpoint is readily obtained therefrom, the other average boiling points are given asa function of these data. The chart on page 14 is based on an assay (True BoilingPoint) distillation 3 of the whole crude, while the chart on page 15 refers to the1070 (or ASTM) distillation of the fraction itself.

The chart on page 14 was derived empirically from crude assay fractions of anumber of crudes. For narrow boiling fractions, all of the average boiling pointsapproach each other and the volume average boiling point may be used for any ofthe others. Then, by appropriately combining the volume average boiling points ofthe narrow cuts, the various average boiling points of wider cuts were determined.The weight and molal average boiling points of the wider cuts were calculateddirectly by combining the narrow cuts on the basis of their weight and mole frac­tions, respectively. The mean average boiling point could not be calculated in thesame manner since it is not a direct average or integral of its fractional parts. Asused herein, mean average boiling point is defined as the boiling point which bestcorrelates the molecular weight of petroleum fractions. Consequently, the meanaverage boiling point for wider cuts was determined indirectly from the generalizedmolecular weight chart on page 21.

Although Smith and Watson proposed a cubic average boiling point for thecorrelation of characterization factor, specific gravity-boiling point relations for­the different crudes indicate that the present mean average boiling point can beused for correlating gravity, and consequently characterization factor. Smith andWatson also used cubic average boiling point for correlating viscosity, but thepresent data indicate that the volume average is the proper boiling point.

Since these boiling point correlations were developed directly from crudeassay distillations, this chart should always be used 4 if an assay is available.Otherwise, the 10% (or ASTM) distillation of the fraction may be used in con­junction with the other chart. The latter was derived from the crude assay chartand an empirical correlation between the two types of distillation curves. Thedifference between the two sets of curves at zero slope represents the thermometerstem corrections for the 10% distillations.

In the case of light hydrocarbon mixtures, where the analysis is known, thevolume, weight, and molal average boiling points can be calculated directly fromthe boiling points of the components and their volume, weight, and mole fractions,respectively. On the oth~r hand, the mean average boiling point must be deter­mined indirectly from the average molecular weight of the mixture. Up to an

3 Approximately 15 theoretical plates and 5 to 1 reflux ratio.4 Below slopes of 2°F/% for low boiling fractions (V.A.B.P. < 500°F) and 3°F/% for

high boiling fractions (V.A.B.P. > 500°F), the volume average may be used for the otheraverage boiling points with very little error.

Page 17: Data Book on Hydrocarbons

12 DATA BOOK ON HYDROCARBONS

average molecular weight of 80, the molecular weight-boiling point relation fornormal paraffins (page 20) may be used for this purpose, but for higher molecularweights the generalized chart on page 21 should be employed.

Characterization Factor

Watson and Nelson 1 introduced characterization factor as an index of thechemical character of pure hydrocarbons and petroleum fractions. The charac­terization factor of a hydrocarbon is defined as the cube root of its absoluteboiling point in oR divided by its specific gravity (60°F/60°F), or

Characterization Factor = ytTB/Sp Gr

Characterization factor is given on page 16 as a function of gravity in °APIand boiling point in of for hydrocarbons and petroleum fractions.

That characterization factor is only an approximate index of the chemicalnature of hydrocarbons is indicated by its variation with boiling point both formembers of a homologous series and for fractions from the same crude (page 17).However, it has considerable value in that it can be applied to the entire boilingrange of a crude and it has been generally accepted by the petroleum industry.

Typical Crude Fractions

For approximate use when there are insufficient data, several correlations havebeen developed for typical crude fractions grouped according to characterizationfactor and viscosity index. 5 These groups are numbered in order of decreasingparaffinicity and each may be considered representative of the crude fractionswithin its characterization factor or viscosity index range. The five groups werearbitrarily selected as follows:

GroupI .II .III .IV .v .

CharacterizationFactor

12.1-12.611.9-12.211.7-12.011.5-11.811.3-11. 6

Viscosity Index ofLube Fraclions6

80-10060-8040-6020-400-20

Fractions from some of the more common crudes are cla5sifil'd in the followingtable:

lS See page 156.6 Dewaxed to +20°F pour.

Page 18: Data Book on Hydrocarbons

CHARACTERISTICS OF PETROLEUM FRACTIONS 13

TYP.lCAL GROUP

CRUDE White Gas OilsProducts and Heavier

Pennsylvania I IRodessa. . . . . . . . . . . . . . . . . . . . . . . . . . . .. I IPanhandle . . . . . . . . . . . . . . . . . . . . . . . . . . . II IMid-Continent . . . . . . . . . . . . . . . . . . . . . .. II IIKuwait I-II II-III

Iraq IIIranian IIEast Texas IIISouth Louisiana. . . . . . . . . . . . . . . . . . . . .. IIIJusepin III

West Texas . . . . . . . . . . . . . . . . . . . . . . . . .. IIITia Juana (Med. and 102) IIIColombian IVLagunillas . . . . . . . . . . . . . . . . . . . . . . . . . .. V

II-IIIII-IIIIIIIIII

IIIIVIVV

Since, in the case of some crudes, the lower boiling fractions belonged in adifferent group than the higher boiling fractions, they were classified separately­that is, into white prorlucts having an average boiling point less than 500°F, andgas oils and heavier having an average boiling point greater than 500°F.

Page 19: Data Book on Hydrocarbons

2 3 4 5 6 7 9 10+40

+ 30WEIGHT ·AVERAGE·

+20Ii •

iJ+'0

~

- AVERAGE BOILING POINT0 OF PETROLEUM FRACTIONS ~

CRUDE ASSAy DISTILLATION i

- 10

- 20 MEAN AVERAGE

-30

-40

-50

-60

-705 6 7 8 9 102 4

MOLAL AVERAGE

ty =to+4t.50+tIOO6

FOR WHOLE CRUDES:t y =ho t t,50+ teo

* THE CUT RANGE MAY BE USED FORTHE SLOPE AND THE 50% POINT FORTHE VOL. AV. B.P. UNLESS THEDISTILLATION FOR THE FRACTIONDEVIATES APPRECIABLY FROM ASTRAIGHT LINE. !N THE LATTEREVENT THE FOLLOWING FORMUI ASSHOULD BE USED:

_ t7O-t10S - 60

0

-20

-40 -

-60In..V> -80

cr-'00....

('~

-120

-'403 4 5 6

14

7 8 9 10

Page 20: Data Book on Hydrocarbons

t40

WEIGHT AVERAGE

+20

,.L

0

,~ t . t·-20

2 4 5 6 7 8

i:J...~t-L_; of i ....... .ly.......H-t~.

MEAN AVERAGE AVERAGE BOILING POINT+20

OF PETROLEUM FRACTIONS,.

0 10 % (A.5.tM.) DISTILLATION

-20IF AVAILABLE, THE CRUDE ASSAY

DISTILLATION SHOULD BE USED FOR-40 DETERMINING AVERAGE BOILING POINTS.

r -60

r-l/}

< -eo3 4 5 6 7 82

?cr

(.f-MOLAL AVERAGE

+-20

*THE SLOPE AND AV. B.P. SHOULD

0 BE DETERMINED FROM THE FOLLOWINGFORMULAS:

S=t,,70 - tlO

(

-20 60 ;.,

tv =tlo+2t50 +t9O

4-40

IF THERE ARE INSUFFICIENT DATATHE 50% POINT MAY BE USED FOR

-60 THE VOL. AV. B.P.

FOR WHOLE CRUDES:-80

t30+t.50+t70tv: 3-100

-120

'.-1403 5 6 7 82 4

15

Page 21: Data Book on Hydrocarbons

13.0

12.0

_ 11.0~

10.0

90

CHARACTERIZATION FACTOR

VS BOILING POINT AND GRAVITY

14.0

13.0

12.0

11.0

10.0

9.0

100 200 300 400 500 600 700

..800 900 1000

Page 22: Data Book on Hydrocarbons

I100 200 300 400 500 600 700 800 900 1000..

CRUDE TYPICAL GROUP . .,

13.6WHITE GAS OILS CHARACTERIZATION FACTOR ;.t~ 1 I:n __

PRODUCTS a HEAVIER. .-!{ ~~ili

13.6PENNSYLVANIA I I ~ BOILING POINTRODESSA I I .1%1+I.l-++J.1=:+I::t1+134HHH1 PANHANDLf II I ~ r 13.4

• MID' CONTINENT II II TVPICAL CRUDE FRACTIONS ~mKUWAIT I-II II-III

IRAO II II-III T· 13.213.2EEHHl IRANIAN II II- IIIEAST TEXAS III IIS.LOUISIANA III II

1 m:aE .lUSEPIN III III >- r 13.03.0WEST TEXAS liI IIITIA .lUANA (NED. a 102) III IVCOLOMBIAN IV IV -... • 12.812.1:) a:m:a LAGUNILLAS v V

12.6 :i '. >- 12.6, .I' .

-12.4, 12.4

~ ,.of:

12.2 12.2.~

12.0 12.0

11.8 11.8

11.6 r 11.6II ~ ,J;tt

H

11.4r TIT " " 1/.4

r-. i ,

r i ' 1->- _Ir H-I" ;'++1+1-++1 11.211.2 d~ ..,.+1-~ -I r

.t I ., . I· . .,:

/00 200 300 400 500 600 700 800 900 1000

I..i. _

~

Page 23: Data Book on Hydrocarbons

100 200 300 400 500 600 700 800 1300 JOOO

GRAVITY~ BOILING POINTTYPICAL CRUDE FRACTIONS

70

60 60

50 IHB111lHlIIII1l1l1J 1111 II tlHIIJIlJI IlIllIIlIIlIHt"KINI!'N:"lIIJilJIIH1I1lIlit11J»111 1111111111111111 111I111l"KlOIIJ II i1II1III1II1IJIIJLLIUHlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII11II11111111 flll150

....00

40 40CRUDE TYPICAL GROUP

WHITE GAS OILSPRODUCTS a HEAVIER

PENNSYLVANIA I IRODESSA I. IPANHANDLE II % II tlllllllllI11tllltul1tlJIlItn1'W"~1i\IM1t1n&J~IIIIIIIIIIIIIIIIIIITI't'l+l>lilJ FEIBHtlilMIllllllllllll13030 I:fI::i::l:!:1I MID· CONTINENT II IIKUWAIT I·II II·III

IRAO II II·IIIIRANIAN II II-U.IEAST TEXAS III IIS. LOUISIANA III II.IUSEPIN III In

20~ II1II111111 i1IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIImmmiiIII III IlrmUWOU1l11I1't'ffi!lratJUI:I!li1ln'iJmBTBI20WEST TEXAS III nITIA JUANA (MED. a 102) III. IVCOLOMBIAN IV I1I'LAGUNILLAS V V

1010J 200 300 400 500 600 700 .. 800 900 1000

Page 24: Data Book on Hydrocarbons

L

Section 3

MOLECULAR WEIGHT

The molecular weight chart for pet.roleum fractions on page 21 was derivedfrom an empirical correlation of molecular weight and the function, T,,Jso.4o,·where T m i" the mean avcrage boiling point of the fraction in oR, and s, the specific ~

gravity at 60°F/60°F. The ayerage deviation for about one hundred petroleumfractions from 75 to 500 molecular weight is +20/0.

Up to a molecular weight. of about 300 this correlation applies equally wellto pure hydrocarbons, with the exception of normal paraffins, which have lowermolecular \\'eights than predicted by the chart. Above 300 molecular weight mostpure hydrocarbons for which data are available deviate from the correlation inthe same direction as the normal paraffins. An explanation of this incongruitymay be that these particular high molecular weight compounds have relativelylong chains and consequently should fall somewhere between the normal paraffinsand the multibranched and multicyclic hydrocarbons in petroleum fractions.

The molecular weight of crude fractions is given as an independent functionof mean average boiling point, page 22, and also of gravity, page 23, for approxi­mate use when only one of these variables is known. Examination of these chartsshows that the boiling point chart is much less susceptible to variations with typeof crude than the gravity chart and, consequently, will usually give a betterapproximation than the latter. However, in general, gravity rather than theboiling point will be available.

GENERAL REFERENCES

API Research Project 42.Bridgeman, Proc. API 10, No.2, p. 124 (1929).Doss, "Physical Properties of the Principal Hydrocarbons," 4th Edition, The Texas Co.,

New York, N.Y. (1943).Fitz imons and Thiele, Ind. Eng. Chem. (Anal. Ed.) 7, 11 (1935).Francis and Wood, J. Chem. Soc. 48, 1420 (1926).Kay, Ind. Eng. Chem. 28, 1014 (1936).Mail' and Schicktanz, J. Research Nat. Bur. Standards 17, 909 (1936).Mail' and Willingham, .T. Research Nat. Bur. Standards 21, 535, 565, 581 (1938).Rosenbaum, J. Chern. Phys. 9, 295 (1941).Shepard, J. Am. Chern. Soc. 53, 1948 (1931).

19

Page 25: Data Book on Hydrocarbons

400 500 600 700 800 900 1000 1100

600

500

400

MOLECULAR WEIGHT n BOILING POINT

NORMAL PARAFFINS AND ISOPARAFFINS

600

. 500

400

I - AVERAGE OF ISOMERS CONTAININGA SINGLE METHYL OR ETHYL BRANCH

2 - AVERAGE OF ALL OTHER ISOMERS

200

120

100

80

60

40

20

-100 a

20

100 200

200

180

160

140

120

100

80

60

40

20

300 400

Page 26: Data Book on Hydrocarbons

MOLECULAR WEIGHTYo! BOILING POINT AND GRAVITY

600 PETROLEUM' FRACTIONS

700 800 900 1000 1100 1200

500

400

300 300

280

200 260

240

220

200 200

180 180

160 160

140 140

120 120

100 100

80 eo

100 200 300 400 500 600 700 aoo21

Page 27: Data Book on Hydrocarbons

200 300 400 500 600· 700 800 900

460 460

.MOLECULAR WEIGHT~ BOILING POINT440 TYPICAL CRUDE FRACTIONS 440

420 420

400 400

CRUDE TYPICAL GROUP

380 WHITE GAS 01LS 380'RODUCTS a HEAV lEA

PENNSYLVANIA I I.,

RODESSA I I360 PANHANDLE II I. 360

MID - CONTINENT II IIKUWAIT I-II II-III

340 IRAQ II II-III 340IRANIAN II II-IIIUST TEXAS nI IIS. LOUISIANA III II

320 JUSEPIN III In 320WEST TEXAS UI InTIA JUANA (NED. a 102) III IV

300 COLOMBIAN IY IV 300LAGliNILLAS Y Y

280 280

260 260

240 240

220 220

CHARACTERIZATION VISCOSITY INDEX200 GROUP FACTOR OF LUBE FRACTIONS· 200

1 12.1 -12.6 SO-IOO

,eo II 11.9 -12.2 60-S0 180III 11.7-12.0 40-60

IV 11.5 - II.S 20-40160 y 11.3-11.6 0-20 160

* DEWAXEO TO +20o F POUR

140 140

120 120

100 100

200 300 400 500 600 700 800 900

22

Page 28: Data Book on Hydrocarbons

10 20 30 40 50 60 70 BO

460 MOLECULAR WEIGHT ~ GRAVITY 460

TYPICAL CRUDE FRACTIONS

440 440

CRUDE TYPICAL GROUP

420 'WHITE GAS OILS420PRODUCTS a HEAVIER

PENNSYLVANIA I ~RODESSA ~ I

400 PANHANDLE II % 400MID' CONTINENT IX :IIKUWAIT I-U lI-nI

380 IRAO II II-%II 380IRANIAN II II-XIIEAST TEXAS Dr II ~

S. LOUISIANA III II360 .lUSEPIN :III III 360

. WEST TEXAS UI DITIA .lUANA (NEO. a 102) XII IV

340 COLOM81AN IV IV 340LAGUNILLAS v y

320 CHARACTERIZATION VISCOSITY INDEX 320GROUP FACTOR OF LU8E FRACTIONS *

I 12.1 -'2.6 80-100300 11 11.9 -12.2 60-80 300

III 11.7 - 12.0 40-60

280 IV 1/.5-11.8 20-40 2BOy 1/.3-11.6 0-20 .

260 * DEWAX£O TO +20o F POUR 260

240 240

220 220

200 200

180 180

160 160

140 140

120 120

100 100

110 20 30 40 50 60 70 80

23f.Jo-;n'i L

PIA If" . .JJ, \) _,_ t. I.,.

PABLO 1VI0T'l'A

Page 29: Data Book on Hydrocarbons

Section 4

VAPOR PRESSURE

In developing the vapor pressure curves for most of the individual hydrocar­bons, the reciprocals of the absolute temperatures were plotted against those of areference compound (ethane, butane, or hexane) at the same vapor pressures. 1 Withone or two exceptions, this relation was linear over the entire range of the data,but if a slight curvature was indicated, as in the case of benzene vs. hexane, astraight line was not imposed upon the data. The vapor pressure curves formethane and the reference compounds were developed directly from the data byplotting vapor pressures against reciprocal temperatures. Most of the reliabledata fell within -I- 1OF of the correlations, and this may be considered as aboutthe accuracy of solid portions of the vapor pressure curves. Normal boiling pointsin all cases were taken from "Selected Values of Properties of Hydrocarbons."2

While vapor pressure is meaningless above the critical temperature, thecurves were extrapolated beyond this point so that other properties in the liquidphase could be calculated in the absence of any other data. For example, theseextrapolated curves may be used to make rough approximations of the fugacity,density, and enthalpy of hydrocarbon vapors in solutions at temperatures abovethe critical.

The generalized vapor pressure charts for hydrocarbons were also derivedfrom the linear reciprocal temperature relation with hexane used as the referencecompound. The pressure scales correspond to the vapor pressure of hexane as afunction of reciprocal temperature. The temperature scales were based on thereciprocal relation up to 700°F, but above 700°F it was necessary to modify thescale to secure better agreement with data on high boiling hydrocarbons andpetroleum fractions. 3

The slopes of the normal boiling point lines on the rectilinear chart and thecorresponding points on the alignment charts were based on normal paraffins.However, with the exception of some of the lowest boiling members of the variousseries, there is a good indication that these charts apply to hydrocarbons ingeneral. In API Research Project 42, the boiling points of a large number of

1 This is the most nearly linear of the simple vapor pressure relations, with the exceptionof a similar one where the reciprocal temperatures are plott.ed at the same reduced vaporpressures.

2Nat. Bur. Standards Circular C461 (1947).3 Beale and Docksey, J. lnst. Petro Tech. 21, 860 (1935).

24

-----------

Page 30: Data Book on Hydrocarbons

VAPOR PRESSURE 25

different high boiling hydrocarbons were determined at 0.5 mm, 1.0 mm, and 760mm, and these were checked against the low-pressure alignment chart. Theaverage deviation was about 2°F over an average extrapolation of around 400°F,and there was no trend between the paraffins and other hydrocarbons.

Thc cxtrapolation of the vapor pressure scale below the hexane data has beenchecked indirectly by the Clapeyron equation using thermal data on hexane atlow tempcratures. Also, low-prcssure data (below 0.001 atm) on petroleum frac­tions are in good agrecment with this correlation.

GENERAL REFERENCES

Aston, Kennedy and Schumann, J. Am. Chem. Soc. 62, 2059 (1940).Aston and Messerly, J. Am. Chem. Soc. 62,1917 (1940).Beale, J. Inst. Petro Tech. 22, 311 (1937).Beattie, Hadlock and Poffenberger, J. Chem. Phys. 3, 93 (1935).Beattie, Poffenberger and Hadlock, J. Chem. Phys. 3, 96 (1935).Bea.ttie, Simard and Su, J. Am. Chem. Soc. 61, 24 (1939).Bea.ttie. Su and Simard, J. Am. Chem. Soc. 61, 924 (1939).Bekhedahl, Wood and Wojciechowski, J. Research Nat. Bur. Standards 17, 883 (1936).Benoliel, Thesis, Pelillsylvania State College (1941).Benson, Ind. Eng. Chern., Anal. Ed. 13, 502 (1941).Brown and Coa.ts, Univ. of Mich. Res. Circ. Series 2 (1928).Comrp.unication from The ::\1. W. Kellogg Co., New York, N.Y.Dana., Jenkins, Burdick and Timm, Refrig. Eng. 12, 387 (1926).Doss, "Physical Constants of the Principal Hydrocarbons," 4th Edition, The Texas Co.,

New York, N.Y. (1913).Ega.n and Kemp, J. Am. Chem. Soc. 59, 1264 (1937).Francis and Robbins, J. Am. Chem. Soc. 55, 4339 (1933).Frolich and Copson, Ind. Eng. Chern. 21, 111G (1929).Garner, Adams anu Stuchell, Refiner 21, 321 (1942).Hei ig, J. Am. Chern. Soc. 55, 230-:1: (1933).Heisig anu Davis, J. Am. Chem. Soc. 57, 339 (1935).Heisig and Hurd, J. Am. Chem. Soc. 55,3485 (1933).Ingersoll, Thesis, Mass. Inst. Tech. (1930).Intel'l1ationa.l Critical T:1bles, Vol. III.Kassel, J. Am. Chem. Soc. 58, 670 (193G).Kay, Ind. Eng. Chem. 30, 459 (1938).Kisti:1kowsky and Ricc, J. Chem. Phys. 8, 610 (1940).Kistiakowsky, Ruhoff, Smith and Vaughan, J. Am. Chem. Soc. 57,876 (1935); 58,146 (1936).Krase and Goodman, Ind. Eng. Chem. 22, 13 (1930).Lamb and Roper, J. Am. Chern. Soc. 62, 806 (1940).Kinuer, J. Phys. Chem. 35, 531 (1931).Livingston and Heisig, J. Am. Chem. Soc. 52,2409 (1930).Loomis and Walters, J. Am. Chem. Soc. 48, 2051 (1926).Maxwell, Ind. Eng. Chem. 24, 502 (1932).Morehouse and Maass, Can. J. Research 5, 307 (1931); .11, G37 (1934).

Page 31: Data Book on Hydrocarbons

26 DATA BOOK ON HYDROCARBO S

Nieuwland, Calcott, Downing and Carter, J. Am. Chem. Soc. 53,4197 (1931).Pitzer and Scott, J. Am. Chem. Soc. 65, 803 (1943).Rintelen, Saylor and Gross, J. Am. Chem. Soc. 59, 1129 (1937).Sage, Lacey and Schaafsma, Ind. Eng. Chem. 26, 214, 1218 (1934).Sage, Webster and Lacey, Ind. Eng. Chem. 29, 658 (1937).Schmidt, Thesis, Paris (1934:).Stuckey ll,nd Saylor, J. Am. Chem. So:;. G2, 2J~ (1940).Vaughan, J. Am. Chem. Soc. M, 3863 (1£::>2).Vaughan and Graves, Ind. Eng. Chem. 32, 12.;>2 (1940).Wiebe and Brcevoort, J. Am. Chem. Soc. 52, 622 (1930).Wiebe, Hubbard and Breevoort, J. Am. Chem. Soc. 52, 611 (1930) .

Page 32: Data Book on Hydrocarbons

H­H-

_~: 4­

.-- - ::l

-_.~

-;-

'!' --

807060

50

40

30

20

-300 -200

27

o 100 200

Page 33: Data Book on Hydrocarbons

- -- ~.-

l--:r. ~

-2'50 -200 -150

.8.1.6

.5

.4

.3

.2

-100

~..-,~

VAPOR PRESSURE OF

ETHANE AND ETHYLENE

200

.08.07

.06.()5

.04 .-

.O~

.02

807060

50

40

30

20

IIall',gr

,

.1 _. ...-~

4

3

2

-200 -tOO o28

100 200 300 400

Page 34: Data Book on Hydrocarbons

-'

VAPOR PRESSURE OFPROPANE AND PROPYLENE

=-, ,

-100 -50- ,-;;.,,", ::T:-E.=:io€-~:ff-' le"", '~7,k ,,,="i- ~ ::ri..:r--,~f.':'=j-:', ,c.:.~3':!..J

=

.5

.4

.1..6

.3+- , '+:

--H

.2 200

.1~

.09

.08

.07

.06

.05

.04

.03

.02

r= _

'''''

''f'

" -!CA_~{~!

-,.!~

-t-t=f

10090

7060

50

40

30

20

.009,008.001

IXXJ

.005

=r

II-'I=.:f.: "

1098

-' 7

6

5

4

3

2

To 100 200 300 400 500

29

Page 35: Data Book on Hydrocarbons

50

·5

.4

..3

.2

I II. II II

.01 ~-====47 -

1I /I

- VAPOR PRESSURE

OF BUTANES AND 8UTENES

:II+-_~,200

30

I I V V 1/o tOO

I

200

30

300 400 500

Page 36: Data Book on Hydrocarbons

VAPOR PRESSURE OF

PENTANE AND ISOPENTANE

t.O.9 p.

~.5

.3

.2

-roo o 50

: ::r=tfel. ·-:-r-·:~-.g: -I'

-- ~ ...::T'

'200

.07 1=l;.T:,:

.06

.05

.()4

.02

11 I

.€ ==':.f"_-=I:: :t=:!-~:. _ 90

!:::f 807060

50

40

30

20

I

.01 .-.OOQ -',--. -

-:.,008 -.007.006 - H

.005

.004

- _..003

- I::±l

.002

I Q'

, . :~ ± .§'.: - ":'::. - .

- l:±-

-- 8

,=: 76

5

4

2

It ..00IU-J....l....L.LLL.JLJ...,U.I-......AJ...J...Iu1t.U./-l..'~~I~J.:..z.J,;.W-l...l-J...J.-l...J..J..1..J..J...J...L..J...J..J..J..J...J...IW-L...J.-l....J.-l...J..J..u..J-U...J...J..J..J..1..J..J...J...L-U

100 200 300 400 500 600

31

l--. .-.---------

Page 37: Data Book on Hydrocarbons

';-..:: T.~: ': '.':~:

="=±

-100.9.8..,.5

.4

.a

-50 0 50

-1Iftij- -.:.~

VAPOR PRESSUREOF HEXANE

. : .....

100 ISO-

200

I~

.1.09

.07

.06

.05

.04

-t... . -fl :.~,"'f> :. 'c: ­

:::'.-:x':~ ::~-,.

-17 . n-

"_. '--J-;,' "c't._',_ . ~ ,.. -,-V-FFl 100

::t~ :'':' - _"':4'_ .•••.-.t . r-- ~-;:=::;=:I 90--. :r.' ,-- '-,-, =- __ --7l~: ' -I:' ' =l:

, 'f--X:==, T.:i::-'~==1':::. .- . 80.- ~, .. -'-+- ,- 70

60

50

40

.03

.02

r .'

30

20

.008

.OOf

.006

.00

.003

- -,

I /

;=;=. ~ 11.,,':.. '.,~':'1. ,~f:~T ~.~:~I­

£ .'f=:£:i=E j~ --!' _:. ,_ ,. ~ - '

.''=8, !E::-l,=.:l3:: ' ,-J.'

--:=;::1:'. :t+= 'r: ~t:.:~1-.. -- -,~.

- - 10, . . ,.. =.-1-=!iiC:l 9= -

976

5

4

3

2

II II .•

I I I ;.,

32

Page 38: Data Book on Hydrocarbons

200

.1-'-.

~t:

200

H

VAPOR PRESSUREOF HEPTANE

.4

.2

.3

-50 0 50 100 150

.8 . =-= ::::.C ·=--==~~-:'~';'_~c~"=§=:l~F-=~.. _--< =:h:b-~-

~=t=t::= ~=;::.5

~~"'~~'t:g~E~ 'fg-= . .: ~." 70

=t...: 60

50

40

30

20

H-H-++-H-t--t-++-t-f-fH--f-+-HH-+++!

3

10:;:::=.;. 9

,..:::::: 8

76

5

4

t­H--

.·+--'---~"'H _.-.Xt__1-- .. !-' .;.

. '--.-1-1- ..

=f:'~= ~", ~::.~f ~;; -:~-=:.= 'C, E.: ~! :t+' -§j:, =~ - -. '._. ... .-

f-:-. :-'~"'-""::l: .= ...i=i= I/.·~ . '-;- 1-.; ':-i-:'- .1=;""<- H

.::t± t':i::~. ::-J: :.l::::tl" ~- ..... :

..:p. ";J-

. c;::::=

c-F-¥+'·~f-C.,....=· I-:=±:r- _ L:.I .. '-.q::--l-

.008

.em

.006'

.005

.0

.003

.002_J

2

33

Page 39: Data Book on Hydrocarbons

1.0.9.8.7.6

50 100 ISO 200 250

=I-·,~-,,::'~,':7~,£::I-,-:.-~:: -~~ ­=F~:::l~+:- ..: .- -f-

.5

:4

.2

VAPOR PRESSURE

OF OCTANE~'. --;

-I- ' ':,::J

,'+'++++++++++++++++H-J-H

.01.06

.05

.04

:

"

...:' - t - •100

_ 90

7060

I­J-+-tft-t-H-t-t

f-

.0/.009.009.007DOG

.005

'I

," ,

A-1---J---~--1-I-I-

"

i I

200 300 400

34

500i

600 700' 800

Page 40: Data Book on Hydrocarbons

300

:1..-=

-l-+

VAPOR PRESSUREOF C3 UNSATURATES

_I-~-~.

to t-:~-~I= --,..~ -:1#r' ., -

.1-/ j-++

3 ,~-. -'-" -,. - '-~:j=~~ -Ej

·2++y.j

W­I W­

1- 1

200

.J

I l'io

.1'".

III

100I I

200

I1l'I

300 41)0 500

35

Page 41: Data Book on Hydrocarbons

o

00

o

00ooooo

40

30

_'00 -!'>("} () 50 -.:: VAPOR PRESSURE

OF C4 UNSATURATES,-I

2

I ~

''1I r I.~ -a,-, ~-~r/~ _I

I l" I" -I:.- - - =Z:~-E§,.;:. t'- ~ ~ .,'" : )/: ..~, ~----. -:'E -~ -~: 'ill = _.

~_. _.-. . - ~--

-:J 7;:::t::T-

-- - 6~ t- -,

t-:;t 5,

_.

- -_.-

-~, Il"l-II

I II m ~

III I I I ~ ~ I. - . 9~ .B.P. CRITICAL PT.

8~ - COMPOUND of of ATM.

71,3 BUTADIENE 24.1 308 45 .

6

11 VINYLACETYLENE 42 365* 75v5

ETHYL ACETYLENE 47.7 375 65v

DIMETHYL ACETYLENE 80.4 420 60 v 4

* ESTIMATED v VAPOR PRESSURE CURVE 3

2

I

III

.3

.2

1.0.9.8.7.6

.5

.03

.1.09.08.07

.06

.os

.04

.02

.01

o 100 200 300 400 500

36

...

Page 42: Data Book on Hydrocarbons

o

o

o

00oooooo

700600500400300200

. 100 150 200 ..=r-_0- .... .. 0_

. - ...• 0

VAPOR PRESSURE OF . ---

BENZENE AND TOLUENEo~ . --

~=

-

I.- I I I

ti I.. .

9. '-1": 8

...7

,~f ~'0

. .6

o. :t=l=,

~+..

~:5

0 , ,0- ... .. 4

. ...- 1-4-

- 3·i-r~-

+-

'X 2j~rc

1-'

. I1/ I I I

- '=' . 9. ..

.8. ..0-

.70

0-

6

0

4

-Hi 3. -ti-

I

, 2

I

I -, I I oir:'1I I : I Ie . I I.

.2

.t.09.08.07.06

.05

.04

.02

.~

-1.0,9.8.7.6

.5

.4

.01009.008.007.006

.005

.004

.003

.002

.001

37

Page 43: Data Book on Hydrocarbons

o

o

2

4

3

o9A

7

6

5

30

0090ooooo

300o50 100

M150 2 0 250

W~. - - ..

- .. '. '--.- -

.- . .. .. . -~-

-_. . VAPOR PRESSUREOF Ce AROMATICS i=1-1=l=1=!.

..

- =). .. --r-' :+COMPOUND B.P. CRITICAL POINT ~ r .

~ ~ ..AItL=.l

--ETHYL8ENZENE 271.1 655 38p-XYLENE 281.0 652 35 V - --J

m-XYLENE 282.4 655" 36 Vo -XYLENE 292.0 675 37

*ESnMAlD1 V- VAPOR PRESSURE CURVE, . .." ..--.. ,

I I I I I I I I I I I I I I I L I , II I I I I I I I I I I I I I I I I I1'Y I I..

87

5t+

- 4

..

- 2:.t:

.. -l-I- ~

. i+,.. -Ie;

IIi ... !-1-+- I

.. Vl-1- .. .. - .. -1 +c -' . ~=T= .. - . - 7 ~_ ~'=T::

~'ffJ$I j . 'j' ~'I.'1;: o.:,~ : .- :.- ''1.-= rot·:j;· 1_ " -.a:- I- ... -:. .. . - .. . ,·tf·L.~",t--T-i'-= :g..... ,,-:::, - til' 't:- '~ ~;/ .f-'i F= F.[-~ -E-:-~;=.s. - . -- . ~ -- -= -.' -=to -:- ;: . j:_-;...~-':'l:LL--.. ..

.. . _.. ~r ;- ·,~"-I:·:-:.fil-#- ' ::':1':=1:2' '.:\=-1--:: B="-=i::t~::.m --. -- -, 1::: _I::-j,r~. %.-! '-.=t=

..:j~Ii'Jl i,; 0- J: :'i,i £1 .... -+,+ H::- . :!-r: f.£ -.. .. -' , ...~ ~'1..:';_:" - =l " .... --,4···

.,.. !=1 - .. ,}--r:R::l=f*~ ':', -, ~::IS=.$ ,. - .. . .' - 1-=1-:1=

- -l, . - .-

....:",~

, VAPOR PRESSURE OF P - XYLENE- - .- - , .. -- EQUALS VAPOR PRESSURE OF.. ..

.. ETHYLBENZENE MULTIPLIED BY .950~--l

='

II II '1 J -I .1 I '1

300 00 500 600 700 eo

.2

.1

.09

.08

.07

.06

.05

.04

.3

1.0.9.8.7.6

.5

.4

.03

.02

.00

.003

.01.009.008.001.006

.005

.004

.002

38

Page 44: Data Book on Hydrocarbons

VAPOR PRESSUREOF CYCLOPARAFFlNS

100

.9

.8

.7

.6.f"!--1-:­

.5~: ,H

-50

.' - 50 too~~...

.3 ~.

- .'.

.2. r--

II

++-l-l--JTf·-++-J.,l;~I)ll-HH-I++-H-++++-H-H-IH-l++++-t++-H-

*EsrIMATED V- VAPOR PRESSURE CURVE4

2

3

.I~00

807060

50

4 0

30

20

• ..1_ I 109

,g: 8CRITICAL POINT~ ATM. 7

470* 46 V 6

520* 42 V 5538 40.4

( I

COMPOUND B. P.of.

CYCLOPENTANE I 2 0 .7

tt1'CYCLOPENTANE 161. 3CYCLOHEXANE 177.3

Ii

.''­1

.08

.07

.06

.05

,04

.03

.02

.002

·003

:01.009.006.007.OO6~

,005

004

39

Page 45: Data Book on Hydrocarbons

.00001

1200 VAPOR PRESSURE OF HYDROCARBONS 01

1100 LOW PRESSURE RANGE, 0.00001-1.0 ATMOSPHERES .00002

021000 .00003

.00004 .Q3900

.04.00006

800 .00008 .06.0001 .08

700 - 0.1

.0002 ~

600\'2-00

0.2.0003

.0004 03

04500 .0006

.0008 06.001 08

1.0

400.002

u.0 2.00 .003

3.0 ~ I350 I ~

w ~ .0040=::> I w

~ w 4.0 ~0= .006 (j)

300 0= u- ::> (j)w 0 (f)6.0 ~0.. \ (f) .008

~

~W Q.W 0= .01 8.0 a::f- a 0..

0... 0= 10 ~250 19 0~~ 0..

~ ~ .02~

20-l .03200 ~ 30

~.04

40.06

.08 60150 0.1 80

100

0.2

100 2000.3

0.4 300

4000.6

0.8 600

50 1.0

40

Page 46: Data Book on Hydrocarbons

VAPOR PRESSURE OF HYDROCARBONS0.1 1.01200

1100 HIGH PRESSURE RANGE, 0.1-100.0 ATMOSPHERES20

1000 \'(..00

900 \ \QO 0.2 3.0

800\000

40900 0.3

5.0700

0.4 60

0.5 7.0~

8.0600 0.6 90~ 0.7 10"\

08~ 0.9500 '6

1.0c-~':)

20Q(p

(f) ui-a w en0:: <l400

~ w ~

~5: 2.0 30 c;(f) (f)u..0 "-0

~ vi350 It- 40 enw<l3.0 ..J0::I I::J

W 50 wt-o:: 0::

<l0::

~4.0 60 ::J300(f)

w(f)

a..(f)~ w 70 wg: 5.0 0::

w80 a..t-

~6.0 900::0250

~ 7.0 100 a..;;> 8.0

~

9.010

200

200

150 20 300

40030

500

40 60010070050800

60 90070 1000

sJ 8090

100 1500

41

Page 47: Data Book on Hydrocarbons

fOO&> ' , toe 150 200 250 ~O 350 400 450 500 550 600 650'700 aoo 900 1000 1100~80 T PEn'Ll-TURE - OF , . . '!-t _ : ,~_ .,: ,~ 80

60 . VAPOR PRESSURE . I, -tY.~ "~..." . ' , . 60

40 OF HYDROCARBONS 1 -ll' I 40;-r;30, Y . . I 30

. ,20 lA' ~ 'I I '''' " • I I I •• , " I 20

lliJd1.LLJL!1t-nIlIVi 1

.~

I 0 I ..-r I ,.A' I , " , ".A' I I 1/, J 117.r I 'f' TVi T T ;/1 I 0

ao I • " " , ao60 ' , '" ., ~ ,-,... 60

I I, ,

I t .1 I I

40 ,~I I , I : + f7t; ~ '~ 4.03.0 I I 1./ I r 1 I. ' /i I I 3.0

1"-: I I ' L ~ ~ I • i

2.0 .L. I ~' ! ... t 1 J f~ 'I - -1 l J....L.. i: LI'_' I 1. : t I 2.0;1;

::E+-~L--r+-+-'- +-

1.01'- ~~.8 ::!",~_,-::: ~ I-l-~.6

'

'';'''= ~ ~ jJ ~.gH-t+I-IIdjctti+b~"'" -+-~., '7'<~ LL x'-< " ' , , ,~ ~<-~_ • . .>' ~ ~ W "A I ,t+.4~-::± _ . ~~ _~ '. ' , m I4+t=1;~J ~;, ~rTTTTT~ '+-<- =i=rc .., ~,' ,L ' , +,#tT 7f<r 'P-~~ -++ '"' ~ ,~_,.'YO "" 14-' ' ". rtr"fo r++ttl~ L -' ' '-' ~ • ' ........ Jc.l" U-tdc

2 0,1=+,.±'-- ,~ ~ '- H-+J,:"* = 2 Tt++" - ~ ' 144 """I " :frh+l>H+-be§! >--L ' ' crT f-H,f' ....,m L! ~ ' ,- "i:1' , ,vII m l'l~--WL ' " 0 1-+- zt:---T"'"7Eff± JZ '-'....~' ' L l±!=J' '.,<.I. ,

I

~ ' " r ' tT ",- 7fF1 ,-i--;..:,t-,--

, ~' ' ,~ I

.oaE1=!=8- ,+,,' ~ "~~,~-'-"- '.Q6.... ' ' ~ LtA--- _, ~ _ =' , ' >!'H+f!-if :, ',l1'tzj-;· +~ =<±+-' ~ . ' +l-t:-H-l -rttT:--'" COf tl; , ' _' ~ " te ,-of+!-' ' ,~v~..d'-=''- -++- " 7'---' " . ' , " '"= ,-L' ", ._c-'- IW

_,_ ~--i:-.""'~~" " ,~,A ~' ,,~. ,=.t~::::a: 0::rCoL ' ,,__' = ' I' .'" ,TT-' -,''''= p,

+-+-: II 17fiiT~.2f=+_",~ . ~ ~::::;::;=z=.:'L-[A.i ~ ~~K~ ~I/r::'iIi- s..:x 4.. ~ ~~o.., = '. = ==t-r~__ " =-=-'-'- I'm, +..rm.;w!t%' ~,47!' -r~I ' , ~...::->f-----, " ~ !fffR"~ '---'-'- ~.. _, ... .. =,~ :ttl! <1, , --H-A' =" - e=~" ' n>,, '~" " ~£":2i" ' ~II" T - - _.~~.~-. --- I+~,'- ' ' .7' T .. -"o.c _-;,7,E-"'-~ ~ = ~ ""OB_ ~ '.L~'--+++-- ;:;. ..I~,!-r~r.-t ,.,." L:...:..CJ .06

~

.008

.006

.004

.003

.002

TE~PERATURE -OF400 450 500 550 ----600 650 700 800 900 1000 1100 120050

v100 150 200 250 300 350

A '/ tt1 -" i I I " I

Page 48: Data Book on Hydrocarbons

t. ,, .". I i,

NORMAL BOILING POINT

Y! BOILING POINT AT 10 MM

.1.-

"!

1100

1000

900

800

700

600

500

400

r

100 200 300 400 ·500 600 700 900

43r)H,T 1r~T _ TJ)

oPI ~i tV/l. \. J .)

PABLO MOTTA

Page 49: Data Book on Hydrocarbons

VAPOR PRESSURE OF GASOLINES180 .7

.8 40

170 .91.0 50

160 60

70* SLOPE OF DISTILLATION + LOSS 1.5 80150 CURVE (A.S.T.M.). ° F@ 15'>'. - of ~ 5°4

10 90IN THE ABSENCE OF DISTILLATION 2.0 100

140 DATA THE FOLLOWING AVERAGE y

SLOPES MAY 8E USED:

°F/'>'.SLOPE *LIGHT NAPHTHAS (F.B.P.-300°F) 2.5

130 NAPHTHAS (F.B.P.-400°F) 4 01234AVIATION GASOLINES 2

~ 3.0 150MOTOR GASOLINES 3 2

120 0 2en

ci"- ~ 200(Ij 3 4.0 J:3

110Q) d u....J

~0

I

;;: 4. 4 en 5.0 ~• 5 CD ~100 l&. 0 5 -J• 2 I

I 6 I 300L&J

....6 l&J 6.0 w

0: UJ 7 0: It:::> Q:" 8 7 :::> ;:)

90~

:> (J) (/)

en 9 (J) (/)

8 w0: en 10 l&J ItL&J UJ II 9 0: 400 Q.0.. f 12 10

0.. 8.080 ::E

l&.I 14 II 0: It... Q:" 0 00 16 12 0.. Q.Q. ~ 500 ~70 § 18 14

2016 L&J II us

0 :::> ;:)

W 18 0: 600 It

60 a: ... 12 I-20 13

EXAMPLE: DETERMINE THE TRUE 14 700

50 VAPOR PRESSURES AT 32°F. 100°FAND 15Q°F OF THE FOLLOWING 15GASOLINE: 16 800

REID VAPOR PRESS. - 9.0 LBS./SO. IN. 1740 DISTILLATION + LOSS, 5'>'. ~ 120 OF

18900

15'>'. (! 160 OF19 1000

SLOPEc 160-120 .4.00 F/'Y. 2030 10

TRUE VAPOR PRESSURES CORRE-SPONDING TO A R.V.P. OF 9.0 LBS./

20so. IN. AND A SLOPE OF 4.0°F/'>'.ARE READ FROM THE CHART ASFOLLOWS:

TEMPERATURE TRUE VAPOR PRESS.

10OF LBs/sa. IN.32 2.8 30

100 9.9150 21.4

0

REFERENCE: COORDINATING RESEARCH COUNCIL (CRC) HANDBOOK. PP. 244-254 (1946)

44

Page 50: Data Book on Hydrocarbons

(1 )

(2)

Section 5

FUGACITYRaoult's Law

If two or more compounds form an ideal solution in the liquid phase, and ifthe saturated vapors of the individual components are perfect gases, the system hasbeen termed an ideal system.! For such a system the partial vapor pressure ofany component may be calculated from the composition of the liquid phase byRaoult's Law and from the composition of the vapor phase by Dalton's Law. Anequation of these two expressions gives the liquid-vapor equilibrium relation forany component, i where i = 1, 2, ... , n:

Pi = PiXi = 7rYi

or yi/Xi == P i /7r = Ki

where Pi = partial pressure of i

Pi = saturated vapor pressure of i

Xi = mole fraction of i in the liquid phase

Yi = mole fraction of i in the vapor phase

7r = total (vapor) pressure of the system

Ki = vapor-liquid equilibrium constant for i at the temperature and pressureof the system

The above equation, usually referred to as the Raoult's Law relation, is trueonly for ideal systems, ,as defined above. However, it is usually a good approxima­tion for mixtures of homologues and, in general, for mixtures of chemically similarcompounds, if none of the saturated 'vapors at the equilibrium temperature deviatetoo greatly from a perfect gas.

Up to moderate pressures (several atmospheres) hydrocarbon mixtures fre­quently fall within the scope of the Raoult's Law relation. However, its applica­tion to these mixtures is rather limited because of the wide differences usuallyencountered between the boiling points of the most volatile and least volatilecomponents. This results in equilibrium temperatures at which the saturatedvapors of the lowest boiling components deviate considerably from a perfect gas,even though the equilibrium pressure of the system may be relatively low.

I Gamson and Watson, Nat. Petroleum News} Technical Section 36, R-258 (1944).

45

Page 51: Data Book on Hydrocarbons

46 DATA BOOK ON HYDROCARBONS

Fugacity Functions

In order to improve the accuracy in predicting vapor-liquid cquilibrium con­stants for hydrocarbons at higher pressures, Lewis and Luke 2 and other investi­gators replaced the pressures in equations (1) and (2) by -analogous fugacities forany component, i, whereby:

or

Ii = fpiXi = fnYi

Yi/Xi = fpdf.Tri = K i

(3)

(4)

where fi = fugaci·ty of i in either phase of the system

fpi = fugacity of i as a pure saturated liquid (or vapor) at its vapor pressurecorresponding to the equilibrium temperature of the system

f-rri = fugacity of i as a pure vapor at the equilibrium temperature and pressureof the system

Generalized correlations have been developed for the r-atio of fugacity topressure for pure hydrocarbons as a function of reduced temperature and reducedpressure. A correlation of this type (pages 62 and 63) was used in conjunctionwith the vapor pressure charts to develop the fugacity function charts for indi­vidual hydrocarbons. 3 The fugacity function given by these charts, 7rfp/!-rr, maybe considered a corrected vapor pressure and used in place of the latter in ~ny

equation pertaining to liquid-vapor equiiibrium such as equations (1) and (2).

These simple fugacity relations greatly extend the pressure range for whichliquid-vapor equilibria for hydrocarbon systems may be predicted with con­fidence, and can be used up to equilibrium pressures of 20 to 25 atm with a fair de­gree of accuracy. Beyond these pressures and especially as the critical point of themixture is approached, serious deviations from true equilibrium conditions areencountered. Under these circumstances, the assumptions of ideal mixtures nolonger hold and the fugacities of the individual compounds are dependent uponthe compositions of the liquid and vapor phases as well as temperature andpressure.

In the region where the simple fugacity relations no longer apply and conse­quently beyond the scope of the present charts, there are data in the literature ona number of specific binary and multicomponent hydrocarbon systems. Also, TheM. W. Kellogg 00. 4 has published an excellent correlation for lig~1t paraffin andolefin hydrocarbons in which the fugacities of the individual compounds aregiven as a function of the molal average boiling points of the liquid and vapor

2 Lewis and Luke, Trans. Am. Soc. M echo Engrs. 54, 55 (1932).a This method was actually used only up to the critical temperature of each compound.

Beyond this point values were calculated from more general fugacity correlations developedby The M. W. Kellogg Co. to avoid using extrapolated vapor pressure curves.

4"Liquid-Vapor Equilibria in Mixtures of Light Hydrocarbons," The M. W. KelloggCo., New York, N. Y. (1950).

Page 52: Data Book on Hydrocarbons

phases in addition to the equilibrium temperature and pressure. The Kelloggcorrelation was derived from the application of exact thermodynamic relations toa comprehensive equation of state for pure hydrocarbon vapors and liquids andtheir mixtures. 5

If, in addition to hydrocarbon v-apors, other gases (air, H 2 , CO2 , etc.) arepresent in the vapor phase, it is recommended that an effective pressure, equal tothe product of the total pressure multiplied by the square root of the mole fractionof the entire hydrocarbon portion of the vapor, or 7r-VV;;;, be used in determiningthe fugacities of the individual hydrocarbons. Fragmentary data have indioatedthat this effective pressure gives better results than either the total pressure, 7r,or partial hydrocarbon pressure, 7r'YHC, for determining individual fugacities. Then,after the fugacities or fugacity functions have been read from the charts, the totalpressure is again used as a basis for all equilibl:ium calculations. The followingexample illustrates the application of the fugacity function charts when othergases are present in the vapor phase:

Example 1. Determine the pressure and composition of the liquid phase inequilibrium with a vapor of the following composition at gO°F:

FUGACITY 47

1st Trial 2nd Trial InterpolationVapor. 1l' = 25 atm 11" = 20 I1tm

11" = 21.8 atmComponent Mole Fract. 1I"e = 21.5 atm 1I"e = 17.2 atm

F, atm x F, atm x xAir 0.040 * - * - -H2 .220 * - * - -CH4 .280 180 0.039 180 0.031 0.034C2H6 .175 38.0 .115 36.0 .097 .104C3Hs .160 13.5 .296 12.7 .252 .269C4H1O .125 4.9 .637 4.4 .[;68 .593

1.000 1.087 0.948 1.000

• In this example, the fugacity functions of air and H2 are considered to be infinite.

where 7r = total equilibrium pressure7re = 7rVO.740 = effective pressure used to determine fugacity functionsF = 7rfp/!1I" = fugacity function for pure hydrocarbonsx = 7rY/F

~ Relative VolatilitySince relative volatility is quite useful in fractionation problems, curves for

the relative volatilities of light unsaturates and isoparaffins to the correspondingnormal paraffins are given on pages 64 to 66. The curves for the C4 unsaturates

IS Benedict, Webb and Rubin, J. Chem. Phys. 8, 334 (1940); 10, 7474 (1942).

Page 53: Data Book on Hydrocarbons

48 DATA BOOK ON HYDROCARBONS

inay also be used in conjunction with the normal butane fugacity chart to predictfugacity functions for these compounds.

Except for butadiene and the normal butenes, these relative volatility curveswere derived from the Kellogg fugacity correlation. Composition was indirectlytaken into account to some extent since the fugacities for each pair of compoundswere read at the same liquid and vapor molal average boiling points as well asat the same temperatures and pressures.

In general, the relative volatility charts may be considered to have a some­what greater range of applicability than the simple fugacity charts. They may beused up to 25 atm, irrespective of the composition of the liquid and vapor phases ~

of the mixture; beyond this pressure their application is limited to systems inwhich there is a difference of at least 75°F between the molal average boilingpoints of the two phases, but under no circumstancel? should the curves be extra­polated. While all of the curves may be considered to be accurate within 25% forthe relative volatility minus one (0; - 1), deviations from the solid curves rarelyexceed 15% for this difference.

Chemical Structure and Liquid Activity Coefficients

When components in a hydrocarbon mixture are quite dissimilar chemically,the liquid phase may deviate appreciably from an ideal solution. This effect ofchemical structure is not taken into account in any of the fugacity correlationsheretofore considered. It has been mentioned that in correlations of the Kelloggtype, fugacity is a function of the liquid and vapor compositions, but only withrespect to components of similar chemical structure.

To correct for chemical dissimilarity in solutions of light hydrocarbons inabsorber oils, liquid activity coefficients are given for these light hydrocarbons onpage 67. Within the range of the data these activity coefficients were practicallyindependent of temperature (100°F and 220°F) and pressure (500 psia and 1000psia) .

GENERAL REFERENCES

Brown, Souders and Smith, Ind. Eng. Chem. 24, 513 (1932).Dean and Tooke, Ind. Eng. Chem. 38, 389 (1946).Hadden, Chem. Eng. Progress 44, 37 (1948).Kay, Chem. Revs. 29, 501 (1941).Lewis, Ind. Eng. Chem. 28, 257 (1936).Lewis and Kay, Oil and Gas J. 32, 40 (1934). .Lewis and Randall, "Thermodynamics," pp. 190-198, McGraw-Hill Book Co. (1923).Nelson and Bonnell, Ind. Eng. Chem. 36, 204 (1943).Sage and Lacey, Ind. Eng. Chem. 30, 1296 (1938).

Page 54: Data Book on Hydrocarbons

·~- ..-t-t­

oj-or

~T:~

_. t

r

FUGACITY FUNCTION 1mOF METHANE

-l- .

200

. ':.;= ~:-:.:F-~:-~-

-;':~i:£ J:-

'I i v. I-. -::-± .• -~

10 I::f.;=+

_100908070

60

50

40

30

20

I

: :.-;;! j. p-L~-t.: :~-. _~/J::.1~·_-,2? ~E§= -~:.,~

=~~~-'- :.=;-

=:=.

,..::~

-300 -200

- • .j... -

-100

49

o 100 200

10987

6

5

4

3

300

Page 55: Data Book on Hydrocarbons

&I ... F~~~CITY FUN~TI~NI

OF ETHYLENE r+-

-

-

..

••

I-- ~ 10090807060

50

40

30

20

_I~

87

6

5

4

-200 -100

50

o 100 200 300

Page 56: Data Book on Hydrocarbons

~

-~= - ~ --- -- - - -- --

=FUGACITY FUNCTION ==OF ETHANE

=== ~-

- - -

• -- - -- -- -- - I- - - - - - - -

- ~t a - - ---- - -

- - --

-- - - -

~

~/

- -- - -rl=Fl-- -'--

00

00908070

60

50

40

30

20

10987

6

5

4

3

2

-zoo -100 o 100 zoo 300

51

Page 57: Data Book on Hydrocarbons

4

10987

6

5

30

20

0090807060

50

40

o-100-200-- - . -.=a=::-

/M FUGACITY-c

FUNCTIONOF PROPYLENE

- -

I~

/1AI

II If I I

...

I-

-,I I IJ

iiiII

0.2

1.00.90.80.7

0.6

0.5

0.4

0.1

0.3

3

2

-100 o 100 200 300 400

52

Page 58: Data Book on Hydrocarbons

4

30

2

3

20

109876

5

00908070

60

50

40

o-100-200 -,0:;

FUNCTION.i FUGACITYOF PROPANE -::

-- . -. -+-+-l

-

..~ i I

-

11-(

If

VI

iW II'.

- •,

• I

-+-

~

l.

-l-, , .

- I

"'T I J I ,

i,""'" I-ir-I

I I L~!..ll If .-L~ c.:.'__,- I__.x.

0.2

0.3

0.1

1.00.90.80.7

0.6

0.5

0.4

-j(jO o 100 200 300 400

53

Page 59: Data Book on Hydrocarbons

0.2- r

t

__:T"-~

,- FUGACITY FUNCTIO:lI"-

OF ISOBUTANE ::~,

"1J;:,f-;t--l+++H Ifl+I-I-/HI-H+-I--+, I

~l--

=3...J-. ~l='- ,-

___ t:::t:::t:=t=J:

'II ElIOO

~ 90807060

50

40

30

20I.­

~t;-

o r+- -H-lH+I--t+H+t++-H+-H+-l-H-++++H+H-I-+-1-++I-I4-IA+:I4-jll--W-+-I-l--!-l-l--+-W-!-W~-I--l1

I~:-:- 3:,-'=i-- -i-:-(=F" ""--

.!- '7 -...t.~ ~-- .~~.l -- --t.-

-I- -

=- - ..;

It

-~Ig876

5

4

3

I

-tOO

1/1111/

o

54

tOO 200 300 400

Page 60: Data Book on Hydrocarbons

0.2

o 100

·i-tll- f:.Tfl~aii--~f~"':::-l_ -~

-,r:

-f- I--

-!!III~---.-.--r=..t= :.

8+FUGACITY FUNCTION [~I--

OF BUTANE §i=-I- ffP-i' -:-.:~. '- Ii §

_,.-,_-r-F ~~ H-".IEI:- ~=8::=--=+:~-

- --'-+-

'--4-=1=

1111I

I--l.-r·~· - ..:->-.-

1/

j:-t-;' 100--. 90±:'--;

7 ..-f~- 3f~80--

,.J~ 51~70

=t--+=!'- ~~:t- 60

I !_-l,~ 50

f---

...::;C :-I.,~ i7 40

30.-

20

=. ---:::-:~-_.

-. ~r_ ~_r=-- ~~ -~_

... , .-1'\)-f-

.. • r-. . ..- -~E::: :;=. :7t ;-~

j-,.. 10

91=I

8j:::f 7

6

5

4

3

I II

H--i-I -H-+-t-l---H-++-+-+-+-IH-+++-t--HH-++-+-+--HH- 'I - -LIl-lH--H..j-+-HH--H-++-HH--H-++-H-+-H-++-H-+-~--H-j

I-100 o

55

100 200 300 400

Page 61: Data Book on Hydrocarbons

0.90.60.7

0.6

0.5

0.4

0.3

0.2

II

-100 a

t I I

100

~ FUGACITY FUNCTION ~.-OF ISOPENTANE ~

:

40

30

20

4

3

I

IjjjT±-;1-±±ttttjjjttt::t:t:tttttlltJzt~~:tt:t1tttt:!i!~~~~:t;;'tr~t'ttt:r~;r~11!!!t:!=1o 100 200 300 400 500

56

Page 62: Data Book on Hydrocarbons

H-++++-H-++--H-t-f-+-t--H1't+t-i-:+t+' -"1f-f-+-1

H--H-+t-H-t-f-+-H-+t+t-H-t-f-+-H-+t+t-Hf-f-t-I-t-t--H-H-Hf-f-t., I

--:

50

= 40

... 30

. • 1 I~ :¥T 117'

17'If

11 ,It .+-H-H-H-H-i+H-H-H-H-H-H-H-H-H-++++++++++-hI"'H-T+-H'-H'<H-++++Tt-++++--H~t-H

20

. I - !/II

," ::E- o- ,-:=_~c:~~'% .)e;d _.

~~~ :-r' '. ';: ~~. E'.~'~-- r-+-'

/~ :-='/--::- r:t=-1=' '~.:i=d-. ~ ,.-..,;-

1=, ,

-:!=.::l~·::r!.::-+- ~~.~!-:. -..e.;-::!::C-- 1""- -

1-1-

I -:::c.J' :~~ 10

987

6

5

4

H- 3

2

a 100

57

200 300 400 500

Page 63: Data Book on Hydrocarbons

.... .

::E;'?:::f ~i=ft. -I/~~ ± .~E .E'-=H'

(

(

•::::=.....

I....:_!c·~.CE1. FF' .::t::;::

,:: ~FUGACITY FUNCTION

OF HEXANE

200

= ......

100

:t

~/~ ...

:~ :4'; i'c

o0.90.80.70.6

0.5

0.4

0.3 t-

,--'

0.2

II

c.., ~ ..£ '. ~-."'--:- ......

- • - ~t-- _ "- --4-

... ..=l=E ~--::-"'::: ........ ~'-, - '-!-

_., .... ''­-=..-_"- """T

-!--,-

~IOO~90

807060

50

I -"'-r--

o ._

40

30

20

Ii

II I

- :t:-.t=: _ :-~ .;:~ •. ::..: '-i-:;:-_

.: ;:::;:-~. ::H:~;:-: . =r-r :-E~.·U·~· "-r . '1:';=1....".[ .:~t""e§::l=::±: -0-- :t=t:: ...c.. r=::::t:::::t=t:

=r- =j---:-'

,t:b::

.I

.I~e7

~~ 6

5

4

3

2

... 1/- - V! ,I I I I

0 100 200 300 400 500

58

Page 64: Data Book on Hydrocarbons

=-

ClhHH-+-++++-++-H-Il--JI+-H--H--I-HH-+-++-

o

I.O~O.9~

0.80.7

0.6

0.5

0.4

0.3

0.2

'T

0.09 '0.08

0.07

0.06

0.05

II

100 200 300

I

;::. I=l=I§ FUGACITY FUNCTION~~ OF HEPTANE

~. --->-,- ~ -'f

-8 -

-o 0.04

0.03

o 0.02

~ ..

!/1I

100 200 300

59

20

4

3

2

400 500

Page 65: Data Book on Hydrocarbons

0.80.7

0.6

0.5

0.4

100 200 300

0.3

0.2

0.080.07

0.06

0.05

0.04

0.03

0.02

I

~ FUGACITY FUNCTION1E OF OCTANE ~

:

I

30

20

-+--I--t-+-t-+++-+-+-+4 '

++++H-H··t-H-+-++ I-f--H-H-+'++++++-++I-I-f--H-+--J----I--++++++-hj£.j-I-I-hjoq~

- f:::j:. - -',-, .

• +-t-

100

GO

200

-t'i-"'Fff J.-1:- .-'-= +ie,'}l

. t= I. t=:± =Lfi.f- f-L - F.'r1 ::-~ ...

& I-~

~- ~~rj'

~ ±-l-I' -

II II

300 400

4

3

2

500

Page 66: Data Book on Hydrocarbons

FUGACITY FUNCTION

OF HYDROGEN

p::; THE FUGACITY FUNCTION OF HYDROGEN. IT"fplfll'' IS BASED ON AP PARAFFIN SOLVENT HAVING A MOLECULAR WEIG HT OF 114 (OCTANE).~ FOR OTHER SOLVENTS MULTIPLY THIS FUGACITY FUNCTION BY THE..... CORRECnON FACTORS, A, FOR MOLECULAR WEIGHT, AND e. FORtHw CHARACTERIZATION FACTOR OF THE SOLVENT~

THIS CHART DOES NOT APPLY AT TEMPERATURES GREATER THAN0.95 TIMES THE PSEUDO-CRITICAL TEMPERATURE* (OR) OF THELIQUID PHASE. *Tpc: XH (60) + X HC (THC)

I I I I I I I . I -r 2000

o

3

K:l 50

. - - _.. , ==- ,__ ··_··-0 -- - ._. -~.

~

-

100 150 200 250 300

1.0

0.9

0.8

61

0.7

0.640 60 80 100

.... I

120 140 IGO

Page 67: Data Book on Hydrocarbons

.9

.8

.7

.6

.5

.2 .3 .4

=

.5 .6

..

.1 .8 9 10 11 12

T-

131~.O

9

.8

.6

.5

A - -fLr =

II-fp IP VS PIPe FOR LIQUID PHASE

flT/IT VS IT/Pc FOR VAPOR PHASE

"':~-:. -~~ .

+.-!

RE~ERENCE: LEWIS AND KAY. OIL AND GAS J. 32. NO. 45, 40 (MARCH 29, 1934)

.2

i'

FUGACITY OF HYDROCARBON VAPORS

-,

,6.. -;fu.~ tl:f.1·...,;....+..........." ~

It

lJ

h

.S

.1

•o .1 .2 .~ .5 .6 .7

62.8 .9 1.0 J.2 1.3 1.4

Page 68: Data Book on Hydrocarbons

.40I.

.9

.8

.7

.6

.5

',4 1.6

.7

.6

A

J

ot.4 1.6

1.8 2.0 2.2 l.4 2.6 2.8 3.0 32 3.4 3.6 3.8

FUGACITY OF HYDROCARBON VAPORS

. ~ ..

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 16 18 4.063

.9

.7

.6

.5

.4

.2

o

Page 69: Data Book on Hydrocarbons

RELATIVE VOLATILITY<-

OF LIGHT HYDROCARBONS

2.00

400300200

ETHYLENE (ETHANE

- ,

:r100

, -_l

1.80

1.70

.-++- .~

1.60

1.50 -::1:; .

1.40::l"-

~+

1.30

1.20

1.10

1.00-100 0

:h

1.40

1,30

Ir.1.20

1 ~, -.

1,10

1.00• -100 0 100

PROPYLENE/PROPANE

200 4C0

Page 70: Data Book on Hydrocarbons

RELATIVE VOLATILITY

;OF LIGHT HYDROCARBONS

1.30

1,20

1I0

I J

ct'I-

ISOSUTENE/SUTANE

FOR BUTENE °l/BUTANEMULTIPLY BY 0,980

1.00 o 100 200 300 400

TRANS-SUTENE-2/SUTANE

.901... r

1+= J..~

o 100 200 300 400

CIS - BUTENE- 2/SUTANE

1.00

•.90

.eo0 100 200 300 400

1.3-SUTADIENE/SUTANE

tOO

LIO

tOO

.90 0 100 200 300 400

65

Page 71: Data Book on Hydrocarbons

RELATIVE VOLATILITY

••1

. ".

+

, :'-' -!:-i1-

I.IO....~o ~O 1410101

,.801111

66

Page 72: Data Book on Hydrocarbons

=

8 9

~~~~'I:

FUGACITY CORRECTION FACTOR

LIGHT HYDROCARBONS IN ABSORBER OILS

2.5

2.0

1.5

_ t- .

- ~ L:9..

MULTIPLY FUGACITY FUNCTIONS

(OR VAPOR PRESSURES) OF LIGHT

HYDROCARBONS BY CORRECTIONFACTOR WHICH IS INDEPENDENT

OF TEMPERATURE AND PRESSURE

*CHARACTERIZATION FACTOR OF THE LIQUIDPHASE IS A WEIGHT FRACTION AVERAGE OFTHE CHARACTERIZATION FACTORS OF THEABSORBER OIL a DISSOLVED HYDROCARBONS.

REFERENCE: COMMUNICATION FROM lHE M.W. KELLOGG CO .. NEW YORK. N.Y.

,-..

8 9 10 " 12 13

67

Page 73: Data Book on Hydrocarbons

Section 6

CRITICAL PROPERTIESAnalogous to PUl'C substanccs, thc true critical point of a milltUl'c is a uni'lUC

point on thc phase cnvelope where thc dcnsitJy and composition of the vaporphase arc identical with those of the liquid phase. Sincc the compositions of thetwo phascs arc the samc, fractionation of a mixturc is impossible at the criticalpoint. Conscqucntly, the dcgrec of approach to thc critical point of a mixtuTe some­times serves as a rough guide to thc fcasibility of separating thc components byfractionation.

For PUl'C hydrocarbons, it has been found that a number of physical propcrtiesmay bc correlated by reduced tcmperature, TITe, and reduccd prcssure, PIPe.Various data have shown conclusively that none of these correlations apply tomixtures if the truc critical temperature and pressure of the mixture are uscd todetermine the "edueed conditions. This difficulty has bccn overcomc by thc intro­duction by Kayl of thc concept of pseudo-critical tcmpcrature and pressure. Byusing thc pseudo-critical tempcrature and pressure to predict the reduccd condi­tiuns, Kay found that compressibility data on pure hydrocarbons could be appliedto mixtures. Although Kay determined the pseudo-critical point by averaging thecritical properties directly for known mixtures and from the averagc molecularweight for pctrolcum fractions, it has been found that much bcttcr results can beobtained by using the average boiling point method proposed by Smith andWatson. 2

As Smith and Watson pointed out, the true and pseudo-critical points mustapproach each other as thc boiling rangc of a fraction approaches zero and mustcoincidc for purc compounds. These conditions arc fulfilled by the charts in thissection applying to petroleum fractions. Smith and Watson's relation betweent11C true and pseudo-critical pressurcs on page 74 has been checkcd by the truecritical data of Kay on ethane-hcptanc3 and cthane-butane· systems. These dataconfirm Smith and Watson's eurvc well into thc region of their recommendedextrapolation.

GENERAL REFERENCES

Doss, "Phyaical Properties of the Principal Hydrocarbons," 4th Edition, The Texas Co.,Nel\' York, N.Y. (1943).

Internationnl Critical Tables, Vol. III.Roess, J. Insl. Pelr. Tech. 22, 665 (1936).

'l{ay, Ind. Eng. Chem. 20, 1014 (1936).2 Smith and Watson, Ind. Enu. Chern. 29,1408 (1937) .• Kay, hId. Eng. Chern. 3D, 459 (1938) .• Kay, Ind. Eng. Chern. 32, 353 (1940).

68

,

Page 74: Data Book on Hydrocarbons

1000900800 ._mIlffim

I~m

II~JI ' I • •m j~ r ~; 111' ,· tlftfi, •

CRITICAL TEMPERATURE

I OF PURE HYDROCARBONS , Iim1,.m11 ~

Hm1 ~

!WJI • IlOOl

"0 iMj 11m! rnu:

l1m1 ,·

t .

'I,

mitIHI mrr

I,

IIWJ.I

1 Ill~. " .<i1 i- t1 ' .I ,J 1 .

:i' "I~ , r t ,, ·°illii !

r (1 · ,. ,I mm,,' ,. ,

f m,L f I ,.. I · ,

I ,. , I I II' II I i

, f! I 1 I" it

f I" I ' J j' ! I,

t•"

r; I i i . 1!II I . , I ! i IJ 'i , j ., .

'J 11 I • , I j 1ti;. I

,. ·rYl·j ~! I I

f r I,, IIIlI ,

!l .1.: I' . I .11 j , I , .. J! J! I I I i " , •,j'" I . 't ::' , , • I I r- 1-1' .In 1m I II inl ! I j f I t ! i' ill dlj!1! liid!!tl! Jfi10 • I , ,

I, HI,

'I I' Iii i'l: i' rr"l 'l1 t lt-f r:. : .. :-1"' .

':: IJ I f ~ ~:; ,. iI! :-!, ~.1. ;~: I r,I! tl . , , !I ,j" 1 II ." , ,.. ,. T' ", ill ,'f· 'lil!1 ''I ! ' 1.I '1 ' f 1 . i jiPi ' :. 1111["1 " I!PI : t ,I , .'II- r ljl' ~ .. , :-1'; ;, !, 1. It!; I :.•L 1!. , ., ' .. I ", .. , fH. ,,' !' r_1

'. I," , ! I ' l.Hli' , : ! fl lill Ijl illlit! iu,1 liP il ! 'I" :1:: : 1tI1f I 1 1 1'01, I t:tl . t: ,. • t.I"., t. ,•.:r I . ·, 'II!, IllliQ,HHlii!!: III li1

It IIU11 HI' , I tubI

70

800

900

500

600

1200

1100

100

100 200 300 400 500 600 700 80069

Page 75: Data Book on Hydrocarbons

80-220 -200 -190 -160 -140

. ,60 440

CRITICAL TEMPERATURE

40 OF LIGHT HYDROCARBONS 420q,PURE COMPOUNDS AND MIXTURES

.f!:[20 - -. - ,- 400+ 'l* t"

i , ... ' .-u

0 390

...L,-20 360

-40 340

-60 320

-80 300

·100 290

-120 260

r 240j.

220[,

.. I I .. In200

1r THE BASE CURVE REPRESENTS CRiTICALI TEMPERATURE VS. BOILING POINT fOR PURE

"I" HYOROCARBONS ANO PSEUOO-CRIT'CAL TEhIP- 190I i: _I 1 ERATURE vs. MOLAL AVERAGE BOILING POINT

I J I t II ,

FOR MIXTURES.THE GRAVITY CURVES REPRESENT TRIJE 160

I CRITICAL TEMPERATURE YS. WEIGHT AVERAGEBOILING POINT FOR MIXTURES. fOR ALL HYDRO-

I CARBONS THE PARAFFIN GRAVITY OF THE 140I SAWE BOILING POINT 5H:XJLO BE USED INCOMPUTING THE GRAVITY OF THE MIXTURE.

. , .fiT • 120t; ~ 1h .l I ~

I .. II 100If I~ I [ f ,I· II ., ,

: ill j -,_i¥-1

80

-140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140

70

Page 76: Data Book on Hydrocarbons

/

20

40

50

280260240220200180160

!mI ~ --

~

CRITICAL PRESSUREOF NORMAL PARAFFINS

20 40 60 80 100 120

'~i

Ii

THE PSEUDO-CRITICAL PRESSURE OfLIGHT HYDROCARBON MIXTURES HAVING

AN AVERAGE MOLECULAR WT. LESS THANBO CAN BE DETERMINED FROM THIS CURVE.

--.-: .-:- ...

I

I

.-

-.

J-

- - -I t+: r -

Iii L - .

i~- ~i

15

40

10140

20

30

71

Page 77: Data Book on Hydrocarbons

1300

1000900

t .... ..=r::

':Ct8<i5-2' -:-' >:.~.....,...., _.- -1

800 §

~

"

. --

1100 -

800 ...

700

.~

=,-

... ",.. , .~".'- "-J :....

, ..

,- ~

'1'=: •.::r; ":-1.ir

.... ..

,-

... -..

;.~r:$·

:$. • t "...

~.

ct= •

800

100 200 300 400 500 600 700 800

72

Page 78: Data Book on Hydrocarbons

00

00

300

1000900

100 200 WO 400 500 100 7('. r-

PSEUDO- CRITICAL PRESSURE •OF PETROLEUM FRACTIONS-

-

II-~2

2,

I

--- ~~ -

tqJ~,. . .- ~ '. I ,IIIII11 t-..l ahr,f-h---- -- FfttlIMmiI - -

I

250

100

300

500

400

100800

200

I 600

73

Page 79: Data Book on Hydrocarbons

TRUE CRITICAL PRESSUREOF HYDROCARBON MIXTURES

-

!l.0.. 1.18 1.20 1.2.2. 1.2.4 1.2.6M

- - - -4.0 4.0

-

3.0

2.5

2.0

DETERMINED BY MULTIPLYING ITS PSEUDO-CRITICALPRESSURE BY THE RATIO OF TRUE TO PSEUDO-

, CRITICAL PRESSURE, PTC/Ppc. THIS RATIO ISGIVEH BY THE CURVE AS A FUNCTIOH OF THE RATIOOF TRUE TO PSEUDO CRITICAL TEMPERATURE. TTCl1l'l;.l

. ""1l1i"

t:J+lJ

2.5

2.0

'.5 H-t-t+t-H-t++t-H-t+'~ mI.5

REFERENCE: SMITH AND WATSON. IND. ENG. CHEM, 29. 140B (1937)

1.02 1.04

74

1.08

Page 80: Data Book on Hydrocarbons

Section 7

THERMAL PROPERTIESSpecific Heat

Since hydrocarbon vapors deviate considerably from a perfect gas, except atlow pressures, their specific heats arc a function of pressure as well as tempera­ture. However, vapor specific heats at higher pressures have limited application asenthalpy correlations may be more readily used for thermal calculations. For thisreason, the specific heat chart~ for gases and vapors (pages 88 to 91) arc givenonly for low pressuros (0-1 atm) where deviations from a perfect gas are sosmall that specific heat may be considered to be a function of temperature alone.The specific heat of a mixture of two or more gases at low pressures may becalculated from either their weight fraclions multiplied by their specific heat~ ortheir mole fractions by their molal heat capacities (MC.).

Two charts are given for the specific heat of. petroleum vapors, one on page 90for crude fractions and another on page 91 of more general application to bothpure hydrocarbons and petroleum fractions.' The chart for crude fractions is amodification of the Bahlke and Kay eorrelation 2 and the other the same type asa chart developed by Fallon and Watson. 3 Both ehart~ are believed to be some­what morc accurate than the previous correlations and arc also representativeof additional data.

The change in enUlalpy of hydrocarbon vapors with pressure at constanttemperature may be calculated from the chart on page 92. While the ordinaterefers to the difference in enthalpy from the vapor at infinite dilution, this may beconstrued as any low pressure (0-1 atm). This chart was used to compute theenthalpy of hydroearbon 4 and petroleum vapors at elevated pressures in thedevelopment of the enthalpy charts. Since the change in enthalpy at constant

1 These correlations {or petroleum fmctions nrc not quite consistent with the additiverule for mixtures. Since these curves apply directly to mixtures, the additive rule would holdonly if the specific heals eit,1).cr were independent. of the liquid specific gravity or \'aricdlillcnrly with its reciprocal (directly with 0 API). With neither of these conditions fulfilled, thepetroleum vapor correlations have a fundamental inconsistency but the resulting errors areimperceptible as far as the data are concerned.

2 Bahlke and Kay, Ind. Eng. Chem. 21, 042 (1929).3 Fallon and Watson, Nat. Petroleum News, 'l'echnical Section, R-372 (1944).4. For the light hydrocarbons below hexane, there was a slight trend with molecular weight

in the change of enthalpy with pressure at constant. temperature. This was taken into accountby the use of other unpublished correlations by Gilliland (sce reference on the chart OD

page 92) for these low-boiling hydrocarbons.

75tottlGl"N" A.L.)

CO?l A \1i'1B.·::1 \. .)

PABLO M01.'"l'A

Page 81: Data Book on Hydrocarbons

76 DATA BOOK ON HYDROCARBONS

temperature can be read directly from the latter charts, this generalized chart haslittle direct application but is included as one of the fundamental correlations.

The chart for the specific heat of hyd!"Ocarbon liquids was developed" directlyfrom liquid specific heat data on pure hydrocarbons and petroleum fractions.Since liquid specific heats were not used in the development of the enthalpy charts,this chart is independent of and not necessarily consistent with the latter correla­tions." For the sake of consistency, thc enthalpy charts usually will be used inpreferencc to this spccific heat chart but, at the samc time, it is desirable to includean independent correlation of such a fundamental thermal property.

Latent Heat of Vaporization

The latent heat of vaporization of any compound is the din'erence in enthalpybetween its saturated vapor and its saturated liquid at constant temperature andmay be expressed either as a function of temperature or as a function of vaporpressure. The latent heats of low-boiling hydrocarbons and, also, higher-boilingnormal paraffins of even boiling point arc plotted again t vapor pressure on pages94 to 97. While the use of temperature instead of vapor pressure as the correlatingvariable would have advantages, it would also result in the curves crossing eachother, thus making the plots difficult to reae!.

The latent heat charts were derived by using a direct proportionality betweenthe molal heats of vaporization of any two hydrocarbons at the same reducedpressures.' For the lower boiling hydrocarbons, the latent heat data were smoothedout and extrapolated by the use of a reference compound (ethane, butane, orhexane). Where no data were available, as in the case of a few of the light hydro­carbons and all of the higher-boiling normal paraffins, the latent heats were cal­culated directly from this reduced pressure relationship. The slope or propor­tionality constant was predicted from the normal boiling point of the hydrocarbon.

The latent heat of vaporization of other hydrocarbons may be calculatedfrom the normal paraffin cun'es by the usc of this same relation. That is, theunknown compound will have the same molal heat of vaporization as a paraffinof the same normal boiling point at the same reduced pressure. In the case ofpetroleulll fractions, the mean average boiling point is used for the normal boilingpoint and the reduced pres ure i computed f!"Om the pseudo-critical pressure ofthe mixture. The "vapor pressure" of thc fraction corresponds to that of a pure

• A modificatIOn ot a correlatIOn oy Tne M. W. Kellogg Co., New York, N.Y.• The enthalpy eharls were derived from: (J) the vapor specific heaL eo",elnlions (0-1

aIm); (2) lhe generalized chart for change of enthalpy with pressure; and (3) the latent heatrelations. Inasmuch as the inaccuracies of all three correlations accumulate in Lhe jjqu;:!enthalpics 01' specific heals, the agreement wit.h the liquid specific heat chart may be ~nnsidcrcd

quite good as average deviations between the two are around ±3% wlt.h a maxImum ofabout 6%.

7 Maxwell, Ind. Eng. Chem. 24, 502 (1932).

Page 82: Data Book on Hydrocarbons

THERMAL PROPERTIES 77

hydrocarbon of the same normal boiling point at tbe temperature of the fractionand ""ver relers to the bubble point, dew pofnt, or operating pressure 01 the system.

Since the difference in enthalpy between the liquid and the saturated vapor ofa pctroleum fraction always involves change of enthalpy of the vapor at constanttemperature in addition to latent heat, except at low pressures, the enthalpy corre­lations are much more convenient to use than these individual therm,.l properties.

Thc following examples illustrate the usc of the latent heat charts:

Example 1. Compute the latent heat of benzene at 1 atm.

The boiling point of benzene is 176.2°F and its critical pressure is 47.9 atm.The molceular weight of a normal paraffin boiling at 176.2°F is 91.5 and its criticalpressure 28.3 atm. The vapor pressure of the normal paraffin corresponding to areduccd pressure of 1/47.9 ( - 0.0209) is 0.0209 X 28,3 - 0.59 atm.

The molal heat of vaporization of the normal paraffin at 0.59 atm is 91." X(146 BTU/lb) - 13,360 BTU/mole.

The latent heat of benzene at 1 atm is then equal to 13,360 BTU/malo or171 BTU/lb. The Bureau 01 Standards Circular C461 gives 169.3 BTU/Ii> '.s thelatent heat of vaporization of benzene at 1 atm.

Example 2. Determine the latent heat of vaporization of the following ga9oil at 500°F.

10% Distillatioll

10% @ 430°F50% @ 540°F70% @ 605°F90% @ 680°F

Gravity

35°API

Vol. Av. B.P. = 547°F; Slope = 2.9°F/%Mean Av. B.P. = 547 - 9 = 538°FMolec. wt. = 211Vapor pressure (538°F normal B.P.) = 0.63 atm. at 500°FPseudo-critical pressure = 266 psia co 18.1 atm

I'l'lolee. wt. of normal paraffin (538°F normal B.P.) = 222Critical pressure of normal paraffin = 15.0 atmVapor pressure of normal paraffin = (l5.0/18.1)0.63 = 0.52 !!.tmLatent heat of normal paraffin = 104 BTU/lb

Latent heat of vaporization of the gll3 oil!!.t 500°F

= 22Z X 104 = 108 B1'Ulib214

Page 83: Data Book on Hydrocarbons

78 DATA BOOK ON HYDROCARBONS

Enthalpy of Light Hydrocarbons

The enthalpy 8 or heat content of low-boiling paraffins, olefins, and aromaticsis given by the chart.s on pages 98 to 113. These charts can be applied to mixturesof light hydrocarbons on the basis of the following assumptions:

1. The entha!pies of individual components of a mixture are additive inthe !iquid phase, that is, the mola! heat content of the mixtttre equals the sumof the products of the mo!al heat contents of the components by their mo!efractions.

2. The entha!pies of individua! components are additive in the vapor phaseat !ow pressures (0-1 atm).

3. The change in enthalpy of the vapor with pressure at constant tempera­ture is the same for a mixture as for a sing!e compound having the same mo!ecularweight as the mixture.

The first assumption is substantially true for hydrocarbon mixtures (espe­cially for homologous series) at temperatures below the critical regions of allcomponents. At temperatures near to or above the critical temperatures of any ofthe components, the liquid mixture is no longer an ideal solution of its componentsand there is some deviation from the rule of additive heat contents. However, sincethese deviations arc not too serious, and since no other simple method has beendeveloped for determining the heat content of a liquid mixture, the rule of additiveenthalpies should be used for all hydrocarbon mixtures irrespective of the criticaltemperatures and chemical composition of the components.

The second assumption is strictly true only for vapor mixtures at infinite dilu­tion (0 atm) but is a very close approximation for pressures up to 1 atm.

The third assumption is empirical but has been shown indirectly to give quiteaccurate rcsults for mixtures of homologous series and petroleum fractions. Also,the usc of the average molecular weight to determine the change of enthalpy withpressure is the simplest average which can be used.

Above thc critical temperature a dashed line is shown for the heat content ofthe gas in solution. This line was based on the assumption that thc gas in solutionat any temperature would have the same partial density and enthalpy as the purecompound at a pressure corresponding to an extrapolation of its vapor pressurecurve above the critical point. Obviously, this is only a rough approximation sinceboth a vapor prcssure curve and an ideal liquid solution arc meaningless in thisregIOn.

E:rample 3. Determine the difference in enthalpy bctween the liquid at100°F and the vapor at iiOO°F and 20 atm for a mixture having the followingcomposition:

8 Based on on entholpy of zero for the saturated liquid 01, -200"F.

Page 84: Data Book on Hydrocarbons

THERMAL PROPERTIES 79

Component

C,H.CsH.C,H lO

C,H,CsH.

Mole Fraclioll

0.100.500.100.050.250

1.000

or

The enthalpy of the mixture as a liquid at 100°F and as a vapor at 500°F and0-1 atm is computed from the individual components as tabulated below:

Enthalpy of Liquid Enthalpy of Vapor

Com- Molel\lolcr, Wt. lOO°F 5OQ°F and 0-1 elm

poncnt Fract.Lb/Mole

of Mixture BTU 1~lole BTU ll\lolcBTU lIb

of MixtureBTU lIb of J\'lixture

CzH s 0.100 3.0 239 720 553 1660CaH s .500 22.0 171 3760 530 11660C4H 1O .\00 5.8 159 920 525 3040C2H 4 .050 1.4 223 310 506 710C3H, .250 10.5 169 1770 508 5330

42.7 7480 22400

li y (500°F, 0-1 atm) - liL = 22,400 - 7480 = 14,920 BTU/mole

The change of enthalpy of the vapor at 500°F betwecn 0-1 atm. and 20 atm.is computed by interpolating between C,H. and CsH.:

C,H.:1f,,(500°F, 20 atm) - liy (500°F, 0-1 atm) = 30(546 - 553) = -210 BTU/mole

CsH.:H y (5OO°F, 20 atm) - li y (500°F, 0-1 atm) = 44(522 - 530) = -350 BTU/mole

Mixture:42.7 - 30

li y (500°F, 20 atm) - liy (500°F, 0-1 atm) = -210 + H _ 30 {-350 - (-21O)J

= -340 BTU/mole

Therefore,

li y (500°F, 20 atm) - liL(100°F) = -340 + 14,920 = 14,580 BTU/mole

14,580 = 849 BTU/Ib42.7

The foregoing procedure can hc simplificd, with a loss of accuracy which doesnot usually exceed 5%, by interpolating on a basis of molecular wcight and total

Page 85: Data Book on Hydrocarbons

so DATA BOOK ON HYDROCARBONS

l

olefin content between the initial and final states:

CaHs:H v (500°F, 20 atm) - Ih(IOO°F) = 44(522 - 171) = 15,440 BTU/mole

CZH4 :

H v (500°F, 20 atm) - Ih(lOO°F) = 28(500 - 223) = 7750 BTU/moleCaHe:

H v (500°F, 20 atm) - HL(lOO°F) = 42(500 - 169) = 13,900 BTU/mole

Since the average molecular weight of the paraffin portion of the mixture is 44, thepropane values can be used directly, making interpolation unnecessary.

The average molecular weight of the olefin portion is 39.7; hence the enthalpydifference between the initial and final states will be:

7750 + 3:;7_-2~8 (13,900 - 7750) = 12,880 BTU/mole

Interpolating between the paraffin and olefin portions,

Hv(500°F, 20 atm) - HL(lOO°F) = 0.70 X 15,440 + 0.30 X 12,880

= 14,670 BTU/mole14,670

or 42.7 = 344 BTU/lb vs, 342 BTU/lb by the longer method.

Enthalpy of Petroleum Fractions

The enthalpyO of petroleum fractions is given by the charts on pages 114 to127 for both paraffinic stocks, having a characterization factor of 12.0, and non­paraffinic stocks, having a characterization factor of 11.0 over a mean aver­age boiling point range from 200°F to 800°F. Theoretically, these chartsrepresent pure hydrocarbons of the designated characterization factor and boilingpoint, but they may be applied to petroleum fractions if the following assumptionis made in addition to the three previous ones pertaining to light hydrocarbonmixtures:

4. 'The avemge difference between the enthalpy of the vapor at low preSSU1'es(0-1 atm) and the enthalpy of the liquid, at constant temperature, is the same f01'a rni.'l:ture of chemically similar hyd1'Ocarbons as for a single compound of thesct'1ne molecular weight (or mean avemge boiling point).

\\'hile this assumption is empirical, it is accurate \\'ithin a few percent excrptin the region of the pseudo-critical temprrature \\'here the enthalpy of the liquidis subject to variation depending upon the true criticaltemperatUl'e of the mixtUl'e.Since the dashed line starting at the pseudo-critical point applies only to a purecompound in solution above its critical point, another dashed line was arbitrarilydrawn for mixtUl'es, joining the satUl'aled liquid line below the pseudo-critical

9 Based on all enthalpy of zero for the saturated liquid at 00 F .

Page 86: Data Book on Hydrocarbons

THERMAL PROPERTIES 81

Ipoint with the pure compound line about 50°F above the pseudo-critical tempera­

_ ture. This is more representative of a mixture and should be used in preferenceto the pure compound line.

These charts may be interpolated and extrapolated linearly with bothcharacterization factor and mean average boiling point. Occasionally, in inter·polating between two adjacent boiling point chart~ the pressure and temperatureof the vapor will be such that they fall inside of the "dome" of the higher boilingpoint chart.. Since it is impossible to use the charts in this region, it is recom­mended that the two adjacent lower boiling point char'" be extrapolated upward.

Following are two examples illustrating the use of these charts:

Exan,ple 4. Determine the ditTcrence in enthalpy between the liquid at 500°Fand the vapor at 775°F and 25 psig for the following refined oil fraetion:

Crude Assay DistillatiOlt

I.RP. 300°F50% 440°FF.B.I'. 580°F

Grauity

400 API

Vol. Av. RP. = 440°F

81 f t} d· '11 . 580 - 300ope 0 Ie Istl atlOn eurve = 100 = 2.80 F/%

Mean Av. B.P. = 440 - 6 = 434°FCharacterization Factor = 11.65hI' = Enthalpy of the vapor at 775°F and 2.7 atm (25 psig)hL = Enthalpy of the liquid at 500°F

Mean Au. B.P. -400°FCh. Factor = 12: h" - hL = 567 - 286 = 281 BTU/lbCb. Factor ~ II: hv :- hL = 538 - 263 ~ 275 BTU/lbCb. Faetor = 11.65: hI' - hL = 275 + 0.65(281 - 275) = 279 BTU/lb

Mean Au. B.P. -500°FCh. Faetor = 12: hI' - hL = 556 - 273 = 283 BTU/lbCh. Factor = II: hI' - hL ~ 534 - 255 ~ 279 BTU/lbCh. Faetor = 11.65: hI' - hi = 279 + 0.65(283 - 279) ~ 282 BTU/lb

Mean Au. B.P. - 434°FCb. Factor = 11.65: hI' - hL = 279 + 1.'..(282 - 279) =.280 BTU/lb

If the char'" for 300°F and 400°F Mean Av. B.P.'s had been extrapolated, theresult would have been essentially the same, 281 BTU/lb.

Example 5. Determine the difference in enthalpy between the liquid at 425°Fand the vapor at 925'F and 350 psig for the following gas oil:

Page 87: Data Book on Hydrocarbons

,

Gravity

15.5°API

DATA BOOK ON HYDROCARBONS82

10% Distillation10% @ 455°F50% @ 560°F70% @ 620°F90% @ 695°F

V I A B.P 455 + 2 X 560 + 695o . v. . = = 5670F

4

SI f di t 'II . 620 - 455ope 0 B I ation curve = 69 = 2.8°F/%

Mean Av. B.P. = 567 - 5 = 562°FCharacterization Factor = 10.48

hv - hL = 662 - 233 = 429 BTU/lbhv - h L = 622 - 216 = 406 BTU/lbhv - hL = 406 - 0.52(429 - 406) = 394 BTU/lb

hv - hL = 642 - 224 = 418 BTU/lbhv - ltL = 606 - 208 = 398 BTU/Ibhv - hL = 398 - 0.52(418 - 398) = 388 BTU/lb

hv = Enthalpy of the vapor at 925°F and 24.8 atm (350 psig)hL = Enthalpy of the liquid at 425°F

Mean Av. B.P.-400°FCh. Factor = 12:Ch. Factor = 11:Ch. Factor = 10.48:

Mean Av. B.P.-500°FCh. Factor = 12:Ch. Factor = 11:Ch. Factor = 10.48:

Mean Av. B.P.-562°FCh. Factor = 10.48: ltv - hL = 388 - M(394 - 388) = 385 BTU/Ih

MollieI' Diagrams

The MollieI' diagrams for the individual light hydrocarbons are of essentiallythe same type as the familiar one for steam. To minimize confusion and to makethe charts as easily usable as possible, lines of constant volume are omitted andlines of constant temperature replace lines of constant superheat in the super­heated vapor region. These charts will be used principally for adiabatic com­pressions and expansions.

In applying the MollieI' diagrams to hydrocarbon mixtures, the mixtureshould be treated as a single compound of the average molecular weight. Anempirical study of the diagrams indicates that successive charts of the sameseries (paraffin or olefin) may be interpolated (or extrapolated) by assuming alinear relation exists between melecular weight and (1) isentropic change ofmolal enthalpy with pressure and (2) the product of the square root of themolecular weight and the isentropic ehange of temperature with pressure.

If both paraffins and olefins are present in the mixture, the charts of each

Page 88: Data Book on Hydrocarbons

THERMAL PROPERTIES 83I

series are interpolated (or extrapolated) to the average molecular weight of t.hetotal mixture. These values corresponding, respectively, to a 100% paraffin mixtureand a 100% olefin mixture are used for linear interpolation to the actual olefincontent of !lie mixture.

The following example illustrates the application of the MollieI' diagrams to ahydrocarbon mixture:

Exmnple 6. Determine the work of compression 1 0 and final temperature whenthe following mixture is compressed adiabatically from atmospheric pressure and60°F to 50 psig:

AverageComponent M ok Fraction Molee. WI.

CH, . ....... . 0.050 0.8C,H, ........ .100 2.8C2H• ....... . .150 4.5C3H. .100 4.2C3Hs ..... - .. .200 8.8C,Hs .100 5.6C.H, 0 .200 11.6C.H,, ....... .100 7.2-- --

1000 45.5

Values corresponding to adiabatic compression from 1 aIm and 60°F to 4.4atm were read from the individual charls and arc tabulated below:

Compound S

C,B, 0.763C~HIO .680C2H.. .935C3He .780

BTU/lbI,

6fl

'F M(h, - h,) 61VMh, 112 BTU/mole

301.5 338 1M 1610 625295 321 135 1510 570300.5 363.5 221 1760 850303 3!2 164 16iO 675

By interpolation, lif{ = 1600 BTU/mole and litVM = 620 for a saturated hydro­carbon mixture of 45.5 malec. wt.

By extrapolation, li.H ~ 1610 BTU/mole and li/V,lf = 632 for an unsaturatedhydrocarbon mixture of 45.5 molec. wI.

By interpolation, li.H ~ 1603 BTU/mole and litVM = 6z.t for a hydrocarbonmixture of 45.5 malec. wt. containing 30% unsaturates.

10 Change in enthalpy which includes the difference between the work of expulsion andwork of admission.

Page 89: Data Book on Hydrocarbons

84 DATA BOOK ON HYDROCARBONS

:. The theoretical work of compression is 35.2 BTU/lb and the final tempera.tureis 152°F.

If other gases (H2 , O2 , H 2 0, etc.) are present in a mixture, it is recommendedthat effective IJressures equal to 7rVYlfC be used to determine the total work ofcompression and final temperature of the hydrocarbon portion of the mixture.The inert g&ses usually may be assumed to be ideal and the w'ork of comprestlionand final temperature for this portion of the mixture calculated by the adiabaticcompression formulas for perfect gases. The work of compression for the mixtureis then evaluated by combining the change of heat content for the hydrocarbonportion with that for the inert gases on the basis of their mole fractions. In deter­mining the final temperature of the mixture, it is assumed that the ch.ange inenthalpy of each portion from its final temperature to that of the mixture isequal and opposite in sign to the other. This method is illustrated by the followingexample:

Example 7. Determine the work of compression and final temperature whenthe following mixture is compressed adiabatically from 25 psig and 0°1" to 150 psig:

Hydrocarbon Portion

Component Mole FractionAverage Molec.

Wt. Average Molec.Mole Fraction

Wt.

H, 0.500 1.0 - -CH, .100 1.6 0.200 3.2C,H. .ISO 4.5 .300 9.0C,H. .250 11.0 .500 22.0

1.000 18.1 1.000 34.2

The effective pressuras to be used for the hydrocarbon portion of the mixtureare:

25 + 14.77rei = 14.7 vO.500 = 1.91 atm

150 + 14.7 --7r.2 = vO.500 = 7.91 atm

14.7

Values read from the ethane and propane charts are tabulated below:

BTU/lb t, 6.H MvMCompound S OF M(h, - hi)h, h,

C,H. 0.837 294 340 121 1385 663

CaR. 0.686 278 307 92 1280 610

Page 90: Data Book on Hydrocarbons

THERMAL PROPERTIES 85

By interpolation, UTi = l35~ BTU/mole and t:.tVM = 6-1.7 for a saturated hydro­carbon mixture of 3-1.2 molee. wt. The corresponding final temperature forthe hydrocarbon portion of the mixture is 111°F.

For the H 2 portion of the mixture, the work of compression and final tcm.pera~

ture arc calculated as follows:

-. 6.97MCp = 2.016 X 3.46 ~ 6.96; K = 99 1.40

6.97 - I.

UTi =~R1'[("2)K~' - IJJ( - I "1

40 [(1647)1.40-' J= I. X 1.99 X 460 __. 1.40 - I1.40 - I 39.7

= 3200(1.502 - I) = 1610 BTU/moleI.fO -1

7'2 = (164.7)1:<0 X 460 ~ 691°R <> 231°F39.7

For the mixture, the work of compression = 0.500 X 1354 + 0.500 X 1610= 1482 BTU/mole <> 8f! BTU/Ib

The final temperature of the mixture is assumed to be the temperature I, atwhich

0.500[Ji Jre (t, 7.91 atm) - Jilfc(l1l°F, 7.91 atm)J~ 0.500[Ji Il (23I°F) - flll(t)] = 0.500 X 6.97(231 - t)

Since it is necessary to use enthalpy for evaluating UTi lie, t will be determinedby trial and error.

Assume t = 140°F.

Interpolating between the charts on pages 99 and 100,

0.500 X 34.2[3·12 - 328J = 0.500 X 6.971231 - 140]

240 "" 317Assume t = 148°F.

0.500 X 34.2[346 - 328J = 0.500 X 6.971231 - 148]

:l08 "" 290

By interpolation, the final temperature is I/.7°F.

While the foregoing procedure permits the ~follicr diagrams to be used formixtures of hydrocarbons and inert gases, the method of combining the cnthalpicsand the temperatures of the two portions of the mixture is theoretically incorrect.In this procedure it is assumed that if two gases, ha,-ing different thermal prop­cries, arc compressed individually from the same initial temperature and pressure

Page 91: Data Book on Hydrocarbons

86 DATA BOOK ON HYDROCARBONS

to the same final pressure and then mixed, the resulting thermodynamic propertiesof the mixture will be the same as if the gases were mixed initially and then com­pressed. This assumption is not quite correct and will always lead to small positiveerrors in the work of compression and temperature rise. The errors usually willnot exceed a couple of percent with a maximum of about 50/0 if the averagemolecular weight of thc hydrocarbons is not greater than 50 and the compressionratio is not greater than 5: 1.

As an alternative to this method, the equations for an ideal gas may beapplied to the entire mixture, provided the gas law correction facwr for the hydro­carbons, P-YC, is not less than 0.05. In arriving at an average molal specific heatat constant pressure for the mixture, the molal specific heats of the individualcomponents at 0-1 atm should be used irrespective of the initial and final pressuresof the compression. The following equations apply to this alternative method:

Il .. = (y HCIlIlC + Yalla + Ybllb + ... )(MCP)m = YlIc(MCp)llc + y.(MCp). + Yb(MCph + ...

K = (MCp ).,

(MCp) .. - 1.99

K [(7I'z)K;: 1 ]AU = 1l.,R1" - - 1

K - 1 71'1

Tz = (::) \-1 T1

where Il = correction factor for deviation from the ideal gas law at initial conditionsY = mole fraction of any component

MCp

= molal specific heat at constant pressure (0-1 atm) and at the average

temperatureMCp

K=-MCv d' b t' compression = work ofAH = change in enthalpy during an a la a IC

compression . 0

7", Pz = initial and final temperatures m R71' = initial and final pressures

71'1'UC = subscript referring to the ~otal hydrocarbons

b t = subscripts referring to mdlvldual mert gasesa, J e c.

Example 7 will be recalculated by the alternative method:

For the hydrocarbon portion:460 . = 1.91 = 0.041; 1l1IC = 0.966

T = - = 0.80e, <fer 472r 575 .

MCp(700 F) = 34.2 X 0.410 = 14.0

Page 92: Data Book on Hydrocarbons

For the hydrogen:

THERMAL PROPERTIES

I' = 1.000; MOp = 6.97

87

For the mixture:

I'm = 0.500 X 0.966 = 0.500 X 1.000 = 0.983MOp = 0.500 X 14.0 + 0.500 X 6.97 = 10.5

K = 10.5 _ •10.5 - 1.99 - 1.230

1 235 [( 6 ) •.2356H = 9:235 X 0.983 X 1.99 X 460 1

39\7 1.235 - 1]

~ 4740[1.311 - 1] = 1470 BTU/mole as compared with 1482 BTU/molepreviously calculated.

T, = 1.311 X 460 = 603°R "" 143°F as compared with 147°F by the firstmethod.

IC desired, this alternative method may also be applied to hydrocarbon mixturesif I' at tbe initial conditions is ?!at less than 0.95.

GENERAL REFERENCES

Communication from The M. 'V. }{ellogg CO'l New York, N.Y.Gary, Rubin and Ward, 11ld. E1lg. Chem. 25, 178 (1933).Gilliland l Unpublished data, Mass. Inst. Tech.Keenan and Keys. "Thermodynamic Properties of Steam1 " John \Viley &; SODS (1936).Misc. Publicatio1l of Bur. Standards, No. 97 (1929).Nat. Bm. Statuiards Circular C461 (1947).Sage, Webster a-od Lacey, Ind. E1lg. ahem. 29, 1309 (1937).Weir and Eaton, Ind. E1lg. Chem. 24, 211 (1932).

Page 93: Data Book on Hydrocarbons

'i

0.60

1200

12001000

1000

l~n'd

800

800

NAT. BUR, STDS, CIRCULAR C461 (1947)KEENAN AND KEYES. 'THEfNODYNAMIC PROPERTIES OF STEAM' JOHN WILEY AND SONS ~O.46( 1936)

c",

600

.,.,

I"

400

--'400

",'I

11,,11,'",

'1-···..0-1 ATMOSPHERES

SPECIFIC HEAT OFMISCELLANEOUS GASES

..~, ..... ;

·f,.I~:;t+

tU"

·"l.IP

I£l~il:!~ill:

.. '

~I":t

n.

20-~'l ~-;r,TIE'ffiffi'·[ili'.:;,.~ _, .~- - ~. .. -

200

"' ;:t'

eI

".,-.<+;;

_:.li~;:tI~JtIni:tIi _ti ••lf:t;.t±t:-:-~

-,j~,tI1~ti

l!fiI!;rei iJ:j±t'.:±i'lt!#t~!·'l:~ ;-t:rTti-r"; H~l~

.1 .... • f

",,~-.;", "·,'tT',..... t·

:..:' ,'.. ·1'

!i

0.26

0.22

0,20IlU'ill"~'In":'Tl7'i""

0.24 ~TI!H~!"_,

0.26

gJ

Page 94: Data Book on Hydrocarbons

.....9

1.2

1,0

.4

"200

89

300

.8

..6

o

Page 95: Data Book on Hydrocarbons

+f~-l.J..Ht+Ji '-.r;

THIS CHART APPLIES TO PARAFFIN BASE

CRUDE FRACTIONS AND FOR OTHER

PETROLEUM FRACTIONS THE FOLLOWINGMULTIPLYING FACTORS SHOULD BE USED:

.7

TIfflI

I

'UlIJ[1fI"!

II

"T,ql

'IffiiI

HiIrm;IiiI~I r; 1lIlftfinm9

-,~, "

I1

j

·,11111

IJij

•I

no

SPECIFIC HEAT OFPETROLEUM VAPORS~

CRUDE FRACTIONS. 0-1 ATMOSPHERES 1tI111 Ufl II IIH II 11 H4 II$!

Ji

I

rn1

IrI,

.9B

.96

lit

I

MIXED BASE CRUDE FRACTIONS

ASPHAlT" to ..

.7

.8.8

.6 .fJi.llum·H1 HillllID~B;'lit

" tm!OOB

I"

; l.1oof1 _

~+ "·hi

I - _ • ,~. r:~ ,.... t·,_._._.t. ;.. II.t

~' IlIfHl:IlW@h!±Hil rl

200

.4

1000

iII"IMl

J1m!1

soo

iuHm1'h

mmf

11Ht!~1l11ffi

700

t

mt!WJmt-;tt

we' 600

:ftj

:.r ;:r-=

" J' " ~n- rolC...,·1

.;

~ 400

n"I

.; I! f'l.l·iTt

"

~""~likuiJ

nil<.~

$1~

jom',-.

<tilHmlm

tr~ii:b:W.l.I±! .'iElHI

r,i

1m

100II:4

.5

Page 96: Data Book on Hydrocarbons

.6

IU,

H.5

_1~tm!1UEI:llilffm .4

ilJEL'E1jilll ,l'iI:[, f: ',,"800 900100

11"'1 'g-'lOlll;tJj q "1 '1+1I11"1'",11":11:,1' 11'!"IE'H~l': i1'+1'I~ 8...... ,::::::.". l~•• ~~_, ,.;~ .. ;, . ,.~. ,,'" i->4I.II....lI:I:::\.~ h.;,~ .

eoo100

100 200 300 400 500 600 700

...... ~ : ,. ,.. .

'111111111 HEAT OF HYDROCARBON e +:'~ ~,: ._~ _. H" ..... - ", .,PARAFFINS,

.5

.6

.20

<0~

Page 97: Data Book on Hydrocarbons

4

3

2

HYDROCARBON VAPORS; MOLEC. WEIGHT ~ 75

I I

.8 .8

.6 ..6

.4 .4

.3, - , .3

.2 .2

10c., 0.2 ~0~'3~O~'4~~0~'6~O~'8~"~~~~'2~~'3~~,4~1'161'~81111112113114111618110108 p._ . 86 ENTHALPY- PRESSURE RELATIONSHIP

AT CONSTANT TEMPERATURE4

6 8 10

1 .1,,.08

06

.04

r! .!i~.03

INST . TECH..Ql

3 42.6 .8

. T

.3 .4.2.02 .03.04 .06.00.1.01

.04

.03

.02

.1

.06

92

Page 98: Data Book on Hydrocarbons

18

.9

.8

.7

.6

.5

Page 99: Data Book on Hydrocarbons

160 t-t--" . i

210 l-+-

If

210

200

90

190

180

170

iPili

9 10220

908 40

-LillI!

6

6

~ II '1

,J

4

4

"TTT

II

_ll, ..i

.!.11'SiJ_~

~'H-'11~"Til 1i1 ....U_~J

3

32

2

I'

IenLIt'

1"'!"",...!-.1

I I

If,

ill

nIT.~". .,

, ,

.6 .8 10

illllillilUi

111 I I I' Hllllll I I"~I

i . ' ..

;1': I;:c;nPiSrt~~:tt.:l.

6 .9 1.0

ioQl

4

.4

"11

ililli

it~1

"

~"".

, '.P. 1 1

.3

.3

ffiBll

m"~-·I' I,. 1

.~ It' ,

'.jill f\; Ij 'I

!

2

2

i I I1H~'T

.06 .08 .1

.06 .08 .I

IR

LATENT HEAT OF VAPORIZATIONOF LOW BOIUNG HYDROCARBONS 'J.ll',

i 1.+

I,03 .04

.03 .04

,~ , ; ':j1 VAPOR PRESSURES A80VE 10 ATMOSPHERES

j , ,

mnrt rrF. I I" I I

., tn-'lf

Tlli

.02

.02

,~

,

ml.

,. ' ",;i1I~~ . u',:ii 4i.' -j , - t, I ' 'I

i I . +rtHftt ,111 Hi , "tf+l!-t 'Ii'"';' ....

~-~'·I+r '11';",TI·i· ~~, '~' HI: ".:,I- 'tlO'[ ,.., 'L, 1 ~, ''';':;o..~ - L.;U;.!, ~LH-t' I I i ur.:,· ;I" 'U:.. •• ~ I' n-'"

+i H..l'I+tH fH1 w'r+r " 1I1~ "" ,':ttrt-:i4t"C Hl.!,· -- ,-' -''''I+i 0+ - !+-\,:.,t:-

~..L .....tj ~l.... ," ~~ ~l to,...

4+~'I" - I !...ll~If1I,ll!:!.;.l..LU 1-:----;1', .... ;- -'. :'. ~ •.

.=\;q'r", ~:.:.. 0! ',..•.""..

-1.l..~--~··'·+h-1Ih"":·· ~. r-th-t."g'... 'i', ..·· L.J 0'-' l... ,.,!;1:c:c1 I t"~- ' . tn' rrlt- _ .....~ '·"1.:.L1._..- :-!+ "'1'-'" .. N

[ij "" '-'rt:-+~r~ ..... "-- -.' ."'1 " -I'I I I r' ..I-I.tdt......", ,:!jjtd~ :'::i1trH L.L ..., "'n

I ,... OM ' ll' tJ+:.l 4H ~t! 'Jr' CrTf.;'IJ"," ' .... '.::

iE§.+!,.J TIT: T'" ,t 'n.';-'tti :~Ir l~!i~~1 I • ',~lt';

I t r' . I ' It-H+ II I J', 1 • 1 II I r 'III~ _~_L -- .•::': 1 I'Ll,',r,.j:" '" ffl.. LHI,tT,,! ,;LC,"r ,:~ , , "",HIli 1 i1liiiill '., I Iii'+r.: ...u .~.. , ;' :,!t4. '1 }

~~. ': ',!j' I I fl.:" .- 1"'~;]C" ,.; J'lr;t;r' .

..L-L.l..L..l.-.,..- '~'11 I . I'" Hiti" I' ..I I II ' • +00-1 ,IIW I I,~ :--J1

r

, I

, ,

1 i j

9001

90

1/0

01

110

140

100

130

120

190

190

200

~150

Page 100: Data Book on Hydrocarbons

LATENT HEAT OF VAPORIZATIONOF LOW BOILING HYDROCARBONS

140

130

120

110

100

90 90

80 eo

70 70

60 60

50 50

40 40

30 30

20 20

10 10

14 16 18 20 22 24 26 :10 34 36

95

190

Page 101: Data Book on Hydrocarbons

.002 .003 .004 .006 .008 .01 .02 .03 .04 .06 .08 0.1 0.2 0.3 0.4 0.6 08 1.0180 I I I I I , I I'! u:rrENT HEAT OF VAPORIZATION

180

170 I 1 1 I I 1I I 11111111111111 iHllliilil iii: :111 11111111: Ii ilillllll I I I 1 I I I I I11I fR ,i;i1111 ill:!l±ll Ulfl' , W, ; OF PARAFFIN HYDROCARBONS _170

I 1ij ,I'il VAPOR PRESSURES BEl.DW I-AllIIOSPHERE

, ",' 20' t It 11 ' 'I ttl 'J 'Ii 11 ' 1'1, - - "160 II 1I1,II!i 160

I . I', '

150 ' , , , , I 'I 1 1!~ti III fTtll.g;,,:jIIII:liliil I 1IIlTi'ti+;;±llllllllllllillil150ij II

,I "

'140~. j hlHIIlIIlIHi11 1111'111111111111111111111

130 I-<t I 'III I II I' , ' "II , ,"II 130,

If~ III

WI ~n II" IIF 'r:'- - 1 . jl

120 ~, , , , , 1" 1 1~f . i, II II , i' , ..

'~' 120I : " ,illj ~t'

- -

I fi !~. Il!iiL -~ L 1

~ II 0 -"*" I II

'fi ''1 II m 'I )" I" , , , II I • '" , ;',110'~

,'"

, ,, " ,

",'Z f-100 liJ

, , , ' 'li ",: 'I

I.• i i

90 I ,,90

80 80- I.1. r lI

70~. . Ulllii!lllill tttlHM 11Il!1I!11.i,1Ii1.,,:ll"'nnmi 11 Clr.;U'iUUU:U~ :rn 101:;;:1:::'11 ::11:rrr1 n:1t1T11TJ:11i'Hi1.lllIf

601111111111111'11111111111111111111111111111111:\"'1l'II"IIIIIIIIIIIJ"IIII'IJI,11111,ll"IIII~II'1111111111~"IIIIIIIIII:

50 ...... , ..... , ..... ,... """,.""." .. ", .. ",.", .•. . ................IND.

r

40 I ", , , ,

" II " " " I III 1111 III I I I I" 40

.002 .003 .004 .006 .008 .01 .02 .03 .04 .06 .08 0.1 0.2 0,3 0.4 0.6 0.8 1.0

Page 102: Data Book on Hydrocarbons

140~~~~~~••1I1I__1IIII130 •

:~:_·._iiiiiiii.

10 i~:;~,:~ :1I:'~~~~~;b;:"( ~~, ::~ J·~f ;m!~: :~:~~~~. 2] ~I'~~ ,1: !i.! :,1,:~,r i "il1:!;: Jt~;I~~ ~2 4 6 8 ~ 12 14 16 18 ro ~ M H U ro

Page 103: Data Book on Hydrocarbons

g;

8V

a § ~ ~ 8, ." ,-

'. .' ~, , -, ..j Jj

., .1 ·1 :.t~ ............ I ....... I-'~tr.

Ml

H·b

ijfdllr:B1

"" ...L'T

.W

"i

, _ I ~.- tnt t1i::- . I ~.:a~1 It t 1.!t11 T, •. -- TT' 1-r'"• , "1 I i I~I 1'" ..... .1·' I. • •• -~- :-T'-'

• • 4~':_1 ,l,;;;fJ""~:-

~l • • ; ':i }I~' l rrl:If.P.:~ :.;.:: :::-: :':~';:i:-:tl "t .',t." tt,!l~tl ...•.... -... _;;:::...

:./.:1 "'!'; 'T ' • , f. , • ,rl otrj n,j .' r !"I;Ii, :":,'1 litl ;1" li:, "". fr.: ::" :;:t.! ¥.rt,:tll,i..ll 01 I" "I.' ~·t tJ:tJ p::j '!. .. i:rq I t' U,t r+l ;W !;:r ::--', 0':":- .:.~:..: :;:;: -!1'! -t-,. . 'cl:!'. '" ~ ., ',1 [I,t:; "ti:!i" lit· tit If' ,tJli' , ':t "" iHi' :cl' :l:: ~ :.:: ::~. :#ju:'1 '.., , ~ .n! I, '"., 0 " I, ·f· I I 'I I "., ,. , ." 0_1 -- . •• u.r, -.' -." . ,;..j I..... r -I T •• ~•• -I •• ~: t- •• 2

'ft! ~ ~ , , j .-,.," !~1j :ff~' 11" f' j' , 'Hi I '1 'Ill .•. t" ",,, ...... t ,." • ]• • ~ ~ • .-! ~ n" " , I- -. ! " "., r do. _. • •••• • ••• ~, .~:± '+J"';' Jl lof rot' . _,', I rJ .t1.1. :.I.' ~ J.~: ! I ~l 1 ~:: ;.:, d-: -lH-: nd I::: :..:.:....: ::.:: :J 7~:

. fill." illl . If' . ~~. Ir I"S t41' }I" ''1' II" if"'1 'j ,"" ,.. q" Iji':' IW 'll.IIW "1' , .. •. t: .., . T 'J' -r- '!-I'''" .:! iLl, 1'1,1 . u lql 1 ';1:·· I-l!' f:' ... ILn-:~'.1+,1" r-r- .~. 1..+ .'. +-_~ .••• ': ••-, .. 'i',-, _,I. ".. ~'."

':.IJ fj" , ,.' 'j , ':~! " . r" I' • " .. "I' ."..., "'n' ".. ~11i-' ", ..... J.t I" -~:.. .+: .- t;\ • ":-.;-r. T. .~.) It!:r., I,,! :'.; I 1 : ";..:-.. l.n (H,',tIl ,:-Ii Jt- t ,~l 1- t .. t :::r.117t-J . I' Lt- '111 ," -.1,. I. , •. ~f.. .. l.~ '0 .4., , I'!'ili'" . m" ii tH U" " .N!' '," . '- 'I~, d·' .", "'1 1"j'i1lj' 'I', .", 'lJ''; '1+ ,.,tt" IT .• • 1": f~ : "": : ~ :::' ! :Q:: tt iii ll·; : :. 1~ r:: ; . r' :'! I j , ~!'. I :ttr· h ,•. ::j " 1. ,.j., .., I, ~ ;'< H, 1., I .. ·1 , I. 1.1' .11.. ",i I. .. ,.. Ii'! 8

", '" ,." elmt' .", \:\; ., .. :'\" "I' id· JI' .. ,. T '/'. ",..... d, ,". , .• '11' .~ '"w utHffi j' .~. I . 'f[1 tn· l:]:lt:1·qf'I.:l\i'N:: lt~ flli ·1:.1 i;:: :':1 ~t:i ;:.: nlj lin .r';'l ,i~i :,lta ",

Z " ~: : ... ,~. "'4': .' Hi;' ~.... ~ ••. ~.;; '." '.~: : '.:' ::;~ ,;:. :;: :::: ::.: :::~ :~;: :;.'":~: :", ;.;~ I" :« , f1i, 'j, 1"" "... " ,. f liil, ... 1. 1 1'1:. 'I- ' , [,,,, ""'I"" .1l1"Ji1 ,.. , .... "1' 'i" "'I . .,. ,... d,' Ii 01. ., "Uf,. : .::: : .. :! .:1! t: r- r- ;tttFI'\.., n :!:I I... .. .::. :\.\.~:'\.: ·;-n:ll,.:. It;' ~~:: jll: ii I;' I:.: ::r',:1;l .;1 .... ::I' .. U:t

J: "'j):' :l'j' ... , 'IJ' , ,." 'ill' fY'! IJI 1'N!'n' I" if'I"IJ'g' it··, 'II! ". ti-'Z. 0;," 'j' ,', " .. 1-" ",' "I"" ..... ," '. I .. ' CI- r::; I! 1_: :) _,'rt T t,',' "', 11:'1: -.r, p.,'l ::I:, . :i'll.,'; I·!!" 'i:1j 111 ::,i :l: :,:' .::; :,,"1 :Ii', I:l~ 1'11', Ito...... • ::1 ". I·. • ~ t • ~ t. nL I. . "ro· -I' .. f •••• , ..... 0'- ..... , ; _. • ••

W . btU'. "H :. 1 'm'ltll 'Ij '''' .: 'II' lifi'll ,. u; :'11 :"'11\" ,(.~'1.1 , i!:-(. , j',. U.H "I: :::i II!' .:,: I": 1'1" J:. :I.I~'"'== l!~ :,1 .... 1. . t Ti ,,""'1 I ·11' r- j + -I .r.. p,. :", ": ': ; ",.,1 .. I'" ''t' .,,+ ..... ,. ','- "., 8~ ~UI • II' ~ 1. l' •• :q..: . '11"_ • ~ •••• n., ,.. 1." , ......, '.' .,j .....- ,... ;',1 t 1 r'" I' • ,

t·W···· 1:.1' ,n It I' 11'1" Jid'j "1 'M" ~.. I ff1j' ii:';' I::' ~:" ~:. ", N' iW I": ,r:' "'1 ::,: :t:; rti'" '::' ,,':. -u. ,... ,,,., '1,"1 I' '·1 I"'" , '1. , r JI",. '1: ·C'\ ''';'' . I .J:' ,., "t •. 1. ,:1: ..... , ",' I' ,• •.• t ~ ~ t-!!I' t f' .... ., •. 1 •• -. Ih· .; "" '" ..c: .'!~ .... . ..• - I: .". ; ... , , I·

o $,'" II I", I" 'n' tIl ,"." ,,,, j1 .; ~ 'I "" _ .. 1:" I ~,K" '1 " ':l: ll" '''I ...... " ",. ,. .. ,d "rn'l .::' .. ~l.. f or t ~!. ;1' :.;.. ,1" :, 1.'1 • .. • 'j I ~ ..;li .•~'~ •• ! "..!~~ ':r: ., ;:;. ~;:; ;::.: :;;' I: ~::: ~:' II!"i~ >- ' .1' Hil '". I, .... 11. " .... ,... it ~.. ..u. .• ~ ,rrt. ,.,. '\,;' ... ~ .. 'I;"~",.I-i:t ... " Ii .. '''' ... 1 .,1. ., .. 1 ','+'lE: a.. r:' "'r' ,I! TI:; tt! ... 1j HI '1'1; !iiJ 'I! t:t:Jt lie !.t;, i~.~ti; t!I':±t, lll, f'ltf %.;1::1::1' 'Ii' Ii': In' iii II':: ii'! U:i r,:i ,ifi If, I'!4+ ~ I ;11 '" .;n t-yl: l' '11·!. ". J \ ~lij 'L:t: ,·ttJ .... "", . .- ..-:i:t, '.!J:, t\:'tJ .,j :.l .ti\ ·'t' t~l ••1.·... ·, ,hl-~~ I.t'r

"« 1lJ.l' !ii' ,~'" . 1" .11' II'" 'II ~t f ,,~ '1m ili!' ft":\ !r; !'t: lL ':,l!. I iN'" 'i"N" r;'\' 1,1' "'I i,ltlI .,:: :.. ' r::I '1,1: :n, ',."Hill' ·1,' ,,,. 't I 111.:;'!'I'· 'HI I r +i'\ I.j rill ~ "r • 1 I· I ....;10 r.1· ,; .. ,., .• ," .I, ••• j "" ,J: "II I I • -.. •• Ilp " 'I' .. I. ". . .~. . ~ . j.,.... I. ,. ,. j.. • 'I' t·· , .... , •••••. , oil: '; 0'Hl. ~ 1;:H ftl· -r, t ! rlfj i Htill ill "I+H: lj:Hl++hr; tii:nr !~ri ;LJ,I;1. t; f I ~ '; ~\' ..\:: '-:~ .'~~~..!i;! jl~l L1':': :!;j ~;:l £::1 I';q :~!;

~. Z 1 .. ~r~. . .. , J:. t· d. -.-.. • ;t; . ,.It.tl-.l n:j I,; .. , .pl n.. . I r ~\., ;'\,.; . .Li~'. I,U .. 1. ;,.~ I. ... ,t. r" 'jl

,~'. W ' 't. !lfl;' I'll r .II!' r 111'1 :t;" I'~R '"I'tBl t,'~~n;,-,,! 1'1 '"" ,.W .'<');:'~." 1:",<1:: !;jr II:! ":1 :,1: I'il 1:1L"i . :11, ;.,~ II-:i; r t'. li1 J!;r n: H::jt:....+.U'~'t1j 1!'\.' . Itt I, ; n\.'1.\."'\.,':I~: ';\:1.' -~" ::1: :,;. ;.!"! I 'il-'

alfWf "' t:' In''' ,.,. 'f" . " g" .. , li/' 'I" iii' ['Ii' "'! I'" n" 'I "It " ~1 'II 1& . I' , . ~\l ~~ r'*" '" ... "., '1 .. ,.. "I' II',+ ~ ",. ·t' '., I' I'" "rr'I" .,. I t1 I ""H" . ,~,.. • ". '" .•• "'-~. :1:", .... ,. rrt· :- :;: .~ .;l: ;;: :11;' i; -' ; '1, i 4, 1.111- PI f., ~ ~l +111.1; ":~ _ 1 '!: 1, ••• ' •• [",~ • :.r.1,.:: PI: I!l' :!~

·itli,n fP.' I ~"I" ..... . 'iI'f~'iJ '11' f1' . , ' I' "t" "., .. ::\' '"iH ' i" i\i \~..",,,,,,,~. ~ ... '1"'" .,1 ,;t- ~ ;: Ij ~ t:.... 't r: J +' ~ j I ~ 1 1.,:.' jl 1+l1ft:;,' r:'J- 'I ;" .' . ·~,.:~I:.-:'" '; . ',::::: II;: Iii:H_d FEr ., ~ -;i-~,., ,... 1,.1 t ;; , • ,1 ., " • , I·, r I, "",1 ,I ., :.' 11. ," .[\i r'\..;. .... ~ . '." 'l , .... 81M'" JJ±: '''''-11;'1.-'' ·t'· . ,. 0..: • "II rt'J ,. I:U','"' .,. n rr' fr .~ .~, ~., . ~.~.'N'" ". k' " •. ". ":j till r 'jij ·'ti '..;j:: ,1':'i ip ,q ",,1 I: r:!, "I' I'I';+: t :0 It.: j" 1'\.:-1:'1 'I' :?<....:. .. ;\ ,'!; , ~: ll:: ~:t: in 1

, .' ... ,... ' " • >- ......J. '+' I '0- ... t " • .' ~:'\.. 1 f'ld.· .. . . . .. , . I." • I I

" ,:i :'J: ; ~i' .'1" ::;' ''':r; itf "1 I',: ~,r ""i l 'mi' l' it: Ii; ': p,) II' \""1\":'" .. ~~:::: ;;-,,~.:. :,11 I'.!, ,". "'1' I .[. "'c. , .•'11., . 'I' "-... :"', ,1'11' . , t ,.1, I "',' ,n. ~,. ,m ..•' <1,. .., ...... , '"" l......~ ".- j. , • i~h . r....... '"f' ,illl . •. , .1 4 ,HI!. ,' .. ,I, ,' .. I'" H"" I ..., r'" •• rI"

'-'i' ""' I'·' .... 'n I"' ., .. I"'r II' '1'111111' ",,! i" I, ,. I " " II' ' .. "i'h J ,.••..~. I' ,...... w..·~~l'+! :;'f ;", __-; i ':-l' 1:;/ ;p: . ;: III j . , ,. +1..:1/ I - . c.::r .j , ;r, 1:' ' .....111 "lip, 1\It; .~ll ,I:;: :;1' r:1 '.' I_L • • .. p.l I.. ,~ ... r,. 1.·•• 1... I I .r.,1 .ljl j' . 1 :..It- ~ II 41- ;--l- l~.-. tr -l-HJ .t:l.: ,\,t !:!.. "I'i ,," __ , I ... !, j. ~

'!± "t, it[ ":'Ifflllt'w lij:1 ,I"" l 'Il' .. ,,' H . " .." ". lli'h. 'til I,. . W.· "I !HpITI''':-l<\Jt•• , Ii:: I ." HI ~. • I , 'p. .:;,r ·n'ILl.IlIl' "" 8.;...., ,:+ , ., T'H

8 0 0 0 0 0 0 ""o Q 0 0 0 0 I~ = 2 ~ ~ ~ ~

';iit

~

~I

"

~

~

~

~

§

~

Page 104: Data Book on Hydrocarbons

<-----------------

99

Page 105: Data Book on Hydrocarbons

300

400

200

..'

:n,. ,

~1~IO~°lEi'§ml200:.

-.

,-"100

1000

=.o:r-...r: --t

900

Jl'E '., ..t ~~::::

••.

100

ENTHALPY OF PROPANE

600

700

500

600

--1000

~-+

.;'

'".~:1:1

900t

it::r.'

tI ' .800 • ~,

Page 106: Data Book on Hydrocarbons

101

.~oo

Page 107: Data Book on Hydrocarbons

.,.....T •

1200

-:-; .:::.- :::::":.. - _.. -- ......­.. .- -.-

1100

400

_I ..... ..,."""''''+ •

,-

T

'.

:

'ft-,

900 1000

200

~.- #IT.. ·-t"T.... ~ ..... _......._~ tt x~

+.r. l'• 1'1 r

, ~ ttli-......ffi W

100o

, -

-100

600

800

700

sao

102

Page 108: Data Book on Hydrocarbons

103

Page 109: Data Book on Hydrocarbons

Q

ll'l

N

"

+0-

..,till' I '.I\t:1'<t

l[ti' ' ,. t'itr ~.....

8

WIIUmlliflo'~f1~

Elm!

o

31'

I..,.

!+

"~I-0.1I1--l-" tj.:H.

'jJ

jffi

8

j04.m'"

" d.-lt~

oo<S)

oo

'"ooto-

oo(I)

oo

'"ooo

8 8 0'" ll'l ~

1 ,lltl.W I' ' :,.,; "III IHI Hn IiI1t1 Ii'l !j',l, 1tIfl-1~ .;l!9ft 1M'! ii., .:>.':" , :t -::. F ••,i!},;iI:r.:'1,

I, :~. ':1' I:II~ ;-:',: ~.;;:-q·1 "l"';' YU'"' ,.... 'Nn' ~.~ , , :tl:" lui <::.::': ., ... ,• I'" I' i'l " ••• ,., •• l [', . n.l',. .;:<+, . . I,.j, to; j 'II"~' ., .. ' ,. -.. ,rI-

'I' . n:' ". Hl· " '.. , ~,' !It'" 'Im ,_. , ~ r1'... j, I" 1 '1' ,." '1" l:. \ J' f" - ::."rJ ,~. ,~ L 1: ; I' • L~... L :1; :l-~' : I. . - I 11:i ~~ ~'.'::i'; H:, H'· ,," , ., ,1,'1. ~ ,:;;:r.:=;~ '+ '1" Ii!; !' '1:i'. l: '.• .., .._ , ........ '0" 'I'~ ., , ; . • ... :..+t-l. '4. ·t· ',,1' .w; ',.,. I·' ,.- .... ,I" . ti ~, ',,, . . '- ..... -+'~~l...,-I .. '," olj. '0.;... II -" .. ,,, ~If J ., IP- I 1, ,,, I .. "--ro =t'"~~..

"I ffij. • I'; .. '" t;l' ;::. IU, '*, " ~. , ,:i::-J I',1/""""1"1' + ,," .;.. - -j.-+., " ",,-,' .•. j , .....- ".., ~

j 'IH- t I ,.:; ..: ::d.:.W-t!;:-r·".. - . • ;..:it... l' 'W: t ::"~11jtii~., " '. , .. " ,~d:iP.

'j j 11'"Jj :1,' H,: <i.! 'iii 1f, it '. ~ • "1,x~ , . '. I¢,IX: ttsl:t:l:1 U-~. I" l.t .J..: .... 'I O-'f 1T~ .. ~ ~ Ult.t..ut...t~

81+ . "j'jl" .... ' ,1"., ,. ,.- I':"t. ['j 'j I' " ,,< I ~l" ,j' "~I'm ';1; ::: 'It; ;;J': f :.' .' ,+:..1 "1 ... t· ~" I' ,._'1 I'. trt: ! !" ,. W·· .-Ii .L, •L ~;.j '.,l iJ1 ,+11 1J • ..... ... I,,:;: ,HI."'I+,IIU' i;;" ,",,'.,.,:.p: 11+1,':[1, I':' ,', +i:11 'U,l t ., ~~~ .'<41:-><: r~ !:il-~'&"t" ,,,.'!Jt ' ", - t. III 1 IW,,\; '.Ii' or~,~C'.At,t:;'~. ~:' ,'" "r ' '. .'.;+" ~- .• - ,..., ......:. , ., "•• ,. " .• . I. I .. • 1.1 'tt I" • ~L~. ._ ~ •..,,1111H1:li~x~:'\:!.rl It~.· 41. gil li,I, 11! " rh ,,:t~IN~t~,Ji' II" ri: ,', lS' .....' :'(~ 111'" 1 ii;: ;'11 I., '11 ~" lIt!..... ., ~Il :].:.'ur" ", •• ~ ... ",r"'1 I 1'" "'l4I" . 1 1 1 LC'. lIT '" ".,.rl;~l 1'1' 'l.!.'~. ...:.'\.,-'J..:'\l .,_ ". • LL, ,.:j:1 •

Olt I '''J Pit 11",,7. ''', "" ~" '1' trf - ~ .•• .." -, ,._, •.Olt: ilL .!,! ~i: mK: ,:~ 'n. ,~jt r: Ii,' , fl1. . ". ,tl ~~ '., 'Tt; " I 1;'

'!'n[lfli]rIHW;1'i-1l\J~I' rmrlfii' '1:llfffh, '1ft . ';-"1' . ±i 1n;7, :fi~ffiHHtI,! l'lu' 4::, C H'. ')':1 ,ii" HI! I' 'I i 'WI11111:lt~~.j:j ," ·1~1· ~ In·ittll; .00lL: I ,Il!;~'l, ",",~~-t I IlttHH!111±r' ... 1 f '.l!..: TlB..~

,l1lilllfi iiF.1 W If !i1~~ tl Ulj ill! lffr ~ ·tj1~ I ..;t! ~.. "111'1'1;"1'~I'II~II8~m 1 'W 1"1 "'I Z 1" ,.... F'''~f "H' t/I' '" • , ,-ill;; ;.;::: <l ~11Fil:f).;!Xj"S"tll·i.rl"i IiU 1+ .....0 ... : .,:: .::, ::1' f- j':; ,,:. ';"T'~: . ,.: tf' I'm'J ',' • , I:lti;lt "I'!::n Cl. I: '1'" y t ',.." .{; , , .,.-fi-S-'t . 't;J ."t 1- ol ,I" -l.; ,,\.;<oo. ," I •• . 1 '

:; 1\1: 11;' lL.. 1'1 WI "'.1\ ~~' I ~!l;~ :;;j 0 Ui ttl tl..:.'X '.,;

I "i' ,,', ql: Iinj I' I!E il I .,., , , '8 ~ ILl:\ >- ll'dn:li -l Ii i ,j 1 ;; ,1 . l-

en' :t I' . : ;"1 Cl. ," I' , I' 'I" ~" .' If" +il .; J:: ," I -.l Iit,: I' t j. I, I ;1' , ~ " . ,i:ln! j :11' :i'i ~ ;m ,. , Iitt f'. 9/: if ii' . " JI'I ; , ...,,':~II,:'lr!~;:L ~l:l III-t·.• 0'1:- '. 1. . 'L~:

~ij fHj:1 ;i::';' f- idi Ii,' ;'Ii' "I ~ "H I I I' '.' 'II '~". 1~F.i-~ 1 I.:..;.: ~l~' Z ,i~l:P • [":1 • i+ ' I I.. • •

o"ili .,' I W ,:1/1;1; '"I " 1111 X" :\I. I 11 111 h .dltil! I.l .... :__ HI: l::l HT .l~ 1- I·,' I .. ~ ,... ,\.j\.:" ~ ! 11 f t:j rr.(I)" , I . ",' j ,. I' . I'" I "1' I,··,,, 'I '''I lJ.'II I.", .[., 'Wfl.'"FJ. ,ll I.. . I '''1;' 1';"~". 'u ,:m".1.. +l:..l " .f. !H! :l:~' j . ":~~N.l I'U:~

t I I I ; j i;:i:Tn .~! iTI1~ri t Ii ". :ttf ..t 'l.'\I'J\Jrl 1'1 nn' ., T I ., , .. , I" II" '.I, t Iii· II:' i'/ 1tL,,~~N II ;1, II lib.

oj··· , . ~ 'LL~ ~t ~ L~ 1·, :......1 I .,1 '1t.\i.. r I I ·n' ~I~!'-

Page 110: Data Book on Hydrocarbons

105

Page 111: Data Book on Hydrocarbons

300

100

o500

1200

,--

,,

400

-t+t-;-, HilH1

300

i

100o-100-aoo

,900

f " f. , ,. u

. t~ ~T.:

800 • , +-:.I ..:t: "~ • it:· .

, ..,j ...rz:i .:-: _.1 1

100 600

It

600 500

,t 1

1500 400

~

400

106

Page 112: Data Book on Hydrocarbons

107QR1G1N A.1.,\

CO PI A (FIR ';1 "cD:) i

PABl.,O 1'.1OT['.'\

Page 113: Data Book on Hydrocarbons

500 600 700 900 1000 1100 1200

900

800+

700

~oo

ENTHALPY OF ETHYLENE

JJ•

±~ T

I~ 1 •

~ l~rqT."

+

. ,

. :II "r-' .~l.<f' ,

!l±fi'

} Jf.- 1:

, ..

._.•'r~ 500.,......- :P I

...... ,"!}S .-

.; .' ..,.--JF,e •. .& ~ ".-1 ~+.

:~. 400

1±1Iiti

-200 100 o 100

108

200 300 400 500

Page 114: Data Book on Hydrocarbons

~200 -100, o 100

109200 300

.'

Page 115: Data Book on Hydrocarbons

400

100

00

500

,.

+.

400

1100

:ttn:-.~.!T ~~

".~

,11

JOO

1000_. -- .. - ~

;t;:1±l=r- .ft'! 0::-, ..t- - •

-'-1- .......700

r- r ... _

7E ~--::;:-+ • ­.;,.......~

- -l

-r ..:...:.'T~:"-';r...

-+ --••

=r

ENTHALPY OF ISOBUTENE AND BUTENE-I

~-

.;...

: .,.~

600'-' . .

.~. .I-:!.',e:.~_ .... ._~_r::::-::"" . .... "ffi=.::£i.f ,=:,;::::::, :1:=~ .. =.'-'. -

900

800

1000

110

Page 116: Data Book on Hydrocarbons

1000

800

-100 o 100

111

200 300 400 500

Page 117: Data Book on Hydrocarbons

o700

I

I I ,1'i ,-i' 200

-1- f ' t ::;:II, I

600

j,

,f

;: i

300

I 'tIT I' ,• I If:.

M ,tI l' [ i"[

I :" . I )1~ . •. ~ ill ; J II

l.

- t I I. - t 1I

200100

500

600 -ffiEHffi

400

112

Page 118: Data Book on Hydrocarbons

o 100

900

200 300113

400 500 600

600

500

400

111300

200

100

a700

Page 119: Data Book on Hydrocarbons

500

900

600 'too 800 iiOO]"If{ 9 001000 1100

iJ ,

I

'iH, " , t, I' 'I' ijf1'lt"'",I~ I IX, ',"'!l', ifl",i,j Ill- _ .l t ~ t ii r! • .• l~. Kif.; l':.rt'I1'"!.Jo", • rH :U~.

700 " II t .' '. 1f":Jt If I "" v"" J::IX:.- 1 I ,.' ". t- .. 1". t ~ . t; ni.f ;:-, Ill: .~ I . f~! :- I

• ,It t 'L: .h h!] mt " c:- V/- i },1- till •. ,. Y,:/.'lt I

'4,. '"#~~li~:~;j J'.-"I, 'b'lfat'lH!llI .. ·l·Y9~,', '

:~ ,:<- t I +:!,~.- tJ, it ,

j t

500

±

~~....". "

400" • II~, '

400

100

, 300

..

Hr· ,1

1 •

:1 . Ii" 1H l-fi1 . I

, ,,l'il ,.

I fl1! j I, mTIl

I r! 1fT) 11

" J f:lf', ,lJ ~ I +

a200

\ J

114

100

t

a

, 'I

# f T I I:, 1 j, II

I r I Ij ,

,;Cl&'l' '

I

IIi! ,.J

200lillrlw,

300

Page 120: Data Book on Hydrocarbons

115

)

Page 121: Data Book on Hydrocarbons

5 0, L

600

+

700rr

=800

~Ll1J900 1000 1100 I 00

~ , .~ ••• - '--rrl -....

j: ...1;1 :::-: :--::rl:z:::.s: '-;': ~.tr'- ........._t-""4-

.~

ENTHALPY OF PETROLEUM FRACTIONS r,;"-~"- ~~ ~­IT_" _. __. .~ '''iFf''''.~-;:+.. '\1'--0-'-'" ..,.,...~ ... -. i2 .... ". -.... , ··f- --pi- -t-·-o-J--t,·· 4-0 -I..' '''''.'r--_ _ -0- • •••• • __

~ ..- - _ -_.. .-......... .. ..

, ,

400

~+

300 i

..::t: r' 'T- I"

•T ._ I :::-:-_ :::_.~- .::~~~ -~~

200100

--:1.. :.r"~ - -----r­. "cil+= fO--

t.:z= :--' .. r:::::. _

o

T

,...- -r-'

ttL

~ MEAN AV. BOILING POINT 250 of ~"~""

CHARACTERIZATION FACTOR-II.O

,,'

",

r ': I 1:-

...... 1-

T

600

116

Page 122: Data Book on Hydrocarbons

117

Page 123: Data Book on Hydrocarbons

200

o500

, 300

1100

1100t

• '::1:- _ :.:-..•- .... :.r • -I~ I ,

I ~ ..-

400

~1 t. -:::r: if!"".' i

., IT

.1 tl, ,j ,

, , -4.;T ,I II

,"

1000

300

:

200

900

,·f 1, .

1 .' 1 .'.' 'lfJ ,1 ,

'f,. , , .'

1

ii·;:l

.,

l'

800700

, ,

ENTHALPY OF PETROLEUM FRACTIONS

i

fillI',J n

t j • ;

I

, 11,

. I .' .f> j

l'

500 6 0

500

600

700

•118

Page 124: Data Book on Hydrocarbons

o 100

119200 300

I400

Page 125: Data Book on Hydrocarbons

400

; lOG 1200

, . :-,J:!. :.;

"

r r ..

, ', ,

:;'.Lft:Il:1ffit!lj300

tlHlfFHH. ,.

PETROLEUM FRACTIONS

MEAN AV. BOILING POINT- 400°F

300 IlIDJmlI

..200

800

900'-

400

600

+

,J!

300 400

100

120

Page 126: Data Book on Hydrocarbons

o 100

121

200 300 400o

500

Page 127: Data Book on Hydrocarbons

400

300

o5 0

1000900

122

800700600

1IIIEGN!TiH~A~LPYOF PETROLEUM FRACTlONs~~~1111MEAN AV. 80lLlNG POINT-- 500°FCHARACTERIZATION FACTOR -11.0

500

700

,

300

600

400

200~1~.

Page 128: Data Book on Hydrocarbons

400

300

_2.00

3002.00100o

, .. ,200

123

Page 129: Data Book on Hydrocarbons

400

100

200

12001100

1"

300

1000

200

900800700600500

124

700

300

900

400

200 1ffifHlP"

500

8oolllllll~~ITIlilMEAN AV. BOILING POINT - 600' F

Page 130: Data Book on Hydrocarbons

500

900

aoo

300

600 700 600

125

900 1100 IZOO

100

Page 131: Data Book on Hydrocarbons

800 1000 1100 1200

Iii ENTHALPY OF PETROLEUM FRACTIONS

ill! I MEAN~OILiNG POINT - 800 ofCHARACTERIZATION FACTOR-II.O

I-I

100

o500,400

. ~

" I;t

.... , .~

...;, -$" - 200~

" - '. ., Cl~~ - . ""

300

< 400. ..

gg•<

~- ,1

;300

"- . ,

4 -.. ='! •

100 200

126

" .

::t::

o

• j .-,

•'~

'" -,.' =-a

700" ..- - - -~ ..

600 ~

~

- ..- --

-.---1 -500

,- --~,-.

~.

400 ,-. ~,~ ..

~ ..-t±:-:'~ :;EPi ~• ::T:_ • !:tt .

Page 132: Data Book on Hydrocarbons

500 600 700 800 900 1000 1100 IZOO

127

Page 133: Data Book on Hydrocarbons

oCD

'"o<D

'"o<t'"

o'"'"

8'"

o<D.,.

o.,.<t.

o'"<t

o~

o<D

'"o.,.'"

o'"'"

I ~•. Il.·: I

:- j~ '::., . '0 OJ'I -! • L;.: :pI, _,_ ... :r". Cia

=

:

- t

.,'

lHin . t

- .,

o

_ .........~ -"

.....'.,. -t I :

"~

g<D

o 0<D <tlI') lI')

o

'"lI')oolI')

oCD., o

<D., o<t., o

'".,o~

oCDIII

o<DIII

o<tIII

o'"III

128

Page 134: Data Book on Hydrocarbons

6 .7 8 9 1.0 1.1 12 1.3 14 15360 .......... , :l:tll

!~: ~ ~ ;. ~ ;;:.. , ;. "':'1": T···· ...... 1;'0'· ;1';.11' ~;;t,I''':Y If '/ ! i' 1.1' t 11 t.,....,... I r,.:.:l] ;n 360.. ~ : 1

:.. : ., .~"1: ~Z.b~. "j' ': . z usn :) I,. )--r--/.- ( .. ,I J;~.:.)r.:·:-:':':':':jr. u:: ).';~J±l;~ 340IJ

320

I .. .. 300..

.~_.~ - ....,. - ... .. , .. .........- 280.... '" ..._.Iil.n; ~:'::~'. 1 ,1' ... , ,•.~.".., ...... , __, 'J/ ,_H, /" .., ,.. _, ... .,-,' " ... ,···----11 260

240::1.":'J~:lnl

;;; 230-.<C

: .... '

'---....... .... 220

210

200

190

180

170-~+"ill. 160.6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5

Page 135: Data Book on Hydrocarbons

7 8 9 10 II 12

440

420

400 IlfIf1TH1- ±i

MOLLIER DIAGRAM

FOR ETHYLENE

130

___~1Lf'l-,

t-; -

I 440

420

1400

380

360

340

Page 136: Data Book on Hydrocarbons
Page 137: Data Book on Hydrocarbons
Page 138: Data Book on Hydrocarbons

.86.84.80 .82.76 .78.74.72.70

•••__11340

.66 .68.64.62

290

I280 HffiH+/lI§~~*l'

Page 139: Data Book on Hydrocarbons

520

~oo :

480

460

.14 .16 78 .80

. I',- IiI,.84 .86 .88

134

., , ,c

I !i 'I,

, , ,,

" . •. x1: • " •x. ",

JI • - ,, .,.

,

~ ( r, ,, • ,

• .-I ,

~

l. " '" , I

.92 .94 .96

Page 140: Data Book on Hydrocarbons

28C

560

340

310

290

350

300

440

540

520

88

llEllE31 330

.86.84.82.80.7876

~._.400~ 380

.74.72.70.68.66

360 li!triffiiRflHl

310

380

340

330

320

.64

300

520

280

290__

440

560

540

400

.62 .64 .66 .66 .70 .72 .74 .76

135.78 .80 .82 .84 .66 .68 .90

.:-_~-~~-~-----~-------------------~

Page 141: Data Book on Hydrocarbons

Section 8

DENSITYLow-Boiling Hydrocarbons

The specific gravity of the saturated liquid, from low temperatures to thecritical point, is given on pages 140 to 142 for a number of low-boiling hydrocar­bons. A hydrocarbon mixture is assumed to be an ideal solution, and its specificgravity can be calculated by adding the products of the specific gravities of indi- •vidual components times their volume fractions. This assumption is essentiallytrue for members of a homologous series and is a good approximation for mixturescomposed of hydrocarbons £l'om different series as long as no component is in theregion of it-s critical temperature.

Thermal Expansion of Liquid Petroleum Fractions

The thermal expansions of liquid petroleum fractions at pressures up to 1500psig were derived from the thermal expansion and compressibility corrclations ofWatson, Nelson and Murphy.! As in the case of many physical propcrties ofpetroleum fractions, thermal expansion is more sensitive to averagc boiling pointthan it is to gravity, although both independent variables arc necessary to corre­late the data properly. Up to 1.25 multiples of the volume at 60°F and 1 atm, itwas found that gravity could be neglected and that the thenpal cxpansion couldbe represented by the molal average boiling point alone. Above this expansion of1.25 volumes, gravity is introduced into the correlation in the form of characteri7,a­tion factor. For each average boiling point two lines are shown, one correspondingto a characterization factor of 12.0 and the other to 11.0. Interpolation and extra­polation may be made on the basis of characterization factor or, if preferred,gravity, which is also given for each curve.

P-V-T Relations of Hydrocarbon Vapors

A series of charts on pages 148 to 153 give I' ~ PVIRT, the correction factorto be applied to the ideal gas law for hydrocarbon and petroleum vapors. Thecorrection factor is plotted as a function of reduced temperature, TIT" andreduced pressure, PIP" where 7' and P arc the temperature and pressure of thevapor and T c and Pro its critical temperature and pressure. A explained in thescction on Critical Properties, the pseudo-critical, not the true critical, tempcra­turc and pressure should always be used for hydrocarbon mixtures. This methodof using the pseudo-critical properties of the entire hydrocarbon mixture is notonly more accurate but more readily used than the application of either Amagat'sLaw or Dalton' Law to the individual components.

10;/ and Cas Jonma/35, 85 (1936).

136

Page 142: Data Book on Hydrocarbons

DE"SITY 137

111'V'" = - (y "C""C + y,,,, + y,,,, + ... )

11'

Since there is c\'idcncc of ::omc lr('nel in p- with incr('a~c in molecular \\"eightfor T,. ;> J .00, there are thrC'c Ect~ of charts for the rq:rinn where T,. i~ {.!;I'cntcr than1.0, c-o\"('rinf.!: din'erent r:ln~c~ of ll1ol<.'('u]:lr ""('i,,rla. Bt'!o\\" 1',- = 1.0, Ihe data arcjn~llmcjcnllo take into account n similar trend, so a ~illglc chart 2 covers the entiremolecular \\'eight range.

if olher gases (1-1,,0,,1-1,0, clc.) arc present in a mixlUl'e 01 hydrocarbon

Yapors, an cfTccti\'c Jlrc~surc equal tn 7rV?!IIC E"hould be used to obtain the rcelutedpressure of the h~'drocarbon portion. Likcwi:::e, if it. is ncc(':;:sary to lake int.oaccount ~as Jaw dc\'iations for any of the oth,,1' gn::=c<:, p. should be determined forcarh of thc[o;(' g-ascs at an cO'celi\"(, Jln'.~:'llrc C''ll,lal to the total pressure multipliedby the square root of its muIr frnction. The molal \'oIUine is then calculated byAmilgnr~ Law,

\\-here I'm is the molal \'0Iu1l1e 01 the mixture, lhe subscript He relers lo lhe lolalhydrocarbon fraction, and the subscripts 0, b, et.c., rcfer to other gases. l.:'sua.JlyP-a/ jJ.ln etc., mar be taken as l.OO \\;ith ycry little error, sincc most of these gasesapproximate a perfect ~as at thc efl"ecti\'c pressures encountered. In the absence ofother data, the hydrocarbon charls may be u,ed lor these gases.

Cli It Ih-moleCu It/I h-moleCu It/lh-moleLiters, g-IllolcCu III Ih-moleLiters ~-molc

Cu It I"-mole

Pressure

Lhlsq in. absLb/sq It absALmAlmAtm;\1 m or IlgLb sq rl abs

VAl..UES OF GAS CONST.....~T--R

Temp.

'nOR'HOK0J{

OKOK

GENERAL REFERENCES

n10.7315450.73020.082051.31~

62.3G2781

l1e:l.ttie, IIar/lork :lIlrJ Poffenberger, J. Chem. Phys. 3, 93 (1935).Beattie, Ka.\' and I\:aminsky, J. Am. Chem. Soc. 59, lii~9 (I93i).l1entlie, Rim:lnl and ~u, J. Am. Chem. SQr. 61, 2li (103D).Tnlcl'n:llional Criticnl Tnhl('f:, Vol. lIT.Kay, /11'/. "ng. Chem. 28, IOI~ (1030); 30, ·1,,0 (J03S); 32, 3,;8 (l9~O).

J(cl~o:lnd FC'I!olinl!;. J. Am. Chem. Sn c,. 62/ 3132 (19-10).

L(>\\'i~, Inl/. Htl(l. ('hem. 28, 2.37 (I!l36).S.a~c :md L'l(,cy, Ind. Hllg. Choll. 30, (l7:~ (ID3R).Sal-!C'. Srh:t;lr"ma :,"d Lacey. hid. En9. ('Iu'm. 26. 121S (1!l~-I).

S:l~C, \\'C"h<.;tC'1' :inti Larcy. I nIl. [.,'lIq. r1l,.,.". 29, G;j.". II~S (193i).Smith, I3c:\ttic~nd K3~·. J. Am. Chl"-'. Soc. 59,1:')1;)7 (lfl:li).

;! COpC'. Lewis and Wcber, Ind. P;,IO. Chem. 23, 88i (931).

Page 143: Data Book on Hydrocarbons

7.4.

7.0

5.8

6.2

6.0

6.8

7.6

7.8

8.8

8.6

70

~7.2

60

60

..

50

50

~ r..=:n: ~£'.I- .... _

-:.' .-

, .

131.5

,

141.5

h " • ..- ~

j:j,- .,_ r ..- ..

...- ::>±::::.. ~ ._-'

40

~

~-

.- rti:: ....

.=.=::::t:

·API + 131.!5

.-: --'-f.:..v::r~_..•. +I'

I = ~...... u.;

,.,..... -"'" rl'>."T •,,:,,= ".

40

3'mt ~.

.API' 141.!5SP:GR.

SF! GR.'

30

+~ -.; ...

30

..-0++ ••'1, I:NV :r1~",

SPECIFIC GRAVITY AND POUNDSPER GALLON VG °API GRAVITY

,",...-

• 1=; ,:=:± ._ ..

-.......-... ..~.

20

:rj

.t:tl _ -...-

10

...

.,

,.

10

,.. ...

.3

"".

... ...... __ ._: ~I'_ -t

.=: 'ra~

_ .::t.:::.......,. 1-__,

.74

.78

.72

.82

.70o

.so

.94

.90

.88gs

.89 - .

,.84

.96

.98

.92

138

Page 144: Data Book on Hydrocarbons

120 130 140 150

139

70 80

80

90

90

100

100

110

110

120 130 140

160 170 180 190 200 210

Page 145: Data Book on Hydrocarbons

o

,0,0,'"

I!:.

'8'""

- ,

",i= - ~.

.."T"

i,~ .............:;..: -0,

'"

=.1b'S1' ..!

, I

- - ..:i~"

I;n:f

:r l-'o.i

"

,i ..

<t r'"! °1 -:,H ,f ~. Ilti

r; :1:i: Sf ";j:j.H ,..I

+ +;-t f. 1:...

i

,-

~1 ;:1.~: II; ""I-r

~ +;.11 !r;: :1i, ._oj _I 01 ~ . _ . ... 1,

h!~ '::'; 'ill, t'_: ttJiR,.:. ,'J , ~ •II ,- t-o- t~.. .it '++1 'l=!, i1'1-1,:11," n:... 1

III

nIl n' '1+ ,rirr1 ::r1Eli; i.

litl 'f I m' ;'1'

IT, '11

....

CD,

140

Page 146: Data Book on Hydrocarbons

­...

Page 147: Data Book on Hydrocarbons

LIQUID IN EQUILI8RIUM WITH ITS VAPOR

700

OO!

"

600

AROMATICS

.t r.' ~ 7. .

I -~.

ill! ' -I

,.

-+ if,:~

'I

OF

500

GRAVITY

USE

SPECIFIC

~f9'ig~~

•.'1111',mh"m!'~!k~il£'~':ll::"i'~i~lttl ,.~'.. .8

m- XYLE NE CURVE FOR

GRAVIT.Y OF ETHYL8ENZENE

t...

SPECIFIC

, ,

! - ~

200

. ,

....

,. . , . •; .

•1'4

, ~

--

100

,

.8 I

.7

I~, ,

f •

:l

,6~

R!.-,

~.5 e

.3 ..~ l­

1

:..

I')() ~ JV

r;

"

142

Page 148: Data Book on Hydrocarbons

1.5

1.6

1.4

1.3

1000

_1.2

900

900800700600soo400300200100

o 100 200 300 400 500 600 700 800

1.7__

THERMAL EXPA:N:S~,~o:N~~~1I1I1I1I1I1

1.1

:;:co

Page 149: Data Book on Hydrocarbons

THERMAL EXPANSION

OF L10UID PETROLEUM FRACTIONS250 LBS.I SO. IN. G.

j-l-l.

1.6

1.5

1.4

1.3

1.2

1000900800700600

PARAFFINIC; CHARACT. FACTOR, 12.0---- NON-PARAFFINIC " " 11.0

(8ELOW AN EXPANSION OF 1.25, THE SOLID LINEREPRESENTS AN AVERAGE OF ALL STOCKS.)

500

o:r.l"

400

, ...1

300

.h";::

200

I"-I"i ~

=:: t:tt;j t.lith:: .­'~1=1:1;-tt~t~

I,,"'...~ ..

100

..".,

'"'t:::nlo

;~·I.,..;4",,,---

1.2. tT+-

1.3

1.5

1.4

1.6

o1.7

....:t

1.1

100 200 300 400 500 600 700 800

;..Il-.4.

900

1.1

1.01000

Page 150: Data Book on Hydrocarbons

__ _ 300

~...",

1.6

1.2

1.1

100 200 300 4001.0

500 600 700 800 900 1000

Page 151: Data Book on Hydrocarbons

.2

1.6

1.4

!.3

.I

:.5

.01000

1000

••1.7

,

.0

.0

~E

I

i ....

900

900

,..f-i

1m

t

iii

".

a

BOO

800

~. fl

*:::r.,~

700

700

..'~T'" ••• r,."."

ilWW

• rlrl'"i It-! I Yi

1m

.-..,

PARAFFINIC; CHARACT. FACTOR = 12NON-PARAFFINIC" .. II

(BELOW AN EXPANSION OF 1.25, THE SOUD IIIREPRESENTS AN AVERAGE OF All STOCKS.

-

.Tr:

600

600

,lfir.

t' IIl·Jr.

!ffiI

~'

u

...,...t-:'~

;:.~b

500

500

i¢-rJ:,

~:q::.'

=It:ti,,;

Jl.U:'_~

400

400

/:;:j.tlr.!'llt::tt ~

l~ ',:!.'-­~:..

'V.-t

;tHi1-;,

M.i

+- it/-:. .+.: ,i ,~

mIT!'~~l~

,

Im

300

"

300

'~

,,~;

~

till

Vi

"

- ::1=li:S1 ;:rt:fE-tt..,n_-,h~ m..-tt:.':r;::::;

!l=W~

l!. IW -,! p.;:l 1;

200.:j::;'+"w~~;U:l~

t

~-tttt:r...~

200

:t11.,

t

';il

~fi-i ::l¥11:t!"~

Lo:"j,

/tit Ii$!:Ii Ji,," -,

THERMAL EXPANSION

OF LIQUID PETROLEUM FRACTIONS1000 lBS.lSO.IN. G.

0+

r~:l:

100

,;

'"'t

..

'":1":

~

"r:.

•.~;..I ••

H:

100

-..,~~i

±t:'!:tt::l1r .+rt.

H·-It I f •.4·1...... '1' !.-t1,......~l;nilqi.

_I:±'

C'!:!' lpo,,-j

~'-'j F ~ lr..:.:"'J::J: ~:± p.~'

':3:rf1'<

oo

1.1

1.5 Eb_

o1.7

H:.ti;.ll~i-Cl?11 :=rr '!:If'' '.--­~:;t.l.f!]J+7~'" -W.j l,.~ :r;J:; . j .....

!Jatj;t j:\{lR ,ilE liiJlOi.IG' J?C \-}, .+ ...."

l!Q'1h:Hl4tl li iT" im ,m'ft:: tit, ,'; ,. l1:J.fi~ ,-)(' ':J.;;-::;:; i!?- 2'~,J l±,'_14 -.-tot •• q . :n:r.,!1=:'1 -~,:n:: ~ ......i1 :-:-::-= • t+ T.!1t ...;:t :u E;:r• '.-., i~ I .. ., l.:t:Jut n t:'t ~ ';11' ,,~~~ !Ll • ....i· ~. :~A:' :=("1

"'--'It+!- H _ _ Irl-J • """=', 1 ,.. ;'<.111'_ rlI'r-~"'", :H-"- I •. ~ ~. ~1 w...+-

1 .: tt= " - ~f:.J.I;:~• • r .i1E . .~. - ;.+--dL·-'~ t:'~

t:·... ~ :;t:l , r-:- :'" ~I,/r

.. dttt! I , i i- .~. :.4 P-I ......

- -. • +t,:' ,:r: ~/,

.."I M ~ .' _li.1,l

,lTIf~

1.6

....~

Page 152: Data Book on Hydrocarbons

147

<:>0-0

Q

o:il

gCD

gr-

ooCD

g'"

8<t

8N

oo

lIIIIoq

Page 153: Data Book on Hydrocarbons

o...

N

CD

r•. I

148

.. rrwmw~

0z«V>

~.

-'

.w"-o·u·

...

ffii ill 1:1:,,.,.: . '. N

Page 154: Data Book on Hydrocarbons

1.1

.8

.9

3.83.63.4

: j;I;JF~·J; ;.J'lU+:"RJ.43.4 3.6 3.8 4.0

3.2

3.23.0

3.02.82.62.42.22.01.8

1.8

1.6

1.6

1.4

.1.4

1.21.0.8.6_ .2 ~

~

Ao

.5

:;:<a

Page 155: Data Book on Hydrocarbons

liS-

"!

~

!

oN

"!

'l:

II!

o

i~

I:

'"N

I,

'IItF

rl.-.

•~

~N• r

lit 11ffij NN

....+'

iii.

iJot:

N

"L

t

:1­I.;.'11,-':"t';:;

1

"'tiT'

,

~.

:ttl~hiT,.

i.i.~ll 1;

"

qnn

"1

,..,

1

~1frffffi

.-00•

,lim

....~

.-.,

:..." +

'.1;

wr

.,

"-..j:

h\f

-i:. • ..j :

rttH-! 1.. ,:

-- :i~.;tli:"

...

fH-mml:l~.:..l....,I:t

l'

...

.m

i

'"l

j.I

<t.-"

~

.. .j.l,

~

oft

....Jh

RtJm

~:

·.thrru

';i

u,~ t::7.ftt::t11nittt

~

+'g

",liEM

[j:lJ~

~,

;:...

l-•. ~

''-;

~

mli

~t: ••

.~,~

"!

~

~I'

,

1""

',,-~

"

":

•II

"'

"!

til

,;.u

lJ'Ii 1....,-ttf;i"-'-/1

""it'

i~ffi,

1#:Vf!.iJ; ,-i ,..-

'TIT'1-~IfIti

"!

""1b1fJ1n

4h"ll"~'." + -•• • '.' ..... !... ~ .....

:.; Ll ,l:.tt·!· ,x:.., ..

d!

III

:1 1'"

111..:11r

.......... "'.di

!:iJ,' ,'c:t!"1;Jlh.:.;f

t'·....~-"'

'"'!!",II •

:J., ~ I ....,

.Wlj':-"H~'

~

o

-, :yr­,!- 'r'-

~

;:-r:j::: :, ,

~.~~

-H"

·,~'~:H.;'d i1 ;-:::;:T;

...... ~"J

I ....,. i ffJi", IZ~1 " ., ... " ..J :1" -", ,,,[yt ,,'.- ~::-~., :..#i .L.; ::.....-: I ..... :;r,t.~ ..

JI ',:,..::- ;::1"'.. :t::~~==,1.f.' . 111>1>=. "'~'.'" .. ~r: . ,f';lfi;-I, ·.t, , i+t+lW·'-.A44H-1:t "'.:' 1",'" :./,r:;t,'I-r:l, ,;1:; : :j.;±;:1'1 ~:, .'~' 'i~ .!; ·t~ 'jf..:-lf.;·; :;J1. .. 17

.t ::1 1" "! i:4 : i,' xi tr:rrl~'!:f ' ±: '1+u 1~:1 • :~ '; . .;.:t~1:!~A-!. I

::- ..I: 'fJ,::>;; '1,111;-:..",,; t"jl:r"., f.~ .1t: :/.: ...llLtt:lttll:tt Lrr!"

:1 :/'''''1/'' ;y"! '~0 [.;' "-!.ii.':" ."'tffij ,.. • r1: I· ,.. . .,. ". • " .' ..,..:,:: .,' , , ", 'r ,H. :: ,t1f ,fj..!jTj J .. t .

I" .. :- ''''I-I,. ,I' ". f'j \.,H J;.r ~h 1~;''';:,' I ' _ ."It':/I/:: --', f!l::l, :1' 11' rF-, ltU:'" ",tl':r:zv'

",' 4''Il: II:"'~" :ttl"C<' 'T ~,~., -. "u' :d' H:';.,' :.; ;f"".:";'.J"-;.. , V,j'.1iI;-l~ ::1: '~,., -:r-,:i1~ I t ... r "._ ;,. ....,' ;..tI.. ,~_ "H·:,..;.r-::

'111"rllYf0' I """"lIZ' 'UP.' 'VI_~"d_' -..... , '= "',-' .. ,v-" 'I:,", roc::1 til'_ '-' •• :: .';;. ~t.; ..; ...._.. _•.;~~l i:1J J.H-' L

I,!I.' 'J':}. lA' "'". ~'Il(;' .. ". -r. .. " rifl [gj 'tt': ; !{;' ','"L!r:l ,-j'.: :'!1.:'IJ'I.rL:..111"';' ,~ IttL.;

. . .- '...1 .•. p~ ... J "'I' iiidT1=1 :j 'Foil ..

ttlVII "eI, 1/;:: or:: l'1'. t' ,:-r:t: ~t,ft IIIl'.J. u./':~ :.L~: ;/ ;;.r.:;:./. , ;-t:it:+t~ n-:t :r//I/'!<' All-!' ,' .. ' I,U ';'f!fI1'"':/: ''r LY'; ,..+1f1 t ' .L! I~'V" " ' 'jj' • • t Jf1' In!I j' fjTH 'n°Z~ :~;- t;~: !1: Hi ~ t..:J~ I-:r~. [HEW

·':I1:j.l.!!:.·.IL:;;V" "rlli';; '.1: ';: :I : 41' ~l~ - 1:" Uil ~!; ~1:rth:_t:t~::"t~:tt:;':lttl· .. -, ;! !~!: ~d' /··1 ;01. !~j! .:1 ~ .;~l r:p+H-~tr ~~, it

~"j;';'. ',;J'~"'r"""'l"'~"'~" tt":- 1r!"t"" 1· J.,-l.:ilit.ll¥iJJ~ e,: ,.j" :" t "I ~ ~ Ii!: ,: II :,I I fm, l'iT; liH,.1 litHUItill ~i 1 1', tJ ~j-< -l-ft1 H'-1 '1"" !'''1l:;t; "II Mn ,-tIl In Hllitt-l I !'ltHlilR i _ 't- l,t+H1 IE

~" "'"ttl: m::T'-~, ~:

~ ••j

""~~2

,-,: <t t+' j....... > 'I I

,,:c 8"";t~ Z ;..~: 1-:l;... 0 G: :-~:-':rz..-: m ~ :t:M •. a: ,. ~:'"',:';; <X' 0 .I"·

;~.; g ~ H=':±:+ a: ,.. p• 'i.: 0 0 :~,...:... )- c:~.... r ... L-.'~ ::t: I-;L::: u..o C) CTJ;1: WL..:..i:..:: :.. ._ it+~ en ;JIO ;=•.~':-fj z '."i o ~,,",I

- -' t_.

I,:.". ~ ~ ~.:I1:

Ii ~ J":....... I :~N-. > ~.,~

i1:E I ::~.'; a.. t:-::+. .. '-I-IB,;, :' ,:,IHJ:if the ,'" _t:

:±r:tt.. , at:· ..b;j1~ ···r

Page 156: Data Book on Hydrocarbons

...............•. :.:.= .:::c +;-:: :.- -::; E

•. ,- :'/"!.r ::l: .:::: :::::::J r::~'

::T

5.65.45.25.04.84.64.44.24.03.83.43.23.02.8

·9

.7

.6

151

Page 157: Data Book on Hydrocarbons

2.8

t!fiI!; 3

Iltl:tlI

l! ,7! , t,

•J

6

Ht .

5

~.

• ,~I ~

,. 'T' ,. •'"

,i ~

. .,,- -

2.0 2.2 2.4 2.6

• .• .

~ " n• < - ...

;,

1.8

;

J ..,. ,

i+.

1.61.41.21.0

- " .. . ~ ,... ..• •

, 1,

+ :J:t

!ml .1:i;i-L

•~• .jjlQ

t'

T

<j .. .

.8.6

.,. -I,

< I

~ •.j. ·1+1+1

g mE J .j

.4

I.~._-

.2o

j

.7 -1fi11111J .

.4

I.3

•<

!Wi.

.2 :

.6

.8

.5

152

Page 158: Data Book on Hydrocarbons

3

2

.8 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 Ii.153

Page 159: Data Book on Hydrocarbons

1,0.9.8.6

P-V-T

.4.3.2.1o

1.0 1I! IIII!II!!! '1111111111111111111111111 j Ii IllllllllllllfffFfFFfl313"B3iFFl"EfffEfIII i1111111 i11111 III II I1111 1I111 11111 1111I III 1a:a:tlllllll l! IIIII1111111I1 iI: Ii: II i:1111111 Sitll: II1II1 !11111 II! I !I! II! 11.0

.9111111111' III ffEliifllj£[llll! I! III! III I!! III!! I!! II! I! i I! I!! III!! III I!! II! IIIII!IIIII! II! I!! Jill!! II !! !!!! II! II! I II! 1111118333333fI111111! IIII! !III II! II i! I!!:!!'!! :! II! 11I11111111 !III! 'IIII!IIII !II! III ,9

.8.8

.... 7. .7~

.6 .6

.5

All

III!.4

.3 em .3

III

IMi

2 .2

m I ;m.1 ... .1

Page 160: Data Book on Hydrocarbons

Seclion 9

VISCOSITY

Absolute Viscosity

]n the metric system the unit of viscosity is the poise which is equivalent to B

force of I dyne pcr sq cm shcaring a liquid at the ratc of I cm pcr sec per cm.By reduclion to minimum dimensionality, the poise becomes I g/(cm) (sec). Thecorrcsponding English unit is I Ibl (ft) (sec), or (pouodal) (sec) I (ft) 2, which isequal t.o 14.88 poises.

Howcvcr, the unit of viscosity most commonly used is the centipoisc (0.01poise), which happens t.o be the viscosity of water at almost cxactly 68°F. There­forc, the absolute viscosity of any fluid in centipoises may bc considered to beoumerically equal to its viscosity relativc to water at 68°F.

Kinematic Viscosity

Since thc density of thc liquid involved in the measurement of viscosity by thestandard industrial viscometers, it is necessary to introduce kinematic viscosity,which is the absolutc viscosity of a fluid divided by its density at the temperatureunder consideration. The metric units of kinematic viscosity corresponding topoises and centipoises arc stokes and ccntistokes, of which the latter is more com­monly used. The kinematic viscosity of water is I centistoke at just about 68°F.

Industrial Viscometers

The industrial viscometers which are widely used throughout the petroleumindustry in this country are the Saybolt Thermo for rcfined oils, the SayboltUniversal fur lubricating and gas oils, and the Saybolt Furol for crude residua andheavy fucl oils. The Redwood Standard and Engler viscomctcrs arc used mostlyabroad. Curves for the conversion of these standard viscometer measurementsto kinematic viscosity arc gi\'cn on pages 158 to 160.

Except for the EnglCl' instrument, these conversions arc slightly affected bythe tcmperature at which the viscosity is mcasured, but this effect has beenneglcctcd in thc prescnt convcrsion charts, While Saybolt Universal viscosity may'>e measured at anyone of several temperatures, lOO°F, 130°F, or 2lOoF, themaximum variation between the temperature extremes in the conversion tokinematic "is('o~ily is only 3% and, above kinematic viscosities of 5 crntislokes,it is Icss than 270. The va,'iation between the extremes of the Redwood Standardinstrument (70°F to 200°F) is appreciable at low viscosities but does not exceed3% above 10 centistokes. Saybo!t Thermo viscosity is normally measured at room

155

Page 161: Data Book on Hydrocarbons

156 DATA BOOK ON HYDROCARBONS

temperature and Say bolt Furol at 122°F so that it is usually unnecessary toconsider conversions at any other temperatures for thcsc instruments.

Change of Viscosity with Temperature

Viscosity-temperature curvcs arc given for pure hydrocllrbons and crudefractions on pages 161 to 165. In the absence of other data, these curves may beused to approximate viscosity-temperature relations for othcr hydrocarbons andpetroleum fractions if the viscosity is known at only one temperature. However,if the viscosity is known at two or more temperatures, the charts on pages 166and 167 should be used for linear interpolation and extrapolation.

Viscosity Index

Viscosity index is a generally accepted criterion for evaluating lubricating oilswith respect to change of viscosity with temperature. The vi cosity index of anyoil may be read directly from the charts on pages 168 to 172 if its viscositics at100°F and 210°F arc known. If these particular viscosities are not available, butviscosities are known for two other temperatures, the viscosity-temperature chartson pages 166 and 167 may be used to find the values at 100°F and 210°F.

Viscosity Blending

To predict the viscosity of a blend of two or more fractions at any giventemperature, the blending index for each fraction is determincd from its viscosityat this temperature, using the chart on page 173. The blending indexes of theindividual fractions are additive by volume fraction and the resulting sum may beconverted to the viscosity of the mixture by referring to the blending chart again.If the viscosity of one or more of the components is not available at the desiredtemperature, it must be converted.to this temperaturc, since blending indexes arcadditive only at constant temperature.

The viscosity of a blend of two stocks may also be obtained graphically byusing the viscosity-temperature charts. A straight line eonnccting the viscosity ofthe lcss viscous stock on the 0°1" abscissa and the more viscous stock on the 100°Fabscissa reprcsents the locus of the viscosity of all blends of these stocks. Theordinate corresponding to the percentage of the more viscous stock-whcreby thetemperaturcs between 0°1" and 100°F are considcred per~entages-represents theviscosity of the blend. While thc blending indcx chart was derived from theordinate scales of the viscosity-temperature charts, the two methods will differslightly since thc tcmperature divisions vary between 0°1" and 100°F.

Viscosity of Gases

While pressure has very little effect on the viscosity of liquids except nearthe critical temperature, its effect on gases may be considerable, especially abovethe critical pressure. The change in viscosity of a gas or vapor with p1'essurc

,

Page 162: Data Book on Hydrocarbons

VISCOSITY 157

may be predicted from the chart on page 177. By the use of reduced temperatureand pressure, this chart provides a generalized correlation of the ratio of \'iscosityat any temperature and pressure to the viscosity at the same temperature andatmospheric pressure.

The viscosity of a mixture of two or more gases at atmospheric pressure maybe computed by the following formula:

N,Z,v'M; + N2Z2VM; + ... + NnZ.VM:Z - -'---'------==----=-'-="'--''------'-----~==_----''

m - N,VM; + N2VM; + ... + N.-vMn

where Z... = the viscosity of the mixtureN" N 2, etc. = the mole fractions or moles of individual components

Z" Z2, etc. = the viscosities of the individual componentsM

"M2, etc. = the molecular weights of the iudividual components

The chart for change in viscosity with pressure may be applied to mixtures byusing the pseudo-critical properties of the mixture to determine reduccd tempera­ture and pressure.

GENERAL REFERENCES

ASTM Standard Viscosity-Temperature Chart. for Liquid Petroleum Products (D341-39),Charts C and D.

Deale, "The Science of Petroleum," Vol. II, 1080, Oxrord University Press, New York,N.Y. (1938).

Comings and Egly, h,d. Eng. Che11l. 32, 714 (1940).Davis, Lapeyrouse and Dean, Oil Gas J. 30, No. 46, 92 (1932).Dean and Davis, Chem & Met. Eng. 36, 618 (1929).Edwards and Bonilla, !rId. Eng. Chem. 36, 1038 (1944).Etherington, Sc. D. Thesis, Mass. Inst. Tech. (1948).Evans, J. Insl. Pelroleum Tech. 24, 321 (1938).Forlch and Wilson, Ind. Eng. Chen!. 16, 789 (1924).I••ne nnd Dean, Ind. Eng. Chon. 16, 905 (1924).Lipkin, Duvi!'on and }(urtz, Ind. Eng. Chern. 34. 976 (19·12).Nat. Bur. Standards Circular CI,61 (1947).~age llnd Lacey, Ind. Bng. Chtm. 30, 829 (193 ).~llge, Yale and I.,cey, l1ul. Bng. Chem. 31, 223 (1939).Watson, Wiell and i\furphy, Ind. EnO. Chem. 28, 605 (1936).

Page 163: Data Book on Hydrocarbons

CONVERSION TO

KINEMATIC VISCOSITY

600 800 1000101000

800

600

500

400

60 ­

50

40

20

10 _

8 ~

6

5

4

-F_'':':

20

I

400

60 80 100

I600 800 1000

15!3

2000

300 400

,h 'i1 ~; 1!lIT"!Hl·~

4000

k':: ~#l :::., ....

I::: :~. il~! :il~·J.".i , •.• I·'

800

600

500

400

300

200

100

2000

1000

800

" 600- 500

400..

300

Page 164: Data Book on Hydrocarbons

30

60

50

40

200

300

600

500

400

20

100

80

1000

800

60 80 10030 4020

10

8

6:r;

5

4

3

>

2

600 800 1000

4 G 8 1032

10

8.

6

~

4

3

t!

2 "

200

1000 - ::: cf

100 20010000 f,i -i.Jk.ti .q

8000 -=tot

6000

=11111

159

Page 165: Data Book on Hydrocarbons

700

, .

600300

FROM SAYBOLT THERMO VISCOSITY

200

SAYBOLT THERMO VISCOSITY

-lOX (SAYBOLT THERMO TIME)

100

2

4

o

160

Page 166: Data Book on Hydrocarbons

VISCOSITY OF NORMAL PARAFFINS

.1-100 o 100

161

200 300 400.I

Page 167: Data Book on Hydrocarbons

1.8

11.6

1.4+-

I -: •

. ~±:=T._.

. -.. , ...,.._ _ -_r:r::

-VISCOSITY OF AROMATICS -

12::!..,

H·I-f

r ' -r+--r-'.-i- .-;...... -;- - ++-

- - -=1= - I'-L-., r

I

.-i--- ~..

± L..j _ ,. -- - ,.

- .

-

..,...

- -I

. --j - I

I lJiIllI I

.

0.20 50 100 150 200 250 300

162

Page 168: Data Book on Hydrocarbons

- -ri

- I rt:'

,5:

KEYI 26,8' API RESIDUUM

2 33.2' API 527-572·F. AT 40"...3 35.0··API 482-527·F. AT 40M",4 36.~·API 437"462" AT 40"".5 38,2'API 392-437'F AT 40"M.6 39.2·API UP TO 39rF.AT 40""-7 43.~·API 482 - 527·F.8 46.0'API 437 -482·F.9 48,7'API 392 -437·F.

10 -i:!...:?!= r.l- 'i_: :;.'-=:'-~:... ;<ic --=.t:-~ 10 51.soAPI 347-392°F.

80_. ~~ t ~ti ~~~£~~ .~ .~ : ~ ~:..~:::~ ~~~=;~;:~7.0 _0 __ e\'=~ •;~:il'ii ft 4' ; :1.si?=a" 13 62.9·API 212 - 257°F.

6.01~i=LGl,{: -.M cFI..i.~:',r ;L,- lc l'!'=!o\2, ::EJ=L-" NOTE- 801LING POINTS OBTAINED IN A

I-W::-;:;\ :jeil- _til 1-. \1 .,='1: -~l-+" = HEMPEL COLUMN.T:~ ,---+-+ - .-~-t-t \.tr--l=

40

0.1 'i', .100

_' "-+i-L-i-tREFERENCE: LANE AND DEAN. IND. ENG. CHEM. 16. 905 (1924)

1+!r~r~I'

200 300 400 500 600 700

163

Page 169: Data Book on Hydrocarbons

80 .•-;~ ... =.=t=<="70

60

50

VISCOSITY OF

MID CONTINENT OILS•

40

30.~

20

~ .... =~---

do'

KEYI l4~ 0 API RESIDUUM2 ~3. °API CYLINDER STOCK3 23.l oAPI HEAVY MOTOR OIL4 (lO5 SPGR) ROAO orL5 24.2°API RED OIL6 26.l oAPI LIGHT MOTOR O~.7 27.1 °API LIGHT PARAFFIN OIL8 32.8~PI WHITE OIL9 28.8°API LIGHT PARAFFIN OIL

10 3D.OoAPI PRESSED DiSTILLATEII 35.2°API CRUDE otL12 35.6°API MINERAL SEAL13 40.4°API KEROSENEI~ GASOLINE15 GASOLINE

L •4

• -,.,<i=-

3

2

I,~ _~c_o _ .•09,_- ... 5§". .. = .=

0.4

0.3 :.._-0-2

300200

REFERENCE, FORTCH AND WILSON. IND .. ENG. OlEM. 16. 789 (1924).

I II II II I II I I II II

400 500 600 7'00100

164

Page 170: Data Book on Hydrocarbons

wo~ c

90 ~~...:-- __T";.

8070 - VISCOSITY OF CALIFORNIA60

50CRUDE FRACTIONS

40

30~

KEY20 I 18.7 'API 527-572'F. AT 40 MM.

2 20.3 'API 482 - 527'F. AT 40 MM., 3 22.8 'API 437- 482'F. AT 40 MM.

4 25.0 'API 392-437'F. AT 40 MM.

5 27.3 -API UP TO 392'F. AT 40 MM.

106 30.4 'API 482-527'F.7 33.0 'API 437-482'F.

8 8 38.2 'API 392 -437'F.

7 9 41.5 -API 347- 392'F.

610 44.3 'API 302- 347'F.II 49.5 'API 257-302'F.

5 12 54.5 'API 212 -257'F.

4 NOTE- BOILING POINTS OBTAINEDIN A HEMPEL COLUMN

3

2

REFERENCE: LANE AND DEAN. IND. ENG, CHEM. 16. 905 (1924)

0.1100 200 300 400 500 600 700

165

Page 171: Data Book on Hydrocarbons

0010-:fl eo6.05.0

4.0

700600500

VISCOSITY - TEMPERATURE CHARTHYDROCARBONS AND PETROLEUM FRACTIONS

KINEMATIC VISCOSITY. LOW RANGE

30 I I I I I I I I I I I I I I I II I I I II III II1II II i III1II1 \1IIII11 i 111I1 11111 11I11 11111 11111 II!! 111111111111111111111111111 II I 11 III ITTTRRTlI I I I I I I I I i I m 3.0

20 I I I ! I I I I I I ! I ! ! I I I I I I II II ! ! I ! ! I ! I ! I I ! I I " i I II !III " III !! III 1!1111111 ! I I!I!!!!111111 111 !111 1!III!! I!!I!III !II I I I I I I ! ! I I I I ! ! I ! ! ! I I ! I I ! Ii! ! ! 12.0

1.501 I I ! ! I I I I ! ! I ! I I I I I I I I ! I I II I: II;! I : I ; ; I : 111!!11 ; 111111111: il! 1111111111: 111111111 illil I: illllIillliil iIi II I UE±lJ:±J±l1I££U Li LOll Llu i 1,50

1.00

0.90

0.80- 0.70~~~ 0.70

0.60~· '060I .

():j:;:

o.sOt~ J" I ! ! .0.50Zis;2i

0.40 ! ! ! ! ! 0.40~

0.30 I I I I I I I I I I I I i I I I I I I I II I I I II I I I i I : 1111 i II ; 1111 !l111 i 1111 ;11111111111111111111111111111111111111111 i 111111 i II I I I i I I I I 1I I i I I I I I i I I I I I I I I I I I 10.30

0.20 o o'"

oN

R~FERENCES: A.S.tM. STANDARD VISCOSITY - TEMPERATURE CHARTS 0341-39

NAT. BUR. STD5. CIRCULAR C 461 (1947)

WATSON, WIEN AND MURPHY, IND. ENG. tHEM. 28,605(1936)

"'MM I , ! , ! , ! :bx,,1 I I ! I I I J,M J ! ! ! ! ! JsMO.20

~

Page 172: Data Book on Hydrocarbons

8 0

......... 199 1~9. 200N ,2~q"" ~ ~ 400 450 500 600 700 800'i' I,.

10,000,000 ..~VISCOSITY - TEMPERATURE CHART

1,000,000 HYDROCARBONS AND PETROLEUM FRACTIONS500,000

KINEMATIC VISCOSITY, HIGH RANGE200.000100,000 10C\OOO50,000

,50,000

20,000 20.00010,000 10,0005,000 5,000

2,000 - 2,000

1,000 (/) 1,000

500 ~ '""'h- 500~~4 ! , kb! , W'2ffi E' bt!-bikffi.::tt!"ttJ:tl'!ifl L141l114lWJtUifflfi±ltlitfilll!ifl J IIJ I !J btl ! I I I ! I I

I ! I! ! Ifu:'1200

zw<.)

I>-- 50~§0>...(/)

:><.)

201::~ I 1I I I II I I 1111111111 ! I: III! ! III! : I IIIIIIIIIII!! 11111' 11111 11111 11111 11111 III:! III I! 1111"IIIIIIIIIIIII!:1 ! ! I I I II I I I I I II! I I 1II I ! ! IJIIEJ 20::;;wzi:

10 10

8.0 8.0

60 6.0

5.0,

5.0

4.0 , , 4.0

• , , I REFERENCES: A.S. TM. STANDARD VI$CO$ITY- TEMPERATURE CHARTS 0341·393.03.01 1I 1I 11I I I I I I I I I I I I I I I I II 1111I11 , 111111111 , " IIIIIIIIIIII! 11111111111111111 NAT. BUR, STOS. CIRCULAR C 461 f'947)

WATSON. WIEN AND MURPHY, IND. ENG. CHEM. 28,605 (193G), , , ' , ,,TEMPERATUflE.~ .·.F. ,

2.0

Page 173: Data Book on Hydrocarbons

,34

33 VISCOSITY INDEX ALIGNMENT CHART 140

32 2.0 TO 50 CENTISTOKES AT 210°F.

31 130

30

29 120

28

I"~27 110

26

25-"S 100

24

23 90

22u: )(0 w0 0

21Q ~ 80...

'" >-<tt:20 °Q l/ll/l0W C\J

19 '" <:> 700 ... l/l... q>18 !Q

§.-2:

17 wf2 60<:>

16 ;g$

15 050

14

13 40

12

II 30

10

9 20

B

7 10

6

5 0

168

Page 174: Data Book on Hydrocarbons

~50440

430 -

420

410

400

390

380

370

360

350

340

330

320

310 "'300 ~290 ~

280 '"0z270 8

w260 '">-250 ..J

0

'"240 >-<l

230 '"220 -

210

200

190

180

170

160

150

140

130

120

110

100

90

VISCOSITY INDEX ALIGNMENT CHART40 TO 60 SAY80LT SECONDS AT 210"F.

6059

585;>

5655

s.,5,3

5f!

1G9

140

130

120

110

100

90

>< 80w0;;

>- 70>-iii8!!!

60>

50

40

30

20

10

0

Page 175: Data Book on Hydrocarbons

20

40

o

30

10

100

110

120

130

140

90

!<.'° x~ w

C\i 0 80.... ~

'",,'" >-f--

t in0 70tJ:; <>

'"<fl:>....

(j' 60~

cJ

50

VISCOSITY INDEX ALIGNMENT CHART50 TO 120 SAY80LT SECONDS AT 210°F.

1650

1600

1550

1500

1450

1400

1350

1300

1250

1200

1150

1100u:

1050 °00

1000 f--<t

950 - Vl0z

900 0<>UI

850Vl

~800 0

m>-

750 <tVl

700

650

600

550

500

450

400

350

300

250

200

150 1.

170

Page 176: Data Book on Hydrocarbons

3800

3700

3600

3500

3400t

::13100 -

3000+t

1900+

2800:1-t

2700tu:

2600 i "2500!

0Q

24COt~

'", 0T z

2300+ 0

"2200t

""'"2100 f :;

0al

T >-2000 <l

'"1900

1800

1700

1600 IT

1500+,1400+

+1300+

t1200+

+1100+

1000:1-

900t

800 1

VISCOSITY INDEX ALIGNMENT CHART80 TO 200 SAY80LT SECONDS AT 210"F.

171

130

120

110

100

90

80x""0:;;

>- 70!:::

'"0"'":; 60

50

40

30

20

10

0

Page 177: Data Book on Hydrocarbons

7800 T

7600

1400

7200

1000

6800

6600

6400

6200

6000

5800

5600 u;

°5400 ~5200 ~

<f)

5000 0z0<.)

4800 w<Il

4600 ~

4400 16>-..<f)

4200

4000

3800

3600

3400

3200

3000

2800

2600

2400

2200

2000

1800

VISCOSITY INDEX ALIGNMENT CHART100 TO 350 SAYBOLT SECONDS AT 210°F.

172

130

120

20

10

o

I

Page 178: Data Book on Hydrocarbons

200 300 400 500

~

35

30

25

20

15

10

10 20

0.2 0.3 0,4 0.5 2.0

2000 5000

80

60

40

10000

Page 179: Data Book on Hydrocarbons

600400200o

.030 .030

.028 .028

.026 .026

.024 .024

.022 .022

.020 .020

.018 .018

.016 .016

.014 .014

;,

.012 ;+ .012~

.010 .010

.008 .008

.006 .006

.004 .004

.002 .002

174

Page 180: Data Book on Hydrocarbons

100

80

~IIII-!!IIII20

10

.BEALE. THE SCIENCE OF PETROLEUM. VOL. 11. P.PRESS (1938)

. OXFORD UNIVERSITY

0.1 Io 100 200

175

300I

400 500

Page 181: Data Book on Hydrocarbons

1200

.040

..038

.0.36

.034

.032

.030

.026

.026

024

.022

.020

•.018.,

" .016

.0/4

012

,

.010

1000

~ I.,l' fr ~ f

.0091+

it iJ. . ;:j~ ~r • •.006

800 1000 1200

800

600

600400200mtmm

200o

o

ABSOLUTE VISCOSITY OF

.014

.038

.040

.024

.018

.020

.026

.012

.034.

.032

.030 .•

.006

.008

TEMPERATURE - 0 F

176

Page 182: Data Book on Hydrocarbons

7.0

4.0

3.0

6.0

2.0

10

9.0

8.0

1.5

1.05.0 6.0 7.0 80 9.0 104.0

4.0

3.0

3.0

2.01.5

1.5 H;tt+tttf+

H,,

"

11'i],11

1.0 T 11

.2 .3 .4 .5 .6 .7 .8 .9 1.0

.2 .3 .4 .5 .6 .7 .8 .9 1.010

9.0

8.0 ~~.,~,E~E~,£,~~~~,~,~~,IN.~~. ,.6:~"~, ,~~,;~~,~~~",r' "" "'~

7.0

6.0I :: i I I i i i I II II ! I i

VISCOSITY OF GASES AT HIGH PRESSURES

4.0

2.0

..,-.J 3.0

Page 183: Data Book on Hydrocarbons

Section 10

COMBUSTION

Liquid Fuels

The heats of combustion of fuel oils and petroleum fractions are expressed asa funcLion of gravity by the chart on page 180. Both the high and low heatingvalues have becn correcLed for the average impurities other than water whichare usually prcsent in oils of various gravities. These average impurities, tabulatedon the chart, are fairly represcntative, although there may be appreciablc devia­tions for a given stock. In general, the heating valucs of average fuel oils arcwithin 1'i& of the curves.

The heat available from the combustion at 60°F of liquid fuels is given onpagcs 186 to 188 for fuel oils of 5°, 10° and 15°API. Because of the small varia­tion betwecn these charts, interpolation is unnecessary and the available heat atany tempcrature and percent excess air may be read from the chart which mostnearly corresponds to the gravity of the fuel oil. If the impurities are known tobe appreciably difTerent from the average values tabulated on page 180, theavailable heat may be corrected in direct proportion to the bydrocarbon portion ofthe fuel with sulfur considercd as inert material.

Gaseous Fuels

Heats of combustion of paraffin and olefin gases arc given as a function ofmolecular weight by the chart on page 181. The paraffin curves on this chart wereused as a basis for deriving the charts on pages 184 and 185 for the heat availablefrom the combustion at 60°F of dry refinery gases having high heating valuesof 1000 and 1600 BTU/S.C.F. Allo\\·ance was made for average impurities of2.570 H 2 S and 2.5% inerts (equal parts CO2 and air) by volume. As in the case ofliquid fuels, the chart more nearly corresponding to the high heating value of thefuel gas may be used without interpolation with very little error. However, in cor­recting for variation in impurities, the available heat must be adj usted in proportionto the weight pm·cenlage of the hydrocarbon portion of the fuel gas. In makingan adjustment for thc H 2 S content of thc gas, its volume percent may be dis­tributed equally between the inerts and hydrocarbon portion as a good approxima­tion. The following table gives relevant information for refinery fuel gases of9.verage impurities:

\78

Page 184: Data Book on Hydrocarbons

COMI3 S no"

Nominal HHV, BTU/S.C.F.-, .. _.•.... 1000 1200Wt. Percent Impurillc~... ~. 10.1 8.3~p G, of Fucl Gas ('-or - 1.0'-. 0.60 0.73M.W. of H)'drocarbon Poruon. 16.5 20.4Actual HHV of He Purthm-U rU/ti.C.F. ' 1037 1248

I Calcubtcu by the perfcct gas hw at GOoF and J atm.

14007.10.8624.31458

16006.2a.utl28.21609

1SOO5.41.1232.11879

179

20004.001.2b36.12090

Properties of Flue Gas

The CO2 content of flue gas and the lI'eight ratio of flue gas to fuel aregiven both for liquid and gaseous fuels as a function of excess air on pages 189<1nd 190. Since the effect of percent excess of air is almost imperceptible on theviscosity and thermal cunduetiyity uf flue gas, it has been ncglected entirely andeach of these properties is expressed as a function of temperature alone.

Page 185: Data Book on Hydrocarbons

;e. ,.-

it ~

tit~~' Jif-...

- i.!,~

HEAT OF COMBUSTION OF FUEL OILS

AND PETROLEUM FRACTIONS

20000

19500

19000

* ,f'H-

.. ~":4_(,,!It. :::: :;t;:t!1 ".

IMPURITIES IN AVERAGE FUELS . ""A.P.I. I % S %INERTSI'M~Y,m'tVRESIDUAL FUEL OILS AND CRUDES

o 2.95 1.15 4.105 2.35 100 3.35

10 I. 80 .95 2.7515 I. 35 .85 2.2020 1.00 .75 1.75

CRUDE OILS25 .70 .70 1.4030 .40 .65 1.1035 .30 .60 .90.

• ~ ......:...1-_ 1;-- ~ .. ~

.~ .~ ... -+--- ...:=+--~E-f, ~t

,

.,

- I

, .~ .,~.

..

fD ..18500 [I

+~.

~ :~11

+.il

r

~X·· -tE':-::~ \1:-T.r~."""· .,

18000

17500

17000

TI::;

~, '.,., .....

THESE VALUES REPRESENT AN AVERAGE 19OF CRACKED AND VIRGIN FUEL OIL DATAUP TO 20"API,AND THE CORRELATIONALLOWS FOR AVERAGE SULFUR AND INERTS(EXCLUDING WATER) FOUND IN AVERAGEFUELS. ABOVE 40"API THE CORRECTIONFOR IMPURITIES IS NEGLIGIBLE AND THECURVES REPRESENT PURE PETROLEUM

4- LIQUIDS.

, .

o 10 20 30180

40 50 60

Page 186: Data Book on Hydrocarbons

4600

4409

4200

4000

341001.3200

2800

2600

2400

2200

2000

1800

1200

1000

10

181

Page 187: Data Book on Hydrocarbons

900

800

700

600

500

,~.

+

ENTHALPY OFFLUE GAS COMPONENTS

0-1 ATM. B"· -<-.!.

~. Ii ;'If!- ~ ~ _:.:. -:t t

o200 400 600 800

1821000 1200 1400

Page 188: Data Book on Hydrocarbons

2200

2000

1800

1600

1400 .

1000

600

400

200 .1600 1800 2000 2200

1832400 2600 2800 3000

Page 189: Data Book on Hydrocarbons

HEAT AVAILABLE FROM THECOMBUSTION OF REFINERY GAS

r. :..

- j .~ •~. .

,

1000 B.T.U.I CF (60· F)

. ,:}:-

"j n r

1000

2000

3000

zoo 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

184

Page 190: Data Book on Hydrocarbons

14

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

186

Page 191: Data Book on Hydrocarbons

..

==I .,~. .,..,

I ~= .

,. ,k

" . ;t ,

~

.~

~ ,

THE COMBUSTION OF50 API FUEL OIL

1

, -

r- ..:

. -r-r-- -

.,... ;

"'"tt -trt! ~

1- ,tl~. ,

.;in ,;

8000

9000

7000

Ii'!.

4000.,"

!.3000 ••

2000

1000

6000~~ ., ~ ~: ..... -+-l.';. _ .,...

.m:-. .::z::::5000 ; .. ,

l- • ••t:[ .....t

15000

12000

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

186

Page 192: Data Book on Hydrocarbons

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000800 1000600

+

200 400

4000

9000~

., - =-,~

9000~

~, -

7000 ---~.

6000 ,

H3000__

17000

J87

Page 193: Data Book on Hydrocarbons

1000

200 400 600 800 1000 1200 1400 1600

188

Page 194: Data Book on Hydrocarbons

16

15

1411113~

12~

"101111 ~

:» 9

'"8

7 rJiJf 'I I· TI'li:r

6

5~~q;;$~;;:!fl!;:m;=;;'I;jj~

4

3__

- 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

Page 195: Data Book on Hydrocarbons

o<t

oto

oNN

8

o<D

o<t

oN

8<t

gN

o~

o<D

'"

oN

'"

oill

o1li

gN

o"'"

ooo

No

"o'"

o...

t

I.Im

II MlW-

,

, , ,, -

t+

.j:

~a:.•$ I,,- ,

.' - ,t ,. ti 't

,j ....

~.t"· . , .'M1Iit !. f,. - ,

a: 1- 11

~<l

II r>(/) .. .~'7: (/) : :I41w w " T '1

I1

r: ::> 0 ~. 81 +, it ~ , .

W ,. , ,:~ u;

n!: "" I- :. ilL0 zIIi!

wp~

,(/) 0

",

. J "~; ; 0 a: , II - I

I i t~

~W r;

I J: 0-0

/ffil. ., I

~I0- .J

1 I . -

I' jI

, . I, f I I I i., , ! t

I I ", .1

~~ mf: S , ,!! I : , il! i , 1fIt\;,1

190

Page 196: Data Book on Hydrocarbons

--_._--

191

Page 197: Data Book on Hydrocarbons

<tq

~0

~(!)

IJJ::J..JLL.

LL. §0

>-!::~

t §::J0Z00

..J<t~D::IJJ:I:I-

oo"

...q CDq

192

Nq q

o

Page 198: Data Book on Hydrocarbons

Section 11

FLOW OF FLUIDS

Friction Factor

The friction factor for turbulent flow of all fluids (liquids and vapors) isexpressed as a function of a modified Reynolds number (DUS/Z) by the chart onpage 198 for both commercial pipes and smooth tubes. In the unstable flow regionbetween values of DUS/Z of 0.135 and 0.390 (or approximately 1000 and 3000in consistent units for DUp/p.) the turbulent flow curves have been extended tothe stable streamline flow region. These extrapolated curves for turbulent flowgive maximum values of the friction factor in the unstable region and arerepresentative of the flow usually found in commercial pipes. For streamline flowthe pressure drop may be computed directly from either of the formulas given onthe chart, since the friction factor is incorporated in these formulas.

Pressure Drop in Commercial Pipes

To facilitate the determination of pressure drop for liquids in commercialpipe" the charts on pages 199 to 201 were derived from the friction factor curveand the formula for turbulent flow. The following example illustrates the applica­tion of these charts:

Exampte I. Determine the pressure drop for 21,800 gnl/hr of gasoline f1owin~

through 800 ft of standard 6-in. pipe. The kinematic viscosity of the gasoline is0.60 cs and its specific gravity is 0.750 at 100°F, which is the average temperatureof the gasoline in the pipe.

21,800 .Q/D = 6.065 = 3600 gal/hr/m.

By following the dotted lines on the chart on page 200 as indicated forQ/D ~ 3600 gal/hr/in. to a kinematic viscosity of 0.60 cs, then over to the insidepipe diameter of 6.065 in., the value of AP/S ~ .38Ib/sq in. per 100 ft.

The pressure drop for 800 ft of pipe will be:

t:.P = 0.38 X 0.750 X ~: = 2.3 Ib/sq in.

Equivalent Lengths of Fittings

Data on the frictional resistance of fittings are usually correlated by theequation Ah ~ Ku2/2g,·where K is a constant for each type of fitting. However,

193

Page 199: Data Book on Hydrocarbons

194 DATA BOOK ON HYDROCARBONS

in problems of fluid flow it is more conycnicnt to express thesc resistanccs asequivalent lengths of straight pipe for use in thc gcneral friction factor equation.Since the latter is a function of Reynolds numbcr "'hile J( i" an independcntconstant, it is nccessary to corrcct the equivalent lengths for variation in Reynoldsnumber in inverse proportion to the friction factor. In the table on page 202 theequivalent lengths correspond to a Reynolds number of 10 and, for appreciablydifferent values of the latter, should be multiplied by the correction factor onpage 203.

Example (Liquid Flow). Kerosene at lOO°F is being pumpcd at a ratc of18,000 gal/hI' (gal/hr at 60°F) through 500 ft of standard steel 4 in. pipe inwhich there are eight standard elbows, one tee (side out) and two gate valves.Calculate the pressure drop through this line using the friction factor curve for the1I0w through the pipe and the "K" factors for the fittings; check the result usingthe pressure drop charts and equivalent lengths for the fittings. The kerosene hasan absolute viscosity of 1.5 cp at lOO°F, a specific gravity of 0.825 at 60°F, and avolumc cxpansion ratio of 1.025 at lOO°F relative to 60°F.

Q = 18,000 X 1.025 = 18,500 glll/hr at lOO°F

U - 0.00680 X 18,500 - 78 f I- (.1.026)2 -. t sec

,.. 0.825SpeCific GravIty at lOO°F = -- = 0.805

1.025

DUS 4.026 X 7.8 X 0.805----z- = 1.5 = 168; f = 0.0052

P (. ) _ 0.323 X 0.0052 X 0.805(7.8)2 X 500 _ 0 lbl .ti pipe - 4.026 - 1.2 sq Ill.

fi. (7.8)2 X 0.805

tiP (lttlllgS) = (8 X 0.45 + 1 X 0.90 + 2 X 0.19) 148.2

4.88 X (7.8)2 X 0.805 Ib/'= . = 1.6 sq Ill.148.2

Total pressure drop = 10.2 + 1.6 = 11.8 lblsq in.

Check

Uncorrected equiv. length of fittings = 8 X 6.6 + 13.2 + 2 X 2.8 = 71.6 ft

Correction factor (D~S= 16.8) = 1.1

Corrected equiv. lcngth of fittings = 1.1 X 71.6 = 79 ft

Page 200: Data Book on Hydrocarbons

FLOW OF FLUIDS 195

Total equiv. length = 500 + 79 = 579 ft

Q 18,500 Z 1.5D = .1.026 = 4600; S = 0.805 = 1.9

tJ,: = 2.5 lb/tiq in./lOO ft

Total pressure drop = 2.5 X 0.805 X ~~~ = 11.7lb/sq in.

Example (Vapor Flow). Propane vapor at 90°F and an upstream pressureof 20 psig is flowing through 800 ft of 6 in. standard steel pipe at a rate of 25,000Ib/hr. Determine the pressure drop through this line assuming the ideal gas lawapplies to propane under these conditions. At 90°F the viscosity of propane vaporis 0.0095 cpo

Thc following cquation for isothermal flow of ideal gases and vapors can bederivcd by applying Bernoulli's theorcm to a diffcrential length of pipe and inte­grating thc rcsulting cquation between the limits, 0 and L:

JgI?T(P,' - 1'22)

U1

= [/L I' J2MP,2 - + In-'2m P 2

where U 1 = upstream velocity in ft/sec

PI = upstream pre ure in )b/sq ft abs

P 2 = downstream pressure in Ib/sq ft abs

T = absolute temperatme-OF + 460

L = Icngth of pipe in ft

m = hydraulic radius in ft = d/4 for pipes

I = friction factor

9 = gravitatioual constant = 32.2 ft/sec/sec

R = ideal gas law constant = 1545M = molecular weight

By substitution flnd rearrangement the abovc equation can be converted to amodified form of the equation for liquids, or

tJ,P = P - P = 21'\ [0.323 (If, + In P I /P2) S U 'J

I 2 PI + 1'2 D 24 . 1 I

where PI, P 2 = upstream and downstream pressures in Ib/sq in. abs

S 'fi . fl' I, 000 0 M1' II = speci c gravity 0 vapor re atlve 0 water = . 15 T

D = pipe diameter in inches

Page 201: Data Book on Hydrocarbons

196 DATA BOOK ON HYDROCARBONS

Trial and error must be used in the solution of the above equation since P2 isunknown. The friction factor, I, is independent of the variation of pressure sincethe mass velocity term, US, in the Reynolds number remains constant, U varyinginversely and S directly with the pressure.

D = 6.065 in.

S = 0.00150 X 44 X (20 + 14.7) = 0.0041690 + 460

Density = 0.00416 X 62.4 = 0.259 Ib/cu ft

U - 25,000 X 144 X 4 _ 134 ft/sec, - 0.259 X 3600 X..- (6.065)2 -

DU,S, 6.065 X 134 X 0.00416Z = 0.0095 = 355; f = 0.0031

For the first trial assume P 2 = P,

P0.323 X 0.0031 X 800 X 0.00416(134)2 9 lb/ .

Ii = = 9. sq tn.6.065

For the second trial assume P2 = 24 Ib sq in.

liP = 2 X 34.7 [0.323 X (0.0031 X 800 + 0.37) X 0.00416 X (134)2]34.7 + 24 6.065 24

= 1.18[0.323 X-(0.409 + 0.015) X 74.5J = 12.1 lb/sq in.

A third trial would give a liP of 11?,4 lb/sq in.

In this example neither the initial velocity nor a contraction loss from alarger vcssel into the line was taken into account. If thc propane vapor wcrc flow­ing from a drum into the 6 in. line, it would be necessary to calculate an initialpressure drop as follows assuming isothermal flow:

RT In P /P = U,2 0.5U,2M 01 2g+2g

The first term on the right-hand side is the velocity head, and the second termis the actual contraction loss due to friction.

If the available head in the drum, Po, is 34.7 psia, PI is determined by trialand error and for the first trial U, is assumed to be 134 ft/sec.

1.5M 2 -6 2In Po/P, = 2RTg U, = 1.2 X 10 U,

In PO/PI = 1.2 X 10-6(134)" = 0.0216

PO/PI = 1.022PI = 34.0 psia

Page 202: Data Book on Hydrocarbons

FLOW OF FLUIDS 197

Since the differential is so small, 0.7 lb/sq in., a second trial is unnecessary.If this loss had been considered at the beginning of the example, the latter wouldthen have been based on an upstream pressure of 34.0 instead of 34.7 psia.

GENERAL REFERENCES

Beij, J. Research Nat. Bur Standards 21, 1 (1938).Chilton and Colburn, Ind. Eng. Chern. 26, 1183 (1934).Crane Company, "Flow 01 Fluids Through Valves, Fittings, and Pipe" (1942).Drew and Genereaux, Trans. Am. Inst. Chern. Eng. 32, 17 (1936).Foster, Trans. Am. Soc. Mech. Engrs. 42, 647 (1920).Gourley, Proc. Inst. Civil Eng., p. 297 (1910, Part 2).Karl' and Schultz, J. Am. Soc. Naval Engrs. 52, 239 (1940).Schader and Vanderlip, Cornell Univ. Eng. Exp. Sla. Bull. No. 130 (1935).Walker, Lewis, McAdams and Gilliland, "Principles 01 Chemical Engineering," pp. 71,

87-89, McGraw-Hill Book Co., New York, N.Y. (1937).

Page 203: Data Book on Hydrocarbons

003

,006

005

004

010

.008

l.,

#t1

+I--t~;r :j'1" Ii

~~J~'~lll~I~~~~~I~

TURBULENT FLOW

Ll.P'.323f SU2L-0-

'1.495 XIO'5fSQ2L05

~2.15 XIO'7r W2LSDS

Ll.p, 6.68 X 10'4 ZUL"[5Z

~4.55 XIO'6ZQLD4

WHERELl.P ~ PRESSURE DROP IN LBS.lSQ.IN.

0' PIPE DIAMETER IN INCHES

U ' LINEAR VELOCITY IN FT.lSEC.Z ~ ABSPLUTE VISCOSITY IN CENTIPQISESS ~ SPECIFIC GRAVITY RELATIVE TO WATER

L ~ LENGTH OF PIPE IN FEETQ~ QUANTITY OF FLUID IN GAL.lHR.W' WEIGHT OF FLUID IN LBS.lHR.U ~. 006BO Q /02

~.000816 W/SD2

PRESSURE DROP

STREAMLINE FLOW

II,1'1 _. ~' .. •

.,' Il'

H

FRICTION FACTORFOR FLUID FLOW~ IN CIRCULAR PIPES

~iil'

H! T

t-

~

1111=lllllwmlm~~il,002GENEREA~,)(' 'fil~S", PM • .JNST•. Cli,Wo1: EN~, 32, 17 (19361

20 ~ 40 60 80 100 200 000 400 600 eoo

~~

.1- "-=,:"W.l.l':'-'t"1-:

DREW AND

6.0 8.0 103.0 4.0

ittT

2.0.6 1.0J;.4

~t, ; .;_i

.3

1,,Ii

++ 1 1'1, r-.., ::1 1 I. i liT'

t-t+t Hf-l llt-t+ ++r-i- U r-tr

+1++ Ittii HW+++ +, I-"~

rilmW It:t ii~! 111 :s.j 1: ;j:::l ;!lr i~Hm! ~i~~"!lill! . '; n" 1!=Rf"" ii' ;~f4 .J •• I --r - 1 ...,.....,~_ ! : :l~ ~

rl ., 4, ,:-U.. 4 ''11' ..,:rr ....J I -

"~'i-llll~ tHHiJI !i,'§' ! T 'R+f 'j j31' illJ E ~iii :twrp :! Hi; II ' .. j. ~ •iJl ,-', I mr fH-' t;ttf-i:: .., I

h, ;::1:1:1: ml 'jn RE·FERENCE,

.2.I

0-+, !". ... tt :M1 I , '"II' tt1lt:r '11' •.• , t·,t T- I I I I: f lU!-

'l' Tl nt' I~"rr ., l I

r FffllHll +h Ih,j rtiH t r I H+ 1+ Iffi1'i3ii ~ :e:: j~;; .f:: •••• : " ill . Uij H Ii1I ni 'Iii HL

I.fflJ 'II ." .... , ... ",. , ' . " [""j IliI '" . I..: '1 :::. ,-"~, :.:: .':' -+ I I I' I' ~J' I "'I,tt'·' '1r- • .. • ..... 1 " •• 1',- I ' • ~-1, I +, +.

'j! EIII11.:ll'f:t11+ =I- ::t: rt::lJ' 'I !Wi If1 r : f"~ IP + -IH-H Tltl!. R~ 1

"1ffilIrlJ §~ ~f,= '- I ~FrFi 1+U {l+! lfin .n I j HWi~,rfl;';;r,:~~ 11111'" Iq,~'il·" l'ii:'1

• .:;::;.+:: -,' .~ .•I~ I -m-1. ,11: .1.:h . It" ,n··t 1m' ,1~'1:l: T 1 j ., ,,~ l' 'I ,til~,

~i ~"I+1· 'il'nn ~h·· .-,

~ fHllh;; "1 -. ' ' '~I1 rnnffi., + i

, 0'" -... 1 l_ :"1' t i Th l' rt,. 11 • 1 Ti 1 ! lIt t ;W:"+t. ",,1+ +,

•'*H'i i' ,'ll·"t-t·,h '"-. -.. :;:':'-'1:s}~~ij.L::: i -~. ~iJ:1i;i: l~T:n:_iJft-fm:1?

~ "" +~;: 'I" .c ..;..' . ,·,~t' 1 ' . 'it. 4"H-"" H'II:

,ft ~~~ Ui1 ~::; ~ ~ ~ ~'l~lllii~ :,': illi"I·. l\$f.!ji; oL4'ii ,'i:; j~:, ".' l·j '+!.i 11'.' t; iE: !I r r: ii Iii;

rm' 11· ",. ". ~ . jj' rf I'" 'jj'm ·N 'I"I. ,I ..q.; :.:,,' ~'-Il.:r:::. .:: .. -.;~:. m I I .. "n. rI -' I'" 1- • -f -, t-, I . - ,-H • "

hr mt~ ,,,c~l' nt' t f!l-UI"'I' I,. ".'.;. J +-t.(. eM ,,-, nI I,b -I- I .,.,

.010

.006

.006

,005~.004

,0031.002

-1il

Page 204: Data Book on Hydrocarbons

·II-Icl=q.,.;'~"'::ttt±1:..r.

CO'

+~

rr- I.

"X:·I~,::.

•...,-_. -.r·:.:: _~_ "I L.• -- I, .; tm:

I

,... •• -.If •• ··1 ··-1-+ 1-..

~

,.§liE#hf:7.Ht:-

r, .

HI

-r7trt' '1---/' ,•• 1

~

II

t,v.t=L

rI

r

"~

...

lr

;'1

.J

OJ

J,

-~~~'~';;1l~~I .....,.·

'1+;

'W'rl"<'

"r.'tT,

XiIE;il5 ...... .. . . -'i

" I

·f t':!.;\'1

, I , ' ~. +, 1

.8 1.0 2.0 3.0 4.0 6.0 8.010 20 30 40 60 80100

~z

,

I .J I J I I h-i-rll idli II ill 11.11. i Ii ITTn1l11t11 r

DROP IN COMMERCIAL PIPESTURBULENT FLOW

-'

IYf

'-l.

.3.4 .6

'-rJo" ....-

~n~:

---/,",,..7-';t..Y;.

li~rPRESSURE,:n

'-"''''''71,:-

l- ~.

n

-

''''." ~'-~,"

I" m-r·. II

.H- j.'r:-'" fl- 1· H:~ ~::-..:--: :~-c:-:.:.~

~_ ~L:D~-~-~~''''*''I-'fF f-. '-, -r - 1:" .,.• '. R-t:J:" ~.... , i - ,til

~

"':~=-g.''-'~. ...,.­- T- _.-~

IIII

'~I"~-'1m: 'I': .. i: :::1 ,I, -iT ti~ I

200 500

..

~~ .. -~~r'··""I"f- " ,4_ l" ......I _ r: -t,t:'!: r~'

100

-C>P'PRESSURE DROP IN LBS./SQ.IN./IOOFT.D' ACTUAL INSIDE DIAMETER IN INCHESQ' QUANTITY OF FLUID IN GAL.lHR.

Z' ABSOLUTE VISCOSITY IN CENTIPOISESS' SPECIFIC GRAVITY

Z/& KINEMATiC VISCOSITY IN CENTISTOKES

STREAMLINE FLOW

""""54 Tl I I , r. T'"+0: "ir I I I. I' .1

~-r-----"-'+ .- ,-- ",- ~.

-!-, ........'- -'- -.r.

- - .- -

f

I '"

~~

50

-coco

Page 205: Data Book on Hydrocarbons

...,8

.:I.P= PRESSURE DROP IN LBS./SQ.IN./IOO FT.0= ACTUAL INSIDE DIAMETER' IN INCHESQ: QUANTITY OF FLUID IN.GAL/HR. •Z: ABSOLUTE VISCOSITY IN CENTIPOISESS' SPECIFIC GRAVITY

ZIS- KINEMATIC VISCOSITY IN CENTISTOKES

STREAMLINE FLOW

.:I.P'4.55 X 10-4 ZQ

04

. , .. " ., ,," .PRESSURE DROP IN COMMERCIAL PIPES

TURBULENT FLOW

TOr

~I,

~ 1000 2000 5000 .2

\.

.3 A

T?

.6 .8 1.0

11

,rm

",4.0 6.0 8.0 10

~dIt~l-

"

..

,

60 80100

Page 206: Data Book on Hydrocarbons

·Ii

.,...1"'"

_ ... J

r_l""iJ

.Y~,

I60 00 100

·0

I

"En"'"~·;:;,~~A.J,.;I

1i£1!;i.•.

40

'-"ft,

~~=-Y~

• ~I~ ....·t--r---t-t-~·I T.-'

~I'

~,

",~,-,

8.010.6 .8 1.0

PRESSURE DROP IN COMMERCIAL PIPESTURBULENT FLOW

.3 .4.25000010000

TJTf"I:t1fwm ,nIII· I

t;,i ·1

'~".A~ - =- "=' - := ''''.1ffl

J ••

TTj'l'n.

STREAMLINE FLOWAP'4.55X 10-4ZQ

04

./lop, PRESSURE DROP IN LBS.lSQ.IN.lIODFT.5'... ;~:.' ....~0' ACTUAL INSIDE DIAMETER IN INCHES - .' +:- ......-r.Q'QUANTITY OF FLUID IN GAL.lHR. '. tZ 'ABSOLUTE VISCOSITY IN CENTiPOISESS'SPECIFIC GRAVITY

Z!S'KINEMATIC VISCOSITY IN CENTiSTOKES

5000

'"a~

Page 207: Data Book on Hydrocarbons

""o

""

EQUIVALENT LENGTHS OF FITTINGS

Pipe size - Incbes Equivalent Lengths' - Feet

1.D. Vah'es Elbows Dends TeesNominal

Inside 0.0. Stand- Extra Stanrl- Long 00' 45°Close Side End

Run ofDiam. Globe! Galc Angle Return Stand-

ard Strong ard· Sweep RID = 6 = 1.5 = 1 Out Out ard-- -- ----Kt 10 .W 3 .45 .30 .25 .21 .75 .no 1.3 .30

~ 0.540 0.364 0.302 13.3 0.3 4.0 0.6 0.4 03 0.3 1.0 1.2 1.7 0.4)1 0.8·10 0.622 0.516 23. 0.4 6.8 1.0 07 0.6 0.5 1.7 2.0 3.0 0.7% 1.050 0.821 0.742 30. 0.6 n.o 1.3 o.n 0.7 0.6 2.3 2.7 3.9 0.9

1 1.315 1.04n 0.n57 38. 0.7 II .5 1.7 1.1 1.0 0.8 3.9 3.4 5.0 1.1

1)1 1 !l00 1.610 1.500 59. 1.1 17.6 2.6 1.8 1.5 1.2 4.4 5.3 7.7 1.82 2 375 2.067 1. 93!) 75. 1.4 23. 3.4 2.3 1.9 1.6 5.7 6.8 9.8 2.33 3.500 3.068 2.!l00 ll2. 2.1 34. 5.0 3 ..4 2.8 2.4 8.4 10.1 14.6 3.44 4.500 4.026 3.826 147. 2.8 44. 6.6 4.4 3.7 3.1 11.1 13.2 19.1 4.4

6 6 62.5 6.065 5.761 220. 4.2 66. 10.0 6.6 5.5 4.7 16.6 1!l.9 29. 6.68 8 625 7.981 7.625 290. 5.5 S7. 13.1 8.7 7.3 6.1 22. 26. 38. 8.7

10 10.75 10.020 9.750 360. 7.0 llO. 16.5 11.0 9.1 7.7 27. 33. 48. 11.012 12.75 12.000 II. 750 440. 8.3 131. 19.7 13.1 10.9 9.2 33. 40. 57. 13.1

14 14.00 13.25 - 480. 9.2 145. 22. 14.5 12.0 10.2 3(; . 44. 63. 14.516 16.00 15.25 - 560. 10.6 167. 25. 16.7 13.n 11.7 42. 50. 72. 16.7lS 18.00 17.18 - 630. 11.9 188. 28. 18.S 15.6 13.2 47. 56. 82. 18.820 20.00 19.18 - 700. 13.3 210. 32. 21. 17.5 11.7 53. 63. 91. 21.

• The equivalent lengths tabulated correspond to a value of D~S = 10.

on the opposi te page.XC;, S KC;'S

pP=-X- =--2q 2.31 148.2

: For swing che('k valve, usc ~~ or globe valve equivalent lengths.

J)[''iFor other values of - Z:"" , apply correction factor from the chart

Page 208: Data Book on Hydrocarbons

o

o

~'I~

..:. t 1I-±

+1--l j ! ; Q"'

.1. I -t.; j It)II. ~ ::j ~.

J I ri=- ,.,I X

It r:-, " I;'

"I .. '(,

Il··1 ,..I ~

, ;

"hit It 'iI'!!Ii i .. ii; i Ii ti'II' 'I " : f1 jI! t-

il 'Ii!'u

o CD

'1l,',

..jIll: .: : -4 l ~ 1"

ill! iJ.l '

+"I! .,

. i +,1"""; ,+ ..

, ,

...j. H'! I

";f

enC)zl­I-

a::u.0u.b OLten

::I:Zl­O~I-WO...JWa:: I­a::ZOWO...J~::>oLLl

.-...,.- ,... -. .•.• r- ~. I.

-~ ....... '4tc '"~ ::r -:!;-! 4tt~ ::!.

••. t"T - -'_.

ttI

l~' r~!-t r"--' "-r

T': It-t -Ttl'·'

1. ~ i·~ ;:: ,i~; :~jl:·"... .. ..,

l.m='O,::I,'",: I':; 0": '.1'

o.,;

H'l.f, I

+ 'h .,.,'litf ir!,I,

1 i, 1I~ I II '~ :]11 ' j".t

I , iii! • n.;: ,h I 4 ! • .",

},,-, if! '!..:

'1' I,~

tH I,

I0 0r<'i '"203

q

r

I 'J H ljo.It)

i " !I .i

ii~ j.j '"I

'"

Page 209: Data Book on Hydrocarbons

1.0.9.8

LOSS DUE TO ENLARGEMENT

F (U,-U2)2E· 64.3

:t '-I:

.6 .7

204

.5.4

:.T'/-:±±: .

FRICTION LOSS DUE TO SUDDEN

CONTRACTION AND ENLARGEMENTTURBULENT FLOW IN PIPES

- .~.~- i-'. .

A2' DOWNSTREAM AREAF • FRICTION LOSS, FT. OF LIOUIDK • FACTOR FROM CHARTU, • UPSTREAM LINEAR VELOCITY - FT. / SEC.Ue. DOWNSTREAM LINEAR VELOCITY • FT. / SEC.lip· PRESSURE DROP DUE TO FRICTION

LOSS - LBS./SO.IN.

S • SPECIFIC GRAVITY OF FLUID ATTEMPERATURE UNOER CONSIDERATION

.3

LOSS DUE TO CONTRACTION

(U2)2Fe' K64:3

,.

.2

.. WALKER. LEWIS. MC ADAMS ~D GILLILA~D. 'PRINCIPLES or CHEMICAL ENGINEERING.PP. 87·89. MC GRAW·HILL BOOK CO. (1937)u. r. •. .- •. 0 , y..l~:' •• l-!r..

.1

•1

.4

.2

.3.

Page 210: Data Book on Hydrocarbons

3000

3400

3200

_72.

DISCHARGE CHARACTERISTICS OF

RECTANGULAR AND CIRCULAR WEIRS

o

2400

2200

.2000

1800

1600

1400

1200

1000

800

600

400

200

0 7 0

205

1

6000

'"

Page 211: Data Book on Hydrocarbons

.0003

.001

006

00060005

0004

01

.008

006

005

.003

.002

..001

610..04

.03

1.0002

3

" '

2.3 .45.6 .6 I

200 300 400 600 6001000

COLBURN. IND. ENG. CHEM. 26. 1183 (1934)

PRESSURE DROPACROSS TUBE BANKS

Ii .....L.,. N""('- ')2'(~) f'liP' 3B90 S GM Os •

"")' FOR TUBE ANO SHELL HEAT EXCHANGERSMULTIPLY 4P BY A BUNDLE FACTOR ASFOLLOWS;

0.'0 FOR SQUARE-TUBES IN LINES0.40 FOR SQUARE - TUBES AT 48·

GM IS EVALUATED AT CENTER ROW OF TUBES

20 30 40 5060 60 100

:: PRESSURE ,DROP ~ LB./SO. IN.

'NUMBER OF ROWS OF TUBES:: SPECIFIC GRAVITY OF FLUID RfLATIVE TO WATER t

,MAXIMUM MASS VELOCITY' LB'/SEC./SQ. FT.(THROUGH MINIMUM FREE CROSS-SECT. AREAl,

:: OUTSIDE TUBE DIAMETER· INCHES 1~

::; MINIMUM CLEARANCE BETWEEN TUBES-INCHES;

'FRiCTION FACTOR FUNCTION-; FILM VIS'COSllY - CENTlP<XSE$

liPNS

GM

DoOsf'ZF

.01 .0204

.03

.02REFERENCE,

.003 __

.01 _

.006

.006

.004

.01

.006.005

.004

.002

.0002

10

.001

.0006

.0006

.0005

.0004

.0003

206

Page 212: Data Book on Hydrocarbons

18

6

5

4

3

2

)8

)6)5)4

)3

)2

Section 12

FLOW OF HEAT

Heat Transfer

The film transfer cocfficient for liquids flowing inside tubes (page 211) isbased on the Sieder and Tatc corrclation l which is generally acceptcd as themost rcliable for this type of hcat transfcr.

Thc chart on pagc 212 for the outside film coefficien~ for flow across tubebundlcs was derived from a corrclation by Chilton and Colburn 2 with thc con­sistent units in the dimcnsionless terms replaccd by more common units. Com­parison of limited data with this correlation has indicated that the film coefficientshould be multiplied by the "bundle factors" given on the chart when GM is takenas the mass velocity at the center row of tubes. Kon-uniformity of flow andby-passing bctween the tube bundle and shell appear to bc the principal reasonsfor this diffcrence.

Thermal Conductivity of Petroleum Liquids

Attempts to correlate thermal conductivity of petroleum liquids as a functionof gravity in addition to temperaturc havc resulted in contradictol'y trends with°API gravity.3.4 In view of this inconsistency and since Smith 5 has shown that,at 86°F, a single value represents the reliable data belter than either trend withgravity, the relabon for the thermal conductivity of petroleum fractions on page213 is shown as a function of temperature alone. This chart may also be used forpure hydrocarbons, although the data on low-boiling aromatics arc about 1070higher than the curve.

Thermal Conductivity of Hydrocarbon Gases

As most data on the thermal eondueti"ity of hydrocarbon gases were obtainedat room temperature, it is was necessary to find some means of extrapolation tohigher temperatures. This was done by using two different methods: (1) assump­tion that the Prandtl number is a constant independent of temperature and(2) employment of Sutherland's equation. As the results of the two methodsbecame more divergent with increasing temperature, it was a question of selectingeither one or the other or using an average of the two. An average was chosen

I Sieder and Tate, l1ul. Eng. Chem. 28, 1429 (1936).2 Chiltonllnd Colburn, Ind. Eng. Chem. 26, 1183 (l934).3 MUic. Publication 01 Bur. Sta>l(lards, No. 97, 24 (l929).4 Kaye and Higgins, Proc. Royal Soc. 117, 459 (1928).5 Smith, Trans. Am. Soc. Mech. Engrs. 68, 719 (l936).

207

Page 213: Data Book on Hydrocarbons

208 DATA BOOK ON HYDROCARBONS

since, while it was felt that the Prandtl number was probably more relia~le, theSutherland equation gave lower and consequently more conservative values. Inview of the uncertainties of these extrapolations any refinement beyond the useof a straight line was unwarranted. Consequently, the chart on page 215 gives thethermal conductivity of hydrocarbon vapors as a linear function of temperaturefor various molecular weights.

Logarithmic Mean Temperature Difference

In the transfer of heat between two fluids, the log mean temperature differenceapplies to flow that is either entirely countercurrent or entirely concurrent. nderconditions where there is a combination of these two types of flow, such as a heatexchanger with more tube passes than shell passes, Nagle 6 has shown that acorrection factor should be applied to the log mean temperature difference. Thiscorrection factor is given herein by either one of two types of charts, the firston page 218 and the second on pages 219 to 221. The chart on page 218 may bemore convenient to use when the factors R and A do not approach unity. If thesefactors arc near to unity, it is necessary to use the other charts. The followingexample illustrates the application of these charts:

Example 1. Determine the correct temperature difference and the number ofshell passes required in the heat transfer between two fluids having the followinginlet and outlet temperatures:

Shell side: T I (inlet) = 400°F; T2 (outlet) = 300°FTube side: t l (inlet) = 275°F; t2 (outlet) = 320°F

R = T I - T 2 = 100 = 2.22t2 - t1 45

t2 - tl 45m = = - = 0.36

T I - t l 125

From the chart on page 219, it is seen that one shell pass is insufficient sinceF is close to O. With two shell pa scs F ~ 0.90, and this arrangement would appearto be satisfactory.7 The corrected log mean temperature difference is:

0.90(L.M.T.D.) = 0.90 X 47.3 = 42.6°F

The solution of this sample is also illustrated on the chart on page 218.

6 Nagle, Ind. Elly. Chern. 25, 604 (1933).7 While other faclors may enter into the number of shell passes selected for a given

design, allY arrangement which results in a correction factor of less than 0.80 should be rejected.

Page 214: Data Book on Hydrocarbons

600500400

THE VALUES OBTAINED FROM THESE

CURVES ARE FOR IDEAL BLACK BODIESAND FOR OTHER MATERIALS MUST BE

EMISSIVITY.

300

HEAT LOSS BY RADIATION

200100

1.0

1.2

.8

1.8

1.4

1.6

COEFFICIENTMATERIAL Of EMISSIVITY

3.8 IRON OR STEELBRIGHT .20-.35OXIDIZED .60~70

3.6 HIGHLY OXIDIZED .90-.95COPPER

3.4 POLISHED .10OXIDIZED .70

BRASS3.2 BRIGHT .07-.10

DULL .25

3.0ZINC

BRIGHT .10DULL .20

ALUMINUM PAINT .50NON-METALLIC SURFACESBRICK,WOCO,CLOTH a PAINT .95

2.6

209

Page 215: Data Book on Hydrocarbons

=

HEAT LOSS TO THE ATMOSPHEREBY NATURAL CONVECTION

j .T

1.5

l4= E1.31iiJ

1 ,

1 •

t t,1. I I.

" 1. , ,.I

I

. I,

1.6

1.5

1.4

1.3

8

5

6

3

2

7

4

1.1

1.0

1.2

" .

Ilmlliin

. I I,

I 1 I, ~

1.31.31.3

, ..

! ,-- ,f! •• I,.. -

, , T 1 1, t 1: ~,

! ,

• •-.I

, ., ,

1- .

., .1

.. l·t

o

.. , ,.6 - ,

, , I ,

.5

.4

.3

.2,

.1

., 'IT" 1'1:.' 1,'..'1, '-1,.i';":+ Ii ;-rr.- .... ~ ri' _ •

, '.';!' Ttl-·· '-'1 '+ -f ·1-- ._.~ ~i~ ."., 9r::i+ tH± . :!~i ':*., ::It: ~il ltt. :{-E_ 1 ~ • ~:: ; .. _ • _ :~i !'~ ~ • i1T! ~ ipi~ t .-

I "f". .. ."~ -:: '" ~ Hi T ! itt 'I' .;. .

.8 ~~tl, ' :,If. ~ l'r. fl: ;'rittl Wlei, -:.. .r~t _%'f~~·fl.il 1m lit.. (, 1-"· ~"..Jl' ~f -~.~ _J _ •• !f (n1:i ~i i i ~i Ilr, ~ u.3:1

.7, ,-:"":J:> - :1•. ,. t " >I: ,Itij :Hi--., in !~J:r ·~t . t" -t. f • !tt., rtt ::tl::' I" _ ""'!'. '! ~J::J-'

- - l .tt t t _.- .- ~l H+ I'''''':''.t • • ... 1ii :F _ :1 ,t. -. t ~ •

• I t ~ t' I'- ...

VALUES FROM THE CHART ARE TOBE MULTIPLIED BY THE FOllOWINGSHAPE FACTORS:

At" VERTICAL PIPESHORIZONTAL PIPESVERT ICAl PLATESHORIZONTAL PLATES

FACING UPWARDS 2.0FACING DOWNWARDS 1.2

llIIJ;J _ 'HEILMNI.'TRANS·, M4. soc. MECH. ENG. 51, 287 (1929)_PP. 240·241. MIC.GmR~~W~'~H~ILiLIIlO~onKdCjOi'tt(~'rn9~42~)~11

100 200 300 400 500 600

1.1

1.2

1.0

210

Page 216: Data Book on Hydrocarbons

4,000

eu5,ooo, 'Iii -£

40000 GOOOO

I' i

20000

I' •ItB'F

1 t,,1

H i 1 rI, ,

, ,

+ 'J '

: 'I 'I !

! ; I!I .. .r , ii llil

,I

2000 30004000 6000 10000,,

I,"'1.1 II 'I. 11 r

30

60

50

40

20

100

80

'poo800

-- 600- - - 500-- 400

- 300I--

200

-tiI_

f1: ;J' . f'+H+H HEATING AND COOLINGI I , . ...

IOPOO + 'I" ,11 _', f :II! l-8000 II I t II; I

I 111lJjtl" Ii I 1,- -I

III - I I I1. _. I,! II,Ii Ii! I I,"; I! ]SpOO ,. rm - . ,', ..,

- .--1:1 d 11'1:1) l, . 1'1 ,Ii! 1~r1":

-t~1~~'-Ttl!:t~~1"im!m::m':~lf;f~~H~g:IlI!m!I~11#R'~i'~!~t'-m~h~:~'~W'~I!~: ~,~'~'~~;i~~!;Hi~:I;t-mffi~liTtm~lllffiFcl!-i'IIi+!-1:¥.'-P'-;.'f,lfH1!j-'::lJJi!j-1:Im-:I4H-:;r,j;llii:::ljl-i·-81-m'++H,f-H-Hl-l1If+;"'!~:,ij,~! I i: i iIll . I:t I':- ::1 H::!:ii 1 ~j I Iii ."r~ \' 014

H+-\-H-j+i+l-r!-+-HtH-l-H-H-8If.lll+I+++I+H+f-'--H+!A:,04''1I',"·P!.. 'II-++J1+HJ- h = KO

(CKZ) 3(ZZW) • ¢ (OZG)

I-t+t" ,t" lli;l IIW _: ~ *I!iii100 r 'I I' , t. , ... ,:\_

80 ,., " "," , ...-r' .,. ""Ii' "WI!' 'oJ "lll 11111+" -t- l.J.. ',/1 t 0.\+ Ii'! 1 I II, 4 _j_ f ; 'rlt" h= FILM COEFFICIENT - a.l.U. /HR ./SQ. FT./ F.

60 j)- I 'I .iJ.rlI(i, j.rH i,' il? I :)-r:-- /" K' THERMAL CONDUCTIVITY - B.T.U.!HR/SO. FT.!(OF PER FT.l50 . II" :. ~ ,', L :HEATED TUBE LENGTH ·fEET40 j.: I-t lU fit1 "':,.i.f' 'I, Jl. I I,· L' :.J' I' 0' INSIDE TUBE DIAMETER· INCHES

U:- ITfW1 ,;; ,!:;.-H-; :;)0 1+ I I II!! r G,MASS VELOCITY -LB,/SEC /SO.FT.I~ n- ,::. ~"",n .. -r- II I -ii, 0-

30 , • I< . ""... 'i" , 'I:: ,: I ,. , . .: C' SPECiFIC HEAT OF FLUID AT AV, FLUID TEMP.-BT.U./LB.I,¥

~ r<::. i _::, :::: l:~: 0;:: ~ I+~ .+'1: :; t Z =ABSOLUTE VISCOSITY-CENTIP()SES AT AV. TEMP. OF FLUID

20 ·ll'f:.:.;.; 4;:, ;, i: iii I::: ; II: r.Til! 'ZW'ABSOLUTE VISCOSITY-CENTIPOlSES AT AV. TUBE WALL TEMP.

, iil"/ "~'I'ili!iril'I:Il;!'! II!: ".iUI HI! .l'i1I:!'I!1f:l:-:,:I::;:I:'.;.III:I':"-O:::J.,.rmillUCllI=II:liI:Jlilll::l-Tl+H:tt'ti'rtJ-I' ': ,I "I.! .;. REFERENCe: S I EDER AND TATE, I NO, ENG, CHEM, 28, 1429 (1936)

/0 - ilJI, iili [ I!;j Iii: 1111111 fiiUH1il~!Jl~il!H]liWltnrilllfH-'-lmrllllllif.lrrm 10

I 2 3 4 5 6 8 10 20 30 40 50 60 80 100 200 300400 GOO 800 1000

211

Page 217: Data Book on Hydrocarbons

20

3000

800060005000

lEEEIEEm]4000

=-crlffil2000

.200#jffitl1ltm300

111,0080

6050

40

30

4000 60002000

HEAT TRANSFER TOFLUIDS OUTSIDE TUBES

-. -i

o.~o fOR SQUARE PITCH - TUBES IN LINE0.55 FOR SQUARE PITCH - TUBES AT 45°

MULTIPLY he BY A NeUNDLE FACTOR" ASFOLLOWS:

- r rI'26. 1183 (L934) ­

...,i::rn:;- LiC

200 300 400 600 800100060 80 100

"'0= OUTSIDE FILM COEFFICIENT· O:r.U./HR.lSQ.FTjOF

K :: THERMAL CONDUCTIVITY OF FLUID -atU'/SQ.FT.!HR./(OF PER FT.)

00= OUTSIDE TUBE DIAMETER - INCHES

C ::; SPECIFIC HEAT OF FLUID - 8.T.U.lLB./°F

Zr::; FILM VISCOSITY - CENTIPlEES

{THROUGH MINIMUM FREE CROSS-SECTIONAL A~EAl- +J-'-

200

300

600500

400

3ooo~mWi

1000

800

10

10000118000

6000 ~~# t~.:H:H. :~ ~;;1 l:-=l: ~5000 CH 1LTON AND COLBURN. IND. ENG. CHEM.4000 .,: -j- .... ::t" t::l -':" -r- .. , ---,..--<--

10.01 .02 .03 .04 .06 .08 .1 .2 .3 .4 .5.6 .8 2

103 4 5 6 8 10

212

Page 218: Data Book on Hydrocarbons

o 13 g:Sg:2:~8 '"8 '" ...o 0o 0 § § § §§ ~-88

8 8

""-'"

o \00 200 300 «Xl 500 600 700 800 900 1000

Page 219: Data Book on Hydrocarbons

s

I ~t oj1

_,::-ri •

. ."

.

:tl-"'f

:1z: tn ' . • •·

.1f I; •. 1, .. t . t ; "='0'

. I .. ! d,.

t, t ,

;!,; : l f .II!l .

~ 1 •• • .

t j

,~ It IJ It· IJt l! ho I I 1 •,

j • ~I 1 t, 11 . , i'r; 1 1 '. I . ,. . ..•

o • - .1HlH+H ..' .

f 1,

• ; ~ .1 I ; ..1

I .1. ,I o ,

filii

THERMAL CONDUCTIVITY •T 1 1- OF LIQUID WATER

1 I:I:H1I,f • •

2 +

.r

I

MIlImnt

t• I ,

I • WI, •l i I. tIt f

'I t f.l j

7I I ..

tt

I 1

m I, .

J,

,I1 1

+ . , · 0BEALE. 'THE SCIENCE OF PETROLEUM' • VOL. II. P, 1261, OXFORD UNIVERSITYPRESS ( 1938). .... HH ••,,

• , . ., IflllI

.'30

,3

.3

.28

.29

.37

.38

,35

.34

.25

.36

.33

.2

.39

,40

.26

o 100 200 300 400 500 600 700

214

Page 220: Data Book on Hydrocarbons

i 8,I t-

-8, to, ,

I ~llfl

I i51iJ atl1 0

J ~

,7

t 1 0

~

i ,

I

T ., -

,,'- , 00)0

r -r -~ -I~.J ~:t: ~:"

f

: 1 t ~ ~, ­1.'

Nq

", .rr· i [

j r.:-,!~ 1 i If, , q

llii, I ; "T,

1+, 1 p' oe E-Iffi: 1

1 ,

, ,

llr l~ .-1 i:,. f

,1

.~Il'

j'j ,1,1:1" r - !~ I-

I ;t~ ,. n ,t I' I ,

, ,

I' , L t, , I,

1.;

1 I

'I1 -

1

, '1,,

I I P

..q

215

t

~I!j~lni 1 hi I)T ,", [' r li'.I'1'i', >- lQ ,!il i If! I H, ,m I- <J. Wi 1 j t' ,: t

liB ~ (!) ~f.1r r1, ~'I1IH1!H*-iLL1• (.) 5 .I;i, " IEffffltfrrf:'l => co .:l: : j -coo j ttl

,ii °2 0:: ::73,,: i", 1 "t I i'!i l,j i1fffH-'n-

1::;n: 0 <t _.. ' I " , r ,;'lII. (.) (.) :Hi.. t; " [' 'f I .. W, 1 I

Ifl±it,fi-,,ei. '0::0 'I' i lul~ ji l : <f. 0 ~:.: Iii l rl. .f r L

/ :~f: :!: >- f,1: :IT)i 11- ._ I 1 i~! ,';: ffi ~ mil 11 I, j ill'I ,L'OO! ";0 .,/ I-:I: 0 1'" 1 J,' 'IHlil .-. .; :t-fi~ ~ r..,, I~ ~ l!lll ~!.. I. + l~: ,. I ~H ~l~l 1M! f-P, /-., ,I j ,m M: til L , 'I', HJ 1

I 1. ;. I ' " I! III I

I,~ -, /.1 IJJ j I .

, 'jiliI1+'r ~ .p-'"[

Page 221: Data Book on Hydrocarbons

o~

8.,

8!!!

oo

00<t

f 'il, ;;

18'"

,\ i ' t

,> •

•fFj:,' : ; r ! hi !t'".

_ • I. 1 .. I. L.

i' 1:Jt .i'; 11, II' 1,~.~!. ,1. .:t .j;~; : .: ~1'- ; Id-I :t:.. t~

<tqIt)

q

(/)>ow.-(/)-ct2:e>.­O(/)::l::l°0ZwOzOct...J...Jct...J

::E~a:(/)w­J:::E.-

ooo·

oo!l!.

oo!!!

oo<t

216

Page 222: Data Book on Hydrocarbons

LOGARITHMIC MEAN TEMPERATURE DIFFERENCE

100 100 100

90 90 ~ 90

80 80 80

70 70 70

60 60 60

55 55 55w

50 !i 50 50w

45 ::i 45 45...40 5 40 40

w35 ~ 35 35

,:" ~ ..a: ~

30 <3 w 30 <l 30Q.~w

25 ~ 25 25z...w~

20 I.' 20 20:IEJ:t:

15 a: 15 15...'"0..J

10 10 10

5 5 5

M.T.D.: .0.TI- ATz

LOG .o.T,E ATZ

WHEN Ll.T, AND Ll.Tz ARE NOT WITHIN THE CHART RANGE,THESE VALUES MAY BE MULTIPLIED BY A FACTOR, AS 0.5,2,10, OR 100. ETC.

FOR EXAMPLE:GIVEN Ll. T, (ACTUAL): 200, AND Ll.TZ (ACTUAL): 20.USE 0.5 AS FACTOR, AND Ll.T,' , '00, AND .Ll.TZ: 10.FROM THE CHART, M.T. D." 39.5OR M.T.D. (ACTUAL): 0'.5 X 39.5' 79.

REFERENCE: POWER PLANT ENG. 35. 937 (1931)

217

Page 223: Data Book on Hydrocarbons

.t

,H

:~

jf!I

'-~~1

:1

T

20

29

-_.... ,r,

MULTIPLIED

TI :: TEMPERATURE AT WHICH HOT FLUID ENTERS

T2 ' TEMPERATURE AT WHICH HOT FLUID LEAVES

t l • TEMPERATURE AT WHICH COLO FLUID ENTERS

'la II TEMPERATURE AT WHICH COLD FLUID LEAVES

F II CORRECTION FACTOR BY WHICH L~.T.O. IS

45678910

4 5 6 7 ~~.IO:;:C:I T

.6 B.3 .4

.3 4 S .6 .7.8.9'iJ+;:rorh; l,m

,'"

2

.2

EXAMPLE:

T2'300 T,'400

" '275 '2' 320 ..A' 300-275

400-320, 0.312

,,,

.04 D6 .08 .1.02

.02 04 .06 .08 J... r

'1" I

;

LOG MEAN TEMPERATUREIIIIIIIDIFFERENCE CORRECTION

FACTOR

.01

a

t.:>~

""

Page 224: Data Book on Hydrocarbons

I SHELL PASS

2,4,6 ETC. TU8E PASSES2 SHEL L PASSES

4,8,12 ETC. TU8E PASSES

10.09.0ao7.0

6.0

5.0

4.0 -

3.0, "

2.0 -

1.0'110.9~0.8.

0.7t'lJI:Mm0.61;1;

0.5••

0.411

0.3

0.10.2 0.3 0.4 OS 0.6 0.8 1.0

219

02 0.3 0.4 OS 0.6 0.8 1.0

Page 225: Data Book on Hydrocarbons

4.011"

3.0 ".

0.2 "

3 SHELL PASSES

6,12,18 ETC. TU8E PASSES

4 SHELL PASSES

8,16,24 ETC. TU8E PASSES

0.2 0.3 0.4 05 0.6 0.8 1.0

220

0.2 0.3 0.4 05 0.6 os LO

Page 226: Data Book on Hydrocarbons

0.8 1.0

119331"

04 0.5 060.30.2

6 SHELL PASSES

III~ 12,24,36 ETC. TUBE PASSES JmllM

08 1.00.4 Q5 0.603020.1

2.0 ~FfHtttl*

4.0 lttl±Htl+ltt

3.01fm~m

I~.~ m~mw'''''""~~~~:HE~L~L:=;P~A;SS~E~S~~8.0 : 10,20,30 ETC. TUBE PASSES7.0

6.01115.0

221

Page 227: Data Book on Hydrocarbons

Section 13

EQUILIBRIUM FLASH VAPORIZATION

The vapor-liquid equilibrium relations for hydrocarbon mixtures of knownanalysis can be determined by trial and error from the equilibrium relations ofthe individual components and a material balance. For any component, i(i = 1,2· .. n), ,

and

Yi = Kixi

Xi = xiL + y;(100 - L)

(1)

(2)

where Yi = mole fraction of i in the equilibrium vaporXi = mole fraction of i in the equilibrium liquid

Ki = equilibrium constant of iXi = total moles of i per 100 moles of total mixtureL = moles of equilibrium liquid per 100 moles of total mixture

Substituting Kixi for Yi in equation (2) and rearranging

XiXi = -L-+--'--K-

i("--l'""""OO---L-) (3)

At equilibrium, the sum of the mole fractions in the liquid phase, x, + X2 +... + x., must equal 1.00. While two variables, Land K" appear in the right-handmcmber of equation (3), there are actually three variables involved sinec K, is afunction of both pressure and temperature. To predict the equilibrium conditions,any two of these variables must be known and successive values oj the thirdassumed until the sum of the x's equals 1.00. Usually, temperature and pressureare the two variables specified, and then the trial and error involves L.

Flash Vaporization of Petroleum Fractions

Although the foregoing method applies to complex petroleum fractions aswell as to hydrocarbon mixtures of a comparatively few known components, it haslittle practical significance for petroleum fractions because of the laborious cal­culations ...required even when component analyses are available, which israrely the case. As a result, empirical correlations have been developed for pre­dicting equilibrium flash vaporization curves from distillation data on crudes andpetroleum fractions. The flash vaporization curve is a plot of temperature againstliquid volume percent vaporized, the total vapor being in equilibrium with theunvaporized liquid at constant pressure.

222

Page 228: Data Book on Hydrocarbons

/ :

EQUILIBRIUM FLASH VAPORIZATION 223

A number of empirical correlations for determining the atmospheric flashvaporization curve have appeared in the literature, but only a relatively simplecorrelation would seem to be justified in view of the discrepancies between the dataof various investigators. The present correllition is of the same general type asthose of Piroomov and Beiswenger l and Nelson z and applies to both petroleumfractions and whole crudes. For petroleum fractions, either the 100/0 (ASTM)distillation of the fraction itself or the portion of the crude assay (True BoilingPoint) distillation corresponding to the fraction may be used for predicting theflash curve. For whole crudes, the crude assay distillation should always be usedin preference to the 100/0 distillation. The latter should never be used if thedistillation curve flattens out below the 70'1'0 point in the neighborhood of 700°Fsince this is indicative of cracking.

In extrapolating the atmospheric flash curves to higher or lower pressures itis suggested that the parallel method proposed by Piroomov and Beiswenger beused up to pressures of 15 psig for whole crudes and wide cuts, and up to pressuresof 50 psig if the slope of the flash reference line of the fraction is not greater than2°F/ro. By this method the atmospheric flash curve is shifted parallel to it­self by a temperature interval equal to the extrapolation of the 40'1'0 point3

on the flash reference line (FRL) as a pure compound on a vapor pressurechart.

This parallel method is unsatisfactory for higher pressures, since it is knownthat the flash curve becomes more horizontal with increasing pressure until itsslope is zero at the true critical pressure. Beyond the pressure limits recommendedin the preceding paragraph for parallel extrapolation, it is suggested that a varia­tion of the method of Watson and Nelson' be used, since no very elaborate methodappears to be justified by the data. The 40'1'0 point on the FRL is extrapolated ona vapor pressure chart to a temperature 150°F above the critical temperature ofthe normal paraffin having the same boiling point as the 40'1'0 point. This extra­polated tempera:tur~ and corresponding vapor pressure is then used as a focalpoint through which straight lines are drawn on a redilinear vapor pressure chart(page 42) from the atmospheric flash temperatures for various percents vapor­ized. The flash curve at any pressure is determined from the temperatures atwhich the given pressure ordinate intersects these constant percent off (or quality)lines. These linear extrapolations do not apply if the true critical point of thefraction is approached since the copstant percent off lines become curved andconverge to the true critical temperature and pressure.

1 Piroomov and Beiswenger, Proc. API 10, No.2, Section II, 52 (1929).2 Nelson, "Petroleum Refinery Engineering," pp. 242-243, McGraw-Hill Book Co., New

York, N.Y. (1941).3This i3 a slight modification of the Piroomov and Beiswenger method as they use the

point of intersection between the flash and distillation curves for extrapolation.• Watson and Nelson, Ind. Eng. Chern. 26, 880 (1933).

Page 229: Data Book on Hydrocarbons

224 DATA BOOK ON HYDROCARBONS

Reduced Crudes

Perhaps the most direct method of predicting the atmospheric flash curve ofa reduced crude (or .any reduced stock) which at the same time is reasonablyaccurate is the following:

(1) Construct an atmospheric flash curve for the original crudc.(2) Determine the number of moles of both original crude and reduced crude

per given volume of original crude.(3) At the dew point (lOOro vaporized) of the original crude, assume that the

reduced crude vapors are at their dew point at a partial pressure equal totheir mole fraction in the total vapors (moles of reduced crude/moles oforiginal crude) multiplied by 1 atm.

(4) Extrapolate the 40% point on that portion of the flash curve corresponding tothe yield of reduced crude from the partial pressure computed by (3) to 1 atm.

(5) If the reduced crude has been stripped of light ends, its atmospheric flashcurve is drawn through the extrapolated point parallel to the flash curve ofthe original crude between the abscissas corresponding to the yield ofreduced crude.

(6) If the reduced crude has not been stripped of light ends, a smooth curve isdrawn from the split point on the flash curve of the original crude to the 20%point on the flash curve constructed by (5) to approximate the front end ofthe flash curve of the reduced crude. Establishment of the 20ro point as thepoint above which unstripped light ends cease to affect the reduced crudeflash curve is, of course, entirely arbitrary but, at the same time, fairlyrepresentative.

While the method outlined above is empirical to a large extent, it does havesome theoretical justification. If all but one drop of reduced crude were flashed,this last drop of liquid would be in equilibrium with the reduced crude vaporsat 1 atm. It is then assumed that if 100% original crude were flashed at 1 atm, thelast drop of liquid would have the same composition as the last· drop ofreduced crude, and the latter vapors would be at a partial pressure corre­sponding to their mole fraction multiplied by one atmosphere. The basis forthis assumption is that the temperature difference between the boiling range ofthe last drop and 'that of the vapors romoved in reducing the crude is usually sogreat that these vapors can be considered the equivalent of steam or gas in so faras the equilibrium relations of the last drop is concerned. Making the flash curves·of reduced crudes parallel to the flash curves of their original crudes was originallysuggested by Piroomov and Beiswenger and appears to be fully justified bytheir data.

Example 1. Determine the atmospheric flash vaporization curves of an EastTexas crude and its 35% bottoms (both stripped and unstripped) from the follow­ing data taken from an assay workup of t.he crude:

Page 230: Data Book on Hydrocarbons

EQUILIBRIUM FLASH VAPORIZATION 225

122177262350443538636752

(905)

Assay (T.B.P.) DistillationI.B.P., of

5%10%20%30%40%50%60%70%80%

CrudeOverhead (0-65%)Bottoms (65-100%)

Gravity°API

37.447.720.9

Lbs/Gal

6.986.577.73

752 - 177Slope of DRL* = 60 = 9.6°F/%

• DisLillaLion reference line-through 10% and 70% points.

50% Point (DRL) = 177 + (50 - 10)9.6 = 561°F

The slope and 50% point of the flash reference line are determined from thechart on page 228:

Slope (FRL) = 6.4°F/%; 50% Point (FRL) = 561 - 40 = 521°F

The atmospheric flash curve is derived from its reference line by lIsing therelation on page 229.

Percent Assay Distillation (OF) Ratio Flash Vaporization (F)

Vaporized Curve DRL t>t' of (t>t')'s t>t' FRL Curve

5 122 129 -7 0.40 -3 233 23010 177 177 - - - 265 26520 262 273 -11 .36 -4 329 32530 350 369 -19 .34 -6 393 38740 443 465 -22 .34 -7 457 45050 538 561 -23 .34 -8 521 51360 636 656 -20 .33 -7 585 57870 752 752 - - - 649 64980 (905) - 848. +57 .33 +19 713 .732

The flash reference line and the atmospheric flash curve of the original crudeare-shown on Figure 1. Proceeding from (1), the flash curve of the original crude,the atmospheric flash curves of the stripped and unstripped reduced crudes arederived by the method outlined in the text:

262 + 538 + 905 °(2) Vol. Av. B.P. of whole crude = 3 = 568 F

Page 231: Data Book on Hydrocarbons

226 DATA BOOK ON HYDROCARBONS

Mean Av. B.P. of whole crude = 568 - 70 = 498°F (Section 2)

Molec. wt. of whole crude = 197 (Section 3)

203 + 373 + 558Vol. Av. B.P. of 65% overhead = 3 = 378°F

495 - 139Slope of DRL (65% overhead) = 60 = 5.9°F/%

Mean Av. B.P. = 378 - 38 = 340°FMolec. wt. of 65% overhead = 139

Per 100 Galof Crude

Moles of crude = (6.98 X 100)/197 = 3.55Moles of overhead = (6.57 X 65)/139 = 3.07

Moles of reduced crude 0.48

(3) Partial pressure of reduced crude at the dew point of the original crude0.48

= - X 1 = 0.135 atm.3.55

(4) The 40% point on the reduced crucle flash curve corresponds to 65 + 0.40X 35 = 79% or 722°F on the flash curve of the original crude.

By extrapolation from 0.135 atm. to 1 atm., the 40% point on theatmospheric flash curve of the reduced crude is 900?F.

(5) The atmospheric flash curve of the stripped reduced crude is drawn throughthe extrapolated point parallel to the 65-100% portion of the flash curveof the original crude. This reduced crude flash curve may be convertedto percent on reduced crude by proportioning the 65-100% yield onoriginal crude to 0-100% on reduced crude. Both curves are shown inFigure l.

(6) The front end of the atmospheric flash curve on the unstripped reducedcrude is constructed by drawing a smooth curve from the 65% point on theflash curve of the odginal crude to the 20% point on the flash curve of thestripped reduced crude as shown in Figure 1. This curve is also given onthe basis of 0-100% reduced crude.

GENERAL REFERENCES

Edmister and Pollock, Chem. E7l{J. Progress 44, 905 (1948).Katz and Brown, Ind. E7l{J. Chern. 26, 1373 (1933).Packie, Trans. Am. Inst. Chern. Engrs. 37, 51 (1941).

Page 232: Data Book on Hydrocarbons

1100

1000

900

800

700

600

!lOO

400

300

EQUILIBRIUM FLASH VAPORIZATION 227

20010 20 30 40 50

FIGURE 1

60 70 80 90 100

Page 233: Data Book on Hydrocarbons

7

3If i li

. FLASH AND DISTILLATION REFERENCELINES (FRL AND DRLl ARE STRAIGHTLI NES THROUGH THE 10% AND 70% 2

, POINTS. THE TEMPERATURES AT THE ~50% POINTS REFER TO THESE ~ m

- REFERENCE LINES. E I

.... ;~~ : ... RE~G~l~it!fI:~:':I~-'~ 1 .o

7 8 9 10 II 12632

PREDICTION OF FLASH REFERENCE LINEFROM DISTILLATION REFERENCE LINES

1--JfJ-

~ .. ~. gw.•r

I2

5

3

7

4

o

,,' t.~ I~ •

60

40

4

U­S

T

i ~If !'iii R,f;f,Et EN' ~...!; - . -

6 7 8 9 10 II 12

40 11-.. -

II

20

BI O

-20

-40

-602 3 5 6

-40

228

Page 234: Data Book on Hydrocarbons

W 30 40 ~ 60 ro ~ 90 10010

tl±I

~. .,,

~

, ; ., : t

I tmI, , 1...Mm

1 c,

,

• PREDICTION OF FLASH CURVEtoo FROM ITS REFERENCE LINE

100 lm!l I1'-'-

I fmII mIl• tmn II.. ,

• 11UlI

_ 11$ CRUDE ASSAY (T.B.P.) DISTlLLATION, .

'gmj

II••11m! II 11m •," .t" ,p I:J±-, .

10 20 30 40 50 60 70 80 90 100

lEE ' I10% (A.s:tM.) DISTILLATION, .

·lmJU .JI#J: "* lIV IS THE DEPARTURE OF THE ACTUALFLASH AND D1STI LLATION CURVES FROMTHEIR RESPECTIVE REFERENCE LINES.

n5 WHILE THE INDIVIDUAL (lIl')'S MAY BEEITHER PLUS OR MINUS, THE RATIO IS

f:fk,'ll ALWAYS POSITIVE.

~,

~l'mIJ, ' '.

..Iflill

• .1·w_!l0

o

.80

.60

,20

.80

.60

1.00

.20

1.00

229

Page 235: Data Book on Hydrocarbons

Section 14

FRACTIONATING TOWERSIn order to simplify the work involved in making stepwise calculations for

the rectification of binary and multieomponent systems, Gilliland' has presentedan empirical correlation between theoretical steps and reflux ratio. To use theGilliland correlation to predict the number of theoretical plates for a given refluxratio, the minimum number of steps at total reflex and the minimum reflux ratioare required.

Minimum Number of Theoretical Steps

When a separation is specified with respect to only two components of a multi­component mixture, the lower boiling of these two components is designated thelight key component and the higher boiling the heavy key component, and theminimum number of steps can be calculated by the well-known Fenske equation 2

as follows: a

or

log (X LKD) (X HKlV)

8XLKlV XHKD

Af=log aLK

[aLK]SM = (X LK D) (X HKlV)XLKlV XHKV

(1)

(1a)

After equation (1) is solved for 8M , the latter may be substituted in thisequation along with the distribution of either key component to prcdict4 the distri­bution of the other components, or

Likewise,

(X ,.D) (X HKlV)log -X X = 8 M log aL

!-IV 11 K D

log (X lilY) (X LKD) = 8 M log (a LK)XlID XLKlV all

(2)

(3)

In any of the above equations, moles per 100 moles of feed may be replacedby total mo)es, or volume or weight units since in any of these conversions themultiplying factors cancel out.

1 Gilliland, Ind. Eng. Chern. 32, 1220 (1940).2 Fenske, Ind. Eng. Chern. 24, 482 (1932).S A table o( nomenclnture is given on page 243.• This equation may be used (or any pair o( component8.

230

Page 236: Data Book on Hydrocarbons

FRACTIONATING TOWERS 2H1

When the dcgree of separation is specified for more than two components,equation (1) must be applied to all critical combinations of these components andthe maximum SJ/ determincd for the most difficult case. If the separation is spec­ificd with respect to the total quantity of two or more components, as in thecase of Examplc 1, trial and eITor is required for thc solution of SjJ.

It should be pointed out that the concentrations calculated by equations(2) and (3) actually apply only to the separation at total rcflux and, with theexception of the two key components, there will be some variation of thc degrecof separation with the reflux ratio. As the rcflux ratio decreases, there is someimprovement in separation betwecn light and heavy componcnts boiling outsidethe range of the kcy components and some deterioration in the separation of com­ponents boiling intermediate bctween the kcy components. However, in so far asthe present procedure is concerned, the distillate and bottoms compositions forother reflux ratios are assumed to be thc Same as those calculated for total reflux.

Minimum Reflux Ratio

Gilliland 5 has proposed several diffcrent formulas for predicting minimum refluxratio and all have the disadvantage of being composcd of a number of complexterms in addition to requiring trial and error for solution. Although all theseequations appeal' to give satisfactory rcsults, the tcrms are so complcx that it isdifficult to bc ccrtain that therc arc no numerical crrors in thcir application.

In order to apply the Gilliland method with greater facility, the followingequation was developcd for predicting the minimum rcflux ratio of a multicom­ponent system:

(O/Dhf + 1= (aLKTf.FC + 1) (XLKD - XIIKD)('(LK - 1 ILK

(4)

(O/D)M can be calculated for two arbitrary states of feed vaporization:

1. "Liquid" feed, cOITesponding to vaporization of the feeu equivalcnt to thefraction of the feed lighter than the light key component. For the componentslighter than the light key, h = ZL/aL and for the light key and heavier com­ponents, ILK = ZLK, and III = Zfl.6

5 Gilliland, Ind. Eng. ehe",. 32, HOI (1940).8 ]£ components, intermediate between the two key components, are present, they are

considered ei her light or heavy componen'" depending upon which key their volatility morenearly approaches. In the case of "liquid" feed, I L = Zl. and I II = ZH for these intermedi­ate components; in the case of "vapor" feed, I L = ZL/aL and I II = ZuaH/aLK.

Page 237: Data Book on Hydrocarbons

232 DATA BOOK ON HYDROCARBONS

2. "Vapor" feed, corresponding to vaporization of the feed equivalent to thefraction of the fecd consisting of the hcavy key component and lighter. For thecomponents lighter than the heavy key, If_ = ZL/CtL and ILK = ZLK/aLK andfor the components heavier than the heavy key, 1/1 = ZI/.6

After the minimum reflux ratios have been calculated for "liquid" and "vapor"feeds, the minimum rcflux ratio for the actual vaporization of the feed can be cal­culated by direct interpolation or extrapolation. However, extrapolation beyond50% of the difference between "liquid" and "vapor" feed may lead to seriousdeviations.

The first term of the right-hand side of equation (4) is the same as for binarymixtures, and the equation reduces to the cquivalcnt of a binary mixture whonall light components other than the light key have infinite volatility and all heavycomponent other than the heavy key have zero volatility. Under these circum­stances the equation is exact when hK is taken as the ratio of the two componentsin the liquid phase of the feed. That is, if the feed is introduced as a liquid at itsbubble point, hK = ZLK, which is the ratio of the two components in the feed;if the feed is introduced as a vapor at its dewpoint, hK = Z',K/OtLK, which is theratio of the two components in the cquilibrium liquid. For intermediate stagesof vaporization hK can be calculated from the flash vaporization formula, al­though direct intcrpolation of the minimum reflux ratio on the basis of percentagevaporization between thc sat urated liquid and saturated vapor feeds gives valuesonly slightly in error on the conservative side.

In the case of multicomponent mixturcs, equation (4) is semi-empirical sinceit was necessary to make simplifying approximations in its derivation. Further­more, the exact values of the various 1's cannot be calculated directly from thecomposition and state of vaporization of the feed, since the liquid on the feedplatc is not identical to the liquid phase of the fecd as in the case of a binarymixture. As a result, it was necessary to define the 1's empirically for two statesof fced vaporization, arbitrarily choscn to simulate a binary mixture of the twokey components, and then intcrpolatc or extrapolatc to the minimum reflux ratiocorresponding to the actual vaporization of the fced.

Equation (4j has been checked for a number of multicomponent systems onwhich the minimum reflux ratio was determined by stepwise trial and error cal­culations. Generally, unusual systems were chosen with respect to composition andrelative volatility in order to reveal the maximum deviations ever likely to beencountercd in practice. The agrecment was quite satisfactory as the averagedeviation was less than -+-5% and the maximum about lOra. The latter occurred atthe limit of extrapolation relative to the arbitrary feed states.

Page 238: Data Book on Hydrocarbons

FRACTIONATING TOWERS 233

Also, the minimum reflux ratio was calculated for these same systems by theColburn method 7 with about the same degree of accuracy. It should be pointedout that the latter gave better results than equation (4) when the relative volatili­ties and compositions were not so abnormal as the systems selected. However,under these circumstances both methods were quite accurate as the deviationsseldom exceeded a few percent, and the present equation has a distinct advantagein that it is explicit and does not require trial and error.

Both methods are quite sensitive to the selection of key components, andthe selection of the wrong key components can lead to a much greater error thanis inherent in either method. If the desired separation is between adjacent com­ponents, there is usually no doubt about selecting these as the key components.However, if there are additional specifications relative to other components, itmay be necessary to try two or more combinations of key components to makesure that the minimum reflux ratio is sufficient to fulfill all specified conditions.

Correlation of Theoretical Steps with Reflux Ratio

As mentioned at the beginning of this section, Gilliland correlated the resultsof a large humber of stepwise calculations on various binary and multicomponentmixtures by plotting

[S-SM) I[S+1] ~</> (S) against [(OlD) - (OID))f)/[OlD +1)-F(OlD)

and found that all points could be represented by a single curve irrespective of thetype or degree of separation. These points, along with about half again as manyadditional points, were replotted, and the best curve through them was essentiallythe same as Gilliland's original correlation.

In arriving at the coordinates for the additional points the minimum refluxratio was calculated by equation (4); therefore these points are a criterion of thepresent method as well as the curve itself. In no case did the deviations exceedeither 3 theoretical steps or 15%, and the average deviation was less than 1theoretical step and also less than +50/0. To take care of the maximum deviationit is recommended that in any design the number of theoretical steps predicted

~ from the correlation on page 244 be increased by either 3 theoretical steps or100/0, whichever is greater.

Plate Efficiency

Because of the large number of factors which undoubtedly influence theplate efficiency of a fractionating tower, any fundamental formula accountingfor even the most important variables must necessarily be quite involved. For thisreason, a simple empirical correlation of the limited data on hydrocarbon mixturesseemed to be the most promising method of predicting plate efficiency.

7 Colburn, Trans. Am. Inst. ehem. Engrs. 37, 805 (1941).

Page 239: Data Book on Hydrocarbons

234 DATA BOOK ON HYDROCARBONS

Gunness 8 correlated the results of several tests on petroleum mixtures on thebasTs of vapor pressure of the liquid. As he points out, this is a method of indirectlycorrelating plate efficiency with liquid viscosity since viscosity of pure hydro­carbons and narrow boiling fractions is an approximate function of vapor pressureover a fai,rly wide range of vapor pressures.

In view of the consistent results obtained by Gunness, pla.te efficiency wasplotted directly against fluidity (reciprocal viscosity) for a number of tests oncommercial towers including those upon which Gunness based his curve. The curveon page 245 represents this correlation. While the overall plate efficiency exceeds10070 at fluidities greater than 9 Cp-1, this is not inconsistent as the flow of theliquid across the plates results in concentration gradients which may achieve agreater degree of fractionation than predicted by stepwise calculations in whichthe liquid is assumed to leave the plate in equilibrium with the composite vapor.Lewis9 has shown theoretically that different combinations of liquid and vaporconcentration gradients across the plate may give overall plate efficiencies ashigh as 200--300'10 when based on stepwise calculations.

There is no reason to believe that this correlation applies to mixtures otherthan hydrocarbons, and with the exception of alcohol-water mixtures there aretoo little data available to afford a comparison. Although there is considerablevariation in the alcohol-water data, there is some indication that plate efficienciesare somewhat greater than for hydrocarbons of the same viscosity.

Location of the Feed Plate

As a simple approximation for locating the feed plate, it may be assumed thatthe proportion of actual plates above the feed will be the same as that required toeffect the same separation between the key components at total reflux. That is, thenumber of theoretical steps at total reflux is calculated for the concentrationchange in the key components between the feed and distillate compositions. It isthen assumed that the ratio of this to the total number of theoretical steps at aninfinite reflux ratio is the same as the ratio of actual plates above the feed is tothe total number of plates. Application of this method is illustrated by Example 1.

In some cases where there are oritical components other than the two keycomponents, it may. be necessary to check the total reflux steps above and belowthe feed on the basis of these components, since the optimum location of thefeed plate will be different with each pair of components. Usually the separationof components other than the key components is so complete that only the latterneed be considered.

8 Gunness, Sc.D. Thesis, Mass. Inst. Tech. (1936).9 Lewis, Ind. Eng. Chern. 28, 399 (1936).

Page 240: Data Book on Hydrocarbons

FRACTIONATING TOWERS 235

Packed Towers

The charts on pages 246 to 248 giving the H.E.T.P., capacity and pressuredrop in packed towers are self-explanatory. Since practically all of the H.E.T.P.data were on towers less than 12 in. in diameter, caution should be used in thedesign of larger towers. One of the greatest sources of inefficiency in a packed toweris poor liquid distribution. If good distribution can be achieved by efficient dis­tributors, the extrapolations may be used for larger towers with reasonableassurance.

Example 1. At an operating pressure of 100 psig determine the number ofplates and reflux ratio required to separate the mixture given below so that thebottoms contain at least 90ro of the butenes-2 present in the feed and at thesame time have an isobutene content not greater than 5%:

Component

i-C,Hloi-C,Hs

C,Hs-1C.H IO

t-C,Hs-2c-C,Hs-2

Feed

(Mole %)40.020.015.05.0

10.010.0

100.0

(1) Dewpoint of Distillate and Bubble Point of Bottoms

In order to calculate the average volatilities, the dewpoint of the distillateand bubble point of the bottoms must be found by trial and error using assumedcompositions. These are tabulated below.

-Moles Per 100 Moles of Feed Mole Fraction

ComponentFeeti Distillate Bottoms Distillate Bottoms

i-C.H LO 40.0 39.3 0.7 0.530 0.027i-C.H, 20.0 18.7 1.3 .253 .050

C.H...1 15.0 13.0 2.0 .176 .077C.H,o 5.0 1.0 4.0 .014 .154

t-C.H,·2 10.0 1.5 8.5 .OW .327.,.C.H...2 10.0 0.5 9.5 .007 .365

100.0 74.0 26.0 1.000 1.000

As a first trial, assume the dewpoint of the distillate is 14tl°F at 7.8 atm (114.7psia) .

Page 241: Data Book on Hydrocarbons

236 DATA BOOK ON HYDROCARBONS

First Trial

Component YD a'D· Pt :i;

HO°F 140°F "yiP

':"C,H IO 0.530 1.29 8.4 0.493i-C,H, .253 1.155 7.5 .263

C,H,-I .176 1.13 7.35 .187C,H,o .014 1.00 6.5 .017

t-C,H...2 .020 0.97 6.3 .025c-C,H...2 .007 0.91 5.9 .009

1.000 0.994

• Relative volatilities to C4H 10 or (0")'8 aTC used as a matter of convenience; then, the(a'.,.)'s are converted to (a••)'s, the relative volatilities to t-C,H,-2, which will be seleetcd asthe heavy key component.

t Computed from the fugacity function of butane multiplied by the relative volatilities.

Since the sum of the x's is 0.994 instead of 1.000, the assumed temperatureshould be lowered slightly, but the difference would be so small (less than l°F)that the change in the (a'Jl) 's would be imperceptible. Consequently, 140°F willbe used as the dewpoint of the distillate.

The bubble point of the bottoms is assumed to be 165°F at 8.0 atm 10 for thefirst trial.

First Trial Second Trial

Component XIVa'w· pt a'w· PtY165°F 165°F Pxl.. 160°F 160°F Y

i-C,H,o 0.027 1.26 10.7 0.036 1.265 10.25 0.035i-C,H, .050 1.14 9.7 .061 1.145 9.3 .058

C,H... I .077 1.115 9.5 .091 1.12 9.1 .088C,H,o .154 1.00 8.5 .164 1.00 8.1 .156

t-C,H ...2 .327 0.97 8.25 .337 0.97 7.85 .321c-C,H,-2 .365 0.915 7.8 .356 0.915 7.4 .338

1.000 1.045 0.996

• Relative volatilities to C~HIO or {«')'8 are used ns a mnttcr of convenience; then, the(a'av)'S are converted to (aU\')'s, the relative volatilities to t-C IH:;-2, which will be selected asthe heavy key component.

t Computed from the fugacity funet:on of hutane multiplied by the relative volatilities.

The bubble point of the bottoms wiil be taken as 160°F. The relativ~

volatilities are averaged and converted to t-C~H s-2 as the heavy key in the fol­lowing table:

\0 After allowing 3 Ib/sq in. as the approximate pressure drop through the tower.

Page 242: Data Book on Hydrocarbons

FRACTIONATING TOWERS 237

, , ,aD aw aA ,

Component 140°F 160°F 150°F a a.(a' Da'wa'.A.)~!l aa.

7.8 at.m 8.0 atm 7.9 atm

i-C,H ID 1.29 1.265 1.275 1.275 1.315i-C,H. 1.155 1.145 1.15 1.15 1.185

C,H.-l 1.13 1.12 1.125 1.125 1.16C,H ID 1.00 1.00 1.00 1.00 1.03

t-C,H8-2 0.97 0.97 0.97 0.97 1.00c-C,Hg-2 0.91 0.915 0.91 0.91 0.94

(2) Minimum Theoretical Steps (Total Reflu:t)

The minimum number of theoretical steps by which the desired separation canbe accomplished is calculated as follows:

Let t = moles of t-C4H s-2 in the distillate per 100 moles of feed10 - t = moles of t-C4H s-2 in the bottoms per 100 moles of feed

Since 90% of the butenes-2 must be.retained in the bottoms, the cis-butcne-2content of the distillate and bottoms will be:

(2 - t) moles in the distillate per 100 moles of feedand (8 + t) moles in the bottoms per 100 moles of feed

Using the previously assumed values of 18.7 moles of isobutene in the dis­tillate and 1.3 moles in the bottoms, the following equations must be satisfied:

C1~;) CO t- t) = (1.185)8M

(18.7)(~) = (1.185)8

M

1.3 2 - t 0.94

A trial and error solution of these equations shows that they are satisfied bySM = 25.5 and t = 1.62.

The distribution of the other components can be calculated from SM and thedistribution of t-C4 H s-2.

i-C4H IO : Let u = moles of i-C4HIO in bottoms

( 40 - 1') (8.38) = (1.315)25.5 = 1075u 1.62

= 0.19 moles of i-C4H IO in the bottoms

C4Hs-1: Let v = moles of C4 Hs-1 in the bottoms

(15 - v) (838) = (1.16)25.5 = 44

v 1.62

v = 1.58 moles of C4Hs-2 in the bottoms

Page 243: Data Book on Hydrocarbons

238 DATA BOOK ON HYDROCARBONS

C.H IO : Let w = moles of C.H IO in the bottoms

(5 - W)(8.38) = (1.03)25.5 = 2.12

W 1.62

W = 3.55 moles of C.H10 in the bottoms

The percentage of i-C.Hs in the bottoms will be:

(0.19 + 1.3 + 1.58 ~33.55 + 8.38 + 9.62) 100 = 5.3%

In order to meet a maximum of 5.0ro i-C4 Hs specified for the bottoms, it isnecessary to reduce the 1.3 moles to 1.22 moles in the bottoms. This would requirean increase in SM to 25.8 which would modify the distribution of the other com­ponents. However, the latter change is so slight that it can be neglected. Thecomposition of the overhead and bottoms will then be:

Moles Per 100 Moles of Feed Mole FractionComponent

Fecd Distillate Bottoms Distillate Bottoms

i·C,H,o 40.0 39.81 0.19 0.528 0.008i·C,H, 20.0 18.78 1.22 .249 .050

C,H..1 15.0 13.42 ·1.58 .178 .064C,H IO 5.0 1.45 3.55 .019 .145

/·C,H,-2 10.0 1.62 8.38 .021 .342.,.C,H..2 10.0 0.38 9.62 .005 .391

75.46 24.54 1.000 1.000

(3) Minimum Reflux RatioSince the critical separation is between isobutene and the butenes-2, the

former is naturally selected as the light key component and trans-butene-2, sinceit is more volatile than the cis-butene-2, as the heavy key component. Butene-l isconsidered a light intermediate component because of the proximity of its relativevolatility to that of isobutcne; normal butane is considered a heavy intermediatecomponent since its relative volatility is nearer to the heavy key than the lightkey. The following tabulation gives the necessary information for calculating theminimum reflux ratios for the two arbitrary states of feed vaporization:

Mole Fraction

Component Type "'BV HLiquidtl lIVapor"Feed Distillate Bottoms

Feed Feed

':-C,H,o L 0.400 0.528 0.008 1.315 3.04 3.04i-C,H, LK .200 .249 .050 1.185 2.00 1.69

C,H..1 L .150 .178 .064 1.16 1.50 1.29C,H IO H .050 .019 .145 1.03 4.00 3.48

t-C,H,.2 HK .100 .021 .342 1.00 - -.,.C,H..2 H .100 .005 .391 0.94 2.00 2.00

1.000 1.000 1.000

Page 244: Data Book on Hydrocarbons

FRACTIONATING TOWERS 239

"Liquid" jeed-40% vaporized

(O/D) + 1 = 1.185 X 2.00 + 1.0 (0.249 _ . 1)M 1.185 _ 1.0 2.00 °02

+ 01.331

55 (0.528 - 3.04 X 0.021) + 1.16 (0.178 - 1.50 X 0.021)

. 1 0.16

1.03 (0.249 ) 0.94 (0.249 )+ 1.185 - 1.03 4.00 - 0.019 + 1.185 - 0.94 2.00 - 0.005

(O/Dhf = 1.88 + 1.94 + 1.07 + 0.29 + 0.46 - 1 = 4.64

"Vapor" jeed-90% vaporized

(O/D) 1.185 X 1.69 + 1.0 (0.249 )M + 1 = -- - 0.021

1.185 - 1.0 1.69

1.16 (+ 1.94 + 0.16 0.178 - 1.29 X 0.021)

1.03 (0.249 )+ 1.185 - 1.03 3.48 - 0.019 + 0.46

(O/D)M = 2.06 + 1.94 + 1.10 + 0.35 + 0.46 - 1 = 4.91

Assume that the feed is sufficiently preheated to vaporize a percentageequivalent to the distillate or 75.4670. By interpolation, the minimum reflux ratiocorresponding to this feed vaporization is:

(75.46 - 40)

(O/D)M = 4.64 + 90 _ 40 (4.91 - 4.64) = 4.83

(4) Theoretical Steps vs. Reflux Ratio

Using the values determined in preceding sections for minimum theoreticalsteps,. 25.8, and for minimum reflux ratio, 4.83, the number of theoretical stepsfor various reflux ratios can be predicted from the correlation on page 244:

OlD F(OID) </>(8) 8 Theoretical Platea-

4.83 - - .. ..5.25 0.067 0.570 61.3 60.35.75 .136 .502 52.7 51.76.50 .223 .430 46.0 45.07.50 .314 .366 41.3 40.3.. - - 25.8 24.8

- The reboiler i. considered the equivalent of one theoretical step. With a partial insteadof a total condenser, a second theoretical step also could have been deducted.

Page 245: Data Book on Hydrocarbons

240 DATA BOOK ON HYDROCARBONS

n = 10.1

(5) Number of Actual Fractionating Plates

To predict the number of actual plates it is necessary to determine the averageviscosity of the liquid on the plates. Since the temperature difference between thetop and bottom of the tower is so small, the average viscosity may be taken asthe viscosity at the average temperature. For this purpose the viscosity of butaneat 150°F will be used.

Viscosity of C.H IO @ 150°F = 0.216 cs "" 0.216 X 0.523 = 0.113 cpFluidity = 1/0.113 = 8.9 Cp-l j Plate efficiency = 99%

Using a plate efficiency of 99% the number of actual plates is computed forvarious reflux ratios:

OlD S Theoretical Steps Actual Plates

4.83 ., ., .,5.25 61.3 60.3 60.95.75 52.7 51.7 52.26.50 46.0 45.0 45.57.50 41.3 40.3 40.7., 25.8 24.8 25.0

The number of actual plates is plotted against reflux ratio in Figure 1.

A reflux ratio of 6.50 to 1, or 1.35 times the minimum, is selected. The numberof actual plates corresponding to this reflux ratio is 45.5 so that a 50-plate towerwould be required.

(6) Location of the Feed Plate

The number of plates above the feed is based on the proportion of theoreticalsteps at total reflux which would be required to effect the change in concentrationof the key components between the feed and distillate. This proportion is appliedto the actual number of plates (including the reboiler) to determine the numberabove the feed plate.

In order to take into account any appreciable difference in relative volatilityabove and below the feed, the relative volatility used for calculating the steps attotal reflux between feed and distillate is the geometric mean of aD and a" or,

(1.155 1.15)~i

an = 0.97 X 0.97 = 1.19

The number of total reflux steps which would be required between the feedand distillate is calculated by the following equation:

( l8.78) (~) = 1.19n = 5.79'20 1.62 '

Page 246: Data Book on Hydrocarbons

50

40

30

FRACTIO ATING TOWERS 241

4 5 6FIGUllE 1

7 8

Number of actual plates above the feed would then be:

10.1 (50 + 1) = 2025.8

The vaporization of the feed can be taken into account by adding the fractionvaporized to n since 10010 vaporization would be equivalent to a theoretical stepat total reflux. This would change the proportion of plates above the feed asfollows:

(10.1 + 0.75) (") I• 00 + 1 = 21.4 pates above the feed

20.8

Feed lines would probably be installed above the 2'!th, the 28th and 32ndplates from tile bottom of the tower.

Page 247: Data Book on Hydrocarbons

242 DATA BOOK ON HYDROCARBONS

GENERAL REFERENCES

Atkins and Franklin, Refiner Natural Gasoline Mfgr. (Jan. 1936).Brown, Sanders, Nyland and Hesler, Ind. Eng. Chem. 27, 383 (1935).Brown and Souders, Oil and Gas J. 31, 34 (1932).Chilton llnd Colburn, Trans. Am. Inst. Chern. Engrs. 26, 178 (1931).Elgin and Weiss, Ind. Eng. Chem. 31, 435 (1939).Fenske, Lawroski llnd Tongberg, Ind. Eng. Chern. 30, 227 (1938).Fenske, Unpublished data, Pennsylvania State College.Gilliland, Ind. Eng. Chent. 32, 918, 1101, 1220 (1940).Gunness, Ind. Eng. Chern. 29, 1092 (1937).Lewis and Wilde, Trans. Am. Inst. Chern. Engrs. 21, 99 (1928).Perry, "Chemical Engineers' Handbook," pp. 829-832, McGraw-Hill Book Co., New York,

N.Y. (1941).Sherwood, Shipley and Holloway, Ind. Eng. Chem. 30, 765 (1938).White, Tram. Am. Imt. Chem. Engrs. 31, 390 (1935).

Page 248: Data Book on Hydrocarbons

FRACTIONATING TOWERS 243

nm

aD

alV

LKHKLHDW

ZH

.vomenclatureX moles of any component in distillate or bottoms per 100 moles of feedx mole fraction of any component in liquidy mole fraction of any component in vaporD moles of distillate per 100 moles of feedo moles of reflux per 100 moles of feedOlD reflux ratio(OIDhl minimum reflux ratio corresponding to S = 00

S number of steps from still to distillate8,1/ minimum number of steps corresponding to OlD = 00

P number of theoretical plates; with a partial reboiler and partial con­denser, P = S - 2, and with a partial reboiler and total condenser,P=S-lratio of mole fraction of any light component to heavy key componentin the feedratio of mole fraction of light key component to any heavy componentin feedrelative volatility of any component to heavy key at the dew point ofthe distillaterelative volatility of any component at the bubble point of the bottomsrelative volatility of any component at the arithmetic average tempera-ture of the dew point of the distillate and the bubble point of thebottomsmean relative volatility of any component, (aD' alV . a.4)fi

used as a subscript to refer to the light key componentused as a subscript to refer to the heavy key componentused as a subscript to refer to any light componentused as a subscript to refer to any heavy componentused as a subscript to refer to the distillateused as a subscript to refer to the bottomsused as a subscript to refer to the plates above the feedused as a subscript to refer to the plates below the feed

Page 249: Data Book on Hydrocarbons

.1

1IIIriCORRELATION OF THEORETICALSTEPS WITH REFLUX RATIO

MULTICOMPONENT AND BINARY MIXTURES

244

.9

.8

.6

.5

.4

.3

.2

Page 250: Data Book on Hydrocarbons

1201.11111100

90

80·

70

60

5040_::••ll!IIflE:IJffi

OVERALL PLATE EFFICIENCY vs.FLUIDITY OF LIQUID ON PLATES

ONLY DATA 00 HYDROCARBON MIXTURES WEREUSED IN THIS CffiRELATION, AND THERE WEREINSUFFICIENT DATA ON OTHER TYPES TO JUS­TIFY A MORE GENERAL USE. HOWEVER, THEREWERE SOME EVIDENCE THAT THE CURVE IS ALITTLE CONSERVATIVE FOR ALCOHOL - WATER

MIXTURES.

120

110

100

90

80

70

60

50

40

30

20

10

_____'0

2 3 4 5 6 7 8 9 10 II 12 13 14

245

Page 251: Data Book on Hydrocarbons

mIR~12ioll~3IoI14~oll~ 60 7'08090 I

HEIGHT EQUIVALENT

TO A THEORETICAL PLATE

(I) WHILE THIS CORRELATION WAS DE'

VELOPED fROM DATA ON RASHIG

RINGS AND 8ERL SADDLES, IT PR08­

ABLY APPLIES TO OTHER SIMILAR

TYPES OF HOLLOW PACKING.

(2) VALUES OF H.E.lP. FROM THIS CHART

CORRESPOND TO THE MAXIMUM TOWER

CAPACITIES GIVEN BY THE CHART ON

THE OPPOSITE PAGE. FOR THE VALUESOF HE.T.P. AT CAPACITIES BETWEEN 80%AND 100% OF THE MAXIMUM, DIVIDEH.E.T.P. FROM CURVES BY THE FRACTIONOF ULTIMATE CAPACITY (.80-1.00) ATWHICH THE TOWER WILL OPERATE.

30.:_. :t';

204567891032

2

4a!f11i1

246

Page 252: Data Book on Hydrocarbons

60

100

80

1000

800

600500

tI 400

300

" .200

'n

·r.... '· ....

"'.

••I"4T'~

,I';r.j

ltllllltltrTl1111

;~':+fTo"", .

.....···'11:;::;:1-0-""'-:1=

+

* USE VALUES OF S/F 3 FROM CUR\IE

FOR RASCHIG RINGS. BERL SADDLESW PACKING UP 10

2 INOiES IN SIZE. FOR SIZES GREAT­ER'THAN 2 INCHES, USE INDIVIDUAL

VALUES OF SAND F.

lilt! 1) r r 1111 I 1 I'r-~

f"'";m.

rt~'·-I--t"""'

'it

~~i:-:'l:::.Jx·

jj

~-d

,.,.,~li

='J="~J';+:-j:,l

3

r,

2

. e:l3.f+ "t~

•., ! ·/+l!;I"·'." I' I .,

.3 .4.5.6.7.8.910

..mI·;,·;:; I ;'i-;t:;:-..J:,ENG. DiEM. 30. 765 (1930)~rF!¥:tJ~lii r:'~

.2

~MlrLEY AND HOLLOWAY. IND .

·1

SUPERFICIAL MASS vaoCITY OF VAPOR-L8SISEC/SO.FT.L- .. • n "llOUIO- "80 - reNSlTY OF VAPOR - LeS/CU· FT.8L - .. fl L1QUIO- "Uo-SUPERFICIAL VAPOR VELOCITY AT INITIAL FLOODING-FT/SEC.

S*-SURFACE AREA OF PACKING- SO. FT./CU.FT. TOWER VOLUMEF*-F'RACTION OF FREE VOLUME IN PACKING

.M -VISCOSITY OF LIQUID - CENTIPOISES9 -GRAVITY CONSTANT-32.2 FT./SEC~

-... _......

.OZ .03.04 .06 .08 .fO

SHERWOOu

.2

.1

.08

.06

.05

.04

001.01

.002,

~

Page 253: Data Book on Hydrocarbons

· ~

1.5

1.01

AP/H <KFLA·15eo·85uI.85

DL50

.,I( < VISCOSITY OF VAPOR - CENT'POISESeo < DENSITY OF VAPOR - LBS.lCU. FT.U 'VAPOR VELOCITY - FT.lSEC.o < SIZE OF PACKING - INCHESFL "LIQUID RATE FACTORK <1.25 FOR BERL SADDLES

<I. 75 FOR RASCHIG RINGS

_1lI4.0

o

20

248

Page 254: Data Book on Hydrocarbons

CONVERSION FACTORS

ox:°C + 273.2

(OF + 459.7)1.8°R/1.8

OR

1.8(OC) + 459.7of + 459.7

OF

1.8(OC) + 32

OR - 459.71.8("K) - 459.7

°C

(OF - 32)/1.8(OR - 491.7) /1.8

oK - 273.2

TEMPERATURETo ConvertFrom To°e .OF .oR .oK .

Centimeters .Meters __Inches .......................•......•..Feet.............•......•..............

LENGTHTo ConvertFrom To Cm Meters Inches Feet

Multiply By

1.000 0.0100 0.3937 0.03281100.0 1.000 :19.37 3.2812.540 0.0254 1.000 0.0833330.48 0.3048 12.00 1.000

Sq em......................•.Sqm .Sq in .Sq ft. ............•...........

·.0

AREATo ConvertFrom To Sqem

1.00010,0006.451929.0

Sq m Sq in.

M ullilJ/Y by

1.000 X10-4 O. J5501.000 1,5506.451 XIO-4 1.0000.09290 144.0

Sq ft

1.076 XI0-1

10.766.944 X10-1

1.000

:0

VOLUMETo ConvertFrom To Cu in. Cu ft US gal Imp g&~ eu em Liters Dbl (42's)

5

.0o

l>h,/liply by

Cu in 1.000 5.787 X10-4 4.329 X10-3 3.607 X10-3 16.39 0.01639 1.031 XIO-4Cu ft. 1,728 1.000 7.481 6.232 2.832XI04 28.32 0.1781'US gal 231.0 0.1337 1.000 0.8326 3,785 3.785 0.02381Imp gal. .. 277.3 0.160.~ 1.200 1.000 4,543 4.54a 0.02857Cu em 0.06102 3.531 XIO-' 2.642 X10-4 2.201 XIO-4 1.000 1.000 X10-3 6.290XIO-&Liters 61.02 0.03531. 0.2642 0.2201 1,000 1.000 6.290 X10-1

Bbl (42'S). 9,700 5.614 42.00 34.97 1.590XIO' 159.0 1.000

FORCETo ConvertFrom To

Poundals .Pounds .Dynes .Grams .

Poundals

1.00032.177.233XltJ'0.07093

Pounds Dynes

Multiply by

0.03108 Ia,8301.000 4.448 X10'2.248 X10-' 1.0002.205 X10-3 980.7

249

Grams

14.10453.61.020XltJ"1.000

Page 255: Data Book on Hydrocarbons

250 DATA BOOK ON HYDROCARBONS

Sp gr .Lb/gal. .Lb/eu ft .

DENSITYTo ConvertFrom To Sp gr Lo/gal Lb/eu ft

Multiply by

1.000 8.3'17 62.430.1108 1.000 7.4810.01602 0.1337 1.000

PRESSURETo Convert

In. of Mmof Ftof H,OFrom To Lb/sq in. Lb/sq ft AIm Kg/sq em Hg Hg (60°F)

Multiply byLb/sq in... 1.000 144.0 0.06804 0.07031 2.036 51.70 2.307Lb/sq ft ... 6.944 X10-3 1.000 4.726XIo-' 4.882 XIO-' 0.01414 0.3592 0.01602Atm....... 14.70 2,116 1.000 1.033 29.92 760.0 33.90Kg/sq em.. 14.22 2,048 0.9678 1.000 28.96 735.5 32.81In. of Hg .. 0.4912 70.73 0.03342 0.03453 1.000 25.40 1.133Mm of Hg 0.01934 2.785 1.316 XlO-3 1.360 X10-3 0.03937 1.000 0.04461Ft of H,O 0.4335 62.43 0.02950 0.03048 0.8826 22.41 1.000

(60°F)

RATE OF FLOWTo Convert

Liters Gal Gal Cu ft Cu ft Cu ft Bbl BblFrom Toper min per hr per sec per min perhr per hr per dayper sec

M,diiply by

Liters/sec 1.000 15.85 951.2 0.03532 2.110 127.1Gal/min. 0.06308 1.000 60.00 2.228XIO-3 0.1337 8.010Gal/hr .. 1.052XI0-3 0.Ol667 1.000 3.713XIO-' 2.228 X 10-3 0.1337Cuft/see 28.30 448.9 2.693 XlO' 1.000 60.00 3,600Cuft/min 0.4717 7.481 448.9 0.01667 1.000 60.00Cu ft/hr. 7.862 X10-3 0.1246 7.481 2.778 X10-' 0.01667 1.000Bbl/hr .. 0.04415 0.6997 42.00 1.560 X10-3 0.09359 5.615Bbl/day. 1.840XlO-3 0.02917 1.750 6.498XlO-' 3.899XIO-3 0.2340

22.66 543.81.429 34.300.02382 0.5716641.1 1.538 XIO'10.69 256.50.1781 4.2721.000 24.000.04167 1.000

ENERGY. HEAT. AND WORKTo ConvertFrom To BTU Gm-cal Ft-Ib Hp-hr Kw-hr

Multiply by

BTU........... 1.000 252.0 777.5 3.928 X10-' 2.928 Xio-'Gm-eal ......... 3.968XlO-3 1.000 3.086 1.558 X 10-' 1.162 Xio-'Ft-lb ........... 1.286 X10-3 0.3241 1.000 5.050 X10-' 3.767 Xio-'Hp-hr.......... 2,547 6.417XIO' 1.980 XI0' 1.000 0.7457Kw-hr ......... 3,415 8.605XIO' 2.655XIO' 1.341 1.000

Page 256: Data Book on Hydrocarbons

CONVERSION FACTORS 251

POWERTo Convert

BTU Ft-Ib Ft-Ib Kg-cal G-cal Tons ofFrom To per hr per min per sec Hp Kw per sec per sec refrig

Multiply by

BTU/hr .. 1.000 12.96 0.2160 3.928X1O-' 2.92SX10-' 6.999X1O- 5 0.06999 8.333X1o-'Ft-Ib/min 0.07715 1.000 0.01667 3.033X1O-5 2.260X1O-' 5.402X10-· 5.402X1O-' 6.431X1O-'Ft-Ib/sec 4.630 60.00 1.000 1.820X1o-' 1.356X10-3 3.241 X10-' 0.3241 3.858X1O-'Hp...... 2,547 33,000 550.0 1.000 0.7457 0.1782 178.2 0.2122Kw. . . . .. 3,415 44,250 737.6 1.341 1.000 0.2390 239.0 0.2845Kg-cal/sec 1.428X10' 1.851 X105 3,086 5.610 4.183 1.000 1,000 1.191G-cal/sec 14.28 185.1 3.086 5.610 X10-3 4.183 X10-3 0.0010 1.000 1.191 X1o-"Tons of 1.2ooX10' 1.555X105 2,592 4.712 3.514 0.8400 840.0 1.000refrig

Page 257: Data Book on Hydrocarbons

INDEX

Acetylenes, physical constants of, 4Activity cOF!'f5cien~J 48

for light h)-d:ocubons b absorber oils, 67Adiabatic comp;'0mion of gases, 82-87Air, enthalp:i of, 182-183

specific }'ea.t cf, 88t,hermal conductivity of, 216viscosity of, 176

Alcohols, physical constants of, 6Aldehydes, physical constants of, 7Amagat's l,fr", 136-137Area, conversion table for, 249Aromati~s (see al~o individual compounds)

physicai constants of, 5specific gravity of saturated liquids, 142vapor pressure of Cs, 38viscosity of liquid, 162

A,S.T.M. distillation of petrolcum fractions,11

average boiling points frOID, 15equilibrium flash vaporir.ation curve

from, 223, 228·-229Avcrage boiling point3 of petrolcum frac­

tions, 10-15from crude ass"y (T,B.P,) distilhtions,

11from 10% (or A.S.T.M.) distillations, i5

Benzene, enthalpy of, 112 I

latent heat of vaoorization of, 77physical constants of, 5specific gravity of the satnrated liql\id.

1·12vapor ?ressure of, 37viscosity of, Ift2

Berl saddles. 246-248Blending index, viscosity, 156, 173Boiling point, of hydrocarbons, 2-5

of miscellaneous gases, 9of miscellaneous organic compounds, 6-7of petroieum fractiallS, cubic average, 11

menu avern.ge, 10, 1<1-15molal average, 10, 14-15proper average for correlating physical

data, 10volume average, 10-11weight average, 10, 14-15

Bubble-cap towers (see also Fractionatingtowers)

overall plate efficiency, 233, 245Butadiene-1,3, physical constants of, 3

Butadiene-1,3, relative volatility of, 65spccific gmvity of the saturated liquid,

141v::.por pressure of, 36

Butane, enthalpy of, 101fugacity function of, 55latent heat of vaporization of, 94-95Mollier diagram for, 135physical constants of, 2relative volatility of C. hydrocarbons to,

65-66specific gravity of the saturated liquid,

140specific heat of vapor, 89vapor pressure of, 30viscosity of, 161

Butene-I, enthalpy of, 110physical constants of, 3relative volatility of, 65specific gravity of the saturated liquid,

141specific heat of vapor, 89vapor pressurc of, 30

Butene-2, cis- and trans-, enthalpy of, 111physical constants of, 3relative volatility of, 65specific gravity of the satur:l.ted liquid,

141specific heat of vapor, 89vapor pressure of, 30

Capacity of packed towers, 247Carbon dioxide, enthalpy of, 182-183

physical constants of, 9specific heat of, 88·~b.ermn.l conductivity of, 216viscosity of, 176

Cnrbon monoxide, enthalpy of, 182-183physical constants of, 9specific heat of, 88thermal conductivity oi, 216viscosity of, 176

Chn.racterization factor, definition, 12from gravity and boiling point, 16of typical crude fractions, 12, 17

Columns (see Fractionating towers)Combustion (see also Flue gas)

heat of, fuel oils, 178, 180hydrocarbons, 2-5miscellaneous gases, 9miscellaneous organic compounds, 0-7

253

Page 258: Data Book on Hydrocarbons

254 INDEX

Combustion, heat of, paraffin and olefingases, 178, 181

petroleum fractions, 178, 180refinery gases, 178-179

heat available from, fuel oils, 186-188refincry gases, 184-185

Compressibility, of gases (see P-V-T re­lations)

of liquid petroleum fractions, 136, 143­147

Compression, adiabatic, 82-87Conductivity, thermal (see Thermal con­

ductivity)Constants, physical (see Physical constants)Contraction, friction loss in pipes uue to,

204Convection, heat 10SR by natural. 210Conversion, of °A.1'.I. to specific gravity

and pounds per I';allon, 138-139of °Engler to kinematic viscosi ty, 159of Redwood seconus to kinematic vis­

cosity, 15Xof Saybolt Furol seconus to kineml\tic

viscosity, 15~-159

of Saybolt Thermo viscosity to kine­lIultie viscosity, J60

of Saybolt Lniversal seconds to kine­matic viscosity, 15X

tables [or, area, 2'19density, 250energy, heat, anel work, 250force (weight), 249lenl\th, 249power, 251pressure, 250rate of flow, 250temperatlll'e, 249volume, 249

Critical pressul'C, of hydrocarbons, 2-5, 74of miscellaneous gases, 9of miscellaneous organic compounds, 6-7of normal paraffins, 71pseudo-, of light hydrocarbon mixtllres,

71of petroleum frael-ions, 73

true, of pet.roleulll fractions, 74Critical telllpemture, of hydrocarbons. 2-5,

69-70of light hydrocarbons, 70of miscellaneous gases, 9of mis('ellaneous organic compounds, 6-7of petroleum fractions, 72

Crude assay distillation, definition, 1,average boiling points of petroleum frac­

tions from, 14equilibrium flash vaporization curve

from, 223-229

Crude fractions, classification of various, 13typical, characteriz:Ltion factor of, 12, 17

gravity, °A.P.I., 1:·molecular weight of, 22-23viscosity index of lube fractions of, 12

Cubic average boiling of petroleum frac­tions, 11

Cyclohexane, physical constants of, 5vapor pressure of, 39

Cycloparaffins (see also individu:Ll com­pounds)

physical constants of, 5vapor pressure of, 39

Cyclopent:Lne, physical constants of, 5vapor preSSlll'e of, 39

Dalton's L:Lw, 45, 136Density (s('e also Specific gravity)

conversion table for, 250nitieal, hydrocarbons, 2-5

miscellaneous gases, 9miscell:Lneous oq;anic compounds, 6-7

Dimethylacetylene, physical const:Lnts of, 4vapor pressure of, 36

Diolefins (-,ee also individual compounds)physical constants of, 3-4specific 1\1'lwity of satumted liquids, 141

Distillation (see A.S.T.M., Crude assay,lind Tme boiling point distillations)

Efficiency of bubble-cap towers, 233, 245Emissivity, radiant heat coefficients of, 209Energy, conversion table for, 250En~lel', degrees, conversion to kinematic

visco!$ity, 159Elliargement, friction loss in p;pes due to,

201Enthalpy of, :IiI', 182-183

benzene, I 12butane, 101butene-I, 110butene-2, cis- and tl'ans-, IIIethane, 99ethylene, 10~

flue gas components, CO" CO, T, etc.,182-183

heptane, 104hexane, 103hydrocarbon vapors, eh:Lnge with pres-

sure, 92isobutane, 106isobutene, 110isopentane, 107methane, 98mixtures of light hydrocarbons, 78pentane, 102petroleum fractions, 80-82, 114-127

Page 259: Data Book on Hydrocarbons

INDEX

Enthalpy of, propane, 100propylene, 109toluene, 113

Entropy (see ;\10Ilier diagrams)Equilibrium flash vaporization, of known

mixtures, 222of pctroleum fractions, 222-229

Ethanc, cnthalpy of, 99fugacity function of, 51latent heat of vaporization of, 94-95MollieI' diagram for, 131physical constants of, 2specific gravity of the saturated liquid,

140specific heat of vapor, 89vapor pressurc of, 28

Ethers, physical constants of, 7Ethylacetylcne, physical constants of, 4

vapor pressure of, 36Ethylene, cnthalpy of, 108

fugacity function of, 50latcnt hcat of vaporization of, 94-95Mollicr diagram for, 130physical constants of, 3specific gravity of the saturated liquid,

141specific heat of vapor, 89vapor prcssure of, 28

Feed pbtc, optimum, fractionating towers,234

Fenske cquation, mllumum theoreticalsteps at total reflux, 230

Fittings, equivalent lengths of, 193-194,202-203

Flash vaporization, equilibrium, of knownmixtures, 222 .

of petrolcum fractions, 222-229Flow of fluids, across wcirs, discharge

characteristics, 205friction factor for, 193, 198friction loss, contraction and enlarge-

ment, 204pressurc drop across tubc banks, 206streamlinc, prcssure drop in pipes, 198turbulent, equivalent Icngths of fittings,

202-203friction factor for, 193, 198pressurc drop in pipes, 193, 198-201

Flow of hcat (sec Heat tmnsfer)Flue gas, components, enthalpy of, 182-

183percent CO, in, 189pounds per pound of fuel, 190thcrmal conductivity of, 192viscosity of, 191

Force, convcrsion table for, 249

255

Fractionating towcrs (see also Fractiona-tion)

bubble cap, overall efficiency of, 233, 245optimum feed plate, 234packed, capacity of, 247

H.E.T.P., 2·16prcssurc drop in, 248

Fractionation, minimum reflux ratio, 231­233

minimum theoretical steps (Fenske equa­tion), 230-231

theoretical steps and reflux ratio, cor­relation of, 244

Francis formula for rectangular weirs,205

Friction factor, for flow of fluids in pipes,193, 198

Fuel oils, heat available from combustionof, 186-188

heat of combustion of, 178, 180Fugacity, of hydrocltJ'bon vapors, 62-63

of light hydrocarbons in absorber oils,activity cocfficient, 67

function of, butane, 55ethanc, 51ethylcnc, 50heptaue, 59hexane, 58hydrogcn, 61isobutanc, 54isopcntanc, 56mcthane, 49octane, 60pentane, 57propane, 53propylene, 52

Gas(es) (see also Fine gas, Refinery gas,and individual compounds)

miscellancous, enthalpy of, 182-183physical constants of, 9spccific hcat of, 88thermal conductivity of, 216viscosi ty of, 176

Gasolines, vapor prcssure of, 44Glycols, physical constants of, 6-7Gravity, convcrsion from °A.P.I. to specific

gravity and pounds per gallon, 138­139

of typical crude fractions, 18specific (sec Specific gravity)

Heat, available from combustion (see Com.bustion)

capacity (see Spccific heat)content (see Enthalpy) .,latent (see Latent heat of vap0rlZatlon)

Page 260: Data Book on Hydrocarbons

256 INDEX

Heat, loss, by no.tural convcction, 210by radiation, 209

transfer, to fluids insidc tubes, 211to fluids outside tubes, 212

Height equivalent to tI theoret,ir.otl phte,p:teked towers, 24(J

Heptane, enthalpy of, 10·1fugacity function of, 59latent hetlt of vaporization of, 94-95physical constants of, 2specific gravity of the saturated liquid,

140specific heat of vapor, 89vapor pressure of, 33viscosity of, 161

Hydroe:lrbon(s) (see also individual com­pounds an,l Arom"tics, Olefins, etc.)

critic"l temperature of, 69light, eritic"l temperature of, 70

latent heat of vaporization of, 94-95liquids, specific heat of, 93physical constants of, 2-5vapors, chauge in enthalpy with pressure,

92fugacity of, 62-63P-Y-T relations of, 136-137, 148­

154specific hcat of, 89, 91

vapor IJre8sure of, 40 -·12Hydrogen, fugacity function of, 61

physical constants of, 9specific heat of, 88thermal conductivity of, 216viscosi ty of, 176

Isobutane, enthoJpy of, 106fugacity function of, 54latent heat of vaporization of, 94-95physical constants of, 2relative volatility of, 66specific gravity of the saturated liquid,

140vapor pressure of, 30

Isobutene, cnth:llpy of, 110physical constants of, 3relative volatility of, 65specific gravity of the satur:lted liquid,

141specific heat of vapor, 89vapor pressure of, 30

Isoparaffins (see also individual compounds)molecular weight of, 20physical constants of, 2-3

Isopenlane, enthalpy of, 107fugacity function of, 56lat~nt heat of vaporization of, 94-95pbysical constants of, 2

Isopen~ane, rel'!'tive volatility of, 66speCific gravIty of the saturated liquid

140 'vapor pressure of, 31

Ketones, physical constants of, 7Kinematic viscosity, blending index Irom,

173conversioll to, 15.1-156, 158--160definition of, 155temperature charts, 166-167

Latent heat of vtlporization, 76-77of hydrocarbons, 76-77of low boiling hydrocarbons, 94-95of miscellaneous organic compounds, 6-7of p"raffin hydroc:lrbons, 96-97of petroleum fractions, 76-77

Length, conversion t"ble fur, 249Log:lrithmie mean temperature diO'erence,

208, 217correction fotctors for lllulti-pas.~ ex­

ch:lngers, 208, 218-221

Mean average boiling point, of pet,roleumfractions, 10-11, 14-15

Melting point, of hydroc:lrbons, 2-;;of inisr.ell,meous gases, 9of miscelbncous organic compounds,

6-7Methane, enth:llpy of, 98

fugacity function of, 49latent he:lt of v:lporiz:ltion or, U1-95MollieI' diagrams for, 128-129physic:ll constants of, 2specific gravity of thc satnrated liquid,

140specific heat of vapor, 89V:lpor pressure of, 27

Methy1:lcetylene, physical coustllnts of, 4v:lpor pressure of, 35

Methylcyclopentane, physical cOIl.;tants of,5

vapor pressure of, 39Minimum, reflux ratio, 231.-233

theoretical fmctionating steps, 230-231Molal avemge boiling point, of petroleum

fractions, 10-11, 14-15Molecular weight (see also Physical con-

stants)of p:lraffins, 20of petroleum fractions, 21of typical crude fractions, 22-23

Mollicr diagram (s) for, butane, 135ethane, 131ethylene, 130methane, 128-129

Page 261: Data Book on Hydrocarbons

INDEX 257

Momer diallram(s) for, propane, 133-134propylene, 132, 134

Natural convection, heat loss to atmosphereby, 210

Nitrogen, enthalpy of, 182-183physical constants of, 9specific heat of, 88thcrmal conductivity of, 216viscosity of, 176

Octane, enthalpy of, 105fugacity function of, 60latent hcnt of vaporization of, 94-95physical constants of, 2specific gravity of the saturated liquid,

140specific hcat of vapor, 89vapor pressure of, 34viscosity of, 161

Oil(s) (sec also Crude fractions and Petro­leum fractions)

fuel, heat "vailable from combustion of,186-1 8

hent of combustion of, 180lube, viscosity index of, 156, 168-172

Olefins (sec also Hydrocarbons and indi-vidunl compounds)

critical temperature of, 69hent of combustion of, 181physical constants of, 3specific gravity of, 141

Olefins-acetylenes, physical constants of,4-5

Optimum fccd point, fractionating towers,234 '

Organic compounds, miscellaneous, physi­cal constants of, 6-7

Oxygen, enthalpy of, 182-183physical contitants of, 9specific hent of, 88thermal conductivity of, 216viscosity of, 176

Packed towers (see Fractionating towers,packed)

Paraffins (sec also Hydrocarbons and indi-vidual compouuds)

critical tcmperature of, 69heat of combustiou of, lSImolecular weight of, 20normal, critical pressure of, 71

latent heat of vaporization of, 96-97viscosity of, 16!

physical constants of, 2-3specific gravity of, 140

Pentane, enthalpy of, 102

Pentane, fugacity function of, 57latent heat of vaporizntion of, 94-95phYSICal constants of, 2specific gravity of the snturated liquid,

140specific heat of vapor, 89vapor pressure of, 31viscosity of, 161

Petroleum fractions (sce also Crnde frac-tions and Hydrocarbons)

average boiling points of, 10-11, 14-15critical temperature of, 72enthalpy of, 80-82, 11'1-127equilibrium 11,,"h vaporizntion of, 222-229hent of combustion of, 178, 180Intent heat of vaporization of, 76-77liquid, thermal conductivity of, 213

thermal ~xp:lllsion of, 136, 143-147pseudo-critical pressure of, 73pseudo-critical temperntuI'C nf, 72viscosit.y-temperature charts for, 166-167

Physicnl conRt'lnts of (sec also individualcompounds)

acetylenes, ,1alcohols, 6aillehydes, 7aromatics, 5cycloparaffins, 5diolefins, 3-4ethers, 7glycols, 6-7isoparaffins, 2-3ketones, 7normal paraflins, 2olefins, 3olcfins-ncetylcucs, 4-5

Pipe, steel, dimCllBions of, 202Plate efficiency of buhble-cap towers, 233,

245Power, conversion tahle for, 251Pressure, conversion tahle for, 250

critieat ('Pc Critic,d pres"ul'e)drop, across tube hanks, 206

due to fittings, 202for streamline flow in pipes, 198for turbulent flow in pipes, 198-201in commercial pipr.s, 193, 199-201

effect of, on enthalpy of hydrocarbonvapors, 92

on viscosity of gases, 177vapor (sec "apor.pressure)

Pl'Opadiene, physical constants of, 3specific gravity of the saturated liquid,

141vapor pressure of, 35

Propane, enthalpy of, 100fugacity function of, 53

Page 262: Data Book on Hydrocarbons

258 INDEX

Propane, latent heat of vaporization of, 94-95

MollieI' diagrams for, 133-134physical constants of, 2specific gravity of the saturated liquid, 140specific heat of vapor, 89vapor pressure of, 29viscosity of, 161

Propylene, enthalpy of, 109fugacity function of, 52latent heat of vaporization of, 94-95Mollier diagrams for, 132, 134physical constants of, 3relative volatility of, 64specific gravity of the satumted liquid,

141specific heat of vapor, 89vapor pressure of, 29

Pseudo-critical pressure, 68of mixtures of light hydrocarbons, 71of petroleum fractions, 73

Pseudo-critical tempemture, 68of mixtures of light hydrocarbons, 70of petroleum fractions, 72

P-V-T rel:,tions of, hydrocarbon vapors,136-137, 148-154

mixtures of gases, 137

R, gas constant, numerical values of, 137Radiation, heat loss by, 209Raoult's Law, 45Raschig rings, 246-248Rate of flow, conversion table for, 250Rectification (see Fractionation)Redwood viscosity, conversion to kinematic

viscosity, 158Refinery gas, heat available from combus­

tion of, 184-185heat of combustion of, 178-179

Reflux ratio (scc Fractionation)Reid vapol' pressure, conversion to true

vapor pressure, 4-1Relative volatility of, C, hydrocarbons,

65-66ethylene-ethane, 64isopentane-pentane, 66propylene-propane, 64

Reynold's number, e01'l'ection for equivalentlenl-(th of fittings from, 203

friction factor from, inside pipes, 198across tube banks, 206

heat trnnsfer film coefficient from, insidetubes, 211

across tube banks, 212

Saybolt, seconds Furol, conversion to kine­matic viscosity, 158-159

Saybolt, seconds Universal, conversion tokinematic viscosity, 158

Thermo viscosity, conversion to kine­matic viscosity, 160

Specific gravity, conversion from 0 \ PI138-139 , .. "

conversion to density, 250of aromatics, 5, 142of diolefins, 3-4, 141of hydrocarbons, miscellaneous gases and

organic compounds, 2-9of olefins, 3, 141of paraffins, 2-3, 140

Specific heat of, crude fmction vapors, 90hydrocarbon liquids, 93hydrocarbon and petroleum fraction

vapors, 91light hydrocarbon vapors, 89miscellaneous gases, 88

Steam, enthalpy of, 182-183specific heat of, 88thermal conductivity of, 216viscosity of, 176

Steel pipe, dimensions of, 202Streamline flow of fluids, pressure drop in

pipes, 198

Temperature, conversion table for, 249Theoretical stops, fractionating towers, 230,

233, 244Thermal conductivity of, flue gas, 192

hydrocarbon gases, 215liquid petroleum fractions, 213miscellaneous gases, 216water, 214

Thermal expansion of liquid petroleumfractions, 136, 143-147

Tolnene, enthalpy of, 113physical constants of, 5specific gravity of the saturated liquid, 142vnpor pre"sure of, 37viscosity of, 162

Towers (.,cc Fractionating towers)Tme boiling point distillation (<ee Crude

assay distillation)Tube banks, heat tmnsfer film coefficients,

212pressure drop ncross, 206

Turbulent flow of fluids (see Flow of fluids,turbulent)

Units, conversion of (see Conversion, tablesfor)

Valves, equivalent lengths of, 202Vapor pressure of, benzene, 37

bu tadiene-I ,3, 36

Page 263: Data Book on Hydrocarbons

INDEX 259

Vapor pressure or. butane, 10butene-I, 30butene-2, cis- nnd trans-, 30cyclohexane, 39cyclopentane, 39dimethylacetylene, 36ethane, 28ethylacetylen~, 36ethylbenzene, 38ethylene, 28gasolines, 44heptane, 33hexane, 32hydrocarbons, 40-42isobutane, 30isobutene, 30isopentane, 31methane, 27methylacetylene, 35methylcyclopentane, 39octane, 34pentane, 31propadicne, 35propane, 29propylene, 29toluene, 37vinylncetylene, 36xylenes,38

Vaporizatiun, eqnilibrium flash (see Equi­librium flash vaporization)

latent he:lt of (see Latent heat of vapor­izatiun)

Vinylacetylene, physical constants of,4

vapor pressure or, 36Viscosity, or aromatics, 162

of California crude fractions, 165conversion of (see Conversion)or flue gas, 191of gases at high pressures, 177of hydrocarbon vapors, 174-175of Mid-Continent oils, 164of miscellaneous gasf's, 176of normal paraffins, 161of Pennsylvania crude fractions, 163

Viscosity blending index, 156, 173Viscosity index of lube oils, 156, 168­

172Viscosity-Temperature charts, 166-167Volume, conversion table for, 249

Water thermal conductivity ot, 214Weight, average boiling point of petroleum

fractions, 10-11, 14-15conversion table for, 249

Weirs dischal'i~e characteristics of, 205Work; converSIOn tables for, 250

Xylenes, ]lhysi~al constants of, 5specific grltvlty of the saturated liquid,

142vapor pressure of, 38viscosity of, 162