data communication &fieldbus systems

493
Data Communication & Fieldbus Systems Conducted for OMV Aktiengesellschaft Dates 03 - 07 December 2012 By David Olson Senior Consultant

Upload: andrei-horhoianu

Post on 27-Oct-2015

181 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Data Communication &Fieldbus Systems

Data Communication &

Fieldbus Systems

Conducted for

OMV Aktiengesellschaft

Dates

03 - 07 December 2012

By

David Olson Senior Consultant

Page 2: Data Communication &Fieldbus Systems

Data C

omm

unications &Fieldbus S

ystems:

PLC

& S

CA

DA

Technologies 3-7 D

ecember 2012, B

ucurești

Data C

omm

unications & Fieldbus S

ystems

1

Page 3: Data Communication &Fieldbus Systems

INTR

OD

UC

TION

This programm

etakes an in-depth look at the divisive field of data com

munications and Fieldbus

systems.

The increasing trend towards digital com

munications w

ithin the industrial plant environment has

brought in its wake a m

yriad of problems concerned w

ith interconnectivity and differing standards offered

bya

wide

varietyofcom

petingvendors.Forthe

user,ithasbecom

eprogressively

more

offered by a wide variety of com

peting vendors. For the user, it has become progressively m

ore difficult to differentiate betw

een the proffered options.

►W

HO

SHO

ULD

ATTEN

D?

Professionals involved in designing, selecting, sizing, specifying, installing, testing, operating and

maintaining data com

munication and Fieldbus

systems.

Any professional needing to get to grips w

ith the ever expanding and complex field of data

comm

unications and Fieldbussystem

s:

•Automation E

ngineers•C

hemical E

ngineers•C

onsulting Engineers

•Operations E

ngineers•P

rocess Engineers

•Process Operators

f•Electrical E

ngineers•E

lectricians•Industrial IT specialists•Installation and m

aintenance techniciansI

tt

tid

Ct

lEi

•Production professionals•Project professionals•System

Integrators•O

ther professionals who w

ant a better understanding fth

bjt

tt•Instrum

entation and Control Engineers

•Maintenance E

ngineersof the subject m

atter

Data C

omm

unications & Fieldbus S

ystems

2

Page 4: Data Communication &Fieldbus Systems

INTR

OD

UC

TION

►IN

TRO

DU

CTIO

No

This workshop is designed to provide engineers and technicians w

ith an overview of m

odern di gital com

munication standards -starting at the basic R

S232 standard right through to

gg

gg

Profibus/Foundation Fieldbus

and beyond.

►PER

SON

AL IM

PAC

To

Of

ll

tifthi

kh

dl

tillb

blt

oO

n successful completion of this w

orkshop delegates will be able to:

•Appreciate the basic principles of data comm

unications•U

nderstand the essential differences between asynchronous

and synchronous transmission

•Apply modbus

in a practical manner and m

ake use of troubleshooting techniques•D

ifferentiate between m

odbusand m

odbusplus

y•Apply basic faultfinding techniques covering rs232 up to rs485•U

nderstand the importance of the iso

osimodel

•Understand the basis of cyclic redundancy

•Recognise

the different aspects of cable selection•Apply

differentshieldingtechnologies

p•G

ain an insight into the essential differences between asibus

and devicenet•M

ake an informed appraisal of the differences betw

een profibus

and foundation fieldbus•U

nderstandthe

basicsofethernet

•Apply different shielding technologies•U

nderstand the application of fibreoptics

•Appreciate the value of hart in both calibration, data collection and diagnostics•R

ecognisethe w

ide range of fieldbusoptions

•Understand the basics of ethernet

•Appreciate the application of ethernetin the industrial environm

ent•U

nderstand tcp/ipand its associated protocols

•Differentiate betw

een net and sub-net masking

ff

•Distinguish the functionality of ports and sockets

Data C

omm

unications & Fieldbus S

ystems

3

Page 5: Data Communication &Fieldbus Systems

INTR

OD

UC

TION

►O

RG

AN

ISATIO

NA

LIM

PAC

To

Following the training and developm

ent experience provided by this workshop, participants w

ill return to their or ganizations equipped w

ith new skills and know

ledge that will enable them

to g

qpp

gevaluate the im

pact of new and existing technology in respect of your plant's com

munication

strategy and apply a rationalized comm

unication philosophy based on the best available practices.

oBy

leveragingthese

skillsyourenterprise

canexpectan

improvem

entinoverallproductivity

oBy leveraging these skills, your enterprise can expect an im

provement in overall productivity

through the reduction in downtim

es resultant from inappropriate data com

munications strategy

and through the ability to apply, install, and troubleshoot a modern digital com

munication

system.

►TR

AIN

ING

METH

OD

OLO

GY

►TR

AIN

ING

METH

OD

OLO

GY

oD

esigned for both novice and experienced engineers and technicians, this workshop starts at

fundamental principles and progresses through basic coding and form

atting systems, error

detection, and protocols through to advanced Fieldbusand device netw

orking concepts.o

Throughout the workshop, participants w

ill learn through active participation using exercises, questionnaires, and practical troubleshooting using protocol analysis and covering:R

S 232, R

S 485, M

odbus, Netw

orking, TCP

/IP.

Data C

omm

unications & Fieldbus S

ystems

4

Page 6: Data Communication &Fieldbus Systems

INTR

OD

UC

TION

►C

OM

PETENC

IES EMPH

ASIZED

oU

nderstanding of the major technologies used in m

odern data comm

unication and fieldbussystem

so

Select and specify different types of com

munication strategy according to the specific

it

dli

tirequirem

ent and applicationo

The experience of exchanging ideas, problems and solutions w

ith other delegates from different

backgrounds and processes o

A renewed or refreshed ability to m

ake an informed decision regarding their com

munication

yg

grequirem

ents according to their process, plant or operation

Data C

omm

unications & Fieldbus S

ystems

5

Page 7: Data Communication &Fieldbus Systems

SP

EA

KE

R P

RO

FILE

•M

r. David C

. Olson is

a seniorconsultantwith G

LOM

AC

S, specializing

in IT t

Nt

kiIT

itT

li

tid

il

managem

ent, Netw

orking, IT security, Telecomm

unicationsand w

irelesssystem

s.•

David has over28 years

of professionalexperiencein IT system

st

di

iith

ibilitif

llh

ft

managem

entand engineering, with

responsibilitiesforallphases

of systemdesgn

and development, delivery

of servicesand netw

orkarchitecture.

•P

rior tojoining G

LOM

AC

S, D

avid worked

with

theU

.S. departm

entof f

defenseand as a seniorsystem

sengineeerand projectm

anager with

Digital E

quipmentC

orporation.•

Mr. O

lson holdsdegrees

in Electricalengineering

and Informations

systems

managem

ent, and currentlylectures

in a E.U

. sponsoredtechnology

programin S

pain.•

David has presented

overthree

hundredsem

inars togovernm

entclientsand private

concernsin N

orth Am

erica, Europe, A

sia and theA

rabianG

ulf.

Data C

omm

unications & Fieldbus S

ystems

6

Page 8: Data Communication &Fieldbus Systems

TAB

LE O

F CO

NTE

NTS

►D

AY O

NE

Pg. 10I

td

tit

dt

iti

►D

AY TW

O

pg.100ISO

OSI

dl

Introduction to data comm

unications•

Overview

Modern Instrum

entation and Control

S ystems

ISO O

SI model

Com

munications m

edia•

Cabling

•S

hieldingy

•"S

mart" Instrum

entation •

Basic principles

•D

ata comm

unications standards

Shielding

•G

rounding •

Fibreoptics

Error detection•

RS

-232 interface standard •

Faultfinding •

RS

-422 interface standard •

RS-485

interfacestandard

•C

hecksum

•C

yclic Redundancy

LAN

Standards•

TopologiesR

S-485 interface standard •

Interface Converters

•Topologies

•P

rotocols •

CS

MA

/ CD

(Ethernet)

•Token

Ring

Token Ring

•Token B

us

Data C

omm

unications & Fieldbus S

ystems

7

Page 9: Data Communication &Fieldbus Systems

TAB

LE O

F CO

NTE

NTS

(continued)►

DA

Y THR

EEPg. 184

Sd

dPLC

´►

DA

Y FOU

R

Pg. 259C

AN

Bus

/DeviceN

etScada

and PLCs

Modbus•

Fundamentals

•Fram

eform

at

CA

NB

us/D

eviceNet

•Fram

e format

•A

rbitration •

Fragmentation

•E

rrorreportingFram

e format

•Function coding

•E

xception reports •

Troubleshooting

Error reporting

•D

eviceNetm

edia layer •

Netw

ork configuration Profibus

•FM

SH

AR

T•FSK

•C

abling and configuration •

Com

mands

•FM

S

•D

P physical layer

•P

A physical layer

•Foundation Fieldbus•

Com

parisonbetw

eenP

rofibusP

Aand

FF•

Com

mands

•A

ctuator Sensor Interface (ASI)

•P

hysical layer •

Modulation

principles

•C

omparison betw

een Profibus

PA

and FF •

Publisher/subscriber m

odel •

Physical layer

•Fram

e structure •

Lik

tih

dl

Modulation principles

•C

omponents

•Link active scheduler

•Function block

•D

evice descriptions Safety and R

eliability

Data C

omm

unications & Fieldbus S

ystems

8

Page 10: Data Communication &Fieldbus Systems

TAB

LE O

F CO

NTE

NTS

(continued)

►D

AY FIVE

Pg. 405Eth

t►

Appendix

Pg. 464•

Gl

fTi

lEthernet

•E

thernet frame

•M

edia Access C

ontrol •

Collision

detection

•G

lossary of Terminology

•S

uggestions for further reading

Collision detection

•100B

ase-T repeater rules •

Gigabit E

thernet 1000Base-T

•G

igabit Ethernet M

AC

Layer Internet layer protocols

•Internet P

rotocol Version 4 (IP

v4) H

ost to Host (Transport) layer protocols

•Transm

issionC

ontrolProtocol

•Transm

ission Control P

rotocol •

Ports and S

ockets •

Sliding w

indows

•E

stablishinga

connectionE

stablishing a connection •

User D

atagram P

rotocol (UD

P)

•M

odbusover TC

P

Planning ScadaProjects

Data C

omm

unications & Fieldbus S

ystems

9

Page 11: Data Communication &Fieldbus Systems

Day

One

Day O

ne

►►IN

TRO

DU

CTIO

N TO

DATA C

OM

MU

NIC

ATION

S

Overview

Oe

e

•M

odern Instrumentation and C

ontrol System

s•

"Sm

art"Instrumentation

Sm

art Instrumentation

•B

asic principles•

Data com

munications standards

•R

S232

interfacestandard

•R

S-232 interface standard

•Faultfinding

•R

S-422 interface standard

RS

48i

fd

d•

RS

-485 interface standard•

Interface Converters

Data C

omm

unications & Fieldbus S

ystems

10

Page 12: Data Communication &Fieldbus Systems

K-069

SC

AD

A S

YS

TE

MS C

OM

E IN

MA

NY S

HA

PE

S A

ND S

IZE

S

There is a rem

arkable variety in the size, scope and complexity of S

CA

DA system

s.

The sm

allest, simplest S

CA

DA im

plementations consist of nothing m

ore than a local hardwired 

controller with a prim

itive HM

I -- and probably the largest and most com

plex are the ones found in the pow

er control centers that manage the N

orth Am

erican power grids, w

ith hundreds of pieces of equipm

ent in just the control center.

Because there is such a w

ide scale of applications, there is a similarly huge variety of com

ponents and system

s that are used in the industry.

When one com

bines this observation with other differences -- traditions w

ithin certain industries, environm

ental issues  (e.g. risk of explosion in some applications m

ake wireless technology 

troublesome),  vendor bias, etc. all lead to further differences in S

CA

DA system

 configurations and solutions.

Consequently, the subject of S

CA

DA technology covers an unusual breadth of technologies and 

best practices -- and approaches that are ideal and appropriate to one application are absurdly inappropriate in others.

It is a fascinating field!

Data C

omm

unications & Fieldbus S

ystems

11

Page 13: Data Communication &Fieldbus Systems

SU

MM

AR

Y F

EA

TU

RE

S

SC

AD

A and Industrial C

omputing applications m

ake use of technology that is in many w

ays the sam

e as business Information T

echnology, with som

e very important differences. T

he main

distinguishing features of this class of service are:

Prio

rity on

reliable o

peratio

n

A key design feature is the system

atic use of redundancy in areas of systems activity that are

either particularly mission-critical or particularly fragile.

Redundancy m

easures often complicate the operation and adm

inistration of systems (e

.g.

managin

g d

uplica

te, in

consiste

nt d

ata

and d

esig

nin

g fa

il-safe

hand-o

ver tra

nsfe

r system

s).

Prio

rity on

timely o

peratio

n

Typically, process-related com

puter systems are required to coordinate process-w

ide operations w

ith careful attention to time.

Tim

e sensitivity is a two-fold issue:

It is important that a com

mon m

easure of absolute time be distributed, or synchronized

across the physical system.

Relative tim

e coordination is more critical, w

here the relative timing of com

plex sequences m

ust be carefully managed.D

ata Com

munications &

Fieldbus System

s12

Page 14: Data Communication &Fieldbus Systems

SU

MM

AR

Y F

EA

TU

RE

S, cont.

Generally cautious approach to

 new technology

The inform

ation technology (IT)  industry has a long tradition of em

bracing imm

ature technology -- som

etimes to great efficiency benefit and often at great peril in term

s of system 

stability and service continuity.

The scale of industrial applications tends not to challenge the perform

ance envelope as much 

as business applications.

As a result, this kind of perform

ance-hungry approach to systems design is far less im

portant than assured, reliable, resilient and m

aintainable systems.

For industrial com

puting applications, these are far more im

portant design objectives -- the concept of bleeding edge technology  has no place in core industrial applications.

Generally less dem

anding capacity concerns

Historically, real-tim

e data flow volum

es have been low com

pared to business data networks 

(business data networks typically carry data volum

es at hundreds of megabit-per-second 

rates and industrial networks often operate at kilobit-per-second rates).

This generalization is rapidly becom

ing less valid as increasingly sophisticated value-added services are m

ixed with raw

, real-time data stream

s in industrial applications.

Data C

omm

unications & Fieldbus S

ystems

13

Page 15: Data Communication &Fieldbus Systems

K-016

PR

IMA

RY A

ND S

EC

ON

DA

RY A

UT

OM

AT

ION

The autom

ation and control resources that are typically used fall into two broad categories:

Prim

ary Control

At this level process variables are m

easured and operational set-points are defined, typically using closed-loop control system

s, and typically over physically small dim

ensions   (local control).

This is the classical application of P

rogramm

able Logic Controller  (P

LC) and in perhaps a little 

less imm

ediate and local sense, Distributed C

ontrol System

 (DC

S)  technology.

Secondary C

ontrol

This level is typically associated w

ith less time-critical data gathering activities  (com

monly 

collected over plant-wide or system

-wide scale) , and m

ost operation controls are open-loop, involving hum

an operator judgment.

SC

AD

A system

s are typically associated with this role, and are com

monly supported by, or 

integrated with the follow

ing 'back-end' systems:

Process m

odeling and optimization system

sB

atch managem

ent and scheduling systems

Com

puter Integrated Manufacturing (C

IM)  system

sA

rtificial Intelligence  (AI) system

s

Data C

omm

unications & Fieldbus S

ystems

14

Page 16: Data Communication &Fieldbus Systems

RE

MO

TE

TE

RM

INA

LU

NIT

K-007

�������

MTU

CO

MP

UT

ER

SY

ST

EM

TELE

PH

ON

EM

OD

EM

TELE

PH

ON

EM

OD

EM

LINE

DR

IVE

RLIN

ED

RIV

ER

INS

TR

UM

EN

TIN

TE

RF

AC

ES

PR

OT

OT

YP

E S

CA

DA S

YS

TE

M

CO

MM

UN

ICA

TIO

NS

EQ

UIP

ME

NT

INT

ER

FA

CE

S

RE

MO

TE

TE

RM

INA

LU

NIT

RE

MO

TE

TE

RM

INA

LU

NIT

WIR

ELE

SS

LINK

WIR

ED

LINK

S

The netw

ork infrastructure, com

prising LAN

, W

AN and other 

components.

The M

aster Term

inal U

nit (MT

U)  consists 

of at least three elem

ents:

MT

U com

puterC

omm

unications interfacesH

uman M

achine Interface (H

MI)

The R

emote 

Term

inal Units 

(RT

Us)  and 

instrument 

interfaces.

HM

I

Data C

omm

unications & Fieldbus S

ystems

15

Page 17: Data Communication &Fieldbus Systems

The P

rogramm

able Logic Controller (P

LC

) is a class of device that evolved from traditional

relay-based local control systems.

Classical features and applications are:

A control-oriented operating regim

e that is based on deriving a closed-loop local control function based on B

oolean logical conditions applied to input conditions -- a relationship that is com

monly expressed as a relay ladder diagram

.

Applications are typically stand-alone, w

here the PLC

functions as an autonomous

controller of some local activity, such as burner control or as a w

aste water pum

p control.

PLC

s have been enhanced in several ways, m

aking them m

uch more capable and easily

used:

Addition of hum

an interface features, supporting graphical displays, event logging and trend reporting.

Support for personal com

puter (PC

) software developm

ent/testing/downloading, m

aking application developm

ent a greatly simplified task.

Netw

orked connectivity linking multiple P

LCs, H

uman-M

achine Interfaces (HM

Is) and PC

s -- creating capability for supporting greatly enhanced system

scope and capacity.

PR

OG

RA

MM

AB

LE LO

GIC

CO

NT

RO

LLER

S

Data C

omm

unications & Fieldbus S

ystems

16

Page 18: Data Communication &Fieldbus Systems

The D

istributed Control S

ystem (D

CS

) is an integrated hardware/softw

are system concept

that is designed to efficiently perform data acquisition and control functions.

The original concept, and the class of application from

which current generation D

CS

products have evolved w

as:

A digital program

mable system

optimized for perform

ing closed loop control -- and replacing earlier analog controllers for this class of application.

A system

concept using digital microprocessor technology, w

hich adds reliability, functionality and convenience features largely unavailable w

ith earlier analog technology.

Major deficiencies that preexisting analog control technology had w

as stability problems due

to sensitivity to the environment (vo

ltage, te

mpera

ture

, mech

anica

l) and difficulty in easily im

plementing non-linear control functions.

DC

S products are designed to be m

odular, multi-functional system

s characterized by:

a distributed architecture, with local control m

odules, human interface consoles, (typ

ically)

proprietary backbone network.

support a reasonably user-friendly programm

ing language and applications development

capability, such that end-user modifications to system

software becom

e feasible.

DIS

TR

IBU

TE

D C

ON

TR

OL S

YS

TE

MS

(DC

S)

Data C

omm

unications & Fieldbus S

ystems

17

Page 19: Data Communication &Fieldbus Systems

PR

OT

OT

YP

E D

CS

SY

ST

EM

CO

NF

IGU

RA

TIO

N

LOC

AL

CO

NT

RO

LLER

MO

DU

LE

FIE

LDIN

ST

RU

ME

NT

INT

ER

FA

CE

S

NE

TW

OR

KS

EG

ME

NT

IST

YP

ICA

LLYR

ED

UN

DA

NT

LOC

AL

CO

NT

RO

LLER

MO

DU

LE

LOC

AL

CO

NT

RO

LLER

MO

DU

LE

OP

ER

AT

OR

CO

NS

OLE

S

Data C

omm

unications & Fieldbus S

ystems

18

Page 20: Data Communication &Fieldbus Systems

K-012

TH

E R

OLE

 OF M

INIC

OM

PU

TE

RS

For m

any years, minicom

puters were the com

puting platform of preference to designers of 

SC

AD

A and related system

s.  Reasons for this preference w

ere:

they were physically sm

all, manageable and inexpensive  (com

pared with m

ainframe 

alternatives)they w

ere comparatively insensitive to environm

ental factors  (temperature, pow

er regulation, etc.)their architectural sim

plicity made fabrication of custom

ized interfaces feasible

The general lack of standards and relative im

maturity of the com

puter industry  (during the time 

when m

inicomputers w

ere nominated for this role)   led to a tradition of highly proprietary, 

remarkably inflexible system

s in industrial computing roles.

The need for a real-tim

e operating system forced the industry to reject the m

ore user-friendly operating system

s associated with typical business applications -- w

ith a net result that proprietary solutions rem

ained the industry norm for m

uch longer than was the case in the 

business systems w

orld. 

The generally increasing com

plexity of industrial computing applications and the com

pelling need for end-user organizations to be able to m

anage, maintain and expand their system

s has led to a strong trend in the industry to reject traditional proprietary, custom

 configurations that used to be com

mon in favor of   open technology solutions.

Data C

omm

unications & Fieldbus S

ystems

19

Page 21: Data Communication &Fieldbus Systems

K-013

TH

E P

ER

SO

NA

L CO

MP

UT

ER A

AN IN

DU

ST

RIA

L CO

MP

UT

ING R

ES

OU

RC

E

The personal com

puter has become a universal com

puting resource -- one that has compelling 

advantages in most all com

puter applications:

It is the global computing platform

 of choice, making it the com

mon denom

inator in any industrial application that requires com

puter functionality.

The price/perform

ance features are unbeatable, even in ruggedized packages.

Num

erous developments are very beneficial to industrial applications   (redundant disk 

systems [R

AID

], multiprocessor configurations, som

e fault-tolerant configurations, open-architecture LIN

UX operating system

s ...)

Hardw

are performance and softw

are stability continue to improve.

Offsetting disadvantages (as applied to industrial com

puting)   include:

Most developm

ents in PC and related technologies are oriented tow

ard business applications (and therefore typically not ideally suited to industrial applications).

It is not an inherently fault-tolerant or rugged architecture, making im

provements in these 

areas piecemeal and therefore lacking in overall system

 integrity.

Regardless of argum

ents pro and con, the PC w

ill undoubtedly have an ever more im

portant role in industrial com

puting applications.

Data C

omm

unications & Fieldbus S

ystems

20

Page 22: Data Communication &Fieldbus Systems

D-329

TH

E U

BIQ

UIT

OU

S P

ER

SO

NA

L CO

MP

UT

ER

Most organizations -- indeed the w

hole world -- have effectively standardized on Intel-com

patible personal com

puters (running a variant of Microsoft's W

indows -- or increasingly, LIN

UX

).

This does not deny the legitim

ate and relatively stable  niche market share enjoyed by A

pple M

acintosh systems -- but m

arket share realities dictate that new products   (hardw

are and softw

are)  are typically available for Intel systems first, and thus M

ac systems seem

 to be doomed 

to a second-tier role in the industry.

The utilization levels associated w

ith personal computers are typically low

   (because procurem

ent decisions are based on human user convenience and efficiency, rather than 

utilization expectations) -- with the net result that there is typically a m

assive amount of 

underutilized capacity on most P

Cs used for business or personal applications.  M

ore CP

cycles are consumed w

ith running screensavers than any other application!

New

 networked com

puting applications sometim

es justify the deployment of these system

s, but by and large they are assum

ed to be available as a no cost resource whenever a new

 client/server or w

eb-based application is being planned.

Recent corporate experience in the U

nited States show

s that desktop computer system

s are replaced (on average)  every three years, and notebook com

puters every two years.  

Data C

omm

unications & Fieldbus S

ystems

21

Page 23: Data Communication &Fieldbus Systems

Num

erous vendors have developed ruggedized PC packages for diverse applications -- designed to 

help the rather fragile conventional "office oriented" PC to survive in the environm

entally harsh w

orld of industrial applications.

Factors that threaten conventional P

C's in harsh environm

ents include: 

RU

GG

ED

IZE

D P

C P

AC

KA

GIN

G

RU

GG

ED

IZED P

C P

AC

KA

GIN

G E

XA

MP

LE(w

ww

.acuraembedded.com

)

Heat

Vibration

Hum

idityD

ust and dirtC

austic atmosphere

Pow

er system stability and reliability

Som

e configuration issues that are im

portant in this context are:

Choice of operating system

; typically a W

indows variant or 

Linux.

Choice of m

ass storage technology; typically a rugged hard drive or flash drive.

Data C

omm

unications & Fieldbus S

ystems

22

Page 24: Data Communication &Fieldbus Systems

The roles of S

CA

DA

, PLC

and DC

S technology have changed w

ith the progressive developm

ent of technology:

SU

MM

AR

Y; S

CA

DA

, PLC

AN

D D

CS

RO

LES

DC

S

PLC

SC

AD

A

TR

AD

ITIO

NA

L RO

LES

EX

PA

ND

ING

RO

LES

Replacem

ent for discrete analog local closed loop control system

sD

igital technology offers flexibility in developm

ent and modification

Discrete logical closed loop

control applications traditionally served by relay system

sD

igital technology benefits

Open loop data collection and

control functions supported by hum

an operatorT

ypically involves off-site network

Increased sophistication of the hum

an interface and modular

features encroach on SC

AD

AM

any features similar to P

LC

PLC

systems frequently serve as

high-end RT

Us in S

CA

DA

app'sP

LC features and extensions

encroach on role of DC

S

SC

AD

A system

s integrate with

DC

S and P

LC system

sLow

end SC

AD

A applications lose

out to DC

S and P

LC

Data C

omm

unications & Fieldbus S

ystems

23

Page 25: Data Communication &Fieldbus Systems

EN

TE

RP

RIS

E, C

ON

TR

OL, S

EN

SO

RA

ND D

EV

ICE N

ET

WO

RK

S

EN

TE

RP

RIS

EN

ET

WO

RK

S(IT A

pplications)

SE

NS

OR N

ET

WO

RK

S(M

anfacturing Autom

ation --generally binary on-off condition sensors

and controls -- so-called discrete I/O)

DE

VIC

E N

ET

WO

RK

S(P

rocess Autom

ation --generally analog variable sensors

and proportional controls)

SC

AD

AN

ET

WO

RK

(Control A

pplications)

RT

U/P

LCR

TU

/DC

S

MT

U (A

CT

S A

S A 

GA

TE

WA

Y T

O T

HE  

EN

TE

RP

RIS

NE

TW

OR

K

HM

I/MM

IH

MI/M

MI

NO

TE

: (1) R

arely will all four netw

ork types exist in one site

(2) Traditional distinctions 

between these classes of 

network are becom

ing less clear

Data C

omm

unications & Fieldbus S

ystems

24

Page 26: Data Communication &Fieldbus Systems

TH

E S

HIF

T FR

OM A C

OM

PU

TE

R-C

EN

TR

ICT

O N

ET

WO

RK

-CE

NT

RIC P

AR

AD

IGM

NE

TWO

RK

CO

MP

UTE

R

US

ER

CO

MP

UTE

R

NE

TWO

RK

US

ER

Tw

o key observations apply here:

The netw

ork has become the strategic heart of our com

puting environment.

The com

puter is much closer (and therefore m

uch less threatening)  to the user than previously.

Data C

omm

unications & Fieldbus S

ystems

25

Page 27: Data Communication &Fieldbus Systems

AA

MO

DE

MM

OD

EM

BA

SIC

EQ

UIP

ME

NT TE

RM

INO

LOG

Y

DT

E

DC

ED

CE

D-003

DT

E: -

DC

E: -

Da

ta T

erm

ina

l Eq

uip

me

nt (D

TE

) consists of whatever apparatus physically

terminates the circuit (d

um

b te

rmin

al, p

erso

nal co

mpute

r, main

fram

e, e

tc.).

Data C

om

mu

nicatio

ns E

qu

ipm

ent (D

CE

) consists of equipment w

hich interfaces the D

TE

to the comm

unications facilities (DC

Es a

re typ

ically a

nalo

g m

odem

s or d

igita

l line

drive

rs).

Note that packaging decisions m

ay blur the distinction between these tw

o functions (e

.g. a

n in

tern

al m

odem

mounte

d in

side to

the P

C ca

bin

et).

CO

MM

UN

ICA

TION

FAC

ILITIES

A

DT

E

Data C

omm

unications & Fieldbus S

ystems

26

Page 28: Data Communication &Fieldbus Systems

SIM

PLE

X, H

ALF D

UP

LEX

AN

D FU

LL D

UP

LEX

MO

DE

S O

F OP

ER

ATIO

N

SIM

PL

EX

OP

ER

AT

ION

is a one-way service,

such as television broadcasting or pocket pager service. It is not possible to com

municate in the reverse direction w

ith sim

plex, even for purposes of acknowledging

message receipt.

HA

LF

-DU

PL

EX

OP

ER

AT

ION

provides for com

munication in either direction, but not

simultaneously. The reversal of direction m

ay be sufficiently fast so as to create the illusion of full duplex operation.

FU

LL

-DU

PL

EX

OP

ER

AT

ION

provides for sim

ultaneous transmission in both directions.

Thus, neither direction of comm

unication is forced to w

ait for activity to complete in the

reverse direction, as is often the case with

half-duplex.

Operates like a one-w

ay street.

Operates like a street capable of

working in either direction, but

alternating, perhaps as controlled by a flag-person.

Operates like a typical city street,

or divided highway, w

ith no interaction betw

een opposing traffic (th

at is, th

ere

is ne

ver a

ny

req

uire

me

nt to

wa

it for, o

r be

slo

we

d d

ow

n b

y op

po

sing

traffic)

D-007

D

ata Com

munications &

Fieldbus System

s27

Page 29: Data Communication &Fieldbus Systems

SY

NC

HR

ON

IZA

TIO

N

There are three dim

ensions to the synchronization, or timing problem

:

1. BIT

SY

NC

HR

ON

IZA

TIO

N: B

it synchronization is accomplished w

ith electronic circuitry (in e

ithe

r D

CE

's or D

TE

's). Bit synchronization is dependent on som

e prior knowledge of digital bit patterns, and

predictability of transitions between binary 1 and 0 values.

2. CH

AR

AC

TE

R S

YN

CH

RO

NIZ

AT

ION

: Character synchronization involves assuring all bits from

one character (o

r da

ta o

ctet) rem

ain properly associated with the byte or octet to w

hich they belong.

3. ME

SS

AG

E S

YN

CH

RO

NIZ

AT

ION

: Message synchronization involves unam

biguously m

arking (an

d o

bse

rving

) the beginning and end of a message, w

hich will typically involve m

ultiple segm

ents or packets.

10

11

01

10

10

IN O

RD

ER

FO

R U

SE

FU

L CL

OC

K R

EC

OV

ER

Y T

OF

UN

CT

ION

, TH

ER

E M

US

T B

E G

UA

RA

NT

EE

S O

FS

UF

FIC

IEN

TLY

FR

EQ

UE

NT

TR

AN

SIT

ION

S

(between 1 and 0) IN

TH

E D

AT

A

01

00

00

11

01

00

00

11

01

00

00

11

TH

E B

YT

E (O

ctet) BO

UN

DA

RIE

S M

US

T B

E

RE

SP

EC

TE

D IN

TH

E P

RO

CE

SS

OF

RE

CR

EA

TIN

GM

ES

SA

GE

S. A

CC

IDE

NT

AL R

EA

LIGN

ME

NT

OF

TH

ES

E B

OU

ND

AR

IES

WILL R

EN

DE

R D

AT

A U

SE

LES

S.

PA

CK

ET

, OR

ME

SS

AG

E F

RA

ME

SE

QU

EN

CE

M

US

T B

E R

ES

PE

CT

ED

IN T

HE

PR

OC

ES

S

OF

RE

-AS

SE

MB

LING

FR

AM

ES

. VA

RIA

TIO

NS

IN

NE

TW

OR

K T

RA

NS

IT D

ELA

YS

CA

N

RE

SU

LT IN

OU

T-O

F-S

EQ

UE

NC

E F

RA

ME

A

RR

IVA

LS.

PACKET/FRAME N

UMBER 3

PACKET/FRAME N

UMBER 2

PACKET/FRAME N

UMBER 1

D-064

STXETX

Data C

omm

unications & Fieldbus S

ystems

28

Page 30: Data Communication &Fieldbus Systems

ST

AR

T P

ULS

E(T

he downw

ard-goingleading edge of thispulse is the critical tim

ingreference)

12

34

56

78

ST

OP

PU

LSE

(The unconditional M

AR

K or O

NE

value of this pulse assures that the next ST

AR

T

pulse -- which is alw

ays a MA

RK

-to-SP

AC

E

transition -- will be recognizable)

7 DA

TA

BIT

S(M

ost asynch. systems

operate with 7 data bits)

TH

E 8th. B

IT IS

MO

ST

CO

MM

ON

LY U

SE

DA

S A

PA

RIT

Y B

IT (P

arity checking is a simple

form of error detection)

MA

RK

(Or O

NE

)S

IGN

AL S

TA

TE

SP

AC

E (O

r ZE

RO

)S

IGN

AL S

TA

TE

INC

RE

AS

ING

TIM

E

AS

YN

CH

RO

NO

US

SY

STE

M C

HA

RA

CTE

RIS

TICS

D-001

11

11

00

00

D

ata Com

munications &

Fieldbus System

s29

Page 31: Data Communication &Fieldbus Systems

��������

MO

DE

MM

OD

EM

SY

NC

HR

ON

OU

S S

YS

TE

M C

HA

RA

CT

ER

IST

ICS

MA

ST

ER C

LOC

K IN

 SE

ND

ING D

CE

FE

ED

S T

IMIN

G IN

FO

RM

AT

ION T

LOC

AL D

TE A

ND R

EM

OT

E D

CE

.

SLA

VE C

LOC

K IN

 RE

CE

IVIN

G M

OD

EM

RE

CO

VE

RS IN

CO

MIN

G T

IMIN

GIN

FO

RM

AT

ION A

ND P

AS

SE

S T

O D

TE

DT

E

DC

ED

CE

DT

E

DIR

EC

TIO

N O

F D

AT

A F

LOW

TY

PIC

AL S

YN

CH

RO

NO

US M

ES

SA

GE F

OR

MA

T CO

NS

IST

S O

F:

1. Leading SY

N characters - - usually repeated at least once

2. Message enveloped by S

TX (S

tart of TeX

t) and ET

X (E

nd of TeX

t) characters3. T

railing BC

C (B

lock Check C

haracter) used for error detection.

BC

CE

TXX

XX

STX

SY

NS

YN

D-002

Data C

omm

unications & Fieldbus S

ystems

30

Page 32: Data Communication &Fieldbus Systems

NU

LD

LES

P

SO

HD

C1

DC

2

DC

3

DC

4

STX

ETX

EO

T

EN

Q

AC

K

BE

L

BS

CA

N

ET

B

SY

N

NA

K

6F

Vf

v6

0110

01015 4 3

0@

12345

ABCDE

PQRSTU

abcde

pqrstu

789

GHIJKL

WXYZ

ghijkl

wxyz

DE

L

MNOo n m

SI

SO

CR

FF

VT HT

12 0789ABCDEF

LF1010

1011

1100

1101

1110

1111

1001

1000

0111

0100

0011

0010

0001

0000

01

23

45

67

111110

101100

011010

001000

!"#$&' %()*+,.= < > ; :

\ []} {|~

^-?

/ _

`

Bit P

ositions 7, 6 & 5:

EM

SU

B

ES

C

FS

GS

RS

US

Bit P

ositions4, 3, 2 &

1:

12

34

56

78

Bit P

ositions:

01

00

00

11

: Most S

ignificant Bit (M

SB

)

Least Significant B

it (LSB

) :

46

AS

CII C

HA

RA

CT

ER

SE

T

INT

ER

PR

ET

AT

ION

EX

AM

PL

E:

AS

CII "F

"

HE

X:

DE

CIM

AL 70

D-004

NO

TE

S:

1. The 8th bit, if represented, is a Z

ER

O

2. Data is (alm

ost) always transm

itted LSB

first.

D

ata Com

munications &

Fieldbus System

s31

Page 33: Data Communication &Fieldbus Systems

Circ

uit N

o. 1

Circ

uit N

o. 2

Circ

uit N

o. 3

Circ

uit N

o. 4

Circ

uit N

o. 5

Circ

uit N

o. 6

Circ

uit N

o. 7

Circ

uit N

o. 8

Clo

ck C

ircu

it

With parallel transm

ission of the A

SC

II character pair "OK

", tw

o clock time units are 

required to transmit tw

o characters (in this exam

ple w

ith an 8 bit parallel bus configuration).

BIT S

EQ

UE

NC

E R

EP

RE

SE

NT

ING

       AS

CII C

HA

RA

CT

ER "O

"B

IT S

EQ

UE

NC

E R

EP

RE

SE

NT

ING

       AS

CII C

HA

RA

CT

ER "K

"

ST

AR

T P

ULS

E(T

RA

NS

ITIO

N):

ST

OP

PU

LSE

:

SE

RIA

L vs. PA

RA

LLEL C

OM

MU

NIC

ATIO

N

PA

RA

LLEL D

ATA

 SE

QU

EN

CE

S:

D-081

With serial transm

ission of the A

SC

II character pair "OK

" typically 20 clock tim

e units are required to transm

it two 

characters (This exam

ple is typical w

ith 7 bits of data per character, one parity bit, one start bit and one stop bit).

SE

RIA

L DA

TA S

EQ

UE

NC

E:

11

10

11

11

00

00

11

01

00

11

01

11

10

01

11

10

 "K"

 "O"

ST

OP

PU

LSE

:S

TA

RT P

ULS

E(T

RA

NS

ITIO

N)

87

65

43

211

11

10

01

187

65

43

211

10

10

01

0

NO

TE: IN

 THE D

ATA

 PA

TTER

NS 

ILLUS

TRA

TED O

N TH

IS P

AG

E, TH

EFO

LLOW

ING N

OTA

TION A

ND B

ITS

EQ

UE

NC

ES W

ER

E U

SE

D:

"O" C

HA

RA

CTE

R :-

"K" C

HA

RA

CTE

R :-

THE E

IGH

TH B

IT PO

SITIO

N IS

 DE

FINE

DA

S A

N E

VE

N P

AR

ITY B

IT IN E

AC

H C

AS

E(P

AR

ITY IS

 DIS

CU

SS

ED LA

TER

).

DA

TA IS

 TRA

NS

MITTE

D O

N S

ER

IAL 

LINE

S LE

AS

T SIG

NIFIC

AN

T BIT 

(Bit P

osition No. 1) FIR

ST.

Data C

omm

unications & Fieldbus S

ystems

32

Page 34: Data Communication &Fieldbus Systems

OV

ER

VIE

W O

F T

ELE

CO

MM

UN

ICA

TIO

NS

TE

CH

NO

LOG

IESD-024

AN

ALO

G

DE

DIC

AT

ED

CIR

CU

ITS

WIT

CH

ED

PA

CK

ET

SW

ITC

HE

D

TR

AD

ITIO

NA

L LEA

SE

D,

DE

DIC

AT

ED

, PR

IVA

TE

LIN

E S

ER

VIC

ES

(Require

analog modem

s)

AV

AILA

BLE

AS

DE

DIC

AT

ED

DIG

ITA

L SE

RV

ICE

S(S

uch as DS

0, DS

1, E1, etc.)

GLO

BA

L, UB

IQU

ITO

US

PU

BLIC

SW

ITC

HE

D T

ELE

PH

ON

EN

ET

WO

RK

(PS

TN

) SE

RV

ICE

(Com

monly referred to as "P

OT

S")

BA

SIC

RA

TE

ISD

N S

UP

PO

RT

S

CIR

CU

IT-S

WIT

CH

ED

64 KB

PS

SE

RV

ICE

; TY

PIC

ALLY

CO

NF

IGU

RE

DW

ITH

2 CH

AN

NE

LS C

AP

AB

LE O

FF

UN

CT

ION

ING

AT

128 KB

PS

.

NO

T F

EA

SIB

LE

OB

SO

LES

CE

NT

X.25 P

AC

KE

T S

WIT

CH

ING

SE

RV

ICE

IS S

TILL U

SE

D; F

AS

T P

AC

KE

T

TE

CH

NO

LOG

Y (F

rame R

elay and Cell

Relay/A

TM

) HA

S LA

RG

ELY

RE

PLA

CE

D X

.25

DIG

ITA

L

Data C

omm

unications & Fieldbus S

ystems

33

Page 35: Data Communication &Fieldbus Systems

AN

AL

OG

SIG

NA

L C

HA

RA

CT

ER

IST

ICS

:

DIG

ITA

L S

IGN

AL

CH

AR

AC

TE

RIS

TIC

S

AN

AL

OG

SIG

NA

LS

AR

E IN

FIN

ITE

LY

AN

D C

ON

TIN

UO

US

LY

VA

RIA

BL

E(M

ea

nin

g th

e sig

na

ls are

very co

mp

lex, a

nd

it is very d

ifficult to

e

fficien

tly cha

racte

rize th

eir b

eh

avio

r so th

at e

lectro

nic circu

itsca

n in

terp

ret th

eir m

ea

nin

g)

DIG

ITA

L S

IGN

AL

S A

RE

DIS

CR

ET

E IN

BO

TH

TIM

E A

ND

AM

PL

ITU

DE

(Mea

nin

g th

ey ch

an

ge o

nly a

t pre

dicta

ble

times, a

nd va

ry be

twe

en

a sm

all n

um

be

r of p

redicta

ble

valu

es)

D-005

CO

MP

AR

ISO

N; A

NA

LOG

vs. DIG

ITAL S

IGN

ALSIN

CR

EA

SIN

GT

IME

AX

IS

INC

RE

AS

ING

TIM

E A

XIS

Data C

omm

unications & Fieldbus S

ystems

34

Page 36: Data Communication &Fieldbus Systems

FUN

DAM

ENTAL O

F CO

MM

UN

ICATIO

NS

•Fourier Series Approxim

ation •

Nyquist Theorem

Shannon’s Theorem

•M

odulation and Dem

odulation

Data C

omm

unications & Fieldbus S

ystems

35

Page 37: Data Communication &Fieldbus Systems

Data C

omm

unications & Fieldbus S

ystems

36

Page 38: Data Communication &Fieldbus Systems

WE C

AN AD

D SIN

ES TO M

AKE NEW

FUN

CTIO

NS

g2 (t)=1/3sin(2π( 3f )t)

g1 (t)=sin(2πf t)

g3 (t)= g

1 (t) + g2 (t)

Data C

omm

unications & Fieldbus S

ystems

37

Page 39: Data Communication &Fieldbus Systems

FOU

RIER

TRAN

SFOR

M

Jean B. Fourier found that any periodic function can be

expressed as an infinite sum of sine function.

()

()

∑∑

∞=

∞=

++

=1

10

/2

sin/

2cos

2 1)

(n

in

iP

itb

Pit

aa

ts

ππ

Data C

omm

unications & Fieldbus S

ystems

38

Page 40: Data Communication &Fieldbus Systems

FOU

RIER

APPRO

XIMATIO

NS

Data C

omm

unications & Fieldbus S

ystems

39

Page 41: Data Communication &Fieldbus Systems

BAUD

RATE VS. BIT R

ATE

•Transm

ission speed can be measured in bits per

second(bps). •

Technically, transmission is rated in baud, the num

ber of changes in the signal per second that the hardw

are generates.

•U

sing RS

-232 standard to comm

unicate, bit rate rate = baud rate.

•In general, bit rate rate = N

* baud rate, where N

is the num

ber of signals in a string.

Data C

omm

unications & Fieldbus S

ystems

40

Page 42: Data Communication &Fieldbus Systems

BAUD

RATE VS. BIT R

ATE

•Sender sends the bit string, by b

1 b2 …

bn .

•The transm

itter alternately analyzes each string and transm

its a signal component uniquely determ

ined by the bit values. O

nce the component is sent, the

transmitter gets another bit string and repeats this

process. •

The different signal components m

ake up the actual transm

itted signal. The frequency with w

hich the com

ponents change is the baud rate. •

At the receiving end, the process is reversed. The receiver alternately sam

ples the incoming signal and

generates a bit string.

Data C

omm

unications & Fieldbus S

ystems

41

Page 43: Data Communication &Fieldbus Systems

BAUD

RATE VS. BIT R

ATE

•C

onsequently, the bit rate depends on two things: the

frequency with w

hich a component can change (baud

rate) and n, the number of bits in the string. That is

why the form

ula:(signal may have up to 2

n different am

plitudes) bit rate = n * baud rate

Data C

omm

unications & Fieldbus S

ystems

42

Page 44: Data Communication &Fieldbus Systems

NYQ

UIST SAM

PLING

THEO

REM

•D

r. Harry N

yquist (1920) •

Nyquist show

ed that if ƒ is the maxim

um frequency

the medium

can transmit, the receiver can com

pletely reconstruct by sam

pling it 2ƒ times per second on a

perfectly noiseless channel. •

In other words, the receiver can reconstruct the

signal by sampling it at intervals of 1/(2ƒ) second.

•For exam

ple, if the max frequency is 4000 H

z, the receiver needs to sam

ple the signal 8000 times per

second or using 2ƒ as the baud rate. •

Bit rate = 2ƒ * n.

Data C

omm

unications & Fieldbus S

ystems

43

Page 45: Data Communication &Fieldbus Systems

ANY LIM

IT ON

BIT RATE?

•The form

ula Bit rate = 2ƒ * n seems to im

ply that there is no upper bound for the data rate given the m

aximum

frequency. Unfortunately, this is not true for

two reasons.

–Am

plitude limitations

–N

oise

Data C

omm

unications & Fieldbus S

ystems

44

Page 46: Data Communication &Fieldbus Systems

HO

W ABO

UT R

EAL WO

RLD

HAR

DW

ARE?

•First, if w

e used amplitude to represent data bits,

each time w

e separate the amplitude into sm

aller ranges to represent m

ore data bits, the receiver must

be more sophisticated (and m

ore expensive) to be able to detect sm

aller differences. If the differences becom

e too small, w

e eventually exceed the ability of a device to detect them

(or a medium

to react to them

).

Data C

omm

unications & Fieldbus S

ystems

45

Page 47: Data Communication &Fieldbus Systems

LIMITATIO

NS O

N R

EAL HAR

DW

ARE

Data C

omm

unications & Fieldbus S

ystems

46

Page 48: Data Communication &Fieldbus Systems

SIGN

AL TO N

OISE R

ATIO

•S/N

is known as the signal-to-noise ratio in decibels.

•Because S

is usually much larger than N

, the ratio is often scaled dow

n logarithmically and the unit is

measured in bels and 1 dB = 0.1 bel.

•You could expect som

ewhere around 1000-1 S/N

on a typical telephone circuit.

Data C

omm

unications & Fieldbus S

ystems

47

Page 49: Data Communication &Fieldbus Systems

SHAN

NO

N’S TH

EOR

EM

•Bit rate = Bandw

idth * log 2 (1+S/N) bps.

•According to this result, a bit rate around 35,000 bps is an upper lim

it for conventional modem

s. •

Rem

ember telephone specs!

Data C

omm

unications & Fieldbus S

ystems

48

Page 50: Data Communication &Fieldbus Systems

SHAN

NO

N’S TH

EOR

EM AN

D 56K M

OD

EMS

•According to this result, a bit rate around 35,000 bps is an upper lim

it for conventional modem

s. •

How

about 56k modem

s?

Data C

omm

unications & Fieldbus S

ystems

49

Page 51: Data Communication &Fieldbus Systems

TELEPHONEEXCHANGE

LOC

AL LO

OP

INTE

R-E

XC

HA

NG

E N

ETW

OR

KLO

CA

L LOO

P

TE

LEP

HO

NE S

YS

TE

M S

CH

EM

AT

IC V

IEW

LOC

AL LO

OP FE

ATU

RE

S:

INTE

R-E

XC

HA

NG

E N

ETW

OR

K FE

ATU

RE

S:

D-060

TELEPHONEEXCHANGE

Medium

 -to- long-distance connections are typical  (fiber optic, copper, radio microw

ave and/or satellite)E

ach customer uses only a fractional part of a high-capacity, shared resource

Inter-exchange segment lengths: a few

 kilometers  (m

iles)  to perhaps 25,000 kilometers (15,000 m

iles)T

he long distances involved require signal amplification or regeneration - a unidirectional process

Costs dem

and shared, high capacity facilities making m

ultiplexing essential - a unidirectional processT

hus, the configuration is always based on tw

o unidirectional comm

unication paths

2-wire m

etallic cable connection (copper)  where  one pair of conductors is dedicated to each subscriber

Typical cable length is 3 to 8 kilom

eters  (2 to 5 miles)

Short cable lengths perm

it passive connections -- amplifiers are not typically required

Disbursed term

ination points (one per customer site)  m

ake end-to-end multiplexing im

practicalT

hus, bi-directional signal flow on one pair of w

ires is practical

Data C

omm

unications & Fieldbus S

ystems

50

Page 52: Data Communication &Fieldbus Systems

01

11

00

11

D-023

EX

AM

PLE

S O

F DIG

ITAL S

IGN

AL FO

RM

ATS

10

11

01

10

SIM

PLE

UN

IPO

LAR

NO

N-R

ET

UR

NT

O Z

ER

O (N

RZ

) FO

RM

AT

BIP

OLA

R N

ON

-RE

TU

RN

TO

Z

ER

O (B

NR

Z) F

OR

MA

T

UN

IPO

LAR

RE

TU

RN

TO

ZE

RO

F

OR

MA

T (50%

Duty C

ycle)

BIP

OLA

R R

ET

UR

N T

O Z

ER

O,

OR

ALT

ER

NA

TE

MA

RK

IN

VE

RT

ED

(AM

I) FO

RM

AT

MA

NC

HE

ST

ER

EN

CO

DE

D,

OR

DIP

HA

SE

FO

RM

AT

101010101

Data C

omm

unications & Fieldbus S

ystems

51

Page 53: Data Communication &Fieldbus Systems

D-265

GE

NE

RA

L RE

LATIO

NS

HIP

: DIS

TAN

CE

vs. DA

TA R

ATE

With digital com

munication technology, there is a general relationship betw

een the maxim

um

feasible distance of comm

unication and maxim

um feasible data rate -- for any given technology

and/or implem

entation.

In the box illustration, the trade-off between m

aximum

data rate and distance is shown to follow

the classic hyperbola curve.

Different technologies w

ill support different hyperbola curves, but for any given (leve

l of

sophistica

tion o

f) technology, it will alw

ays be possible to double the data rate so long as one is w

illing to half the distance capability.

This characteristic is comm

on to all digital form

at signals (ele

ctrical o

r optica

l), and answers questions like:

How

far can I stretch an EIA

-232-C

interface cable ?

What is the m

aximum

feasible data rate for tw

isted pair (UTP

) cable ?

How

fast can line drivers operate ?

Why can't LA

N system

s be stretched to greater physical dim

ensions ?T

RA

NS

MIS

SIO

N D

IST

AN

CE

ACHIEVABLE DATA RATE

HY

PE

RB

OLIC

CU

RV

ES

HA

VE

THE

CH

AR

AC

TE

RIS

TIC

OF

FOLLO

WIN

G TH

E LIN

E

OF

CO

NS

TAN

T P

RO

DU

CT

OF

THE

TW

O A

XE

S;

TH

US

(in this case)

(DA

TA

RA

TE) x (D

IST

AN

CE

) = CO

NS

TAN

T

●●● ●

Data C

omm

unications & Fieldbus S

ystems

52

Page 54: Data Communication &Fieldbus Systems

CO

MP

AR

ISO

N: A

NA

LOG A

MP

LIFIC

AT

ION vs. 

DIG

ITA

L  RE

GE

NE

RA

TIO

N

SO

UR

CE

SIG

NA

L

Digital signals are typically view

ed as rectangular pulses, as suggested by the 'source signal' in both sketches.

Signals inevitably w

eaken and become 

distorted over the distance of com

munication, as suggested by the 

'weakened signal' view

.

Am

plifiers simply increase the signal 

strength without reshaping or repairing 

the distortion. 

All telecom

munications system

s are exposed to the sam

e signal deterioration (w

eakening plus distortion)  -- but digital regeneration is able to overcom

e this problem

.

Digital repeaters (regenerators)  fully 

reconstruct the source signal, delivering a signal that is effectively identical to the source data. 

WE

AK

EN

ED

SIG

NA

L

AM

PLIFIE

DS

IGN

AL

SO

UR

CE

SIG

NA

L

WE

AK

EN

ED

SIG

NA

L

REGENERATEDSIGNAL

60

Data C

omm

unications & Fieldbus S

ystems

53

Page 55: Data Communication &Fieldbus Systems

DIG

ITAL TE

LEP

HO

NE N

ETW

OR

K O

VE

RV

IEW

CO

DE

C

CO

DE

C

TIM

E D

IVIS

ION

MU

LTIP

LEX

ER

   SY

ST

EM

S

TIM

E D

IVIS

ION

MU

LTIP

LEX

ER

   SY

ST

EM

S

CO

DE

C

CO

DE

C

���

MO

DE

M

���

MO

DE

M

MU

LTIP

LEX

  SY

ST

EM

     SIG

NA

LC

ON

VE

RS

ION

TE

RM

INA

LS

YS

TE

MS

TE

RM

INA

LS

YS

TE

MS

     SIG

NA

LC

ON

VE

RS

ION

HIG

H S

PE

ED

DIG

ITA

L LINK

MU

LTIP

LEX

SY

ST

EM

D-246

continued ....

TER

MIN

AL S

YS

TEM

S:

Term

inal system com

ponents are any user-selected terminal devices   (voice, video, graphics, etc.).

In most countries, term

inal systems are privately ow

ned, although historically the telephone companies 

have jealously guarded their right of ownership.

Data C

omm

unications & Fieldbus S

ystems

54

Page 56: Data Communication &Fieldbus Systems

AAAA

MO

DE

M

DC

E

MO

DE

M

DC

E

PR

OTO

TYP

E LIN

K M

ULTIP

LEX

ER

SY

STE

M C

ON

FIGU

RA

TION

DT

E

DT

E

RE

MO

TE

MU

LTIP

LEX

ER H

OS

T M

ULT

IPLE

XE

R

D-008

Link multiplexers m

ay function as frequency division multiplexers, tim

e division multiplexers or

statistical time division m

ultiplexers. The comm

on concept is that the multiplexer-to-m

ultiplexer segm

ent is adapted to carry the aggregate data volume for the various services being connected.

Multiplexing is often integrally packaged w

ith other functions, such as circuit or packet switching

capability, modem

s, data compression, etc.

Data C

omm

unications & Fieldbus S

ystems

55

Page 57: Data Communication &Fieldbus Systems

EN

CO

DIN

G D

AT

A F

OR T

RA

NS

MIS

SIO

       -- TH

E R

OLE

 OF T

HE D

CE

D-224

���

�����

DT

ED

CE

DC

ED

TE

���

�����

DT

ED

CE

DC

ED

TE

MO

DE

MM

OD

EM

LINE D

RIV

ER

LINE D

RIV

ER

AN

ALO

G T

EC

HN

OLO

GY

DIG

ITA

L TE

CH

NO

LOG

Y

The digital signals from

 Data T

erminal E

quipment  (at the serial interface)  are not capable of w

orking over a significant distance (T

he EIA

-232 interface has a design limitation of 50 feet - 30 m

eters).

Thus, in order to com

municate over greater distances, these signals need to be converted in som

e w

ay -- into signals that are more robust, and conform

 to the features of the facilities available.

That is, for analog com

munications facilities, an analog signal is required and for digital 

comm

unications facilities, a digital signal is required.

Thus the D

CE perform

s a signal encoding function, and in the case of analog comm

unication facilities, it also perform

s an analog-to-digital conversion -- or a   mo

dulation-demodulation function.

Data C

omm

unications & Fieldbus S

ystems

56

Page 58: Data Communication &Fieldbus Systems

D-240

BIT R

AT

E vs. B

AU

D R

AT

E

11

10

01

00

11

10

01

00

1010

INC

RE

AS

ING T

IME

INC

RE

AS

ING T

IME

INC

RE

AS

ING T

IME

DIG

ITAL S

IGN

AL

AN

ALO

G S

IGN

AL

DIG

ITAL S

IGN

AL

AN

ALO

G S

IGN

AL

INC

RE

AS

ING T

IME

10

10

11

00

10

DA

TA S

EQ

UE

NC

E

10

10

11

00

10

DA

TA S

EQ

UE

NC

E

TW

O B

ITS P

ER B

AU

D C

AS

E

ON

E B

IT P

ER B

AU

D C

AS

EW

here one bit of information is 

represented by one electrical signal elem

ent -- or symbol, the bit 

rate and Baud rate have the sam

e num

erical value.

Thus, if, the data rate is 1200 bps, 

then the signal value also changes 1200 tim

es per sec. or 1200 Baud.

If two bits of inform

ation are coded as one sym

bol, the bit rate and Baud 

rate are related by a 2 -to- 1 ratio.

Thus, if the data rate is 1200 bps, 

then the rate at which the signal 

values change is half that rate, or 600 tim

es per second, or 600 Baud.

Thus, bit rate is the m

eaningful param

eter to use in describing transm

ission rate -- it directly specifies the rate of inform

ation transm

ission -- Baud rate does not.

Data C

omm

unications & Fieldbus S

ystems

57

Page 59: Data Communication &Fieldbus Systems

BE

LL (AT&

T) MO

DE

M S

UM

MA

RY

D-179

The AT&

T organization was at one tim

e the leader in developing modem

technology.

Som

e examples of "B

ell-compatible" m

odems are:

TY

PE

103: (1)

TY

PE

201C:

TY

PE

202S:

TY

PE

208A:

TY

PE

209:

TY

PE

212A:

With the advent of a liberalized telephone interconnect policy (a

llow

ing co

nnectio

n o

f custo

mer

ow

ned e

quip

ment) in the early 1980's, com

petitive specialist organizations passed AT&

T by in this m

arket. These are largely based on ITU (e

x CC

ITT

) "V-S

eries" modem

standards.

(1) Type 103 modem

s were acoustically coupled, thus requiring no m

etallic wiring connection.

(2) Types 208 and 209 modem

s operate half duplex on 2-wire connections, full duplex on 4-w

ires.

DA

TA

RA

TE

300 bps

2400 bps

1200 bps

4800 bps

9600 bps

1200 bps

DU

PL

EX

Full

Half

Half

Full/H

alf (2)

Full/H

alf (2)

Full

TIM

ING

Asynch.

Synch.

Synch.

Synch.

Synch.

Synch/A

synch.

LIN

E T

YP

E

Dial (2W

)

Dial (2W

)

Dial (2W

)

Leased (4W)

Leased (4W)

Dial (2W

)

NO

TE

S:

Data C

omm

unications & Fieldbus S

ystems

58

Page 60: Data Communication &Fieldbus Systems

ITU-T S

TAN

DA

RD

MO

DE

M S

UM

MA

RY

D-180

Most significant, current developm

ents in modem

technology are coordinated through the ITU

-T (form

erly C

CIT

T -- se

e N

ote

1 b

elo

w). A

ll ITU-T m

odem standards carry a "V

" prefix, and are com

monly referred to as the "V

-Series" standards.

Som

e examples of ITU

-T modem

s are:

V.22

V.22 bis

V.27

V.29

V.32

V.32 bis

V.33

V.34

(1) The IT

U-T

functioned for many years as the C

CIT

T -- only being renam

ed in 1994. Thus, m

any docum

ents and references still use this earlier name.

(2) Type V

.27 and V.29 m

odems operate half duplex on 2-w

ire connections, full duplex on 4-wires

DA

TA

RA

TE

1200 bps

2400 bps

4800 bps

9600 bps

9600 bps

14,400 bps

14,400 bps

28,800 bps

DU

PL

EX

Full

Full

Full/H

alf (2)

Full/H

alf (2)

Full

Full

Full/H

alf (2)

Full

TIM

ING

Asynch.

Synch/A

synch

Synch.

Synch.

Synch/A

synch.

Synch/A

synch.

Synch.

Synch/A

synch.

LIN

E T

YP

E

Dial (2W

)

Dial (2W

)

Leased (2W/4W

)

Leased (2W/4W

)

Dial (2W

)

Dial (2W

)

Leased (2W/4W

)

Dial (2W

)

NO

TE

:

Data C

omm

unications & Fieldbus S

ystems

59

Page 61: Data Communication &Fieldbus Systems

TELEPHONEEXCHANGE

2-WIR

E LO

CA

L LOO

PIN

TE

R-E

XC

HA

NG

E N

ET

WO

RK

DC

E

���

DC

E

DT

E

2-WIR

E LO

CA

L LOO

P

TELEPHONEEXCHANGE

DT

E

SC

HE

MA

TIC V

IEW - 2-W

IRE A

ND 4-W

IRE D

AT

A

D-281

TELEPHONEEXCHANGE

DC

E

���

DT

ED

TE

DC

E

TELEPHONEEXCHANGE

4-WIR

E LO

CA

L LOO

PIN

TE

R-E

XC

HA

NG

E N

ET

WO

RK

4-WIR

E LO

CA

L LOO

P

4-wire (i.e. dedicated access)  configurations have a dedicated local loop cable pair for each 

direction of information flow

 (thus no conflict or comprom

ise is created by opposing traffic).

Thus, a "divided highw

ay" configuration prevails all the way from

 the DC

E to the D

CE

2-wire (e.g. dial access)  data configurations share a com

mon pair of local loop cable.

This shared access local loop m

ust serve both directions of information flow

.

Data C

omm

unications & Fieldbus S

ystems

60

Page 62: Data Communication &Fieldbus Systems

LINE D

RIV

ER

S

DC

E

����

DC

E

DTE

DT

E

   EIA

-232-C  IN

TE

RF

AC

CO

NN

EC

TIO

N     (T

ypical)

   EIA

-232-C  IN

TE

RF

AC

CO

NN

EC

TIO

N     (T

ypical)

4-WIR

E T

WIS

TE

D P

AIR

  TE

LEP

HO

NE C

AB

LE 

    ME

DIU

M C

AR

RIE

SP

RO

PR

IET

AR

Y D

IGIT

AL

  SIG

NA

LS B

ET

WE

EN

      PA

IRS O

F D

CE

's.

LINE D

RIV

ER

S  ...  D

IGIT

AL D

CE

's

D-210

LINE D

RIV

ER FE

ATU

RE

S:

Maxim

um separation of about 

16 km  (10 M

iles) and m

aximum

 data rate of about 256 kbps.

Line drivers need unloaded cable pairs -- a restriction to use beyond about 5 km

 / 3 mi.

Most use copper cable m

edia; fiber optic line drivers are also used.

Line drivers are data comm

unications equipment  (D

CE

) that comm

unicate with digital signals -- 

exactly comparable to the w

ay modem

s comm

unicate with analog signals.  

KE

Y C

ON

CE

PT:   T

hey are always equipped in pairs -- like m

odems.

In fact, line drivers are often erroneously called modem

s -- but remem

bering the definition of "m

odem" as a contraction of m

odulate-demodulate  (analog processes), the term

 is inappropriate.

Correct, alternative term

s for line drivers are local area data sets  (LAD

S), lim

ited distance data sets (LD

DS

), and data service units  (DS

U) -- although this last term

 implies a particular type of line driver 

suitable for access to public wide area data netw

orks  (such as AT

&T

's DD

S N

etwork). 

Data C

omm

unications & Fieldbus S

ystems

61

Page 63: Data Communication &Fieldbus Systems

LOA

DIN

G C

OILS

 ON C

OP

PE

R C

AB

LE

D-211

INC

RE

AS

ING F

RE

QU

EN

CY

INC

RE

AS

ING F

RE

QU

EN

CY

AMPLITUDE AMPLITUDE

NO

RM

AL 

TE

LE

PH

ON

CH

AN

NE

L B

AN

DW

IDT

PR

OF

ILE

DIS

TO

RT

ED 

TE

LE

PH

ON

CH

AN

NE

L B

AN

DW

IDT

PR

OF

ILE

TE

LEP

HO

NE C

EN

TR

AL

OF

FIC

E E

XC

HA

NG

E

LOA

DIN

G C

OILS

TO C

US

TO

ME

R P

RE

MIS

ES

LOA

DIN

G C

OILS

 AR

E T

YP

ICA

LLY  IN

ST

ALLE

D E

VE

RY 6000 ft. (F

OLLO

WIN

TH

E F

IRS

T P

AIR A

T 3000 ft.) -- O

N LO

OP LE

NG

TH

S E

XC

EE

DIN

G 3 m

iles.

Copper telephone local loops have a characteristic 

known as distributed capacitance -- caused by the long 

parallel configuration of the cable conductors.

This distributed capacitance im

pairs the ability of the telephone connection to reproduce the higher frequency sound com

ponents of speech.

The effect accum

ulates with cable length, m

aking long loops the m

ost seriously affected.

The industry solution to the problem

 is to insert coils of w

ire in series with the loop conductors at periodic

intervals along the cable -- as illustrated below.  T

he resulting coil inductance effectively cancels the distributed capacitance of the cable, yielding a net undistorted bandw

idth profile for the channel.

Loading coils improve the quality of the telephone connection for voice com

munication   (and analog 

modem

 services)  but render it unusable for digital signaling such as used by the digital line driver.

Data C

omm

unications & Fieldbus S

ystems

62

Page 64: Data Communication &Fieldbus Systems

FUN

CTIO

NS

OF LIN

K P

RO

TOC

OLS

Link protocols are required to create a structured, reliable environment for data to be exchanged.

Elem

ents of this role are:

Provide an environm

ent where in

tegrity of data is assured (in

tegrity fo

cuse

s on th

e re

quire

ment

that d

ata

should

be d

elive

red to

the a

ppro

pria

te d

estin

atio

n -- in

tact).

Provide for accu

racy in the data delivered (assu

rance

of e

rror d

ete

ction a

nd co

rrectio

n, so

that

oth

er, h

igher la

yer fu

nctio

ns ca

n sa

fely a

ssum

e d

ata

and co

ntro

l info

rmatio

n is co

rrect).

In combination, these integrity and accuracy concerns result in a form

al process of cu

stod

y transfer regarding data.

Additional responsibilities include:

Flo

w co

ntro

l -- responding to congestion in the network, or tem

porary jeopardy of buffer overflow

.

Man

agem

ent o

f con

tentio

n -- w

ithout which an ethernet LA

N or a m

ultipoint line could not function.

D-175

Data C

omm

unications & Fieldbus S

ystems

63

Page 65: Data Communication &Fieldbus Systems

LINK

LAY

ER

PR

OTO

CO

LS

D-103

Link layer protocols provide an organized, structured data delivery capability, validating received data, thus confirm

ing the correct delivery destination and completeness of delivery (in

tegrity

verifica

tion) and correct m

essage content (accu

racy ve

rificatio

n).

TE

LE

TY

PE

PR

OT

OC

OL

(As

yn

ch

ron

ou

s S

ys

tem

s)

Teletype protocol (TT

Y) is unstructured, in that there are no em

bedded guarantees of data integrity or accuracy.

Teletype protocol was developed for the electro-m

echanical teletypewriter system

s used 60 years ago -- and presum

es no higher level of equipment "intelligence" than these early devices provided.

BIN

AR

Y S

YN

CH

RO

NO

US

PR

OT

OC

OL

(Sy

nc

hro

no

us

Sy

ste

ms

)

Binary S

ynchronous (BIS

YN

C) is an inherently half-duplex protocol w

hich was the first w

idely used structured protocol -- offering generally appropriate accuracy and integrity control. In m

ost cases, B

ISY

NC

delivers poor facilities utilization efficiency.

HIG

H L

EV

EL

DA

TA

LIN

K C

ON

TR

OL

PR

OT

OC

OL

(Sy

nc

hro

no

us

Sy

ste

ms

)

HD

LC, patterned after IB

M'S

Synchronous D

ata Link Control (S

DLC

) protocol, is a link service that m

eets most current application needs for accuracy, m

essage integrity and efficiency. HD

LC is

inherently insensitive to code formats and m

essage content, making it a convenient, general

purpose link layer support protocol.

D

ata Com

munications &

Fieldbus System

s64

Page 66: Data Communication &Fieldbus Systems

TE

LET

YP

E (T

TY

) PR

OT

OC

OL

D-104

The first T

eletype protocol systems predated the com

puter era, and were com

prised of electro-m

echanical terminal devices (teletypew

riters)  used for human-to-hum

an comm

unication.

Teletype protocol has a m

ajor benefit in being simple and inexpensive to support, an has evolved as 

the default link layer protocol for applications where its inherent lim

itations are tolerable -- which 

includes personal computer applications connected by the standard serial port.

The absolutely "dum

b" characteristics of the electro-mechanical teletypew

riter   (and all systems 

which em

ulate them, including P

Cs)   create the follow

ing features:

TT

Y system

s lack any kind of data buffering ability.N

o retransmission w

hen errors occur in the basic TT

Y protocol.

Only full-duplex is supported because devices are not able to m

anage half-duplex sequences.Lack of address recognition ability results in only point-to-point operation being feasible. 

Teletype protocol system

s tend to be satisfactory in applications where a hum

an is involved in the process  (i.e. either hum

an-to-human m

essaging, or human interactive term

inal service).

When m

achine-to-machine com

munication is required  (w

ith inherent "zero tolerance" of errors),  basic unaugm

ented TT

Y protocol is unacceptable.

A num

ber of auxiliary Application-layer protocols  (such as X

MO

DE

M, K

ER

MIT

, BLA

ST

, MN

P and 

V.42)  have been used to com

pensate for some of these lim

itations.

Data C

omm

unications & Fieldbus S

ystems

65

Page 67: Data Communication &Fieldbus Systems

HA

LF-D

UP

LEX vs. F

ULL D

UP

LEX

      PR

OT

OC

OL O

PE

RA

TIO

N

D-068

Half D

uplex Protocol:

Half duplex is sim

ple to implem

ent, simple to operate and very effective in sim

ple applications.

Half duplex protocols (such as B

ISY

NC

)  were the first structured link protocols developed specifically 

for computer applications.  T

hey were a rem

arkable improvem

ent over the unstructured Teletype 

protocols previously used.

Inefficiency occurs through only transmitting in one direction at a tim

e  -- and waiting tim

e delays are required to reverse the direction of transm

ission twice for each block of data sent.

Full Duplex P

rotocol:

Full duplex operation supports sim

ultaneous bi-directional service.  Since w

aiting to acknowledge 

each transmission  (as is done w

ith half-duplex protocols)  would prevent effective full duplex 

operation, full duplex implem

entations always use a m

essage sequence numbering schem

e.  

Message references, such as requests for retransm

ission, are made using these num

bers.  The 

number of different num

bers available for numbering the m

essages is called the window

 size.

Full duplex protocols support efficient utilization of expensive telecom

munications facilities.

Com

plexity of implem

entation slowed early adoption, but this is a non-issue in current practice.

D

ata Com

munications &

Fieldbus System

s66

Page 68: Data Communication &Fieldbus Systems

BIN

AR

Y  S

YN

CH

RO

NO

US 

   ME

SS

AG

E F

EA

TU

RE

S

SYN

STX

ETX

SYN

SYN

BCC

BCC

VA

RIA

BLE

 LEN

GT

H D

AT

A F

IELD

.  TY

PIC

AL B

LOC

K LE

NG

TH

S M

AY B

E 200 T

O 2000 C

HA

RA

CT

ER

S.

D-065

NO

RM

AL M

OD

E B

ISY

NC requires that this data field contain no control characters (ie. binary bit 

patterns that happen to replicate any of the control codes).   This requirem

ent effectively limits data 

content to alpha-numeric text characters.

TRA

NS

PA

RE

NT M

OD

E B

ISY

NC perm

its any conceivable bit pattern to be transmitted.  T

his is accom

plished through a data content scanning and code substitution process.

RE

PE

AT

ED 'S

YN

CH

RO

NO

US ID

LE'

CH

AR

AC

TE

RS A

RE S

EN

T FIR

ST

TO P

ER

MIT B

IT AN

D C

HA

RA

CT

ER

SY

NC

HR

ON

IZA

TIO

N T

O B

EE

ST

AB

LISH

ED

.

ON

E O

R M

OR

E B

LOC

K C

HE

CK C

HA

RA

CT

ER

AR

E C

OM

PU

TE

D D

AT

A.  T

HE B

CC IS

 NO

T A 

CH

AR

AC

TE

R -- IT IS

 DE

RIV

ED F

RO

M D

AT

FIE

LD C

ON

TE

NT

S.   IT

S P

UR

PO

SE IS

 TO 

EN

AB

LE T

HE R

EC

EIV

ING D

EV

ICE T

O V

ALID

AT

INC

OM

ING D

AT

A.

TH

E N

ET M

ES

SA

GE  

IS B

RA

CK

ET

ED B

Y T

HE 

CO

NT

RO

L CH

AR

AC

TE

PA

IR; S

TX and E

TX

.

Data C

omm

unications & Fieldbus S

ystems

67

Page 69: Data Communication &Fieldbus Systems

      BIN

AR

Y  S

YN

CH

RO

NO

US 

TR

AN

SP

AR

EN

T MO

DE F

EA

TU

RE

S

SYN

STX

ETX

SYN

DLE

BCC

BCC

D-066

DLE

SYN

DLE

DLE

DLE

DLE

Transparent B

ISY

NC retains the variable length data field -- and data is scanned by the sending 

DT

E, searching for "D

LE" bit patterns em

bedded in the data field. For every occurrence discovered, 

a second DLE

 is inserted, and the data is transmitted m

odified.

At the receiving D

TE

, the data field is unambiguously m

arked by the control character pairs D

LE/S

TX and D

LE/E

TX

.  Fraudulent D

LEs, w

hich would otherw

ise confuse the logic, are marked as 

frauds by the a second DLE

 (no legitimate control code sequences ever use a pair of D

LEs).

The receiving D

TE has the responsibility of rem

oving all inserted DLE

s in the data field, thus restoring it to its original unm

odified format.

INS

ER

TE

D D

LE C

HA

RA

CT

ER

S  

FO

LLOW E

VE

RY O

CC

UR

RE

NC

E O

F H

AP

PE

NS

TA

NC

E D

LE 

BIT

-PA

TT

ER

NS W

HIC

H M

AY O

CC

UR 

IN LE

GIT

IMA

TE B

INA

RY D

AT

A.

TH

E N

ET M

ES

SA

GE C

ON

TE

NT IS

 N

OW B

RA

CK

ET

ED B

Y T

WO 

CO

NT

RO

L CH

AR

AC

TE

RS A

T BO

TH 

EN

DS

; DLE

/ST

X and D

LE/E

TX

.

D

ata Com

munications &

Fieldbus System

s68

Page 70: Data Communication &Fieldbus Systems

HA

LF-DU

PLE

X LIN

K P

RO

TOC

OL

SE

QU

EN

CE

OF E

VE

NTS

D-069

RE

QU

ES

T P

ER

MIS

SIO

N T

O T

RA

NS

MIT

(EN

Q)

PE

RM

ISS

ION

GR

AN

TE

D (A

CK

)

TR

AN

SM

IT F

IRS

T B

LOC

K O

F D

AT

A (D

ELIM

ITED

BY

ST

X/E

TX

)

AS

SU

ME

RE

CE

IVE

D C

OR

RE

CT

LY, V

ER

IFY

RE

CE

I PT (A

CK

)

TR

AN

SM

IT N

EX

T B

LOC

K O

F D

AT

A (D

ELIM

ITE

D B

Y S

TX/E

TX

)

AS

SU

ME

RE

CE

IVE

D C

OR

RE

CT

LY, V

ER

IFY

RE

CE

IPT (A

CK

)

TR

AN

SM

IT N

EX

T B

LOC

K O

F D

AT

A (D

ELIM

ITE

D B

Y S

TX/E

TX

)

AS

SU

ME

ER

RO

R(S

) IN T

RA

NS

MIS

SIO

N, R

EJE

CT

ME

SS

AG

E (N

AK

)

RE

TR

AN

SM

IT LA

ST

BLO

CK

OF

DA

TA

AS

SU

ME

RE

CE

IVE

D C

OR

RE

CT

L Y, V

ER

IF Y R

EC

EIP

T (A

CK

)

AS

SU

ME

NO

MO

RE

DA

TA

(TA

SK

CO

MP

LETE

); SE

ND

EO

T

NO

RE

SP

ON

SE

EX

PE

CT

ED

INCREASING TIMES

TA

TIO

N "A

"S

TA

TIO

N "B

"

SESSIONINITIATIONSEQUENCE

DATATRANSFERSEQUENCE

SESSIONTERMINATIONSEQUENCE

Data C

omm

unications & Fieldbus S

ystems

69

Page 71: Data Communication &Fieldbus Systems

VA

RIA

BLE L

EN

GT

H D

AT

A F

IEL

D

FLAG

ADDRESSCONTROL

FLAG

CR

C E

RR

OR

CH

EC

K FIE

LD

HIG

H LE

VE

L DA

TA LIN

K C

ON

TR

OL

           FR

AM

E S

TR

UC

TU

RE

D-067

FLAG FIE

LD:   T

he FLA

G field is a distinct bit pattern sequence of "01111110" m

arking the ends of the variable length H

DLC

 frame.  T

his makes it necessary to verify that no flag patterns happen to 

occur in the message, using a scan-insert-scan-delete sequence sim

ilar to that used for BIS

YN

C.

AD

DR

ES

S FIE

LD:   T

his feature is of little value in point-to-point applications -- but it is essential for m

ultipoint operation.  The address field is typically either one or tw

o octets in length.

CO

NTR

OL FIE

LD:  B

its in this field support the logical mechanism

 that controls the operation of the com

municating devices.  S

equence numbers allow

 transmission of new

 data without w

aiting for acknow

ledgement of previous data, and control field logic also provides for retransm

ission requests and system

 initialization functions.

DA

TA FIE

LD:   T

he DA

TA field is variable length.  It is typically required that this field contain an 

integer number of octets -- w

ith 2,000 octets being a typical length.

CR

C E

RR

OR C

HE

CK FIE

LD:  T

he CR

C E

RR

OR C

HE

CK field is a tw

o-octet error check sequence.  T

he CR

C calculation is typically perform

ed in interface hardware   (thus no process overhead).

Data C

omm

unications & Fieldbus S

ystems

70

Page 72: Data Communication &Fieldbus Systems

D-221

01

10

01

11

01

11

10

01

11

11

00

11

11

11

00

01

10

01

11

01

11

10

01

11

11

00

11

11

11

00

00

01

11

11

10

01

11

11

10

01

10

01

11

01

11

10

01

11

11

00

11

11

11

00

----- F

LA

G -

----

----- F

LA

G -

----

❉❉

OR

IGIN

AL D

AT

(Incl. control fields)

2 EX

AM

PLE

S O

F FIVE 

"1" BIT S

EQ

UE

NC

ES

AN

D T

WO S

TU

FF

ED 

BIT

S (M

AR

KE

D      )

DE

LIVE

RE

D D

ATA

IS ID

EN

TIC

AL

TO T

HE S

OU

RC

E

HD

LC B

IT ST

UF

FIN

G F

OR T

RA

NS

PA

RE

NC

Y

The control logic of any link protocol is critically dependent on being able to unam

biguously differentiate betw

een control signals and user data.  With H

DLC

, this is handled by the structure of the fram

es being bracketed by the flag pattern at each end of every frame  -- all fields are located in 

relation to the flag positions.

It follows that the flag bit pattern m

ust be uniquely reserved for this role, and happenstance occurrences of the flag bit sequence in data (and the internal address, control and/or C

RC

) must be 

somehow

 neutralized.

Imm

ediately prior to appending the flags and sending a frame of data, H

DLC

 systems invoke a bit 

stuffing procedure such that for every occurrence of a string of five consecutive "1" bits, a "0" bit is added -- a stuffed bit .

The receiving station m

ust subsequently locate and remove any stuffed bits -- a sim

ple task, since every "0" bit w

hich follows five "1" bits is unconditionally a stuffed bit, and m

ust be discarded.

Data C

omm

unications & Fieldbus S

ystems

71

Page 73: Data Communication &Fieldbus Systems

S-FR

AM

E(S

upervisory Form

at)

I-FRA

ME

(Information F

ormat)

U-FR

AM

E(U

nnumbered F

ormat)

15

67

82

34

-------- BIT P

OS

ITION

S IN

 CO

NTR

OL FIE

LD --------

010

11

P/F

P/F

P/F

SE

ND S

EQ

.N

UM

BE

RR

CV

. SE

Q.

NU

MB

ER

RC

V. S

EQ

.N

UM

BE

R

MO

DIF

IER

FC

N. B

ITS

SU

PV

.B

ITS

MO

DIF

IER

FC

N. B

ITS

03

74

65

12

   3-BIT (M

odulo 8)C

IRC

ULA

R C

OU

NTE

R

continued ....D

-222

The 8-bit C

ontrol Field takes one 

of three forms -- or form

ats:

Information Form

at;  which is 

always used w

hen data is actually being sent,

Supervisory Form

at, which is 

used to assert normal control over 

the link, and 

Unnum

bered Format,  w

hich perform

s extraordinary control tasks, such as resetting the link. 

HD

LC C

ON

TR

OL F

IELD

 CO

MP

ON

EN

TS

The three-bit send and receive sequence num

ber fields are used to provide a m

essage counting capability; they operate as a modulo-8 

circular counter as suggested in the sketch to the right.

These counter fields establish a m

essage sequence numbering 

capability, where the lim

ited repertoire (8 possible values)  means that 

there can never be more than 8 uniquely identified m

essages in transit (i.e. unacknow

ledged)  in any particular one-way link).

Data C

omm

unications & Fieldbus S

ystems

72

Page 74: Data Communication &Fieldbus Systems

continued ....D

-223

HD

LC C

ON

TRO

L FUN

CTIO

NS

, cont.

Supervisory Form

at Control Field C

ontents:

The tw

o-bit field of supervisory data is encoded as follows:

00 - RR  (or R

eceive Ready C

ode) -- indicates that the sending station is ready to receive data, and is used either to: (a) A

cknowledge receipt of a m

essage when there is no data to send   (a sim

ple positive acknow

ledgement)  or

(b) To reset a flow

 control comm

and  (see code 01 next).

Information Form

at Control Field C

ontents:

Tw

o sequence numbers are carried -- S

end and Receive num

bers

The S

end Sequence N

umber is one increm

ent greater than the number of the last fram

e sent to this particular station.T

he Receive S

equence Num

ber is a piggybacked confirmation of correct m

essage receipt for data m

oving in the opposite direction, and is the number of the last correctly received data fram

e from

 that station.

The "P

/F" bit is interpreted as a poll bit for the m

aster station transmissions   (its value is used to 

indicate whether a m

essage is a Polling m

essage or not)   and for slave stations it is a final bit (its value used to indicate w

hether a given message is the final, or last fram

e in a sequence).   Note that 

the P/F bit appears in all three m

essage formats.

Data C

omm

unications & Fieldbus S

ystems

73

Page 75: Data Communication &Fieldbus Systems

HD

LC C

ON

TR

OL F

UN

CT

ION

S, cont.

D-282

Supervisory Form

at Control Field C

ontents, cont.

01 - RN

R (or R

eceive Not R

eady code)  -- is used to force flow control on the sending station.

10 - Go-B

ack-N R

eject -- which requires the sending station to back up to the m

essage number 

indicated, and resend everything that follows that point in the sequence  (i.e. not including the 

indicated frame) .

11 - Selective R

eject - which requires the sending station to resend only the single fram

e following 

the indicated sequence number -- and then continue as before the interruption.

Unnum

bered Format C

ontrol Field Contents:

There are 5 bits encoded as m

odifier bits -- used to invoke system initialization, system

 reset and other extraordinary tasks that are required to adm

inister the link, but which do not contribute to 

normal, m

essage transfer functions.

HD

LC w

as derived from the S

ynchronous Data Link C

ontrol, or SD

LC link protocol developed by 

IBM

.

Although it is capable of supporting m

ultipoint lines  (as per the P/F bit definition),  m

ost HD

LC 

applications and variants operate in point-to-point mode.  A

 good example is P

oint-to-Point P

rotocol (P

PP

)  widely used on point-to-point links either to, or joining segm

ents of, the Internet.

There are countless other H

DLC

 implem

entations, both proprietary and public domain.

Data C

omm

unications & Fieldbus S

ystems

74

Page 76: Data Communication &Fieldbus Systems

STA

TION "A

"S

TATIO

N "B

"

ME

SS

AG

E IN

 TR

AN

SIT W

ES

TB

OU

ND

ME

SS

AG

E IN

 TR

AN

SIT E

AS

TB

OU

ND

DA

TA 

SO

UR

CE

: O

UT

PU

T M

ES

SA

GE 

BU

FF

ER

DA

TA S

INK

: IN

PU

T M

ES

SA

GE 

BU

FF

ER

D-177

ME

SS

AG

E S

EQ

UE

NC

E N

UM

BE

      CIR

CU

LAT

ION E

XA

MP

LE

54

41

43

32

63

52

(1) Num

bers in the left side of the above boxes  (solid black digits) are sequence numbers for S

tation "A

"; numbers in the right side  (gray shaded digits) are sequence num

bers for Station "B

".(2) E

ntries marked w

ith the asterisk  (     ) are arbitrary starting assumptions.

NO

TE:

INC

OM

ING (R

eceive) ME

SS

AG

SE

QU

EN

CE N

UM

BE

RS A

RE C

OP

IED 

OV

ER T

O T

HE O

UT

GO

ING (S

end) S

EQ

UE

NC

E N

UM

BE

R F

IELD

 FO

TR

AN

SM

ISS

ION W

ITH T

HE N

EX

T M

ES

SA

GE

.

DA

TA 

SO

UR

CE

: O

UT

PU

T M

ES

SA

GE 

BU

FF

ER

DA

TA S

INK

: IN

PU

T M

ES

SA

GE 

BU

FF

ER

Data C

omm

unications & Fieldbus S

ystems

75

Page 77: Data Communication &Fieldbus Systems

THROUGHPUT EFFICIENCY

LOW E

RR

OR

RA

TE C

AS

E

ME

DIU

M E

RR

OR

RA

TE C

AS

E

HIG

H E

RR

OR

RA

TE C

AS

E

Unfortunately, error rates are not all that stable  (i.e. they vary from

 minute-to-m

inute)  and are different for tw

o implem

entations of the same netw

ork technology -- thus attempting to pick an optim

um packet 

size for a given network technology is at best an educated guess.

Generally w

ide area networks (W

AN

s)  exhibit a much higher error rate than local area netw

orks (LAN

s)   -- being the reason w

hy packet sizes are typically much sm

aller on WA

Ns than on LA

Ns.

RE

LAT

ION

SH

IP: O

PT

IMU

M P

AC

KE

T SIZ

ED

EP

EN

DS O

N E

RR

OR R

AT

E E

XP

EC

TA

TIO

N

T-196

For every netw

ork environment, there 

will alw

ays be an optimum

 message 

unit, or packet size, largely determined 

by the error rate encountered in that environm

ent.

For very sm

all packet sizes, operating efficiency w

ill increase with increasing 

packet size.

By increasing packet size indefinitely 

(i.e. to very large packet sizes) , the now

 large packets will encounter so 

many errors   (and require so m

any resulting retransm

issions)  that efficiency falls off quickly.

INC

RE

AS

ING (N

ET

) PA

CK

ET S

IZE

Data C

omm

unications & Fieldbus S

ystems

76

Page 78: Data Communication &Fieldbus Systems

D-171

EIA

-232-C F

EA

TU

RE

S/F

UN

CT

ION

S/D

EF

ICIE

NC

IES

The T

elecomm

unications Industries Association  (form

erly, the Electronic Industries A

ssociation)  has defined effectively all equipm

ent interface standards in North A

merica.

The E

IA-232-C

 interface started out life as the RS

-232, and went through 3 revisions and nam

e changes to becom

e the EIA

-232-C.  It w

as further redefined/refined as the EIA

-232-D -- and 

remains the m

ost widely used equipm

ent interface standard in the world.

Earlier versions w

ere more data rate-restricted; E

IA-232-C

 and D revisions are lim

ited to 20 kbps. -- in less sophisticated tim

es, this was not a serious lim

itation but it currently is a key constraint.

The interface is designed to connect adjacent pieces of equipm

ent, with a nom

inal maxim

um 

separation of 50 feet between D

TE and D

CE

.  Current practice often w

orks with m

uch greater separations.

Depending on data rate, electrom

agnetic environment and cable type, this 50-foot lim

itation may 

be reasonably stretched to a few hundred feet -- perhaps as far as 500.

The interface w

as specified without a unique connector designation   (although the A

mphenol 

DB

-25 shell connector has become the de facto standard, and the E

IA-232-D

 version actually specifies the D

B-25),  and lacked detail as to gender expectations and m

echanical restraint.

The interface provides for asym

metric  (P

rimary/S

econdary)  modem

 support, which, since it is 

rarely used, results in many unused pin connections that could either be better used to serve 

different functions, or eliminated to allow

 a smaller connector.

Data C

omm

unications & Fieldbus S

ystems

77

Page 79: Data Communication &Fieldbus Systems

AA

MODEM

DC

ED

TE

TE

LEP

HO

NE

LINE

CO

NN

EC

TO

R

WILL B

E E

ITH

ER

:

RJ-11 M

OD

ULA

R JA

CK

FO

R

2-WIR

E D

IAL D

EV

ICE

AC

CE

SS

, or

RJ-45 M

OD

ULA

R JA

CK

FO

R

4-WIR

E D

ED

ICA

TE

D LIN

E

CO

NN

EC

TIO

N

TH

E C

AB

LE E

ND

TE

RM

INA

TIN

G A

T T

HE

DC

E IS

A M

ALE

GE

ND

ER

CO

NN

EC

TO

R,

... TH

ER

EF

OR

E, T

HE

CH

AS

SIS

CO

NN

EC

TO

RO

N T

HE

DC

E IS

FE

MA

LE G

EN

DE

R

TH

E F

OR

MA

L EIA

-232-C IN

TE

RF

AC

E

AC

TU

ALLY

OC

CU

RS

AT

TH

IS P

OIN

T(at the D

CE

connection rather than DT

E)

EIA

-232-C C

ON

NE

CTIO

N FE

ATU

RE

S

TH

E S

TA

ND

AR

D D

OE

S N

OT

AN

TIC

IPA

TE

A C

ON

NE

CT

OR

ON

TH

IS E

ND

OF

TH

E C

AB

LE, A

ND

TH

ER

EF

OR

E N

O G

EN

DE

R

SP

EC

IFIC

AT

ION

IS P

RO

VID

ED

. IN P

RA

CT

ICE

TH

E D

TE

WILL

ALW

AY

S H

AV

E A

DE

TAC

HA

BLE

CA

BLE

AN

D C

ON

SE

QU

EN

TLYA

CO

NN

EC

TO

R G

EN

DE

R C

ON

VE

NT

ION

IS N

EE

DE

D.

D-026

TELE

PH

ON

E C

AB

LE

●●

Data C

omm

unications & Fieldbus S

ystems

78

Page 80: Data Communication &Fieldbus Systems

D-029

EIA

-232-C S

IGN

AL A

ND C

ON

TR

OL 

      VO

LTA

GE C

ON

VE

NT

ION

S

10

11

01

10

BIP

OLA

R N

ON

-R

ET

UR

N T

O Z

ER

(BN

RZ

) FO

RM

AT

+3-3 0

+25

-25

VA

LID E

IA-232-C

 INT

ER

FA

CE E

LEC

TR

ICA

L SIG

NA

LS M

AY B

E A

NY

WH

ER

EIN T

HE R

AN

GE B

ET

WE

EN 3 A

ND 25 V

OLT

S.  N

OR

MA

L OP

ER

AT

ING R

AN

GE

IS T

YP

ICA

LLY 12 T

O 15 V

OLT

S.  S

HA

DE

D A

RE

AS IN

DIC

AT

E T

HE R

AN

GE 

OF IN

VA

LID O

R IN

DE

TE

RM

INA

TE S

IGN

AL V

ALU

ES

.

OF

FO

NO

FF

ON

OF

FO

FF

ON

OF

F

DA

TA S

IGN

AL LO

GIC

AL

INT

ER

PR

ET

AT

ION O

FIN

DIC

AT

ED V

OLT

AG

PA

TT

ER

N

CO

NT

RO

L SIG

NA

L LOG

ICA

LIN

TE

RP

RE

TA

TIO

N O

FIN

DIC

AT

ED V

OLT

AG

PA

TT

ER

N

VOLTAGE SCALE VERTICALLY

TIM

E S

CA

LE H

OR

IZO

NT

AL

LY

Data C

omm

unications & Fieldbus S

ystems

79

Page 81: Data Communication &Fieldbus Systems

1. PR

OTE

CT

IVE

GR

OU

ND

2. TR

AN

SM

ITTE

D D

ATA

3. RE

CE

IVE

D D

ATA

4. RE

QU

ES

T TO

SE

ND

5. CLE

AR

TO S

EN

D

6. DA

TA S

ET

RE

AD

Y8. R

EC

EIV

ED

LINE

SIG

NA

L DE

TE

CTO

R

9. RE

SE

RV

ED

FOR

TES

TIN

G

10. RE

SE

RV

ED

FOR

TES

TIN

G

11. UN

AS

SIG

NE

D

12. SE

CO

ND

AR

Y R

CD

'D LIN

E S

IGN

AL D

ET

.

13. SE

CO

ND

AR

Y C

LEA

R T

O S

EN

D

7. GR

OU

ND

& C

OM

MO

N

RE

TUR

N

14. SE

CO

ND

AR

Y T

RA

NS

MITT

ED

DA

TA

15. TRA

NS

MITTE

R S

IGN

AL E

LEM

EN

T TIM

ING

16. SE

CO

ND

AR

Y R

EC

EIV

ED

DA

TA

17. RE

CE

IVE

R S

IGN

AL E

LEM

EN

T TIMIN

G

18. UN

AS

SIG

NE

D

19. SE

CO

ND

AR

Y R

EQ

UE

ST TO

SE

ND

20. DA

TA TE

RM

INA

L RE

AD

Y

21. SIG

NA

L QU

ALITY

DE

TE

CTO

R

22. RIN

G IN

DIC

ATO

R

23. DA

TA S

IGN

AL R

ATE

SE

LEC

TOR

24. TRA

NS

MITTE

R S

IGN

AL E

LEM

EN

T TIMIN

G (D

TE)

25. UN

AS

SIG

NE

D

D-022

EIA

-232-C IN

TER

FAC

E P

IN A

SS

IGN

ME

NTS

ILLUS

TR

AT

ION

SH

OW

S "M

ALE

" GE

ND

ER

DB

-25 SH

ELL C

ON

NE

CT

OR

Data C

omm

unications & Fieldbus S

ystems

80

Page 82: Data Communication &Fieldbus Systems

EIA

-232-C FU

NC

TION

AL D

ETA

IL

1 2 3 4 5 6 7 8 910111213141516171819202122232425

FG

TX

DR

XD

RT

SC

TS

DS

RG

ND

DC

D

SD

CD

SC

TS

ST

XD

TX

CLK

SR

XD

RX

CLK

SR

TS

DT

RS

QD

RI

RA

TE

XTC

LK

Fram

e Ground

Transm

itted Data

Received D

ataR

equest to Send

Clear to S

endD

ata Set R

eadyS

ignal Ground

Data C

arrier Detect

Positive T

est Voltage

Negative T

est Voltage

Unassigned

Secondary C

arrier Detect

Secondary C

lear to Send

Secondary T

ransmitted D

ataT

ransmitter C

lockS

econdary Received D

ataR

eceiver Clock

Unassigned

Secondary R

equest to Send

Data T

erminal R

eadyS

ignal Quality D

etectR

ing IndicatorD

ata Rate S

electorE

xternal Clock

Unassigned

✔✔✔✔✔✔✔✔✔✔✔✔✔✔

✔✔✔✔✔✔✔

✘✘✘✘

✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

PIN

NO

.A

BB

RE

V-

IATIO

NFU

NC

TION

DE

SC

RIP

TION

SU

BS

ET E

QU

IPP

ED

: 4 9 15 25

D-074

SIGN

AL TO

:D

TE DC

E

Data C

omm

unications & Fieldbus S

ystems

81

Page 83: Data Communication &Fieldbus Systems

1. RE

CE

IVE

D LIN

E S

IGN

AL D

ETE

CT

2. RE

CE

IVE

D D

ATA

4. DA

TA TE

RM

INA

L RE

AD

Y

5. GR

OU

ND

AN

D C

OM

MO

N R

ETU

RN

3. TRA

NS

MITT

ED

DA

TA

6. DA

TA S

ET

RE

AD

Y

7. RE

QU

ES

T TO S

EN

D8. C

LEA

R TO

SE

ND

9. RIN

G IN

DIC

ATO

R

D-053

EIA

-232-C IN

TER

FAC

E - 9-P

IN S

UB

SE

T P

IN A

SS

IGN

ME

NTS

ILLUS

TR

AT

ION

SH

OW

S "M

ALE

" GE

ND

ER

DB

-9 SH

ELL C

ON

NE

CT

OR

Data C

omm

unications & Fieldbus S

ystems

82

Page 84: Data Communication &Fieldbus Systems

1. SH

IELD

GR

OU

ND

2. TR

AN

SM

ITTED

DA

TA

3. RE

CE

IVE

D D

ATA

4. RE

QU

ES

T TO S

EN

D

5. CLE

AR

TO

SE

ND

6. DC

E R

EA

DY

8. RE

CE

IVE

D LIN

E S

IGN

AL D

ET

EC

TOR

9. RE

SE

RV

ED

FO

R TE

STIN

G

10. RE

SE

RV

ED

FOR

TE

STIN

G

11. UN

AS

SIG

NE

D

12. SE

CO

ND

AR

Y R

CD

'D LIN

E S

IGN

AL D

ET

.

13. SE

CO

ND

AR

Y C

LEA

R T

O S

EN

D

7. GR

OU

ND

& C

OM

MO

N

RE

TU

RN

14. SE

CO

ND

AR

Y T

RA

NS

MITT

ED

DA

TA

15. TRA

NS

MITTE

R S

IGN

AL E

LEM

EN

T TIM

ING

16. SE

CO

ND

AR

Y R

EC

EIV

ED

DA

TA

17. RE

CE

IVE

R S

IGN

AL E

LEM

EN

T TIMIN

G

18. LOC

AL LO

OP

BA

CK

19. SE

CO

ND

AR

Y R

EQ

UE

ST TO

SE

ND

20. DTE

RE

AD

Y

21. RE

MO

TE LO

OP

BA

CK

/SIG

NA

L QU

ALITY

DE

TE

CTO

R

22. RIN

G IN

DIC

ATO

R

23. DA

TA S

IGN

AL R

ATE

SE

LEC

TOR

24. TRA

NS

MITTE

R S

IGN

AL E

LEM

EN

T TIMIN

G (D

TE)

25. TES

T MO

DE

D-038

EIA

-232-D IN

TER

FAC

E P

IN A

SS

IGN

ME

NTS

ILLUS

TR

AT

ION

SH

OW

S "M

ALE

" GE

ND

ER

DB

-25 SH

ELL C

ON

NE

CT

OR

NO

TE

: DIF

FER

EN

CE

S C

OM

PA

RE

D W

ITH E

IA-232-C

US

AG

E

AR

E M

AR

KE

D W

ITH

AS

TER

ISK

S

✽ ✽ ✽ ✽

✽ ✽

Data C

omm

unications & Fieldbus S

ystems

83

Page 85: Data Communication &Fieldbus Systems

UN

BA

LAN

CE

D E

LEC

TRIC

AL C

IRC

UIT --

SU

CH

AS

EIA

-232-C. TH

E G

RO

UN

D

RE

TUR

N P

ATH

IS S

HA

RE

D B

Y A

LL E

LEC

TRIC

AL S

IGN

ALS

.

UN

BA

LAN

CE

D E

LEC

TRIC

AL C

IRC

UIT --

SU

CH

AS

EIA

-423. GR

OU

ND

RE

TU

RN

P

AT

H IS

ISO

LAT

ED

FR

OM

OT

HE

R

FUN

CTIO

NS

, BU

T ELE

CTR

ICA

L BA

LAN

CE

IS

LOS

T TH

RO

UG

H TH

E G

RO

UN

D

CO

NN

EC

TION

.

BA

LAN

CE

D E

LEC

TRIC

AL C

IRC

UIT

-- S

UC

H A

S E

IA-422. B

OTH

CO

ND

UC

TO

RS

A

RE

ELE

CTR

ICA

LLY E

QU

AL (N

EITH

ER

IS

DE

SIG

NA

TED

AS

"GR

OU

ND

" C

ON

NE

CTIO

N). T

HE

RE

SU

LTIN

G

SY

MM

ET

RY

CR

EA

TES

SU

PE

RIO

R

NO

ISE

/INTE

RFE

RE

NC

E IM

MU

NIT

Y.

TR

AN

SM

IT, O

R

DR

IVE

R C

IRC

UIT

RE

CE

IVE

R

CIR

CU

ITC

AB

LE C

ON

NE

CTIO

N C

IRC

UIT

D-079

BA

LAN

CE

D &

UN

BA

LAN

CE

D IN

TER

FAC

E C

IRC

UITS

INP

UT

OU

TP

UT

INP

UT

OU

TP

UT

INP

UT

OU

TP

UT

Data C

omm

unications & Fieldbus S

ystems

84

Page 86: Data Communication &Fieldbus Systems

1. SH

IELD

GR

OU

ND

2. SIG

NA

LING

RA

TE

IND

ICA

TOR

3. UN

US

ED

4. SE

ND

DA

TA

5. SE

ND

TIM

ING

6. RE

CE

IVE

DA

TA

10. LOC

AL

LOO

PB

AC

K

20. RE

CE

IVE

CO

MM

ON

21. UN

US

ED

22. SE

ND

DA

TA

23. SE

ND

TIM

ING

24. RE

CE

IVE

DA

TA

25. RE

QU

ES

T TO

SE

ND

D-025

EIA

-449 INTE

RFA

CE

PIN

AS

SIG

NM

EN

TS

ILLUS

TR

AT

ION

SH

OW

S "M

ALE

" GE

ND

ER

DB

-37 SH

ELL C

ON

NE

CT

OR

14. RE

MO

TE LO

OP

BA

CK

15. INC

OM

ING

CA

LL

16. SE

LEC

T F

RE

QU

EN

CY

17. TE

RM

INA

L TIMIN

G

18. TE

ST

MO

DE

19. SIG

NA

L GR

OU

ND

32. SE

LEC

T S

TA

ND

BY

33. SIG

NA

L QU

ALIT

Y

34. NE

W S

IGN

AL

35. TE

RM

INA

L TIM

ING

36. STA

ND

BY

IND

ICA

TO

R

37. SE

ND

CO

MM

ON

11. DA

TA

MO

DE

12. TE

RM

INA

L RE

AD

Y

13. RE

CE

IVE

R R

EA

DY

7. RE

QU

ES

T T

O S

EN

D

8. RE

CE

IVE

TIM

ING

9. CLE

AR

TO

SE

ND

26. RE

CE

IVE

TIM

ING

27. CLE

AR

TO

SE

ND

28. TE

RM

INA

L IN S

ER

VIC

E29. D

AT

A M

OD

E

30. TE

RM

INA

L RE

AD

Y

31. RE

CE

IVE

R R

EA

DY

Data C

omm

unications & Fieldbus S

ystems

85

Page 87: Data Communication &Fieldbus Systems

1. SH

IELD

GR

OU

ND

2. TR

AN

SM

ITTE

D D

ATA

3. RE

CE

IVE

D D

ATA

4. RE

QU

ES

T TO

SE

ND

5. CLE

AR

TO

SE

ND

6. DC

E R

EA

DY

8. RE

CE

IVE

D LIN

E S

IGN

AL D

ET

EC

T

9. RE

CE

IVE

R S

IGN

AL E

LEM

EN

T TIMIN

G

10. RE

CE

IVE

D LIN

E S

IGN

AL D

ET

EC

T

11. TR

AN

SM

IT SIG

NA

L ELE

ME

NT T

IMIN

G (D

TE)

12. TRA

NS

MIT S

IGN

AL E

LEM

EN

T T

IMIN

G (D

CE

)

13. CLE

AR

TO

SE

ND

7. GR

OU

ND

& C

OM

MO

N

RE

TU

RN

14. TRA

NS

MITT

ED

DA

TA

15. TRA

NS

MIT S

IGN

AL E

LEM

EN

T TIMIN

G (D

CE

)

16. RE

CE

IVE

D D

AT

A

17. RE

CE

IVE

R S

IGN

AL E

LEM

EN

T TIMIN

G

18. LOC

AL LO

OP

BA

CK

19. RE

QU

ES

T T

O S

EN

D20. D

TE

RE

AD

Y

21. RE

MO

TE

LOO

PB

AC

K

22. DC

E R

EA

DY

23. DT

E R

EA

DY

24. TRA

NS

MIT S

IGN

AL E

LEM

EN

T TIM

ING

(DTE

)

25. TES

T MO

DE

D-039

EIA

-530 INTE

RFA

CE

PIN

AS

SIG

NM

EN

TS

ILLUS

TR

AT

ION

SH

OW

S "M

ALE

" GE

ND

ER

DB

-25 SH

ELL C

ON

NE

CT

OR

NO

TE

: DU

PLIC

AT

ED

TR

AN

SM

IT S

IGN

AL E

LE

ME

NT

TIM

ING

AS

SIG

NM

EN

TS

PR

OV

IDE

F

OR

CLO

CK

SO

UR

CE

TIM

ING

TO

BE

PR

OV

IDE

D B

Y E

ITH

ER

DT

E O

R D

CE

Data C

omm

unications & Fieldbus S

ystems

86

Page 88: Data Communication &Fieldbus Systems

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

100 bps1kbps

10 kbps100 kbps

1 Mbps

10 Mbps

24

68

24

68

24

68

24

68

24

68

10 100 1000 10,0002 4 6 82 4 6 8 2 4 6 8

DISTANCE IN FEET

EIA

-422 DIS

TA

NC

E/D

AT

A R

AT

E E

NV

ELO

PE

EIA

-423 D

IST

AN

CE

/DA

TA

RA

TE

E

NV

ELO

PE

EIA

-232D

IST

AN

CE

/DA

TA

RA

TE

E

NV

ELO

PE

D-078

DIS

TAN

CE

vs. DA

TA R

ATE

RE

LATIO

NS

HIP

S O

F CO

MM

ON

INTE

RFA

CE

STA

ND

AR

DS

Data C

omm

unications & Fieldbus S

ystems

87

Page 89: Data Communication &Fieldbus Systems

K-030

RS

-485 INT

ER

FA

CE

ST

AN

DA

RD

The R

S-485 interface standard has som

e strong similarities to the R

S-422 interface:

It uses the same balanced electrical configuration

It uses essentially the same signaling voltage conventions

The key concept difference is the R

S-422 is a point-to-point service (o

pera

ting o

n a

two-p

air, o

r 4-w

ire co

nnectio

n), w

hile the RS

-485 supports multi-drop, or bus configurations (o

pera

ting o

ver a

tw

o-w

ire, o

r single

pair co

nnectio

n) -- see sketch.

RS

-485 operates up to 56 kbps (com

pare

d w

ith R

S-4

22 o

pera

tion to

10 m

bps u

nder so

me

circum

stance

s).

This m

ulti-drop bus format configuration lends itself to netw

ork connection of field instruments --

suitable to applications where the sim

plicity of the configuration is desirable, and high perform

ance is not required.

BU

S-C

ON

NE

CT

ED

DE

VIC

EB

US

-CO

NN

EC

TE

DD

EV

ICE

BU

S-C

ON

NE

CT

ED

DE

VIC

E

TW

IST

ED

PA

IR C

AB

LE

Data C

omm

unications & Fieldbus S

ystems

88

Page 90: Data Communication &Fieldbus Systems

A

DIR

EC

T CO

NN

EC

TIVITY

: DTE

-DTE

D-040

?A

DIR

EC

T, S

IMP

LE C

ON

NE

CT

ION

IS IN

OP

ER

AB

LE. T

RA

NS

MIT

AN

D R

EC

EIV

E D

AT

A S

IGN

ALS

(O

N P

INS

2 and 3 RE

SP

EC

TIV

ELY

) AR

E IN

DIR

EC

T C

ON

FLIC

T. O

TH

ER

INT

ER

FA

CE

F

UN

CT

ION

S (LIK

E R

EA

DY

ST

AT

US

AN

D R

TS

/CT

S) W

OU

LD B

E S

IMILA

RLY

MIS

HA

ND

LED

.

PIN

NO

.

237

PIN

NO

.

237

DT

ED

TE

-- TE

RM

INA

LS T

RA

NS

MIT

ON

PIN

2

-- TE

RM

INA

LS R

EC

EIV

E O

N P

IN 3

-- (A C

OM

MO

N, O

R G

RO

UN

D C

ON

NE

CT

ION

A

T P

IN 7 IS

ALW

AY

S R

EQ

UIR

ED

)

Data C

omm

unications & Fieldbus S

ystems

89

Page 91: Data Communication &Fieldbus Systems

1 2 3 4 5 6 7 815172024

1 2 3 4 5 6 7 815172024

1 2 3 4 5 6 7 820

1 2 3 4 5 6 7 820

D-075

RE

PR

ES

EN

TATIV

E M

OD

EM

ELIM

INA

TOR

, OR

NU

LL MO

DE

M C

ON

FIGU

RA

TION

S

CA

SE

"A"

AS

YN

CH

RO

NO

US

SY

STE

M E

XA

MP

LE

CA

SE

"B"

SY

NC

HR

ON

OU

SS

YS

TEM

EX

AM

PLE

NO

TE

: (1) DE

TA

ILS O

F S

PE

CIF

IC S

YS

TE

MS

, AN

D IN

TE

RC

ON

NE

CT

ION

SU

BT

LET

IES

PR

EV

EN

T D

EF

INIT

ION

OF

A

UN

IVE

RS

ALLY

"CO

RR

EC

T" M

OD

EM

ELIM

INA

TO

R W

IRIN

G C

ON

FIG

UR

AT

ION

. TH

ES

E E

XA

MP

LES

AR

E

INT

EN

DE

D A

S ILLU

ST

RA

TIO

NS

OF

HO

W S

UC

H C

ON

FIG

UR

AT

ION

S M

IGH

T B

E E

ST

AB

LISH

ED

.

(2) TH

IS E

QU

IPM

EN

T C

ON

NE

CT

ION

PR

OB

LEM

IS G

EN

ER

ALLY

AS

SO

CIA

TE

D W

ITH

TH

E N

EE

D T

O

DIR

EC

TLY

CO

NN

EC

T D

TE

-to-DT

E; IT

IS A

N ID

EN

TIC

AL P

RO

BLE

M IN

SIT

UA

TIO

NS

WH

ER

E

DIR

EC

T D

CE

-to-DC

E C

ON

NE

CT

ION

S A

RE

RE

QU

IRE

D.

Data C

omm

unications & Fieldbus S

ystems

90

Page 92: Data Communication &Fieldbus Systems

continued ....D

-735

PIN

NO

.

237

PIN

NO

.

237

?T

ER

MIN

ALS

 TR

AN

SM

IT O

N P

IN 2

TE

RM

INA

LS R

EC

EIV

EO

N P

IN 3

A C

OM

MO

N, O

R G

RO

UN

DC

ON

NE

CT

ION O

N P

IN 7 IS

 A

LSO R

EQ

UIR

ED

CR

OS

SO

VE

R C

AB

LES

It is always a source of confusion to have to deal w

ith the inevitable asymm

etry of electrically cabled connections.

The problem

 always arises w

hen data cables are used to connect two pieces of 

equipment; E

IA/T

IA R

S-232 serial data cables, 10/100 B

AS

E-T E

thernet cables, and US

cables are three examples of cable system

s where this detail m

ust be dealt with.

Transm

itting, or sending devices are always required at one end of a w

ired link, and a receiving circuit is required at the other end -- a fundam

entally unavoidably asymm

etric feature of w

ired connections (see the illustration in the accompanying box).

The tw

o types of devices connected w

ith the RS

-232 are modem

s and term

inal equipment (D

ata C

omm

unications Equipm

ent, or D

CE

s and Data T

erminal 

Equipm

ent, or DT

Es)  -- the 

terminal, or D

TE view

 is suggested in the illustration here.

A 'straight through' cable w

ill clearly not w

ork in this case.

Data C

omm

unications & Fieldbus S

ystems

91

Page 93: Data Communication &Fieldbus Systems

CR

OS

SO

VE

R C

AB

LES

, cont.

D-736

PIN#

1 TD

+

PIN#

2 TD

-

PIN#

3 RD

+

PIN#

6 RD

-

PIN#

1 TD

+

PIN#

2 TD

-

PIN#

3 RD

+

PIN#

6 RD

-

continued ....

'Com

puter' -- and the netw

ork-side device is the 'Hub'.

In the Ethernet case, the 

problem is a little m

ore com

plicated, because the com

puter is connected with a 

short access cable to a wall 

plate that is wired as a 'hub' -- 

which is then connected via 

house cabling to a connector that plugs into a real 'hub' 

100/10 BASE-T CROSSOVER

The norm

al approach to dealing with this problem

 in the case of serial, RS

-232 connections (e.g. w

here two D

TE

s need to be directly connected)   is to either modify a 

cable so that Pin #2 on one end connects to pin #3 on the other  (the result is called a "null 

modem

 cable")  or construct an adapter unit in which the cross over w

iring is located  (called a "m

odem elim

inator")

In the case of 10/100 BA

SE

-T Ethernet connectivity, the problem

 is identical -- except the term

inology is different.

Here the 'term

ination' device is more com

monly called the 'E

thernet Device' or sim

ply the

Data C

omm

unications & Fieldbus S

ystems

92

Page 94: Data Communication &Fieldbus Systems

CR

OS

SO

VE

R C

AB

LES

, cont.

D-737

PIN N

UM

BE

R1 2 3 4 5 6 7 8

RJ-45 D

ATA

CO

NN

EC

TOR

(RE

CE

PTA

CLE

 V

IEW )

CO

MP

UT

ER

-EN

D C

ON

NE

CT

OR

PE

RIP

HE

RA

L-EN

D C

ON

NE

CTO

R

When using U

SB devices to connect com

puters to peripherals (the primary role w

ith US

B), 

the computer end alw

ays uses the rectangular connector (below left),  and the device 

connects to the squarish connector (below right)

The standard E

thernet 100/10 Base-T 

connector configuration is illustrated in the box to the right.

The designers of the U

niversal Serial 

Bus (U

SB

)  solved this problem quite 

elegantly by specifying two different 

connectors, completely avoiding 

conflict between device roles. 

Data C

omm

unications & Fieldbus S

ystems

93

Page 95: Data Communication &Fieldbus Systems

K-077

WIR

ELE

SS S

EN

SO

R N

ET

WO

RK

S

Environm

ental controls B

linds, drapery and shade controls M

edical sensing and monitoring 

Universal rem

ote control to a set-top box Industrial and building autom

ation 

Achieving an effective, econom

ical connection to sensors and/or controllers is an on-going problem 

for industrial network designers.

An em

erging wireless technology defined by the IE

EE 802.15.4 standard -- augm

ented by a set of application-oriented protocols going by the trade nam

e of ZigB

ee -- shows prom

ise of delivering effective solutions in this application.  F

irst product target Q4-2004.

ZigB

ee is actually a set of networking, security and application softw

are standards that sits atop the 802.15.4 low

-data wireless standard approved by the IE

EE

.

Unlike other w

ireless standards such as 802.11 or 802.16, ZigB

ee and 802.15.4 are designed to carry lim

ited amounts of data at a m

aximum

 rate of 250K bps   (bits per second)  -- w

ith a major 

priority on robust, secure comm

unication in a strongly power conservative form

at. 

The w

ww

.zigbee.org website carries considerable background inform

ation on this promising 

technology, and suggests the following m

ainly intelligent-building-oriented applications as potential w

ay of exploiting this new w

ireless innovation: 

Lighting controls A

utomatic m

eter reading W

ireless smoke and C

O detectors 

HV

AC control

Hom

e security 

Data C

omm

unications & Fieldbus S

ystems

94

Page 96: Data Communication &Fieldbus Systems

K-023

AN

ALO

G IN

ST

RU

ME

NT

INT

ER

FA

CE

S

The industrial com

puting industry has used several analog instrument interfaces -- or analog

inputs (AI) -- for the past num

ber of years.

A partial list of signal types/interfaces that are used is:

4 - 20 mA

current loop signal (ove

rwhelm

ingly th

e m

ost co

mm

only u

sed a

nalo

g in

terfa

ce

signal typ

e)

0 - 5 Volt signal (a

n in

terfa

ce typ

e th

at is g

enera

lly difficu

lt to b

e su

ccessfu

l with

, due to

the

need to

main

tain

a h

igh im

pedance

inte

rface

-- to m

inim

ize vo

ltage lo

ss in a

ssocia

ted ca

blin

g

-- which

in tu

rn in

crease

s vuln

era

bility to

noise

inductio

n)

frequency and pulse rate signal (ofte

n re

ferre

d to

as a

ccum

ula

tor sig

nals, co

mm

only

asso

ciate

d w

ith flo

w ra

te m

easu

rem

ent)

resistance value (com

monly a

ssocia

ted w

ith th

erm

oco

uple

-base

d te

mpera

ture

measu

rem

ent

-- which

is typica

lly limite

d b

y pow

er d

issipatio

n lim

its in th

e th

erm

oco

uple

to m

illivolt-le

vel

signals, w

hich

are

very vu

lnera

ble

to n

oise

pro

ble

ms)

It is a significant engineering challenge to design data acquisition systems so that am

bient electrical noise is controlled, so as to preserve the usefulness of the signals being m

easured (typ

ically a

ccom

plish

ed th

rough u

se o

f shie

lded w

iring a

nd lo

w im

pedance

circuits), w

hile respecting the need for intrinsic safety in m

any applications.

Data C

omm

unications & Fieldbus S

ystems

95

Page 97: Data Communication &Fieldbus Systems

K-014

Analog instrum

ents have historically supported a standard 4-20 mA

current loop interface to associated control equipm

ent -- over a dedicated 2-wire shielded cable pair.

This current loop prevailed in the industry for m

any years, in spite of several distinct disadvantages:

The low

levels of current required are subject to interference distortion problems that lim

it the accuracy and confidence of m

easured results.

The dedicated (typ

ically sh

ield

ed) cable pair required to support each instrum

ent interface results in a large, bulky cable plant, w

hich is expensive to install and difficult to maintain

--especially in hazardous environments.

Cable term

inations are also bulky, resulting in the cable termination cabinets and racking

occupying typically more control room

space than the functional systems they serve.

The unsophisticated characteristics of the current loop interface (e

.g. n

o o

pportu

nity fo

r ca

rrying te

st or ca

libra

tion sig

nals o

ver th

e d

edica

ted ca

ble

pair w

ithout d

isturb

ing th

e

measu

red re

sults), m

aking maintenance and calibration procedures very disruptive.

The traditional current loop interface, and the associated hub-and-spoke cabling

configuration is not capable of supporting sophisticated microprocessor-based

instruments, w

ithout adding greatly to the bulk and expense of the cable plant.

4-20 mA

CU

RR

EN

T LO

OP

INS

TR

UM

EN

T IN

TE

RF

AC

ES

Data C

omm

unications & Fieldbus S

ystems

96

Page 98: Data Communication &Fieldbus Systems

K-015

Intelligent, or "smart" instrum

ents can be defined in several ways, but their key differentiating

features are:

They contain em

bedded microprocessor and other digital electronic com

ponents.

They support a sophisticated interface to associated control system

s which enable a

bus-cabled wiring system

.

They are capable of perform

ing self-calibration procedures and test functions non-intrusively (w

ithout d

isruptin

g th

e p

roce

ss bein

g m

onito

red).

The concept of intelligent instrum

entation led to the industry initiatives to develop a fieldbus standard, enabling the bus-connection of num

erous devices in an industrial network, in m

any w

ays the equivalent of an office local area network.

The fieldbus initiative has been plagued by the proliferation of num

erous fieldbusses, all essentially incom

patible -- leading to considerable cynicism as to w

hether a real inter-operable, industry consensus standard w

ill ever emerge.

The so called F

ou

nd

ation

Field

bu

s shows prom

ise as the possible solution to this difficulty, but it w

ill take time to determ

ine if it will yield the desired result.

INT

ELLIG

EN

T IN

ST

RU

ME

NT

S

Data C

omm

unications & Fieldbus S

ystems

97

Page 99: Data Communication &Fieldbus Systems

INS

TR

UM

EN

TS

K-055

Instrumentation is a subject quite distinct from

 SC

AD

A, and includes its ow

n unique body of technical know

ledge and conventional practices.

It is not uncomm

on that SC

AD

A technicians are required to share responsibility w

ith their colleagues in the instrum

ent group, and vice versa -- but there is always a clear distinction in 

the areas of responsibility and the roles of the two groups.

Som

e important features of electronic instrum

entation include:

The reason for the instrum

ent's existence is measurem

ent of some im

portant process variable -- and precision, stability over tim

e, calibration accuracy and results validation are essential priorities.

Instrumentation, by definition, exists in very close proxim

ity to the primary processes and 

systems being m

easured.  Flow

 meters, pressure and tem

perature sensors, for example 

are imm

ersed in the oil, gas or water fluids that are basic to the business. 

Instruments alw

ays measure som

e secondary electrical effect that is configured in some 

way to be dependent on the prim

ary phenomenon being m

easured.

There is a trem

endous amount of creativity and innovation in the instrum

ents industry.  D

esigners have been successful in creating instruments that deliver effective results using 

an incredible array of different devices and effects.

Data C

omm

unications & Fieldbus S

ystems

98

Page 100: Data Communication &Fieldbus Systems

K-056

FLO

WD

IRE

CT

ION

PR

ES

SU

RE

SE

NS

OR

S

FLO

WD

IRE

CT

ION

Tw

o of many fluid flow

 measurem

ent schemes are illustrated here:

FLO

W M

EA

SU

RE

ME

NT C

ON

CE

PT

S

OR

IFIC

E

Orifice (P

ressure Differential M

eter)

An orifice is a deliberate constriction in 

a flow (such as in a pipeline)  that w

ill result in a pressure build-up up-stream

 and a pressure reduction dow

nstream.

This pressure difference (or differential)  

is proportional to the fluid flow rate and 

with the help of a suitable calculation, 

may be used to m

easure flow. 

Impeller (D

isplacement M

eter)

An im

peller is a wheel of som

e sort that m

oves in the flow of a fluid (like a w

ater w

heel).

Wheel rotation rate is proportional to 

flow rate.

DIS

PLA

CE

ME

NT

ME

TER

PR

ES

SU

RE

DIFFE

RE

NTIA

LM

ETE

RIMP

ELLE

R

Data C

omm

unications & Fieldbus S

ystems

99

Page 101: Data Communication &Fieldbus Systems

Day Tw

o

►The O

SI M

odel

►C

omm

unications Media

►E

rror Detection

►LA

N S

tandardsData C

omm

unications & Fieldbus S

ystems

100

Page 102: Data Communication &Fieldbus Systems

AP

PLIC

AT

ION LA

YE

R

PR

ES

EN

TA

TIO

N LA

YE

R

SE

SS

ION LA

YE

R

TR

AN

SP

OR

T LAY

ER

NE

TW

OR

K LA

YE

R

LINK LA

YE

R

PH

YS

ICA

L LAY

ER

AP

PLIC

AT

ION LA

YE

R

PR

ES

EN

TA

TIO

N LA

YE

R

SE

SS

ION LA

YE

R

TR

AN

SP

OR

T LAY

ER

NE

TW

OR

K LA

YE

R

LINK LA

YE

R

PH

YS

ICA

L LAY

ER

D-247

LAY

ER

ED A

RC

HIT

EC

TU

RE S

YS

TE

M C

ON

CE

PT

EN

DU

SE

RE

ND

US

ER

MO

DE

MM

OD

EM

TER

MIN

OLO

GY

/CO

NC

EP

T DIS

CU

SS

ION

:

OB

JEC

TIV

E: T

o facilitate useful com

munication betw

een end users (which are 

either people or programs).

They are not able to com

municate directly, so 

they delegate the task to underlying system(s).

Each layer has a specific task to perform

 in support of this com

munication, but only the 

bottom layer function can actually pass data to 

the other system -- all others delegate 

downw

ards.

Thus, the actual inform

ation flow follow

s a "U" 

shaped path as shown.

TE

LEC

OM

MU

NIC

AT

ION LIN

K

FU

NC

TIO

NA

L CO

MM

UN

ICA

TIO

                RE

QU

IRE

DS

YS

TE

    "A"

SY

ST

EM 

    "B"

The International O

rganization for Standardization  (IS

O)  has rigorously defined a seven-layer 

architecture structure, specifying protocols and responsibilities for each layer, with a view

 to creating an open architecture for com

puter networking  (ie. one in w

hich all vendors can participate).   

This largely theoretical standard is know

n as the  OP

EN S

YS

TEM

S IN

TER

CO

NN

EC

TION (O

SI)  

AR

CH

ITEC

TUR

E.

This concept w

as originally inspired by IBM

'S S

ystem N

etwork A

rchitecture  (SN

A),  w

hich is a proprietary, or closed architecture (ie. an environm

ent in which only IB

M system

s can participate) .

Data C

omm

unications & Fieldbus S

ystems

101

Page 103: Data Communication &Fieldbus Systems

SE

SS

ION

LAY

ER

TRA

NS

PO

RT LA

YE

R

AP

PLIC

ATIO

N LA

YE

R

PR

ES

EN

TATIO

N LA

YE

R

D-303

FUN

CTIO

NS

OF N

ETW

OR

K-R

ELA

TED

LAY

ER

S O

F THE

OS

I MO

DE

L

OS

I LAY

ER

ED

ST

RU

CT

UR

E

PH

YS

ICA

L L

AY

ER

NE

TW

OR

K L

AY

ER

DA

TA

LIN

K L

AY

ER

Physical layer functions apply to electrical bit

level characteristics of the physical interface.E

xamples of representative standards are

EIA

-449, EIA

-232-C and E

IA-232-D

.

Link layer functions apply to the task of organizing data bits into a structured form

at (a

nd in

the p

roce

ss atte

ndin

g to

erro

r contro

l, flo

w co

ntro

l, link m

anagem

ent a

nd d

ata

in

tegrity).

Exam

ples of representative link layer protocols are B

ISY

NC

, HD

LC, C

SM

A/C

D, etc.

Netw

ork layer functions apply to the task of m

anaging resources by controlling switching

and routing functions involving potentially m

any different links, so as to create an end-to-end coherent netw

ork.A

comm

on addressing scheme is essential at

this layer, enabling network level flow

control, congestion control, and com

mon routing

procedures.E

xamples are X

.25 packet layer protocol and the IP

portion of the TCP

/IP protocols.

Data C

omm

unications & Fieldbus S

ystems

102

Page 104: Data Communication &Fieldbus Systems

D-304

FUN

CTIO

NS

OF H

OS

T SY

STE

M-R

ELA

TED

LAY

ER

S O

F THE

OS

I MO

DE

L

OS

I LAY

ER

ED

ST

RU

CT

UR

E

PH

YS

ICA

L LAY

ER

NE

TW

OR

K LA

YE

R

DA

TA

LINK

LAY

ER

TR

AN

SP

OR

T L

AY

ER

SE

SS

ION

LA

YE

R

PR

ES

EN

TA

TIO

N L

AY

ER

AP

PL

ICA

TIO

N L

AY

ER

The transport layer sends data to the network

layer in segments sized to suit the netw

ork's m

aximum

transmission unit, or M

TU lim

it.The transport layer is principally responsible for end-to-end flow

control, and message

packetization/segmentation and reassem

bly.

Session layer functions apply to the task of

initiating, managing and term

inating sessions, and support different m

essage sizes and flow

mechanism

s (FD

X, H

DX

), and provide for recovery in event of low

er layer failure.A

n example of session (a

long w

ith tra

nsp

ort

and n

etw

ork) functions is N

ET

BIO

S.

The presentation layer defines the structure of data -- effectively ensuring that data syntax requirem

ents are taken care of.P

resentation layer functions provide for code conversion (e

.g. A

SC

II to E

BC

DIC

) and graphical user interface (G

UI) support.

The application layer manages

comm

unication between application

processes.E

xamples of application layer functions are

SM

TP, FTP

and Telnet functions in TCP

/IP.

Data C

omm

unications & Fieldbus S

ystems

103

Page 105: Data Communication &Fieldbus Systems

D-335

THR

EE

CLO

SE

LY R

ELA

TED

CO

NC

EP

TS:

DO

WN

SIZIN

G, C

LIEN

T/SE

RV

ER

and OP

EN

SY

STE

MS

OP

EN

SY

ST

EM

S

The issue of O

PE

N S

YS

TE

MS

speaks to the desire to w

ork with inform

ation system

s that are:

capable of interoperationsupportive of application and data portabilityscalable across a range of platform

sizes, vendors and configurations

●●●

DO

WN

SIZ

ING

The D

OW

NS

IZIN

G issue involves

carefully specifying and selecting the optim

um

(RIG

HT

SIZ

ED

) hardware

platform to host a given

application suite.

Dow

nsizing is not a new

concept, having been the essential focus of departm

ental computing

strategies in the 1970's.

TH

E C

OM

MO

N G

RO

UN

D

The prim

ary thrust of new inform

ation system

s development effort focuses on

the area in this diagram that is com

mon

to all three concepts.

That is, appropriate Inform

ation S

ystems design strategies typically

embrace A

LL

TH

RE

E concepts.

CLIE

NT

/SE

RV

ER

SY

ST

EM

S

DO

WN

-S

IZIN

GO

PE

NS

YS

TEM

S

CL

IEN

T/S

ER

VE

R P

AR

AD

IGM

Key concept: C

LIEN

T/S

ER

VE

R

empow

ers the desktop systems and

along with that, superior:

performance, to support the G

UI

economy, using the available P

Cs

data managem

ent features of RD

BM

S

●●●

Data C

omm

unications & Fieldbus S

ystems

104

Page 106: Data Communication &Fieldbus Systems

K-084

GO

OD N

EW

SF

EA

TU

RE

S

BA

D N

EW

SF

EA

TU

RE

S

OP

EN

CO

MP

AR

ISO

N O

F ISS

UE

S:

PR

OP

RIE

TA

RY vs. O

PE

N S

CA

DA T

EC

HN

OLO

GIE

S

PR

OP

RIE

TA

RY

Increased security risks

End user organization tends to be 

responsible for systems integration 

and modification  (w

ith training im

plications).

System

s tend to be simpler

System

s tend to be efficient

"Security by obscurity"

SC

AD

A operations is m

ore autonom

ous

Implem

entations are very inflexible

Staff has lim

ited scope in modifying 

details/features

Uncom

petitive -- single source prices (especially after-m

arket).

Multi-vendor environm

ent results in com

petitive prices

Com

modity m

anufacturing results in better com

ponent costs

Facilitates data access and 

exchange with IT

, managem

ent, etc. 

Data C

omm

unications & Fieldbus S

ystems

105

Page 107: Data Communication &Fieldbus Systems

D-132

TW

IST

ED

PA

IR C

AB

LE C

HA

RA

CT

ER

IST

ICS

UN

SH

IELD

ED

TW

IST

ED

PA

IR T

ELE

PH

ON

E C

AB

LE

Unshielded T

wisted P

air (UT

P) cable is universally used

in telephone and data systems. T

here are three technical features that prim

arily determine its

performance characteristics:

1. Wire G

auge; most w

ire is specified in terms of the

Am

erican W

ire Gau

ge (A

WG

) number (T

ypica

l house

cablin

g is A

WG

No. 2

6; h

eavie

r cable

so

metim

es u

sed is A

WG

No. 2

4).

2. The num

ber of twists per foot w

ill be a factor in determining a cable's suitability for LA

N service

(Conve

ntio

nal U

TP

has 1

twist p

er 1

8 in

ches, h

igh p

erfo

rmance

cable

s have

1 tw

ist eve

ry 6

inch

es o

r less) .

3. The type and dim

ensions of insulation will determ

ine cable capacitance; comm

only low

capacitance cable is specified in demanding applications, such as high speed LA

N installations.

The purpose of m

anufacturing cable with a helical tw

ist to the individual cable pairs is to minim

ize electrom

agnetic energy transfer to and from the cable pairs (th

is energ

y transfe

r is the p

rincip

al

cause

of cro

sstalk, a

nd o

ther p

erfo

rmance

-limitin

g in

terfe

rence

).

Sh

ield

ed

Tw

iste

d P

air (S

TP

) cable is a related technology, and although technically superior to U

TP

, there is minim

al interest in using ST

P due to cost, physical bulk and installation difficulty.

Data C

omm

unications & Fieldbus S

ystems

106

Page 108: Data Communication &Fieldbus Systems

SU

MM

AR

Y -- T

WIS

TE

D P

AIR C

AB

LELIM

ITA

TIO

NS W

ITH F

AS

T ET

HE

RN

ET

There are a num

ber of standard UT

P/S

TP (unshielded and shielded tw

isted pair, respectively)  cable types that are suitable to fast E

thernet service.

Each of these are designated on the basis of a 'C

ategory' type, as in Category 5 -- or often 

simply C

at-5.

Applicable features, distance and data rate lim

itations are:

CA

TEG

OR

Y

Category 5

Category 5+

AT

&T P

roprietaryC

ategory 5+

Category 6 (S

TP

)

Category 7 (S

TP

)(A

/V A

pplications)

 

DA

TA R

ATE

100 Mbps

1 Gbps

1 Gbps

1 Gbps

1 Gbps

DISTA

NC

E

100 m

75 m

100 m

100 m

100 m

BA

ND

WID

TH

100 MH

z

300 MH

z

300 MH

z

350 MH

z

750 MH

z

D-732

Data C

omm

unications & Fieldbus S

ystems

107

Page 109: Data Communication &Fieldbus Systems

D-733

It is comm

only thought that many cable installations have been im

plemented w

ith com

ponents that meet C

ategory 5 specs but where installation practices have resulted in 

sub-standard system perform

ance. 

This issue w

ill become m

ore acute as organizations move aw

ay from traditional 10M

bps E

thernet, to 100Mbps and higher rate E

thernets and/or AT

M.

Som

e installation practices that are capable of causing below-standard perform

ance are:

Excessively tight cable bending radius

Modifying the tw

ist pitch (over- or under-twisting of the pairs, typically caused by bad 

termination practice)

Rem

oval of too much jacket m

aterial at the termination point 

Not respecting pathw

ay separation requirements  (e.g. creating an interference problem

 by allow

ing power cables to lie too close to data cables) 

Overstressing (stretching)  cable during installation

Overtightening cable ties and/or inadequate cable support

INS

TA

LLAT

ION P

RA

CT

ICE

S T

HA

T MA

Y IM

PA

IRP

ER

FO

RM

AN

CE O

F CA

TE

GO

RY 5 U

TP

Data C

omm

unications & Fieldbus S

ystems

108

Page 110: Data Communication &Fieldbus Systems

CO

AX

IAL C

AB

LE C

HA

RA

CT

ER

IST

ICS

CE

NT

ER

CO

RE

C

ON

DU

CT

ORCY

LIND

RIC

AL

INS

ULA

TO

RO

R D

IELE

CT

RIC

OU

TE

R

CO

ND

UC

TO

R,

OR

SH

IELD

OU

TE

RP

RO

TE

CT

IVE

JAC

KE

T

D-131

Coaxial cable derives its nam

e from

the fact that its two

conductors share a comm

on axis; they are thus co

-axia

l ...

Coaxial cable features w

hich are im

portant are:

The outer shield conductor

completely envelopes the inner

conductor. Thus, coaxial

cable:

(a) Contains the desired

electromagnetic energy, or signals (i.e

. limits ra

dia

tion o

f signals -- w

hich

can ca

use

in

terfe

rence

and se

curity th

reats) .

(b) Excludes undesired electrom

agnetic energy, or signals from entering the cable and

conflicting with desired signals (i.e

. limits in

com

ing in

terfe

rence

signals).

Coaxial cable is specified in term

s of impedance; a characteristic determ

ined by the relative diam

eters of the conductors, and measured in O

hms (e

.g. R

G-5

8 ca

ble

is 50 O

hm

s). It is always

critical to respect the specified cable impedance in coaxial cable applications.

Data C

omm

unications & Fieldbus S

ystems

109

Page 111: Data Communication &Fieldbus Systems

FIB

ER O

PT

IC C

AB

LE C

HA

RA

CT

ER

IST

ICS

������

������

������

������

THE

RE A

RE M

AN

Y D

IFFER

EN

TP

AC

KA

GIN

G TE

CH

NIQ

UE

S U

SE

DW

ITH F

IBE

R O

PTIC

 CA

BLE

-- SO

ME A

RE M

UC

H M

OR

EC

OM

PLE

X T

HA

N T

HE O

NE

ILLUS

TR

AT

ED

SILIC

ON

CO

AT

ING

BU

FF

ER 

JAC

KE

TS

TR

EN

GT

HM

EM

BE

RS

(TY

PIC

ALLY

FIB

ER M

AT

ER

IAL)

OU

TE

JAC

KE

T(F

OR P

HY

SIC

AL

PR

OT

EC

TIO

N)D-164

PA

CK

ING

ME

DIU

M

CO

RE

FIBE

RS

(SILIC

A)

There are principally tw

o types of fiber optic cable (and a number of variations w

ithin each category):

Multim

ode Fiber:

The active core fiber diam

eter is typically 50.5 or 62.5 microm

eters  (compare to hum

an hair which is 

about 100 microm

eters) , --  sufficiently large that multiple light rays (or paths)  coexist.  E

ach path will have 

a subtly different transit time delay, resulting in a capacity lim

iting problem know

n as pulse dispersion.  

Single M

ode Fiber (Mono-m

ode Fiber)

The active core diam

eter is typically 8 -to- 10 microm

eters, which is sm

all enough to restrict light transm

ission to a single ray of light  (more correctly, a single m

ode of propagation),  effectively eliminating 

pulse dispersion as a performance constraint.

Data C

omm

unications & Fieldbus S

ystems

110

Page 112: Data Communication &Fieldbus Systems

D-768

FIBE

R O

PTIC

 CA

BLE

 CR

OS

S-S

EC

TION

S

By far, the m

ajor share of the bulk in fiber optic cables is associated w

ith the features of the cable that provide strength and toughness.

The sketches at the right show

 three different cable fabrication concepts -- each w

ith exactly the sam

e optical fiber capacity.

In each case, there are just four optical fibers (at the 12, 3, 6 and 9 o'clock positions)  adjacent to the very center core w

ire.

The largest, arm

ored cable is 64.7 mm  (2.55 

inches)  in diameter; the m

id-sized cable is 36.8 m

m (1.45 inches)  -- and the sm

allest, minim

ally sheathed cable is 21 m

m  (0.83 inches)  

diameter.

Electrical pow

er is fed down the cable from

 shore stations, using a copper foil sheath w

rapped around the steel wires (black outer 

ring, lower diagram

)  - and sea water as the 

return path.

Data C

omm

unications & Fieldbus S

ystems

111

Page 113: Data Communication &Fieldbus Systems

PU

LSE

DIS

PE

RS

ION

CO

NC

EP

T

D-243

To understand the pulse dispersion effect, consider tw

o light rays traveling along an optical fiber -- Indicated here as the gray dashed arrow

representing a direct, axial light ray, and the black, solid arrow

s which reflect off the fiber sidew

alls -- representing a less optimally aligned light path:

These tw

o light pulses start off at the same instant, but follow

paths of different lengths, and thus arrive at different tim

es.

When they recom

bine at the optical detector, the resulting sum of all input pulse com

ponents has becom

e distorted by being broadened as a result of pu

lse disp

ersion; in reality there are a vast

number of light ray com

ponents, resulting in a more uniform

ly dispersed light pulse than this simple

example w

ould suggest (as in

dica

ted b

y the sm

ooth

dotte

d lin

e cu

rve).

Note that both the distance traveled

(cable

length

), and pulse duration (data

rate

) affect the amount of

pulse dispersion encountered. Pulse dispersion thus lim

its the product of data rate and cable length -- and fiber cables are specified in term

s of megabit-per-second-m

eters.

AS

SU

ME

D O

RIG

INA

L LIG

HT

PU

LSE

RE

SU

LTIN

G D

ISP

ER

SE

D

LIGH

T P

UL

SE

RE

FLE

CT

ED

LIGH

T R

AY A

RR

IVE

S LA

TER

DIR

EC

T LIGH

T R

AY

AR

RIV

ES

SO

ON

ER

Data C

omm

unications & Fieldbus S

ystems

112

Page 114: Data Communication &Fieldbus Systems

OP

TICA

L FIBE

R FA

BR

ICA

TION

Fiber pre-form at collapse

Com

pleted Pre-Form

s ready to be drawn

Data C

omm

unications & Fieldbus S

ystems

113

Page 115: Data Communication &Fieldbus Systems

FIBE

R S

PE

CTR

UM

Data C

omm

unications & Fieldbus S

ystems

114

Page 116: Data Communication &Fieldbus Systems

Cop

yrigh

t CA

NO

VA

SYS

TE

MS

CO

RP.

W-163

FREE SPACE OPTICS

TYPICAL TE

RMINAL D

EVICE

continued ....

VIS

ION S

AFE

TY FA

CTO

RS

FS

O system

s operate in the infrared spectrum 

and generate no energy in the visible light spectrum

 where hum

an vision is most vulnerable.

Pow

er levels are very low -- typical F

SO lasers 

operate at about 10 mW (com

pare with laser 

pointers that typically operate at about 5 mW

.) 

Free Space O

ptics (otherwise know

n as optical wireless)  is an open-air laser technology capable 

of supporting effective high-capacity short-range communications applications.

Several configurations are feasible, including point-to-point, point-to-m

ultipoint, and meshed 

topologies.

Operating data rates of up to about 10 G

bps are feasible -- although more com

monly system

s operate at m

egabit rates.

Operating distances of up to about 4 km

. are practical, depending on atmospheric conditions.

(40508)

14

7D

ata Com

munications &

Fieldbus System

s115

Page 117: Data Communication &Fieldbus Systems

Cop

yrigh

t CA

NO

VA

SYS

TE

MS

CO

RP.

FREE SPACE OPTICS, cont.

W-164

Advantages of FS

O Technology

Uses unlicensed electrom

agnetic spectrum; no regulatory delays or fees are a concern.

Equipm

ent/infrastructure cost is very low com

pared with m

icrowave or fiber and elapsed tim

e to operate is very brief -- typically installation and testing tim

e is a few hours.

The inherently point-to-point, full duplex characteristic of F

SO is easily adapted to suit m

ore com

plex multiport and m

esh topologies -- supporting complex applications w

ith redundant connectivity.

Disadvantages of FS

O Technology 

Weather conditions that obscure a visual sight path also obscure F

SO signals; thus feasible path 

lengths are very much affected by local atm

ospheric conditions -- particularly fog and precipitation (rain and particularly snow

).

Building m

ovement, how

ever slight, can affect the laser beam alignm

ent -- although many products 

claim to support an auto-tracking capability that autom

atically maintains alignm

ent through a small 

range of movem

ent.

FSO is vulnerable to being obstructed by birds and really any object that m

ight find its way into the 

laser beam's path -- an argum

ent in favor of a more sophisticated m

esh network configuration, 

where alternate paths are available.

(30330)

Data C

omm

unications & Fieldbus S

ystems

116

Page 118: Data Communication &Fieldbus Systems

Microw

ave radio signals are really like any radio comm

unication signals; two key features

differentiate microw

ave radio from low

er frequency radio applications:

Since m

icrowave system

s operate at a very high frequency, the distance the signal can travel during one cycle of the signal frequency (th

e w

aveleng

th) is very short -- literally a "m

icro-wave".

This very high frequency of operation m

akes it possible to carry more end-user signal inform

ation (su

ch a

s voice

channels o

r data

signals) than low

er frequency systems.

The propagation characteristics of m

icrowave radio are such that only line-of-sight com

munication

is feasible (contra

st with

shortw

ave

radio

, which

can p

ropagate

beyo

nd th

e h

orizo

n).

Microw

ave systems typically com

municate w

ith carrier frequencies in the range from about

2,000,000,000 Hz (2

GH

z) to around 15,000,000,000 Hz (1

5 G

Hz). F

requencies above about 10 G

Hz are adversely affected by rain and fog in the path.

Physical separation distances betw

een microw

ave radio stations are typically limited by the

curvature of the earth, and the need to maintain sufficient vertical clearance at the m

iddle of the path

(typica

l maxim

um

feasib

le p

ath

length

s are

about 4

0 m

iles, o

r 65 km

.)

D-244

MIC

RO

WA

VE

RA

DIO

SY

ST

EM

CH

AR

AC

TE

RIS

TIC

S

UN

DE

SIR

ED

, IND

IRE

CT

S

IGN

AL P

AT

H

DE

SIR

ED

, DIR

EC

T S

IGN

AL P

ATH

WH

ER

E S

MO

OT

H E

AR

TH

OR

W

AT

ER

SU

RFA

CE

S A

RE

LO

CA

TE

D A

T M

ID-P

AT

H,

TR

OU

BLE

SO

ME

R

EF

LEC

TIO

NS

OC

CU

R,

CA

US

ING

INTE

RF

ER

EN

CE

Data C

omm

unications & Fieldbus S

ystems

117

Page 119: Data Communication &Fieldbus Systems

D-245

CO

MM

UN

ICA

TIO

N S

AT

ELLIT

E

PO

SIT

ION

ING

CO

NS

IDE

RA

TIO

NS

Geosynchronous satellite orbits (w

hich

perm

it a sa

tellite

's positio

n in

space

to

ap

pe

ar sta

tion

ary fro

m e

arth

) require that satellites orbit eastw

ard over the equator (in

the

dire

ction

of e

arth

's ro

tatio

n) at an altitude exactly

consistent with a 24 hour period.

There are a lim

ited number of practical

"parking spots" in space; satellites cannot be positioned any closer than about 2 degrees of longitude separation -- assum

ing moderate cost

earth-based antennas. Actually, this 2

degree separation is a time separation

-- all of these satellites share an identical orbit -- separated by about 8 m

inutes and 780 miles.

The area of coverage of a satellite is called its footprint, the shape of w

hich is custom designed for

each nation's geographic shape (see illu

stratio

n).

International satellites have been typically operated by the Intelsat organization (by in

tern

atio

nal

agre

em

ent) -- although com

petitive international services now exist. C

omm

unication within one

country (or re

gio

nal se

rvice) is m

anaged by a domestic authority.

●●●●

●●●●

D

ata Com

munications &

Fieldbus System

s118

Page 120: Data Communication &Fieldbus Systems

D-183

Earth-to-satellite distance = 35,888 km

, or 22,300 miles, w

hich results in an earth-to-satellite propagation tim

e delay of 125 milliseconds. R

adio signals propagate at the speed of light (3

00

,00

0 km

, or 1

86

,00

0 m

iles p

er se

con

d).

Minim

um round-trip tim

e delay (the

time

it take

s for a

sign

al to

trave

l from

a

po

int o

n e

arth

up

to th

e sa

tellite

, do

wn

to a

no

the

r po

int o

n e

arth

, an

d th

en

ba

ck again

via th

e sa

tellite

to th

e p

oin

t of o

rigin

) is 4 x 125 = 500 milliseconds.

TIM

E D

ELA

Y IS

SU

ES

IN C

OM

MU

NIC

AT

ION

SA

TE

LLITE

SY

ST

EM

S

Actual round-trip tim

e delays are greater than the above estimate for three reasons:

1. Earth stations are rarely located on the equator. Latitudes other than zero increase the path length

(note

that th

e d

otte

d lin

e to

a n

orth

ern

poin

t is longer th

an th

e d

ash

ed lin

e to

the e

quato

r).2. A

similar longitude offset increases path length

(The tw

o e

arth

statio

ns a

nd th

e sa

tellite

will n

eve

r be a

ll thre

e o

n e

xactly th

e sa

me lo

ngitu

de).

3. Signal processing delays in electronic system

s (the tw

o e

arth

statio

ns a

nd th

e sp

ace

pla

tform

).

Thus a typical round-trip tim

e delay budget is 650 to 750 msec.

GE

OS

YN

CH

RO

NO

US

CO

MM

UN

ICA

TIO

N

SA

TE

LLITE

S A

RE

ALW

AY

S P

OS

ITIO

NE

DO

VE

R T

HE

EA

RT

H'S

EQ

UA

TO

R

NO

TE: E

arth diameter

and satellite separation distance are scaled approxim

ately correctly.

Data C

omm

unications & Fieldbus S

ystems

119

Page 121: Data Communication &Fieldbus Systems

D-262

WIR

ELE

SS

SY

ST

EM

S: M

INIM

IZIN

G C

OV

ER

AG

E

Traditionally, radio com

munication system

s have been engineered to maxim

ize the range of effective coverage from

any transmitter site -- resulting in poor use of radio frequency spectrum

.

Cellular radio technology (re

ferre

d to

as "m

obile

" service

in m

any p

arts o

f the w

orld

) was the first

break with this tradition, w

here the radius of cell coverage is designed to be deliberately limited.

Cellular system

s require a greater number of transm

itter sites, and some kind of interconnection --

but have the key advantage of a remarkably superior efficiency of spectrum

use, due to the fact that frequencies can be reused w

ithout interference in cells that are separated from one another

(thus g

reatly in

creasin

g to

tal syste

m ca

pacity).

Capacity can be further increased by subdividing cells (to

a lim

it of d

ow

n to

a fe

w h

undre

d m

ete

rs ra

diu

s).

A m

aximum

power, m

aximum

height transm

itter will

comm

and a coverage radius of perhaps 50 km

(30 miles) --

but there will be

no other service able to use the sam

e frequency in the sam

e area.

Multiple low

power

transmitters w

ill cover the sam

e service area, but it w

ill now be

possible to re-use frequencies several tim

es in a given coverage area.

D

ata Com

munications &

Fieldbus System

s120

Page 122: Data Communication &Fieldbus Systems

WIR

ELE

SS D

AT

A N

ET

WO

RK

ING

TE

CH

NO

LOG

Y - O

VE

RV

IEW

D-606

continued ....

Wireless data netw

orking applications fit into two broad categories:

Low S

peed, Wide A

rea Technologies

A num

ber of products are on the market that enable integrated access to w

ide area data networks for 

mobile/cellular or portable and trunked radio users.

This class of system

 typically accesses an earth-based  (terrestrial)  infrastructure -- such as cellular telephone netw

orks, or similar dedicated data netw

orks.

Operating speed is typically m

easured in tens of kilobits per second  (practically limited to about          

50 kbps),  and freedom of physical m

ovement is a m

ajor business priority.

Applications include courier services, law

 enforcement and vehicle dispatch/fleet m

anagement.

High S

peed Local Technologies

The originally-popular IE

EE 802.11b w

ireless LAN standard operates at 11 M

bps, which com

pares favorably w

ith the first generation, 10 Mbps shared cable E

thernet LAN technology.  T

he newer 

versions of the IEE

E 802.11 W

LAN standard  (e.g. -a and -g)  operate at up to 54 M

bps.

The range of operation of this class of equipm

ent is typically limited to a distances in the order of one 

hundred meters -- and is very dependent on interior building structures.

Data C

omm

unications & Fieldbus S

ystems

121

Page 123: Data Communication &Fieldbus Systems

WIR

ELE

SS D

AT

A N

ET

WO

RK

ING

TE

CH

NO

LOG

Y - O

VE

RV

IEW

, cont.

D-607

The high cost of connectivity has historically been an obstacle to grow

th in wireless data applications, 

where costs per w

orkstation have typically been in the order of 5 to 10 times greater than equivalent 

wired services.

The availability of standards (as w

ith the IEE

E 802.11-series of W

LAN standards)   and com

mercial 

deployment of reasonable w

ide-area, public packet data services   (as GP

RS

/ED

GE and 1xR

TT

/EV

-DO 

offered on the 2 and 2.5 G m

obile/cellular networks)  have created a high level of public interest.

Trem

endous progress in cost reduction, compact packaging and im

proved battery life has created many 

opportunities that were previously not feasible. 

A sam

pler of the many applications w

hich make good use of the technology include:

Industrial applications  - Com

plexity in managing a w

ired infrastructure and challenges in calibrating instrum

entation argue strongly for wireless netw

orking solutions. 

Health care  - a roam

ing pen-based or palm-top com

puter can be used to enter patient data and/or access existing data records from

 the bedside.

Extending office netw

ork functions  - Thin-client technology enables full netw

orked Window

s functionality w

ith the 10's of kilobit data rates supported by 2G public w

ireless packet networks.

Data C

omm

unications & Fieldbus S

ystems

122

Page 124: Data Communication &Fieldbus Systems

W-332

INC

RE

AS

ING D

AT

A R

AT

E (M

bps)

INCREASING RANGE

WW

AN

(Cellular)

WM

AN

WLA

N

WP

AN

IEE

E802.15.4Z

igBee

0.010.1

110

1001000

IEE

E802.15

Bluetooth

IEE

E802.11a/b/g

WiF

i

IEE

E802.16W

iMax

IEE

E802.15.3a

UW

B

TH

E A

PP

RO

XIM

AT

E R

ELA

TIO

NS

HIP B

ET

WE

EN

SO

ME W

IRE

LES

S T

EC

HN

OLO

GIE

2G  - 

GS

M/G

PR

S &

CD

MA 1xR

TT

3G  - 

UM

TS - W

CD

MA &

EV

-DO C

DM

A

Data C

omm

unications & Fieldbus S

ystems

123

Page 125: Data Communication &Fieldbus Systems

D-295

MO

BILE

 DA

TA C

OM

MU

NIC

AT

ION S

YS

TE

MS

SA

FE

TY

TAX

I

TR

AN

SIT

IND

US

TR

IAL

BA

SE S

TA

TIO

N S

UB

-SY

ST

EM C

ON

SIS

TS O

FR

AD

IO T

RA

NS

MIT

TE

R/R

EC

EIV

ER

, LAN

D-LIN

EIN

TE

RF

AC

E A

ND C

ON

TR

OL LO

GIC

TX

/RX

COMM'NCONTROL

DC

ED

CE

MA

INS

ER

VE

R

CO

MM

UN

ICA

TION

S C

ON

TRO

LLER M

AN

AG

ES 

THE LIN

K LA

YE

R P

RO

TOC

OLS

 US

ED 

OV

ER TH

E R

AD

IO C

HA

NN

EL

TYP

ICA

LLY TR

AN

SM

ITTER

SA

RE D

ES

IGN

ED

/LOC

ATE

D FO

RM

AX

IMU

M A

RE

A C

OV

ER

AG

E

DIG

ITAL D

ATA

 LINK O

RM

OD

EM

-CO

NN

EC

TED TE

LEP

HO

NE

LINE TO

 BA

SE S

TATIO

N

Up until the recent availability of packet-based cellular/m

obile services  (such as G

PR

S and 1X

 RT

T),  m

obile data services were served by analog radio 

technology, and wire-line access w

as provided by either leased line  (as illustrated below

)  or over circuit switched telephone lines.

Data C

omm

unications & Fieldbus S

ystems

124

Page 126: Data Communication &Fieldbus Systems

D-296

MO

BILE

 DA

TA C

OM

MU

NIC

AT

ION S

YS

TE

MS

, cont.

Data transm

ission rates over wireless infrastructure are constrained by generally lim

ited RF 

bandwidth -- and the typically high error rate over this type of channel.

Where data applications are delivered over a voice-oriented fram

ework, the m

aximum

 feasible data rates are typically less than 20 kbps -- com

monly in the 10 to 12 kilobit range.

The new

er packet radio technologies   (GP

RS and 1X

RT

T)  have been developed to extend this 

limit -- potentially to rates in the order of 100 kbps -- and so-called 2.5 and 3G

 technologies   (like E

DG

E and U

MT

S)  prom

ise to support rates up to several hundred kbps.

Vehicle m

otion causes severe variation in signal strength - and thus the most dem

anding applications and services are generally lim

ited to stationary  (or slowly m

oving)  user terminals.

Limited data rate (and other accom

panying features of mobile service, such as sm

all screen displays and battery pow

er limitations)   generally require a unique approach to system

s and hum

an interface design.

There are m

any interesting applications for mobile data technology: public safety 

(police/fire/ambulance),  taxi, transit and other fleet dispatch applications, train control system

s, courier package tracking, auto rental check-in service -- and fixed applications w

here landline infrastructure is not an option, such as rem

ote weather station and pipeline control station access.

Data C

omm

unications & Fieldbus S

ystems

125

Page 127: Data Communication &Fieldbus Systems

Cop

yrigh

t CA

NO

VA

SYS

TE

MS

CO

RP. C

ELL S

IZE IS

 HIG

HLY

 VA

RIA

BLE

The com

mon denom

inator of all modern w

ireless comm

unication is the deliberately limited coverage 

range of cellular systems.

These cells range over a w

ide scale of dimensions:

Picocells:  V

ery small coverage zones that are effective w

ithin buildings  (office workgroups or 

residences)  -- which m

ay or may not be associated w

ith device mobility.  E

xamples include 

Bluetooth-enabled system

s and wireless LA

Ns.

Microcells:  C

overage areas typical of mobile/cellular telephone system

s in very dense urban environm

ents.

Macrocells:  C

overage areas typical of less dense, suburban mobile/cellular telephone system

s.

Satellite cells:  C

overage areas for Low and M

edium E

arth Orbit  (LE

O and M

EO

)  satellite system

s are 'cellular' footprints of hundreds of kilometers/m

iles in diameter.  G

eosynchronous E

arth Orbit (G

EO

)  satellite systems like the T

huraya project support continent-sized footprints.

The degree to w

hich mobility is supported by each of these cell types is highly variable, although in 

general, the larger the cell structure the more likely that a high degree of intra-cell m

obility is expected and supported.

Rather than being determ

ined by cell size, inter-cell mobility is determ

ined by the features of the system

 architecture and features of the applications being served.

1)D

ata Com

munications &

Fieldbus System

s126

Page 128: Data Communication &Fieldbus Systems

W-073

Whenever m

ore than one comparable strength propagation path exists betw

een a transmitter

and receiver (which

is typica

lly the ca

se) the tw

o (o

r typica

lly more

) signals will arrive at the

receiver with differing phase values.

The destructive interference effect of these m

ultiple signals arriving over different paths is m

ultipath propagation, and results in multipath fading varying over tim

e.

Radio paths betw

een stationary devices will dem

onstrate multipath fading effects that are

described by the Rayleigh statistical m

odel -- so called Rayleigh fading.

Radio paths betw

een devices in motion (o

ne e

nd o

f the p

ath

or b

oth

) will sim

ilarly exhibit R

ayleigh fading statistics -- but in this case variable in both space and time.

Multipath propagation is exacerbated by factors com

mon in m

obile comm

unications:

It is not possible to engineer a particular path -- highly variable conditions prevail as a mobile

unit moves around its service area.

Om

nidirectional antennas are unable to discriminate betw

een the preferred and secondary path signals -- and thus offer no relief for the m

ultipath problem.

Signal reflections off m

ajor buildings and other structures in urban environments typically

create serious multipath fading problem

s.

MU

LTIP

AT

H P

RO

PA

GA

TIO

N

(00105)

Data C

omm

unications & Fieldbus S

ystems

127

Page 129: Data Communication &Fieldbus Systems

Multipath fading phenom

ena are a greater problem w

ith narrow bandw

idth signals, since the sharp nulls w

hich reduce signal strength below usable levels are very phase specific, and the

sharpest, most troublesom

e nulls will only occur in a very narrow

bandwidth.

Planning radio signal strengths and propagation effectiveness in an urban environm

ent is challenged by the unpredictability of m

ultipath-induced signal fades, variability of terrain which

distorts median signal strength, physical obstructions (m

an-m

ade a

nd n

atu

ral), and frequently,

exposure to high noise levels caused by automobiles, pow

er infrastructure, signs, etc.

MU

LTIP

AT

H P

RO

PA

GA

TIO

N, cont.

SIGNAL LEVEL (db)

0

-10

-20

-30

-40

-501 λ

Observable nulls in

received signal strength are spaced in the order of 1 w

avelength apart.

Occurrence of

multipath fading

events is highly variable; greater regularity is observable w

hen a sm

all number of

signals are present.

✽ ✽

05)

Data C

omm

unications & Fieldbus S

ystems

128

Page 130: Data Communication &Fieldbus Systems

The depth of m

ultipath fades (and a

ssocia

ted e

rror co

nse

quence

s) is affected by a number of

factors, including propagation effects and carrier frequency of operation.

Perhaps the m

ost critical issue is the occupied bandwidth of the signal being view

ed, since extrem

ely deep multipath fades are only observed w

ith very narrow bandw

idth carrier signals.

Accordingly, the follow

ing time-dom

ain view of m

ultipath effects is simplistic.

The accom

panying time-dom

ain view of m

ultipath signal strength variations is overlaid with a

sequence of four packets, where the horizontal scale is im

plicitly assumed to be tim

e-calibrated.

It is evident from this sketch that som

e packets will be

hopelessly corrupted by the noise burst that accom

panies deep fading events (pro

bably p

acke

ts A

and D

in th

is exa

mple

).

Since effective perform

ance in marginal coverage

areas will alw

ays be a key operating priority, a signal processing and error m

itigation strategy that is effective through these fading events is key to the success of data transm

itted over mobile w

ireless channels.

TIM

E-D

OM

AIN

VIE

W O

FM

ULT

IPA

TH

EF

FE

CT

SSIGNAL LEVEL (db)

0

-10

-20

-30

-40

-501 λ

AAA

AAA

AAA

AAAA

AAAA

AAAA

AAAAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAAAAA

AAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAAAAA

AAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAAAA

AB

CD

Data C

omm

unications & Fieldbus S

ystems

129

Page 131: Data Communication &Fieldbus Systems

WIR

ELE

SS

SU

BS

CR

IBE

R

TE

CH

NO

LOG

Y

The m

ost capital-intensive portion of a traditional telephone system is the local loop infrastructure

-- the subscriber lines.

The num

erous configurations and equipment concepts that can m

ake telephone and enhanced services available w

ithout traditional copper (or fib

er o

ptic) cable connections are referred to as

subscriber radio or wireless subscriber system

s.

Three m

ajor application areas are developing for this class of equipment:

In underdeveloped countries, the cost of conventional cabled technology is cost-prohibitive, and im

pedes other development efforts -- w

ireless offers an instant telephone solution, and is very cost-effective even in sparse com

munities.

Many developed countries are m

oving toward deregulation of local access telephone service.

Com

petitors to the traditional telephone companies are anxious to offer state-of-the-art

services without the incredible cost and delay in getting to m

arket with a cabled product.

These em

erging technologies support enhanced service possibilities parallel to conventional w

ired technology -- enabling traditional, established telephone companies to position

themselves for a m

ore competitive m

arket.

Data C

omm

unications & Fieldbus S

ystems

130

Page 132: Data Communication &Fieldbus Systems

WIR

ELE

SS S

UB

SC

RIB

ER 

TE

CH

NO

LOG

Y, cont.

Alternative technology distribution system

s -- such as w

ireless subscriber (and including cable television) have no choice but to replicate the trunk distribution netw

ork of a telephone system -- N

etwork segm

ents "1" and "2".

The actual subscriber wireless system

 supports only the last portion of this distribution service -- segm

ent "3" above.

The need to conserve radio frequency 

spectrum dictates that the concept of 

cellular frequency reuse  must prevail 

(minim

um radius of coverage per 

transmitter, m

any low pow

er cell sites able to reuse radio spectrum

 throughout an urban area ... ).

The trunk distribution system

 in an alternate, com

petitive carrier model of 

service could be served by microw

ave radio links or fiber optic cable system

s

In urban applications, the subscriber radio links are very short -- m

easured in a few

 hundreds of meters.

In underdeveloped countries, the subscriber links m

ay be much longer, 

sometim

es up to tens of kilometers.

12

3

D-648

(10831)

Data C

omm

unications & Fieldbus S

ystems

131

Page 133: Data Communication &Fieldbus Systems

INC

RE

AS

ING D

AT

A R

AT

E (M

bps)

INCREASING RANGE

WW

AN

(Cellular)

WM

AN

WLA

N

WP

AN

IEE

E802.15.4Z

igBee

0.010.1

110

1001000

IEE

E802.15

Bluetooth

IEE

E802.11a/b/g

WiF

i

IEE

E802.16W

iMax

IEE

E802.15.3a

UW

B

TH

E A

PP

RO

XIM

AT

E R

ELA

TIO

NS

HIP B

ET

WE

EN

SO

ME W

IRE

LES

S T

EC

HN

OLO

GIE

2G  - 

GS

M/G

PR

S &

CD

MA 1xR

TT

Data C

omm

unications & Fieldbus S

ystems

132

Page 134: Data Communication &Fieldbus Systems

1

ULT

RA W

IDE

BA

ND  (U

WB

) RA

DIO

An em

erging class of short-range, very high data rate wireless service has com

e to be known 

as ultra wideband, or U

WB radio -- consistent w

ith the IEE

E 802.15.3a specifications.

The architecture for U

WB that has been adopted is based on orthogonal frequency division 

multiplex (O

FD

M)  technology, w

herein 122 sub-carriers are modulated  (using Q

PS

K)  in each 

of potentially 13 bands of 528 MH

z of microw

ave spectrum.

Data rates ranging from

 55 through 480 Mbps per R

F band are achievable.  V

ery low pow

er consum

ption is a key design goal, with rem

ote devices capable of supporting the direct sequence spread-spectrum

 service for a year on a single AA

A battery.

Initial applications targeted by this technology are Personal A

rea Netw

ork  (PA

N)  service, 

including a super-Bluetooth w

ireless desktop model, hom

e entertainment netw

orks and autom

otive applications.

The incredibly high bandw

idth sustained by this technology is attracting interest in other areas, w

here the multipath resistance and frequency/phase azim

uth resolution permits accurate 

position determination.

For exam

ple, RF

ID devices m

ay be located with resolutions of 1 cm

 over distances of 100 m

eters or more -- and backscatter from

 reflecting media m

ay permit detection of people or other 

targets behind walls in a portable, sim

plified radar kind of application  (an application of interest to firefighters and law

 enforcement agencies).

3)

D

ata Com

munications &

Fieldbus System

s133

Page 135: Data Communication &Fieldbus Systems

W-266

IEE

E 802.16 -- W

IMA

X F

EA

TU

RE S

UM

MA

RY

The IE

EE 802.16 standard defines a w

ireless metropolitan-area  (W

ireless MA

N)  netw

orking technology -- a w

ireless "last mile" solution.

It is essentially a standardized approach to the applications intended for Local Multipoint 

Distribution S

ervice (LMD

S)  and M

ulti-channel Multipoint D

istribution Service  (M

MD

S)  -- both 

being fixed microw

ave local distribution system concepts.

Specifically, the IE

EE 802.16 and 802.16a standards provide this sum

mary feature set:

Range: up to 50 km

 (30 miles)

Frequencies of operation: 

    802.16  - 11 -to- 40 GH

z    802.11a - 2 -to- 11 G

Hz

Data rates of up to 280 M

bps

Suitable for fixed link service and "nom

adic" users   (i.e. not a dynamically m

obile service)

The technology is Intended as a com

munity-w

ide service, suited to delivering telephony, broadband Internet and cable-television style entertainm

ent programm

ing.    

One application that is attracting a lot of interest is the use of this new

 technology to provide connectivity to 802.11 hot spots, creating a com

munity-w

ide wireless LA

N netw

ork.

(31211)

Data C

omm

unications & Fieldbus S

ystems

134

Page 136: Data Communication &Fieldbus Systems

Multiplexing and m

ultiple access are closely related topics.

Without intending to lim

it the generality of the discussion, consider only the tim

e-domain dim

ension to this subject; T

ime D

ivision Multiplex

(T

DM

) and Tim

e Division M

ultiple A

ccess (TD

MA

) systems.

The key sim

ilarity is the data sequences received at the system

input (R

X) are identical, being

time-interleaved data elem

ents representing num

erous unrelated data sources.

The key difference is m

ultiple access technologies elim

inate the source m

ultiplexer (TX

); instead distributing the tim

e sequencing responsibility am

ongst the comm

unity of source devices.

MU

LTIP

LE A

CC

ES

S vs. M

ULT

IPLE

XIN

G

TIME

DIV

ISIO

N M

ULTIP

LEX

ING

RX

TX1

23

12

3

123

123

TIME

DIV

ISIO

N M

ULTIP

LE A

CC

ES

S

RX

22

123

123

2

11

1

33

3

TIM

E S

LOT

S A

RE

MA

NA

GE

DB

Y S

EN

DIN

G M

ULT

IPLE

XE

R

SO

UR

CE

DE

VIC

ES

SH

AR

E R

ES

PO

NS

IBILIT

Y

FO

R T

IME

SLO

T C

OO

RD

INA

TIO

N (V

IA A

M

ULT

IPLE

AC

CE

SS

CO

NT

RO

L SY

ST

EM

)

Data C

omm

unications & Fieldbus S

ystems

135

Page 137: Data Communication &Fieldbus Systems

Multiplexing is a fundam

ental feature of many com

munications system

, involving the ability to share a com

munications channel of som

e type by a number of sim

ultaneous users.

Generally, the term

'multiplexing' is used to describe a channel sharing environm

ent where all

parties share a small num

ber of comm

on physical locations -- as in a point-to-point service.

A very closely related term

is 'multiple access' w

hich applies to a multiplexed channel

environment w

here the user population is disbursed over a broader service area, as in the case of population of m

obile radio users.

Thus, the various channel sharing techniques used to equitably and efficiently share radio

spectrum am

ongst a population of mobile users are referred to as m

ultiple access techniques.

There are four such sharing m

echanisms that are im

portant to wireless services, based on

sharing in the space dim

ension, in the time dim

ension, in the frequ

ency dim

ension and in a cod

e dim

ension:

Sp

ace Divisio

n M

ultip

le Access

The structuring of cellular w

ireless systems w

ith deliberately defined and managed physical

dimensions to each cell is essentially w

hat SD

MA

is all about.

SD

MA

makes it possible for m

ultiple users to occupy the same frequencies at the sam

e time in a

comm

on service area by deliberately restricting each to a different subset of that service area.

MU

LTIP

LEX

ING

AN

D M

ULT

IPLE

AC

CE

SS

T

EC

HN

IQU

ES

Data C

omm

unications & Fieldbus S

ystems

136

Page 138: Data Communication &Fieldbus Systems

Freq

uen

cy Divisio

n M

ultip

le Access

Multiplexing in the frequency dom

ain is perhaps the oldest, most fam

iliar channel sharing m

echanism.

With F

DM

A, individual users are assigned different, non-interfering frequencies of operation.

The fam

iliar spectrum m

anagement schem

e used in broadcast services is FD

MA

, where each

broadcaster operates in a coordinated, protected frequency segment of the available spectrum

.

Tim

e Divisio

n M

ultip

le Access

Tim

e division multiplexing techniques yield efficient, effective channel sharing -- strictly in context

of digital comm

unication.

The essential concept of T

DM

/TD

MA

systems is that the entire channel is assigned to each user

sequentially, so that operation is characterized by intermittent, high rate bursts of data being sent.

TD

M/T

DM

A system

s are highly flexible, making it possible to dynam

ically assign channel resources on an 'as required' basis; busy users receiving a larger share of shared capacity than less dem

anding users.

MU

LTIP

LEX

ING

AN

D M

ULT

IPLE

AC

CE

SS

T

EC

HN

IQU

ES

, cont.

Data C

omm

unications & Fieldbus S

ystems

137

Page 139: Data Communication &Fieldbus Systems

Co

de D

ivision

Mu

ltiple A

ccess

The new

est, and therefore least familiar channel sharing technology is C

DM

/CD

MA

.

With C

DM

A, each individual user's data stream

is modulated w

ith a unique code -- the uniqueness of w

hich is the basis of channel sharing.

The ability of spread spectrum

systems to support m

ultiple simultaneous, co-channel users is

keyed to the concept of each user using a unique chipping code that is orthogonal (see

acco

mpanyin

g b

ox) to that used by all other sim

ultaneous users.

MU

LTIP

LEX

ING

AN

D M

ULT

IPLE

AC

CE

SS

T

EC

HN

IQU

ES

, cont.

OR

THO

GO

NA

LITY

Orthogonality is a m

athematical

concept, in which tw

o sets of data values are independent of each other.

The three axes of three-dim

ensional space (x, y a

nd z) are orthogonal; the

projection of each axis on the other tw

o is unconditionally zero.

Expressed in m

atrix algebra term

inology, two sets of data are

orthogonal to each other if their dot product is zero.

Thus, tw

o examples of orthogonal

data are:

(1, 0, 0) * ( 0, 1, 0) = 0 and(3,-2, 4) * (-2, 3, 3) = 0

Data C

omm

unications & Fieldbus S

ystems

138

Page 140: Data Communication &Fieldbus Systems

Each of the m

edium-sharing, m

ultiple access mechanism

s are imperfectly m

anaged, such that guard space is required betw

een each of the concurrent users.

This guard space becom

es, for each multiple access m

echanism:

SD

MA

-- a physical guard space

With S

DM

A, overlapping radio coverage forces a physical separation betw

een user groups.

FD

MA

-- a frequency guard space

Unique frequencies are the basis of F

DM

A operation -- and in this case individual users m

ust be assigned frequencies sufficiently separated so as to m

inimize adjacent channel interference.

TD

MA

-- a time guard space

With T

DM

A, absolute control over tim

ing of individual devices' data bursts is impossible, and a

guard-time (g

ap) betw

een individual transmissions is necessary to m

anage interference.

CD

MA

-- a code guard space

The selection of the code space used for C

DM

A is a highly m

athematical, com

plex process -- but the m

athematical concept of code distance is the analog here.

GA

PS

AN

D G

UA

RD

BA

ND

S

Data C

omm

unications & Fieldbus S

ystems

139

Page 141: Data Communication &Fieldbus Systems

Frequency D

ivision Multiple A

ccess (FD

MA

) involves a number of channel m

anagement

schemes -- all of w

hich separate users in the frequency domain (i.e

. assig

n in

divid

ual u

sers

uniq

ue, n

on-in

terfe

ring fre

quencie

s)

Most F

DM

A system

s and frequency allocations are designed for full duplex, telephony-style (tw

o

open, co

ntin

uously a

vaila

ble

channels) operation w

here the transmit and receive signals are

assigned different frequencies -- a configuration known as freq

uen

cy divisio

n d

up

lex, or FDD

.

As in the exam

ple below (b

ase

d o

n th

e 9

00 M

Hz G

SM

frequency p

lan) each pair of frequencies is

typically offset by a uniform value -- here 45 M

Hz.

FR

EQ

UE

NC

Y D

IVIS

ION

MU

LTIP

LE

AC

CE

SS

FR

EQ

UE

NC

IES

AN

D C

HA

NN

EL A

LLOC

AT

ION

S S

HO

WN

AR

E C

ON

SIS

TE

NT

WIT

H 900 M

Hz G

SM

124 FD

D C

HA

NN

ELS

AR

E A

SS

IGN

ED

IN T

WO

25 MH

z. FR

EQ

UE

NC

Y B

AN

DS

-- WH

ICH

AR

E

SE

PA

RA

TE

D B

Y A

20 MH

z GA

P.

EA

CH

SID

E O

F T

HE

FD

D C

HA

NN

EL N

OM

INA

LLY O

CC

UP

IES

200 kHz,

TH

E F

DD

CH

AN

NE

L-PA

IRS

AR

E S

EP

AR

AT

ED

BY

45 MH

z.

12

34

123124

TRA

NS

MIT-FR

OM

-MO

BILE

12

34

123124

TRA

NS

MIT-TO

-MO

BILE

890.2M

Hz

915M

Hz

935.2M

Hz

960M

Hz

20 MH

zS

EP

AR

AT

ION

GS

M E

XA

MP

LE

OF

FR

EQ

UE

NC

Y A

LL

OC

AT

ION

FO

R F

DM

A - F

DD

SE

RV

ICE

S

Data C

omm

unications & Fieldbus S

ystems

140

Page 142: Data Communication &Fieldbus Systems

Tim

e Division M

ultiple Access (T

DM

A) provide for tim

e-coordinating a given digital com

munications m

edium so that m

ultiple users are able to share this comm

on resource.

TD

MA

offers a much higher level of flexibility than F

DM

A, in that tim

e slots allocated to individual users are not necessarily all of the sam

e duration, or repetition rate, nor are they necessarily m

anaged in a highly structured way (e

.g A

loha is th

e u

ltimate

ly unstru

cture

d a

ccess m

eth

od) .

Tim

e Divisio

n D

up

lex (TD

D) is the term

used for use of the same R

F channel for both transm

it and receive functions (se

e illu

stratio

n b

elo

w) -- the essential feature is a m

anageable, predictable tim

e separation between the transm

it and receive functions.

TIM

E D

IVIS

ION

MU

LTIP

LE A

CC

ES

S

TIM

E-S

LOT

ALLO

CA

TIO

NS

SH

OW

N A

RE

ON

LY T

YP

ICA

L OF

TD

MA

OP

ER

AT

ION

(TH

E D

IFF

ER

EN

T T

DM

A

ST

AN

DA

RD

S [e

.g G

SM

, IS-5

4, IS

-136, e

tc.] GE

NE

RA

LLY

US

E D

IFF

ER

EN

T N

UM

BE

RS

OF

TIM

E S

LO

TS

)IN

TH

IS E

XA

MP

LE, W

HIC

H IS

CO

NS

IST

EN

T W

ITH

TH

E D

EC

T C

OR

DLE

SS

PH

ON

E S

YS

TE

M, 12

TIM

E S

LOT

S A

RE

ALLO

CA

TE

D F

OR

ON

E D

IRE

CT

ION

OF

CO

MM

UN

ICA

TIO

N, F

OLLO

WE

D B

Y 12

IN T

HE

RE

VE

RS

E D

IRE

CT

ION

-- WIT

H A

FR

AM

ING

PA

TT

ER

N T

HA

T R

EP

EA

TS

EV

ER

Y 10 m

s, resulting in 417 µ

s IND

IVID

UA

L TIM

E S

LOT

S.

BY

SE

PA

RA

TIN

G T

HE

TR

AN

SM

IT A

ND

RE

CE

IVE

FU

NC

TIO

NS

IN T

IME

, WIT

H T

HIS

TD

D

FE

AT

UR

E, IT

IS P

OS

SIB

LE T

O S

HA

RE

RF

CIR

CU

ITR

Y B

ET

WE

EN

A D

EV

ICE

'S R

EC

EIV

ER

AN

D

TR

AN

SM

ITT

ER

.

TR

AN

SM

IT-F

RO

M-M

OB

ILET

RA

NS

MIT-T

O-M

OB

ILE

DE

CT

EX

AM

PL

E O

F T

IME

AL

LO

CA

TIO

N F

OR

TD

MA

SE

RV

ICE

S

32

11

11

23

21

11

12

Data C

omm

unications & Fieldbus S

ystems

141

Page 143: Data Communication &Fieldbus Systems

Spread spectrum

technology was developed as a U

.S. m

ilitary initiative, the key elements of

which w

ere declassified in the 1980's.

A num

ber of features of the technology that were attractive to m

ilitary comm

unications are sim

ilarly attractive in civilian applications -- see accompanying box.

Spread spectrum

technology deliberately modulates a transm

itter's spectrum so as to occupy

considerably more bandw

idth than would be required using conventional m

odulation techniques.

On the surface of it, this tactic w

ould seem to w

asteful of spectrum -- but spread spectrum

is arguably m

ore spectrum-efficient than m

ore conventional channel sharing technologies, like F

DM

A and T

DM

A.

A key elem

ent of spread spectrum technology, as adapted to civilian applications is the ability to

efficiently share spectrum w

ith m

ultiple simultaneous users --

each of which uses a unique

frequency spreading code sequence that ensures each user's signals are recoverable.

The resulting channel sharing

scheme is C

ode Division

Multiple A

ccess, or CD

MA

. SP

RE

AD

SP

EC

TR

UM

SP

RE

AD

SP

EC

TRU

M FE

ATU

RE

S

INIT

IAL M

ILITA

RY

OB

JEC

TIV

E

Jam-proof com

munication

Stealthy operation

Superb security

NE

T C

IVILIA

N B

EN

EF

IT

Interference imm

unity

Minim

al frequency coordination

Superb security

Data C

omm

unications & Fieldbus S

ystems

142

Page 144: Data Communication &Fieldbus Systems

There are tw

o spread spectrum m

ethods or processes:

Direct S

equ

ence S

pread

Sp

ectrum

(DS

SS

)

With D

SS

S, a high rate pseudo-random

binary code (calle

d th

e ch

ippin

g co

de) is E

xclusively O

R'd against the data stream

-- resulting in a similarly high rate binary sequence that is directly

modulated as a w

ide band carrier signal.

Chipping code sequences are in fact not random

-- they are carefully chosen sequences that dem

onstrate a high degree of orthogonality with all other sim

ultaneously used chipping codes.

In civilian applications, chipping code rates are typically between 10 and 100 tim

es the data rate (in

milita

ry applica

tions th

e n

um

ber is m

ore

typica

lly 10,0

00), resulting in a channel spreading

factor (bandw

idth

incre

ase

) of a similar num

ber.

Freq

uen

cy Ho

pp

ing

Sp

read S

pectru

m (F

HS

S)

With F

HS

S, the available spectrum

is divided into a number of discrete channels -- m

uch as is done w

ith FD

MA

. Transm

itters and receivers operate in a carefully orchestrated sequence, pseudo-random

ly selecting first one and then another channel on which to com

municate a burst

of data.

With slow

hopping FH

SS

, the carrier stays on frequency long enough to transmit several bits of

user data (slow

FH

SS

is a sta

ndard

optio

n w

ith G

SM

system

s) -- and with fast hopping F

HS

S

systems, the carrier frequency changes several tim

es per user data bit interval.

SP

RE

AD

SP

EC

TR

UM

, cont.

Data C

omm

unications & Fieldbus S

ystems

143

Page 145: Data Communication &Fieldbus Systems

Direct S

equence Spread S

pectrum (D

SS

S) system

s perform an exclusive-O

R betw

een the user's data sequence and a spreading code chipping sequence, as illustrated in the accom

panying box.

The degree of frequency spreading is the spreading factor -- w

hich is the ratio of the chipping sequence rate to the user data rate (in

this sim

ple

exa

mple

the ch

ippin

g se

quence

is the 7

-bit

data

patte

rn 1

001010, so

the sp

readin

g fa

ctor is 7

:1) .

The m

odulation spectrum is spread, or w

idened by the spreading factor; that is, with all other

system features unchanged (e

.g. m

odula

tion a

nd filte

ring stra

tegy) the spread signal w

ill be wider

than the single channel spectrum by this factor.

SP

RE

AD

ING

WIT

H D

SS

S

US

ER

DA

TA

10

CH

IPP

ING

SE

QU

EN

CE

10

11

00

01

01

10

00

X-O

R'd R

ES

ULT

ING

SIG

NA

L

EX

CLU

SIV

E-O

RT

RU

TH

TA

BLE

AB

AB

00

00

11

10

11

10

10

11

00

00

10

01

11

Data C

omm

unications & Fieldbus S

ystems

144

Page 146: Data Communication &Fieldbus Systems

CO

DE

DIV

ISIO

N M

ULT

IPLE

AC

CE

SS

This and follow

ing pages illustrate the concepts of a DS

SS

CD

MA

signal processing sequence:

Data E

nco

din

g S

equ

ence: (S

ee 'D

ata

Enco

din

g S

equence

' illustra

tion n

ext p

age)

Prior to com

mencing this transm

it sequence, the CD

MA

system w

ill have assigned the two

distinct and orthogonal 6-bit spreading codes.

These tw

o codes (101100 and 110110) can be shown to be orthogonal as follow

s: Consider

the logical 1 value to have an arithmetic +1 value and the logical 0 to have an arithm

etic -1 value -- then bit-by-bit, the product of these tw

o codes is +1 -1 -1 +1 -1 +1 = 0

The tw

o transmitted data sequences are obtained by applying the E

xclusive OR

function to the the source data and the spreading code -- and are sent at the rate of the spreading code sequence.

Data R

ecovery S

equ

ence (S

ee 'D

ata

Reco

very' illu

stratio

n fo

llow

ing)

The tw

o transmitted data sequences com

bine additively in the receiver, as illustrated -- resulting in a three-state com

bined signal.

Note how

critically dependent this additive signal recovery will be on

precise transmit tim

e coordination and precise signal strength control at the signal source transm

itters.

EX

CL

US

IVE

"OR

" F

UN

CT

ION

DE

FIN

ITIO

N

INP

UT

1 IN

PU

T 2

OU

TP

UT

0011

0101

0110

12

D

ata Com

munications &

Fieldbus System

s145

Page 147: Data Communication &Fieldbus Systems

W-119

CO

DE

DIV

ISIO

N M

ULT

IPLE

AC

CE

SS

, cont.

Data E

ncoding Sequence:

US

ER

#1

US

ER

#2

SO

UR

CE

DA

TA

SP

RE

AD

ING

CO

DE

(101100)

TR

AN

SM

ITT

ED

DA

TA

SO

UR

CE

DA

TA

SP

RE

AD

ING

CO

DE

(110110)

TR

AN

SM

ITT

ED

DA

TA

10

1

10

11

00

10

11

00

10

11

00

01

00

11

10

11

00

01

00

11

00

1

11

01

10

11

01

10

11

01

10

11

01

10

11

01

10

00

10

01

(1) 6-bit spreading codes used here are shorter than typically used -- but are orthogonal.(2) T

ransmitted data is E

xclusive-OR

of Source D

ata and Spreading C

ode✽

Notes:

(01028)

Data C

omm

unications & Fieldbus S

ystems

146

Page 148: Data Communication &Fieldbus Systems

0

CO

DE

DIV

ISIO

N M

ULT

IPLE

AC

CE

SS

, cont.

Data R

ecovery Sequence:

US

ER

#1 DA

TA

CO

MB

INE

DR

EC

EIV

ED

SIG

NA

L

01

00

11

10

11

00

01

00

11

11

01

10

11

01

10

00

10

01

US

ER

#2 DA

TA

0 +1-1(1) CD

MA

systems are very dependent on careful, accurate control of the signal strength

recovered from all sim

ultaneously received signals.(2) T

his is because the "Com

bined Received S

ignal" shown here is an additive value and it is

vital that all contributing signals contribute a like amount of signal from

each received sym

bol.

✽ N

otes:

8)

Data C

omm

unications & Fieldbus S

ystems

147

Page 149: Data Communication &Fieldbus Systems

W-127

CO

DE

DIV

ISIO

N M

ULT

IPLE

AC

CE

SS

, cont.

Data D

ecod

ing

Seq

uen

ce: (See 'D

ata

Deco

din

g S

equence

' illustra

tion n

ext p

age)

The data recovery sequence w

ith CD

MA

is critically dependent on precise amplitude and

phase coordination of incoming m

ultiple access users, so that their signals can be simply

combined (o

r added) in the receiver.

The resulting signal is a m

ultistate sequence -- shown here as a three-state because of

additively combining tw

o 2-state signals.

The data decoding sequence involves calculating the bit-by-bit product of the incom

ing signal and each of the in-service spreading codes -- here just tw

o.

It is convenient to assign an algebraic value to the binary spreading codes (i.e. vie

w th

em

as

havin

g va

lues +

1 a

nd -1

com

pare

d w

ith th

e m

ore

com

mon 1

and 0

valu

atio

n).

The bit-by-bit products from

this process are accumulated, or integrated to yield a soft decision

process.

Note that the decision is not necessarily assisted by all bit intervals in the spreading code (i.e

. so

me b

it inte

rvals d

o n

ot co

ntrib

ute

an in

crease

d sig

nal a

ccum

ula

tion, o

r inte

gra

l), but over the source data bit interval (a

nd th

ere

fore

num

ero

us sp

readin

g co

de sym

bol in

terva

ls) a usable binary detection process results.

3

(01028)

Data C

omm

unications & Fieldbus S

ystems

148

Page 150: Data Communication &Fieldbus Systems

W-121

CO

DE

DIV

ISIO

N M

ULT

IPLE

AC

CE

SS

, cont.

Data D

ecoding Sequence:

CO

MB

INE

DR

EC

EIV

ED

SIG

NA

L0 +1-1

Each user signal is integrated (a

ccum

ula

ted) over the source data bit interval

using the following calculation and the num

eric calibration shown on the left

margin above: -1 x (com

bined receiver signal) x (user spreading code)

US

ER

#1S

PR

EA

DIN

GC

OD

E

10

11

00

10

11

00

10

11

00

11

01

10

11

01

10

11

01

10

US

ER

#2S

PR

EA

DIN

GC

OD

E

US

ER

#1S

IGN

AL

INT

EG

RA

L

US

ER

#2S

IGN

AL

INT

EG

RA

L

+1-1+1-1

✽ N

ote:

(01028)

Data C

omm

unications & Fieldbus S

ystems

149

Page 151: Data Communication &Fieldbus Systems

W-311

WIR

ELE

SS M

OD

EM

S

A w

ireless modem

 is a device that performs the function of all m

odems, in that it takes serial data 

from a com

puter and modulates it onto the carrier signal associated w

ith some kind of 

telecomm

unications channel -- in this case a wireless channel.

Historically, w

ireless modem

s operated over VH

F or UH

F analog voice radio channels   (and some 

still do),  but the major interest in current tim

e relates to devices that provide an interface to cellular/m

obile packet data networks like G

PR

S  (associated w

ith GS

M m

obile networks)   and 1xR

TT  

(associated with C

DM

A m

obile networks).

Conceptually, w

hat these devices provide is the functionality of a digital mobile phone w

ithout the keypad and screen -- but w

ith an EIA 232 serial data port suitable for interfacing to external 

hardware.

Wireless m

odems com

e with a variety of features and options:

Various packet radio technologies   (e.g. G

PR

S and 1xR

TT

)   and frequency bands  (e.g. 850/1900 or 900/1800 M

Hz.).

External pow

er requirements -- they typically use a D

C pow

er feed  (such as is readily available for vehicle-m

ounted and SC

AD

A applications).

Many offer an integrated G

PS receiver option, as is often required for m

obile applications.

Directly connected telem

etry ports for simple S

CA

DA  or data collection applications.

Data C

omm

unications & Fieldbus S

ystems

150

Page 152: Data Communication &Fieldbus Systems

W-312

WIR

ELE

SS M

OD

EM

S - S

AM

PLE

R

Multitech S

ystems

MultiM

odem G

SM

/GP

RS and C

DM

A(w

ww

.multitech.com

)

WebT

ech Wireless S

ystems Inc.

WebTech 4000 W

ireless Modem

(ww

w.w

ebtechwireless.com

)

Sierra W

ireless M

P 775 G

PS - G

PR

S/E

DG

E W

ireless Modem

(ww

w.sierraw

ireless.com)

Cypress Industrial W

ireless Solutions

CT

M-100 C

DM

A W

ireless MO

dem(w

ww

.cypress.bc.ca)

Data C

omm

unications & Fieldbus S

ystems

151

Page 153: Data Communication &Fieldbus Systems

continued ....

K-035

GR

OU

ND

ING G

RID S

YS

TE

M, 

US

UA

LLY S

UB

-SU

RF

AC

E

TE

LEH

ON

EE

XC

HA

NG

EB

UILD

ING

X

RE

SID

UA

L EF

FE

CT

IVE

GR

OU

ND IM

PE

DA

NC

E

Ground P

otential Rise (G

PR

)  -- and often called Earth P

otential Rise (E

PR

)  -- is a hazard phenom

enon caused by overloading grounding/earthing systems of generally industrial 

installations through lightning strikes or major electrical faults.  S

ee sketch below:

GR

OU

ND P

OT

EN

TIA

L RIS

E

TH

US

, A M

AS

SIV

E C

UR

RE

NT W

ILL S

UR

GE T

HR

OU

GH T

HE S

ITE

'S 

GR

OU

ND

ING S

TR

UC

TU

RE

S A

ND 

INT

O T

HE E

AR

TH C

ON

NE

CT

ION 

(FO

LLOW

ING T

HE B

IG A

RR

OW

)

ELE

CTR

ICA

L SU

BS

TATIO

N E

XA

MP

LE

AS

SU

ME S

OM

E F

AU

LT ON T

HE S

TA

TIO

N (IN

 TH

EQ

UIP

ME

NT M

AR

KE

D "X

") CR

EA

TE

S A P

AT

H F

RO

M T

HE  

HIG

H V

OLT

AG

E C

IRC

UIT T

O G

RO

UN

D

Data C

omm

unications & Fieldbus S

ystems

152

Page 154: Data Communication &Fieldbus Systems

GR

OU

ND P

OT

EN

TIA

L RIS

E, cont.

continued ....K

-036

When a m

ajor electrical fault, or lightning strike occurs, massive, uncontrolled currents surge 

into the grounding system of the installation -- very briefly  (for typically a few

 milliseconds).

Lightning currents are naturally limited in duration; in the case of an electrical failure, circuit 

breakers will blow

 and eliminate the current flow

.

How

ever, briefly, these currents can easily peak at 10,000 Am

peres or more, all of w

hich will 

flow into the grounding structures provided for this purpose and thus into the earth.

There is alw

ays a small, unavoidable residual effective im

pedance between the station 

ground and so-called 'remote earth' -- w

hich is the ultimate connection point.  T

his value is often in the order of 1 or 2 O

hms.

A sim

ple Ohm

's Law calculation tells us that w

hen a 10,000 Am

pere surge current flows 

through a 1 Ohm

 impedance, it w

ill generate a 10,000 Volt surge -- w

hich appears as a transient that everything -- and everyone -- on the station w

ill exhibit when referenced to any 

remotely connected facilities, such as a w

ired telephone connection.

With norm

al, minim

al currents flowing through the grounding system

 at the telephone exchange, its building ground is at norm

al "earth" potential -- and all metallic cables leaving 

the building  (including the cable to the telephone in the sketch)   are at neutral earth potential.

Data C

omm

unications & Fieldbus S

ystems

153

Page 155: Data Communication &Fieldbus Systems

GR

OU

ND P

OT

EN

TIA

L RIS

E, cont.

K-037

Som

eone talking on this telephone would experience the above-described 10,000 V

olt potential difference betw

een their feet on the ground and hands on the telephone!

There are several w

ays of ensuring that this is not an unavoidable hazard -- among the best is 

use of non-metallic fiber optic com

munication cables  (w

hich cannot carry any so-called longitudinal currents),  or through a m

icrowave radio link that avoids the issue com

pletely.

In addition to "off-site" issues, there are other hazards to personnel and equipment that are 

caused by non-uniformity in the station grounding system

:

Personnel "S

tep Hazards"  -- T

he sub-surface grounding grid system is a m

esh of large gauge copper conductors perhaps one m

eter apart, bonded together at the cross-points.  S

paces between these w

ires (where one m

ight step)  will be at a low

er potential than directly over them

.  This difference can present a hazard voltage betw

een one's feet. 

Personnel "Touch H

azards"  -- Sim

ilarly, the ground under one's foot and a piece of station steel in one's hand can have enough potential difference to be lethal.

Equipm

ent Hazards  -- S

imilarly, m

etallic cables and/or equipment assem

blies on the station m

ay be imperfectly grounded and dam

aging voltages can develop between com

ponents that are only nom

inally grounded as checked by low-voltage test equipm

ent.

Data C

omm

unications & Fieldbus S

ystems

154

Page 156: Data Communication &Fieldbus Systems

ER

RO

RS A

ND T

HE

IR E

FF

EC

T ON O

PE

RA

TIO

NS

D-279

9

9

Errors occur in the process of transm

itting data due to any of a number of external effects  (com

ponent m

alfunctions, electrical disturbances like lightning, operation of electro-mechanical equipm

ent like m

otors and generators, operation of neon or fluorescent lighting systems, etc.).

With m

ost applications, it is highly desirable to minim

ize the frequency with w

hich undetected/uncorrected errors are allow

ed into the application process -- where they result in 

corruption of data bases, broken protocol sequences or worse.

Detected

 errors  must be dealt w

ith reliably and effectively so as to avoid these undesirable consequences and resulting loss of inform

ation integrity.  

Undetected errors  m

ust be effectively eliminated -- although there w

ill always be a m

athematical 

probability of their residual presence in received data.

Errors occur unevenly distributed  (i.e. in clum

ps or bursts)   in data streams due to the kinds of events 

that cause them.  T

hat is, if one bit is errored due to some external event, there is an increased 

likelihood that other nearby bits are damaged also.

Error experience is typically expressed as a bit error rate  (B

ER

)  -- with a statem

ent like  "we expect an 

error rate of 1 in 10   on this circuit"  -- or as a probability, as in "the bit error probability on this circuit is 1 in 10    " -- m

eaning the chances of any single bit being flawed is one in a m

illion.  These suggested 

BE

R/probability figures are typical of low

 speed data links before error detection/correction measures 

are applied (the so-called "raw" error rate) .

(41102)

Data C

omm

unications & Fieldbus S

ystems

155

Page 157: Data Communication &Fieldbus Systems

TH

QE

UC

IK

BR

ON

WF

OX

..

.

1 01 01 0

00011

11

11

11

11

11

11000

01

001 000

100 01

11010

00 100 10000 11

0 1100 1

0001 000

0001 00

0001 0000

111 1001 111 100

11

000 100

000 10 1

11100 1

011100

1 0000 1

1 00010

1 011010

1 011010

1 011010

10

11

10

11

00

01

11

11

11

11

00

0

10111 000

00

00

00

D-034

PA

RITY

ER

RO

R D

ETE

CTIO

N C

ON

CE

PTS

A C

HA

RA

CT

ER

-SE

QU

EN

TIA

L VIE

W O

FD

AT

A IS

DE

SC

RIB

ED

AS

HO

RIZ

ON

TA

L,O

R LO

NG

ITU

DIN

AL, O

R B

LOC

K

SE

QU

EN

CE

.

A BIT-SEQUENTIAL VIEW OF DATA IS DESCRIBED AS VERTICAL OR BIT-SEQUENCE.

VE

RT

ICA

L PA

RIT

Y B

ITS

AR

E A

PP

EN

DE

D T

O E

AC

H C

HA

RA

CT

ER

, T

YP

ICA

LLY B

Y A

DD

ING

AN

8th. BIT

TO

A 7-B

IT A

SC

II CH

AR

AC

TE

R.

HO

RIZ

ON

TA

L PA

RIT

Y IS

IMP

LEM

EN

TE

D

AS

A B

CC

(BLO

CK

CH

EC

K C

HA

RA

CT

ER

)A

PP

EN

DE

D T

O T

HE

EN

D O

F A

BLO

CK

OF

D

AT

A. D

AT

A B

LOC

KS

AR

E T

YP

ICA

LLYH

UN

DR

ED

S O

F C

HA

RA

CT

ER

S IN

LEN

GT

H.

Parity calculations involve defining the value of a "parity bit" such that the original data segm

ent plus parity bit w

ill always have an even (o

r odd w

hen u

sing o

dd p

arity) num

ber of 'one' bits in the now

larger data segment. E

ven parity is more com

mon than odd parity, and is illustrated here:

(60113)

Data C

omm

unications & Fieldbus S

ystems

156

Page 158: Data Communication &Fieldbus Systems

CY

CLIC

RE

DU

ND

AN

CY

CH

EC

K (C

RC

) E

RR

OR

DE

TEC

TION

D-106

Cyclic R

edundancy error detection calculations involve doing a long division calculation on the data.

The remainder w

hich results from this calculation becom

es the block check data which -- is

transmitted along w

ith the desired information.

The receiving system repeats the identical long division calculation, and checks for consistency

between the received C

RC

check data and the results of its own calculation.

The mathem

atical basis of CR

C error detection is derived using polynom

ial algebra, where all binary

sequences are regarded as polynomials for purposes of analysis.

Exam

ple: 11010001

10011 110001100000

10011

-----

10111

10011

-----

01001

00000

-----

10010

10011

-----

00010

00000

-----

00100

00000

-----

01000

00000

-----

10000

10011

-----

0011

TH

E R

EM

AIN

DE

R, O

R F

RA

CT

ION

PA

RT

OF

T

HE

RE

SU

LT, B

EC

OM

ES

TH

E B

LOC

K

CH

EC

K S

EQ

UE

NC

E (E

QU

IVA

LEN

T T

O

PA

RIT

Y B

ITS

) US

ED

AT

TH

E R

EC

EIV

ING

S

ITE

TO

VA

LIDA

TE

TH

E D

AT

A.

TH

E Q

UO

TIE

NT

IS T

HE

INT

EG

ER

PO

RT

ION

O

F T

HE

RE

SU

LT -- T

HE

VA

LUE

OF

WH

ICH

ISO

F N

O P

AR

TIC

ULA

R S

IGN

IFIC

AN

CE

HE

RE

.

TH

E D

EF

INIT

ION

OF

AN

AP

PR

OP

RIA

TE

DIV

ISO

R P

OLY

NO

MIA

L IS A

BLA

CK

A

RT

; IT W

ILL ALW

AY

S H

AV

E O

NE

MO

RE

BIT

TH

AN

TH

E R

EM

AIN

DE

R.

US

ING

PO

LYN

OM

IAL A

LGE

BR

A N

OT

AT

ION

TH

IS 5-bit V

ALU

E W

OU

LD B

E E

XP

RE

SS

ED

A

S:

X + X

+ 1

TH

E IN

FO

RM

AT

ION

FIE

LD T

O B

E T

RA

NS

MIT

TE

DW

ILL BE

MU

CH

LON

GE

R T

HA

N T

HIS

12 BIT

E

XA

MP

LE (R

EA

L-WO

RLD

DA

TA

FIE

LDS

IN H

DLC

F

RA

ME

S A

RE

CO

MM

ON

LY 10,000 bits LO

NG

)

4

(61209)

Data C

omm

unications & Fieldbus S

ystems

157

Page 159: Data Communication &Fieldbus Systems

CY

CLIC

 RE

DU

ND

AN

CY C

HE

CK (C

RC

)          E

RR

OR D

ET

EC

TIO

N, cont.

D-107

4

X + X

 + 1

X + X

 + X + 1

X + X

 + X + 1

X + X

 + X + X

 + X + X

 + X + X

 + X + X

 + X + X

 + X + X

 + 1  

16           15          2     

16           12          5     

Som

e comparative C

RC polynom

ial values (used in different applications)  are:

Preceding (hypothetical)  exam

ple:

IBM

's EB

CD

IC B

ISY

NC

:

HD

LC, S

DLC

 and ITU

-T:

Ethernet:

32           26          23          22          16          12           11          10           8            7             5           4             2     

Cyclic redundancy error detection techniques have several key advantages:

CR

C system

s are simply im

plemented (typically in hardw

are on the I/O card).

CR

C error checking is the m

ost effective technique for any given error check field size  (16 bit CR

C's 

typically yield a billion-fold increase in undetetected error rate).

CR

C error detection has becom

e the industry  de-facto  standard error detection technique.

(30421)

Data C

omm

unications & Fieldbus S

ystems

158

Page 160: Data Communication &Fieldbus Systems

ER

RO

R C

OR

RE

CTIO

N TE

CH

NIQ

UE

S

D-112

There are two basic error correction techniques (a

nd se

vera

l varia

tions o

f each

). These are Autom

atic R

epeat Request (A

RQ

) and Forward E

rror Correction (F

EC

).

Au

tom

atic

Re

pe

at R

eq

ue

st requires that the receiving device validate incom

ing data to determine if

there are any errors in the data:

If the received data appears to be correct, the receiving station will respond w

ith a positive acknow

ledgement m

essage -- sometim

es just an AC

K character.

If the data are found to be incorrect, the response will be a negative acknow

ledgement

(possib

ly just a

NA

K ch

ara

cter) rejecting the data as received.

The sending station thus becomes responsible for retransm

itting the flawed data -- potentially m

ore than once -- until it is received correctly.

Fo

rwa

rd E

rror C

orre

ctio

n systems operate w

ithout any feedback, or referral to the sending station.

Data are sent w

ith additional redundancy, such that the receiving station has sufficient information

about the message content to enable it to not only locate errors in data, but to m

ake corrections.

Since FE

C system

s are limited as to the num

ber of bits that can be reliably corrected, seriously degraded data channels w

ill result in too many errors for dependable handling, delivering an

unacceptable residual error rate.

(61209)

Data C

omm

unications & Fieldbus S

ystems

159

Page 161: Data Communication &Fieldbus Systems

CO

MP

AR

ISO

N; F

EC vs. A

RQ

D-113

Autom

atic Repeat R

equest:

Autom

atic repeat request systems pass all data through a uniform

 test of accuracy; thus no questionable data is ever accepted.

Since seriously degraded channel conditions w

ill result in an unusual frequency of error occurrences, system

 performance w

ill be seen to deteriorate, due to excessive retransmission attem

pts. AR

systems thus deliver assured quality, but offer uncontrolled data throughput and delay.

This is a favorable com

promise w

ith business systems, w

here we w

ould rather suffer a throughput and/or delay penalty than try to deal w

ith errored data.

Forward E

rror Correction:

Forw

ard error correction systems m

aintain a constant pace of data transmission that is insensitive to 

prevailing channel conditions.

Since seriously degraded channel conditions w

ill result in an unusual frequency of error occurrences, system

 performance w

ill deteriorate, due to excessive uncorrectable errors in the data.

FE

C system

s thus deliver a constant data throughput rate, but offer uncontrolled quality of delivered data -- an undesirable characteristic for business system

s. 

For this reason, F

EC is typically delivered in conjunction w

ith AR

Q -- a hybrid approach.

(30421)

Data C

omm

unications & Fieldbus S

ystems

160

Page 162: Data Communication &Fieldbus Systems

AU

TOM

ATIC

RE

PE

AT R

EQ

UE

ST

(AR

Q) E

RR

OR

RE

CO

VE

RY

D-108

Autom

atic Repeat R

equest (AR

Q) error recovery techniques are basic to business data

comm

unication systems.

Ha

lf-Du

ple

x P

roto

co

ls like BIS

YN

C invoke a sim

ple process, whereby A

CK

(ackn

ow

ledge) or N

AK

(n

egative

ackn

ow

ledge, o

r reje

ct) messages are anticipated in response to a transm

itted message.

This process is known as a S

top

an

d W

ait A

RQ

.

There is no ambiguity to this A

CK

/NA

K reference, because there is never m

ore than one message

being handled at any given time.

Fu

ll-Du

ple

x P

roto

co

ls invoke one of tw

o alternate AR

Q control techniques:

Go

Ba

ck

-N A

RQ

provides for the receiving station to pass advice back to the sending station identifying the m

essage number of the last correctly received m

essage.

The sending station is then responsible for retransmitting all m

essage segments that w

ere sent subsequent to that specific m

essage segment.

Se

lec

tive

AR

Q provides for the receiving station to save in buffer all m

essage segments --

specifically including those received subsequent to a flawed data segm

ent.

Thus, the sending station only needs to selectively re-send message segm

ents identified by the receiving station as flaw

ed.

(61209)

Data C

omm

unications & Fieldbus S

ystems

161

Page 163: Data Communication &Fieldbus Systems

AU

TOM

ATIC

RE

PE

AT R

EQ

UE

ST

(AR

Q) E

RR

OR

RE

CO

VE

RY

, cont.

D-109

1

1

2

2

WA

ITW

AIT

DATA

DATA

ACK

WA

ITW

AIT

3

3W

AIT

WA

IT

DATA

NAK

3

3

DATA

ACK

4

4

DATA

ACK

ER

RO

R✽

WA

IT

WA

IT

WA

IT

WA

IT

WA

IT

ST

OP

AN

D W

AIT

AR

Q (H

AL

F D

UP

LE

X)

GO

BA

CK

"N" A

RQ

(FU

LL

DU

PL

EX

)

SE

LE

CT

IVE

AR

Q (F

UL

L D

UP

LE

X)

DATA

SE

ND

ING

S

TA

TIO

N

RE

CE

IVIN

G

ST

AT

ION

ACKACK

1

1

DATA

2

2

DATA

3

3

SE

ND

ING

S

TA

TIO

N

RE

CE

IVIN

G

ST

AT

ION

ACKNAK

45

63

3

7

7

8

8

1

1

2

2

34

52

2

6

6

7

7

8

8

1

1W

AIT

ER

RO

R✽

WA

IT

ACK

ER

RO

R✽

ACK

ACK

ACKACKNAK

ACKACKACKACK

45

6

ACK

1

1

DATA

2

2

DATA

3

3

SE

ND

ING

S

TA

TIO

N

RE

CE

IVIN

G

ST

AT

ION

ACKNAK

45

63

3

4

4

5

5

6

6

7

7

81

27

7

8

8

1

1

2

2

3

3W

AIT

ER

RO

R✽

WA

IT

ACK

ER

RO

R✽

WA

ITACK

ACK

ACKACKNAK

ACKACKACKACK

WA

IT

34

5ACK

ACK

ACK

ACK

ACK

ACK

(30311)

Data C

omm

unications & Fieldbus S

ystems

162

Page 164: Data Communication &Fieldbus Systems

FOR

WA

RD

ER

RO

R C

OR

RE

CTIO

N

D-110

12

34

56

87

910

1112

1314

15

12

34

56

87

11 AC

TU

AL D

AT

A B

ITS

AR

E M

AP

PE

D IN

TO

16 B

EF

OR

E B

EIN

G T

RA

NS

MIT

TE

D, A

DD

ING

4 CH

EC

K

BIT

S (S

HO

WN

BE

LOW

IN G

RA

Y N

UM

ER

ALS

)

910

11

10

00

01

11

11

1

10

11

00

01

11

10

10

1

The four parity check bits (Bits 1

, 2, 4

and 8

) are defined using even parity calculations, involving a subset of the full sequence:

Bit N

o. 1 is calculated using Bits 3, 5, 7, 9, 11, 13 and 15 (i.e

. all o

dd

nu

mb

ere

d b

its -- or a

ll me

mb

ers o

f eve

ry se

con

d g

rou

p o

f on

e b

it).

Bit N

o. 2 is calculated using Bits 3, 6, 7, 10, 11, 14 and 15 (i.e

. all m

em

be

rs of e

very se

con

d g

rou

p o

f two

bits).

Bit N

o. 4 is calculated using Bits 5, 6, 7, 12, 13, 14 and 15 (i.e

. all m

em

be

rs of e

very se

con

d g

rou

p o

f fou

r bits).

Bit N

o. 8 is calculated using Bits 9, 10, 11, 12, 13, 14 and 15 (i.e

. all m

em

be

rs of e

very se

con

d g

rou

p o

f eig

ht b

its).

Following is an illustration of a H

amm

ing Code im

plementation. The H

amm

ing Code is useful for

illustration -- in practice, more pow

erful codes (e.g

. the R

eed-S

olo

mon co

des) w

ould be used:

DA

TA

AS

TR

AN

SM

ITT

ED

NO

W H

AS

4 E

XT

RA

BIT

S -- B

EIN

G R

ED

UN

DA

NT

IN

FO

RM

AT

ION

TO

BE

US

ED

TO

FIN

D

AN

D C

OR

RE

CT

ER

RO

RS

IN

TR

AN

SM

ISS

ION

.

(61208)

Data C

omm

unications & Fieldbus S

ystems

163

Page 165: Data Communication &Fieldbus Systems

Assum

e there is an error in transmission, such that one bit is incorrect. A

ssume this is bit N

o. 9. To perform

the Ham

ming error correction calculation, w

e start by checking to see if the parity calculations (in

volvin

g b

it positio

ns 1

, 2, 4

and 8

) are still apparently correct.

There are four tests to perform -- designed to verify the correctness of each of these parity bits:

Bit N

o. 1 was defined w

ith bits 3, 5, 7, 9, 11, 13 and 15; This set no longer has even parity and this test fails.

Bit N

o. 2 was defined w

ith bits 3, 6, 7, 10, 11, 14 and 15; This set still has even parity and this test p

asses.B

it No. 4 w

as defined with bits 5, 6, 7 , 12, 13, 14 and 15; T

his set still has even parity and this test passes.

Bit N

o. 8 was defined w

ith bits 9, 10, 11, 12, 13, 14 and 15; This set no longer has even parity and the test fails.

We enter these test results into a 4-bit register, using a "0" value for each test that passes, and a "1"

for each failure. This resulting 1-0-0-1 bit pattern is the binary value of 9, which identifies the bit

position we arbitrarily flaw

ed.

Thus, we have the necessary inform

ation to correct this single bit error condition.

FOR

WA

RD

ER

RO

R C

OR

RE

CTIO

N

D-111

12

34

56

87

910

1112

1314

15

10

11

00

01

11

10

10

1

12

34

56

87

910

1112

1314

15

10

11

10

01

11

10

10

1

DA

TA

IS T

RA

NS

MIT

TE

D -- F

RO

M T

HE

S

EN

DIN

G S

TA

TIO

N

-- TO

--

TH

E R

EC

EIV

ING

ST

AT

ION

-- WIT

H A

N

ER

RO

R A

SS

UM

ED

IN B

IT P

OS

ITIO

N N

O. 9.

ER

RO

R✽

12

48

00

11

9(61208)

D

ata Com

munications &

Fieldbus System

s164

Page 166: Data Communication &Fieldbus Systems

FO

RW

AR

D E

RR

OR C

OR

RE

CT

ION 

       AP

PLIC

AT

ION E

XA

MP

LER

OU

TE

R C

ON

NE

CT

ED LA

N S

YS

TE

MS V

IA S

AT

ELLIT

E LIN

K:

GE

OS

YN

CH

RO

NO

US S

AT

ELLIT

E

64 kbps DA

TA LIN

K T

O T

HE 

AP

PLIC

AT

ION P

RO

CE

SS

FEC

TX

RX

RO

UT

ER

RO

UT

ER

D-035

TX

RX

FEC

TH

E E

LEC

TR

ON

IC P

AC

KA

GE IN

 T

HE E

AR

TH S

TA

TIO

N T

ER

MIN

AL 

CO

NT

AIN

S A T

RA

NS

MIT

TE

R (T

X), 

RE

CE

IVE

R (R

X), A

ND F

OR

WA

RD 

ER

RO

R C

OR

RE

CT

ING (F

EC

) C

OD

EC

, OR C

OD

ER

-DE

CO

DE

R.

128 kbps DA

TA 

LINK

S O

SA

TE

LLITE R

AD

IO 

CH

AN

NE

L

SE

CO

ND

AR

Y, O

R B

AC

KS

TO

P E

RR

OR 

CO

NT

RO

L IS P

RO

VID

ED B

Y A

RQ LIN

PR

OT

OC

OLS

 SU

PP

OR

TE

D B

Y T

HE 

DA

TA T

ER

MIN

AL E

QU

IPM

EN

T

TH

E P

RIM

AR

Y E

RR

OR C

ON

TR

OL 

ME

CH

AN

ISM IS

 FE

C B

ET

WE

EN C

OD

EC

'S 

WH

ICH A

RE P

AR

T OF T

HE 

SA

TE

LLITE E

AR

TH S

TA

TIO

NS

.

(41102)

Data C

omm

unications & Fieldbus S

ystems

165

Page 167: Data Communication &Fieldbus Systems

RIN

G A

RC

HITE

CTU

RE

LAN S

YS

TEM

BU

S A

RC

HITE

CTU

RE

LAN S

YS

TEM LA

N  C

ON

FIG

UR

AT

ION  C

ON

CE

PT

S

HU

B A

RC

HITE

CTU

RE

LAN S

YS

TEM

D-009

Both of the early leading 

LAN architectures originally 

promoted their ow

n unique cabling and connectivity m

odel

Both evolved early on to 

operate in a hub-centric, U

TP architecture.

(99999)

Data C

omm

unications & Fieldbus S

ystems

166

Page 168: Data Communication &Fieldbus Systems

     RE

LATIO

NS

HIP -- IE

EE LA

N S

TAN

DA

RD

TO O

SI LA

YE

RE

D A

RC

HITE

CTU

RE D

EFIN

ITION

S

D-115

PHYSIC

AL  LAYER

DATA LIN

K   LAYER

NETW

OR

K   LAYER

 HIG

HE

R LA

YE

RS

                 IEEE 802.1 -- INTER

NETW

OR

KING

   ALTHO

UG

H O

FFICIALLY C

OVER

ED BY TH

E SCO

PE    O

F THE IEEE 802.1 M

AND

ATE, THE N

ETWO

RK AN

D  

   HIG

HER

 LAYER FU

NC

TION

S OF LAN

 SYSTEMS AR

E           SU

PPOR

TED BY PR

OPR

IETARY N

ETWO

RK 

            OPER

ATING SYSTEM

S (NO

S's) SUC

H AS 

                         NETW

ARE AN

D VIN

ES.

IEEE 802.2 -- LOG

ICAL LIN

K CO

NTR

OL

802.3 MAC

    80

2.3 

PH

YS

ICA

LC

SM

A/C

D

IEEE 802.1 -- SYSTEM MANAGEMENT

IEEE 802.1 -- OVERVIEW

NO

TE

: 'MA

C' R

EF

ER

S T

O T

HE M

ED

IUM A

CC

ES

S C

ON

TR

OL F

UN

CT

ION

, WH

ICH IS

            R

EG

AR

DE

D A

S A S

UB

-LAY

ER IN

 CO

NT

EX

T O

F IE

EE LA

N S

TA

ND

AR

DS

.

IEE

E LA

N S

TA

ND

AR

DS

OS

I ST

AN

DA

RD

S

80

2.1

PH

YS

ICA

LW

IRE

LE

SS

LA

N

80

2.1

PH

YS

ICA

LB

LU

ET

OO

TH

PA

N

80

2.1

PH

YS

ICA

LW

IRE

LE

SS

MA

N

802.11 MAC

802.15 MAC

802.16 MAC

(99999)

Data C

omm

unications & Fieldbus S

ystems

167

Page 169: Data Communication &Fieldbus Systems

SIX T

EC

HN

ICA

L FE

AT

UR

ES

OF LO

CA

L AR

EA N

ET

WO

RK

S

2. AC

CE

SS C

ON

TRO

L

3. TOP

OLO

GY

4. HU

B TY

PE

5. SW

ITCH

ING TY

PE

6. SIG

NA

L TYP

E

D-010

1. ME

DIA TY

PE

Characteristics of com

munications m

edium affect system

 capacity, quality, cost and ease of use.

Options include U

TP

, ST

P, coaxial cable, fiber optic cable and w

ireless.

Access control m

ethods (protocols)  affect system perform

ance, dimension 

constraints, cost and complexity.

Options include contention access m

ethods, such as ethernet's CS

MA

/CD 

and controlled access methods, such as token passing m

echanisms.

Topology  (or netw

ork shape)  options can be viewed as either a physical 

topology  (such as the ethernet physical hub topology)  or an electrical topology (such as the ethernet logical bus topology).

There is a scale of sophistication in hub options, ranging from

 effectively passive first-generation hubs, through highly intelligent sw

itching hubs.

There w

as a time in the 1980's w

hen circuit switching technology w

as thought to be an option of interest but packet sw

itching is the only option at present.

Sim

ilarly, analog, broadband technology  (using cable television practices) w

as once of interest but digital baseband is our only priority at this time.

(99999)

Data C

omm

unications & Fieldbus S

ystems

168

Page 170: Data Communication &Fieldbus Systems

CO

NTE

NTIO

N B

AS

ED

MU

LTIPLE

AC

CE

SS

M

ETH

OD

S/P

RO

TOC

OLS

D-086

AL

OH

A

Each user transm

its whenever it has data to send, w

ithout any attempt at first determ

ining system

status (busy/id

le), or developing any physical layer view

of transmission success or failure.

Relies on upper layer functions to validate m

essage transmission success.

Works w

ell with lightly loaded system

s; theoretical maxim

um capacity about 18%

of channel capacity.V

ariant: SLO

TT

ED

ALO

HA

operation provides system-w

ide clocking to mark tim

e slots, ensuring either 100%

collision or 100% m

issed collisions (i.e. n

o p

artia

l messa

ge o

verla

ps).

CO

NC

EP

T: c

ollis

ion

s result from tw

o stations transmitting at the sam

e (or o

verla

ppin

g) tim

es, resulting in garbled transm

issions. C

AR

RIE

R S

EN

SE

MU

LT

IPL

E A

CC

ES

S

CS

MA

operation provides for a system status check prior to initiating transm

ission.T

hus, collisions will only occur as a result of effectively sim

ultaneous decisions to transmit.

Relies on higher layer functions to validate m

essage transmission success, as w

ith ALO

HA

.O

nce transmission is initiated, all transm

issions run to completion (i.e

. no d

ete

ction o

f collisio

ns)

means no ability to abort failed transm

issions.

(60506)

Data C

omm

unications & Fieldbus S

ystems

169

Page 171: Data Communication &Fieldbus Systems

CO

NTE

NTIO

N B

AS

ED

MU

LTIPLE

AC

CE

SS

M

ETH

OD

S/P

RO

TOC

OLS

, cont.

D-087

CA

RR

IER

SE

NS

E M

UL

TIP

LE

AC

CE

SS

WIT

H C

OL

LIS

ION

DE

TE

CT

ION

Concept is sim

ilar to CS

MA

, except CS

MA

/CD

adds ability to monitor the progress and continuing

success of data transmission, and take rem

edial action when collisions occur.

Whenever collisions are detected (b

y each

of th

e tw

o co

nte

ndin

g sta

tions), they respond by first

sending a jamm

ing signal to ensure no attempt is m

ade to decode the garbled message content;

Secondly, each station starts a random

timer, w

hich defines the waiting tim

e before repeating the "listen-before-you-transm

it" CS

MA

logical process.A

ssuming contending stations select different random

timer intervals, tw

o stations should not encounter subsequent conflict.In the event of m

ultiple unsuccessful transmission attem

pts (due to

collisio

ns), the interval w

ithin w

hich the random tim

er is set is forced to grow w

ith each failure. It actually doubles w

ith every repeated collision event -- for up to 10 occurrences, and tolerates a further 6 collisions prior to giving up.

CA

RR

IER

SE

NS

E M

UL

TIP

LE

AC

CE

SS

WIT

H C

OL

LIS

ION

AV

OID

AN

CE

CS

MA

/CA

is similar to C

SM

A/C

D, except a pre-specified scheduling sequence is invoked every

time the channel goes idle, preventing sim

ultaneous attempts at transm

ission.C

SM

A/C

A is really a hybrid contention-controlled m

ode of operation due to this scheduling m

echanism.

(60506)

Data C

omm

unications & Fieldbus S

ystems

170

Page 172: Data Communication &Fieldbus Systems

LAN

INTE

RC

ON

NE

CTIO

N A

LTER

NA

TIVE

S

D-145

LAN

ALA

N B

?

LAN

interconnection is motivated by a desire to:

Extend the physical dim

ensions, or range beyond the limits of a single LA

N, or

Expand the traffic carrying capacity beyond that of a single LA

N, or

Increase the manageability and/or apparent reliability by segm

enting the system into m

ore m

anageable pieces.

Equipm

ent options include:

Repeaters

Bridges

Routers

Gatew

ays

(50813)

Data C

omm

unications & Fieldbus S

ystems

171

Page 173: Data Communication &Fieldbus Systems

LAN

INT

ER

CO

NN

EC

TIO

N

ALT

ER

NA

TIV

ES

Connectivity betw

een LAN

's is achieved with four different types of devices (a

nd so

me h

ybrid

so

lutio

ns w

hich

share

featu

res o

f these

four):

RE

PE

AT

ER

S

Repeaters provide a m

eans of extending a single, contiguous LAN

to distances that cannot be supported w

ithout such aid.

Repeaters sim

ply regenerate the electrical (or o

ptica

l, as th

e ca

se m

ay b

e) signals on the LA

N; they

do not interpret any portion of the message, and assert no discretion over forw

arding data (ie. a

ll packe

ts are

unco

nditio

nally fo

rward

ed).

Repeater connected LA

N's rem

ain a single logical LAN

(e.g

. limita

tions o

n th

e n

um

ber o

f addre

sses

supporte

d o

n a

LA

N a

re n

ot o

verco

me b

y a re

peate

r).

BR

IDG

ES

Bridges provide a w

ay of transparently internetworking tw

o logically distinct networks so as to yield

the perception of having a single, contiguous wider area, higher capacity LA

N than can be achieved

with repeaters.

D-134

(60113)

Data C

omm

unications & Fieldbus S

ystems

172

Page 174: Data Communication &Fieldbus Systems

LAN

INT

ER

CO

NN

EC

TIO

N

ALT

ER

NA

TIV

ES

, cont.

D-135

BR

IDG

ES

, co

nt.

Bridges are ideally suited as a m

eans of interconnecting a small num

ber of departmental LA

N's

(perh

aps u

p to

3 o

r 4), particularly w

here the comm

unity of users are uniformly trustw

orthy (Brid

ges

pro

vide n

o a

dm

inistra

tive o

r secu

rity partitio

nin

g ca

pability).

Most bridges are self learning, in that they construct an address table w

hich associates the address of each device observed on each LA

N w

ith that LAN

. They then use this table to make forw

arding decisions -- such that only traffic addressed to a device on the alternate LA

N passes through the

bridge.

RO

UT

ER

S

Routers are suited to interconnecting a larger num

ber of departmental LA

N's than bridges. R

outers are m

ore complex devices than bridges, and m

ore easily integrated into an automated netw

ork m

anagement system

-- and can be configured to yield effective security partitions in a network

(refe

rred to

as "fire

walls" in

this m

ode o

f use

).

Routers perform

a more dem

anding role than bridges, and the resulting processing burden makes

routing a more com

putationally intensive task than bridging (acco

rdin

gly, ro

ute

rs are

typica

lly cu

stom

, multip

roce

ssor h

ard

ware

solu

tions w

here

as b

ridge fu

nctio

ns ca

n b

e su

pporte

d b

y a

conve

ntio

nal P

C).

(50813)

Data C

omm

unications & Fieldbus S

ystems

173

Page 175: Data Communication &Fieldbus Systems

LAN IN

TE

RC

ON

NE

CT

ION 

    ALT

ER

NA

TIV

ES

, cont.

D-384

RO

UTE

RS

, cont.

Routers require a vision of the netw

ork topology -- a vision that can be developed in several ways 

(most com

monly, routers exchange reachability inform

ation with each other using special route discovery 

protocols, making all routers aw

are of all networks in a given system

).

Routers are protocol sensitive, in that routing decisions are m

ade on the basis of information contained in 

the network layer protocol headers  (such as IP

 in TC

P/IP

 and IPX in N

ovell's Netw

are).   Thus, the ability 

of a router to make appropriate decisions about forw

arding packets is dependent on routers being know

ledgeable about all network layer protocols operating in a given system

.

GA

TEW

AY

S

Gatew

ays are used to interconnect dissimilar (and otherw

ise incompatible)  netw

orks, providing:

access to external proprietary systems, like IB

M's S

ystems N

etwork A

rchitecture  (SN

A)

access to the global Internetaccess to general W

AN applications accessible via public X

.25 or frame relay netw

orks.

Gatew

ays are often application-specific  (such as e-mail gatew

ays that manage e-m

ail services, or e-com

merce gatew

ays that arbitrate e-comm

erce traffic for a server farm).

(21106)

D

ata Com

munications &

Fieldbus System

s174

Page 176: Data Communication &Fieldbus Systems

DE

LIVE

RIN

G D

ATA

US

ING

FLAT A

ND

HIE

RA

RC

HIC

AL A

DD

RE

SS

ES

D-442

Hierarchical addressing m

akes it possible to route a letter to an arbitrary destination by analyzing the address from

the bottom up:

The first sort decision determines the destination country

The second step determines the destination city etc.

Only the last postal sorting step requires know

ledge of the final destination.

Routers use this m

odel; intermediate routers interpret

network-coded addresses hierarchically, w

ith only the last router required to identify individual end-devices.

Susan Henderson

12345 East Berryhill C

ourtPhiladelphia, PA 34567U

.S.A.

WA

JAX

Forks Pty.

6784 Alberhill B

oulevardT

iddlybank, New

South W

alesA

ustralia

The first-step postal sorting

process has to be able to identify w

hich of a possible 200 (a

pp

roxim

ate

ly) destination countries has been specified.

With a flat address system

, every sorting clerk w

ould have to know

the location of every possible recipient -- som

e 6,000,000,000 possibilities!

Susan Henderson

WA

JAX

Forks P

ty.Flat addresses are superficially sim

pler -- but they require unreasonable detailed know

ledge of all possible destinations w

hen there is a large population of users.

Bridges w

ork with this address m

odel, requiring each bridge to m

aintain exhaustive address tables containing location inform

ation for all possible destinations.

This w

orks well for sm

all networks, but is not a

reasonable approach for complex configurations.

(60607)

Data C

omm

unications & Fieldbus S

ystems

175

Page 177: Data Communication &Fieldbus Systems

D-582

EV

OLU

TION

IN LA

N-to-LA

NC

ON

NE

CTIV

ITY S

TRA

TEG

IES

When an organization initially deploys LA

N services, the obvious first configuration is a free-standing

(non-co

nnecte

d) system

.

As traffic volum

es and/or the physical dimensions of the service area increase, a strategy for defining a

connectivity-based infrastructure becomes necessary.

Directly C

on

nected

LA

N's

Where a sm

all number of LA

N's (p

robably

departm

enta

l in sca

le a

t this p

oin

t) are in use, direct connectivity is a reasonable strategy -- typically using bridges as the preferred entry-level connectivity devices.

Once m

ore than two D

LAN

s (Departm

enta

l LA

Ns)

are involved, it becomes inevitable that there w

ill be through-traffic adding potential congestion problem

s to intermediate netw

orks -- much like

vehicle traffic adds congestion to an urban district w

here there is no through highway available.

The maxim

um num

ber of LAN

s suitable to this configuration is sm

all (perh

aps 4

or 5

) and will

depend on traffic, types of applications and physical dim

ensions of the site.

DLA

N #1

DLA

N #2

DLA

N #3

DLA

N #4

RE

PR

ES

EN

TA

TIV

E D

IRE

CT

CO

NN

EC

T S

ER

VIC

E C

ON

FIG

UR

AT

ION

(61207)

Data C

omm

unications & Fieldbus S

ystems

176

Page 178: Data Communication &Fieldbus Systems

D-583

EV

OLU

TION

IN LA

N-to-LA

NC

ON

NE

CTIV

ITY S

TRA

TEG

IES

, cont.B

ackbo

ne C

on

nected

LA

Ns

With a backbone architecture, a purpose built netw

ork segment is added, w

ith the dedicated mission of

providing connectivity services to the other networks.

Backbone capacity typically exceeds that of

the individual networks it serves (p

erh

aps th

e

most co

mm

on co

nfig

ura

tion is a

100 M

bps

FD

DI b

ackb

one syste

m se

rving a

cluste

r of

10 M

bps e

thern

et d

epartm

enta

l LA

Ns).

The physical dimensions of the backbone

system are highly variable, ranging from

a few

feet (colla

pse

d b

ackb

one lim

ited to

an

equip

ment ra

ck) to tens of miles/kilom

eters (M

AN

-structu

red b

ackb

one).

Backbone netw

orks should have no directly connected w

orkstations or servers (all su

ch

applica

tion-o

riente

d e

quip

ment sh

ould

be o

n

one o

f the D

LA

N se

gm

ents).

Possible backbone-connected resources

would include routers and/or firew

alls to external netw

orks and network m

anagement

automation resources.

DLA

N #1

DLA

N #2

DLA

N #3

DLA

N #4

BA

CK

BO

NE

LAN

R

EA

CH

ES

TO

ALL

DLA

N N

ET

WO

RK

S(C

onnections are by local bridges/routers)

RE

PR

ES

EN

TA

TIV

E B

AC

KB

ON

ES

ER

VIC

E C

ON

FIG

UR

AT

ION

(61207)

Data C

omm

unications & Fieldbus S

ystems

177

Page 179: Data Communication &Fieldbus Systems

D-213

FIBE

R D

ISTR

IBU

TED

DA

TA IN

TER

FAC

E

The Fiber Distributed D

ata Interface (FD

DI) w

as the first recognized high speed LAN

(HS

LA

N) and

metropolitan area netw

ork (MA

N) technology -- developed in 1990 and accepted by A

NS

I as a standard.

Key features of FD

DI are:

100 Mbps dual ring, token passing fiber optic technology

Fault-tolerant, capable of sustaining full operational throughput through any arbitrary single-point failure (d

evice

failu

re o

f cable

bre

ak).

Com

patible with IE

EE

802-Series LA

N standards at 802.2 LLC

sub-layerO

perates on multi-m

ode and single-mode fiber -- or copper tw

isted pair (UT

P) cable.

Maxim

um ring circum

ference allowed = 200 km

.M

aximum

number of attachm

ents = 1000S

upports two classes of stations: dual-attachm

ent and single-attachm

ent (Dual-a

ttach

ment co

nfig

ura

tions h

ave

fu

ll fault-to

lera

nt fe

atu

res).

Applications: cam

pus backbones, data center bus systems,

metropolitan area netw

orks and high-speed desktop applications.

FFOL

(FD

DI F

ollo

w O

n L

AN

) is a planned upward com

patible extension projected to operate at 2.4 G

bps.P

HY

SIC

AL M

ED

IUM

DE

PE

ND

EN

T (P

MD

)

PH

YS

ICA

L L

AY

ER

PR

OT

OC

OL (P

HY

)

ME

DIA

AC

CE

SS

CO

NT

RO

L (M

AC

)

FD

DI L

OW

ER

LA

YE

R S

TR

UC

TU

RE

OS

I L

INK

LA

YE

R

OS

I P

HY

SIC

AL

LA

YE

R

IEE

E 8

02

.2 L

OG

ICA

L

LIN

K C

ON

TR

OL (L

LC

)

(61024)

Data C

omm

unications & Fieldbus S

ystems

178

Page 180: Data Communication &Fieldbus Systems

FD

DI M

AC

LAY

ER

FR

AM

E F

OR

MA

T

D-667

PR

EA

MB

LES

TAR

TD

ELIM

ITER

FR

AM

EC

ON

TRO

LD

ESTINATIO

NAD

DR

ESSS

OU

RC

EA

DD

RE

SS

INFO

RM

ATIO

N P

AY

LOA

DF

RA

ME

CH

EC

KE

ND

DE

LIMITE

RF

RA

ME

ST

AT

US

FRA

ME

FEA

TUR

ES

:

Pream

ble:C

onsists of alternating 1-0 bits for clock synchronization characters -- a m

aximum

of 16 octets

Marks the start of the fram

e, much

like the flag field with H

DLC

Designates the fram

e type being carried (U

LP

identifica

tion) and

designates token/message status

Either a 48 bit U

niversally A

dministered address field, or a 16

bit Locally Adm

inistered address (n

ot typ

ically u

sed

)

Like Destination A

ddress, either a U

niversally or Locally Adm

inistered address

Start D

elimiter:

Fram

e Control:

Destination

Address:

Payload contents (th

ree

com

mo

n

form

ats a

re u

sed

):

IEE

E/IS

O com

patible LLC fram

esS

NA

P-encoded general U

LP data

(such

as IP

da

tag

ram

)IE

EE

/ISO

MA

C layer fram

e encapsulated

CR

C error check

Com

panion to Start D

elimiter

Delivery confirm

ation (simila

r to

IEE

E 8

02

.5)

Information

Payload

Source

Address:

Fram

e Check:

Fram

e Status:

End D

elimiter:

(11206)

Data C

omm

unications & Fieldbus S

ystems

179

Page 181: Data Communication &Fieldbus Systems

D-374

DA

S

DA

S

DA

SD

AS

PR

IMA

RY

RIN

G

SE

CO

ND

AR

Y R

ING

Devices w

hich populate the FD

DI P

rimary R

ing will alw

ays be Dual A

ttachment S

tations (or DA

S) --

supporting full access to both fiber rings. As w

ill be seen later, a non-redundant class of termination

known as a S

ingle Attachm

ent Station (S

AS

) has a useful role in making non-critical connections to

the core ring shown here.

The P

RIM

AR

Y R

ING

operates at 100 Mbps, and alw

ays carries active message traffic

The S

EC

ON

DA

RY

RIN

G operates at 100 M

bps also, and functions in one of two m

odes:

it may be designated as a hot-standby back-up to the prim

ary ring, idling while the system

operates norm

ally -- probably for about 99.999 percent of the time (typ

ical)

FDD

I CO

NF

IGU

RA

TIO

N C

ON

CE

PT

it may carry preem

ptable message traffic, w

hich gets dumped w

hen called upon to back-up the prim

ary ring (incre

asin

gly w

idely u

sed)

DA

SD

AS

(11206)

Data C

omm

unications & Fieldbus S

ystems

180

Page 182: Data Communication &Fieldbus Systems

D-375

FA

ILU

RE

SC

EN

AR

IO 1:

LOS

S O

F N

ET

WO

RK

-CO

NN

EC

TE

D

DE

VIC

E (D

AS

)

FA

ILU

RE

SC

EN

AR

IO 2:

LOS

S O

F C

AB

LE C

ON

TIN

UIT

Y

The F

DD

I dual ring system w

rap

s primary ring traffic onto the secondary ring -- at the nearest

surviving dual attachment station (D

AS

) connection point, thus maintaining operation through any

single failure event.

WR

AP

PO

INT

; Prim

ary ringconnects to secondary ring

FD

DI FA

ILUR

E S

CE

NA

RIO

S

DA

S

DA

S

DA

SD

AS

DA

SD

AS

DA

S

DA

S

DA

SD

AS

DA

SD

AS

(11206)

Data C

omm

unications & Fieldbus S

ystems

181

Page 183: Data Communication &Fieldbus Systems

Illustrated below are tw

o virtual LAN system

s configured on a three-hub physical LAN

.

The key concept is that there no longer needs to be an association betw

een the physical network 

configuration and the functional configuration.

VIR

TU

AL LO

CA

L AR

EA N

ET

WO

RK

S -

CO

NC

EP

T ILLUS

TR

AT

ION

K-094

VIR

TU

AL N

ET

WO

RK N

O. 1

SC

AD

A N

ET

WO

RK

(IP A

DD

RE

SS 155.77.10.0)

VIR

TU

AL N

ET

WO

RK N

O. 2

DA

TA W

AR

EH

OU

SIN

G S

YS

TE

M(IP

 AD

DR

ES

S 155.77.12.0)

RO

UT

ER

TO P

LAN

T

(41103)

D

ata Com

munications &

Fieldbus System

s182

Page 184: Data Communication &Fieldbus Systems

LAN

PE

RFO

RM

AN

CE

ISS

UE

S

D-232

LAN

systems perform

ance can be limited -- or bottlenecked -- by any of a num

ber of components:

The first tem

ptation is to suspect the physical cable system is out of capacity -- w

hich is typically not the problem

. How

ever, a related problem m

ay be a factor:

Violation of cable length and repeater placem

ent rules (with

eith

er E

thern

et o

r Toke

n R

ing) can

result in excessive numbers of failed transm

ission attempts, w

ith too much tim

e unproductively consum

ed with retransm

issions.

Server perform

ance is the most com

mon system

bottleneck: hard disk access time, R

AM

capacity and configuration, N

IC throughput lim

itations, server cpu type and clock speed are all perform

ance-related features.

To a lesser extent, workstation perform

ance will be a factor, w

ith the two m

ost significant being w

orkstation cpu type, RA

M capacity and clock speed and N

IC characteristics.

System

diagnostic software and/or test equipm

ent can be used to identify these choke points -- or bottleneck conditions.

Conversely -- people responsible for m

aking LAN

systems upgrade decisions should be cautious

about spending sums of m

oney to upgrade components of the system

that may not be the

performance lim

iting assets.

(10420)

Data C

omm

unications & Fieldbus S

ystems

183

Page 185: Data Communication &Fieldbus Systems

Day Three

►S

CA

DA

and PLC

´s

►M

OD

BU

S

►H

AR

T

►A

SI

Data C

omm

unications & Fieldbus S

ystems

184

Page 186: Data Communication &Fieldbus Systems

TELE

PH

ON

EM

OD

EM

LINE

DR

IVE

RLIN

ED

RIV

ER

WIR

ELE

SS

LINK

WIR

ED

LINK

S

TELE

PH

ON

EM

OD

EM

RE

MO

TE

TE

RM

INA

LU

NIT

�������

MTU

CO

MP

UT

ER

SY

ST

EM

INS

TR

UM

EN

TIN

TE

RF

AC

ES

PR

OT

OT

YP

E S

CA

DA S

YS

TE

M

CO

MM

UN

ICA

TIO

NS

EQ

UIP

ME

NT

INT

ER

FA

CE

S

RE

MO

TE

TE

RM

INA

LU

NIT

RE

MO

TE

TE

RM

INA

LU

NIT

The netw

ork infrastructure, com

prising LAN

, W

AN and other 

components.

The M

aster Term

inal U

nit (MT

U)  consists 

of at least three elem

ents:

MT

U com

puterC

omm

unications interfacesH

uman M

achine Interface (H

MI)

The R

emote 

Term

inal Units 

(RT

Us)  and 

instrument 

interfaces.

HM

I

K-047

(30818)

D

ata Com

munications &

Fieldbus System

s185

Page 187: Data Communication &Fieldbus Systems

RE

MO

TE

TE

RM

INA

LU

NIT

RE

MO

TE

TE

RM

INA

LU

NIT

RE

MO

TE

TE

RM

INA

LU

NIT

INS

TR

UM

EN

TIN

TE

RF

AC

ES

PR

OT

OT

YP

E S

CA

DA S

YS

TE

M

The netw

ork infrastructure, com

prising LAN

, W

AN and other 

components.

The M

aster Term

inal U

nit (MT

U)  consists 

of at least three elem

ents:

MT

U com

puterC

omm

unications interfacesH

uman M

achine Interface (H

MI)

The R

emote 

Term

inal Units 

(RT

Us)  and 

instrument 

interfaces.

K-049

MTU

CO

MP

UT

ER

SY

ST

EM

CO

MM

UN

ICA

TIO

NS

EQ

UIP

ME

NT

INT

ER

FA

CE

S

HM

I

TELE

PH

ON

EM

OD

EM

TELE

PH

ON

EM

OD

EM

LINE

DR

IVE

RLIN

ED

RIV

ER

WIR

ELE

SS

LINK

WIR

ED

LINK

S

(30818)

Data C

omm

unications & Fieldbus S

ystems

186

Page 188: Data Communication &Fieldbus Systems

K-050

continued ....

ELE

ME

NT

S O

F BA

SIC S

CA

DA S

YS

TE

MS

The three basic elem

ents of SC

AD

A technology are:

Master Term

inal Unit (M

TU)

The M

TU has tw

o key functions:

It controls all remote data collection functions and data flow

s through the system.

It supports the Hum

an-Machine Interface (H

MI)  -- also com

monly referred to as the 

Man-M

achine Interface (MM

I).

These tasks require the intelligence and inform

ation managem

ent capabilities of a com

puter -- thus MT

Us are alw

ays based on one or more com

puter system(s) w

ith most or 

all of these features:

embedded hard disk system

sextensive com

munications I/O

 capabilityone or m

ore major color screen displays or projectors

real-time, interrupt-driven operating system

selected redundant elements --  (e.g. uninterruptible, or U

PS pow

er)

(40308)

D

ata Com

munications &

Fieldbus System

s187

Page 189: Data Communication &Fieldbus Systems

K-051

ELE

ME

NT

S O

F BA

SIC S

CA

DA S

YS

TE

MS

, cont.

continued ....

Rem

ote Terminal U

nits (RTU

s)

RT

Us act as agents for the M

TU in field locations w

here the SC

AD

A system

 has a need to collect data and/or distribute control signals.

There are typically m

any RT

Us per S

CA

DA system

 -- sometim

es hundreds.

The tw

o key functions of the RT

U are:

To interface w

ith the network and support the necessary com

munication protocols and 

functions -- enabling the transfer of data and comm

ands to and from the M

TU

To interface w

ith the local instrumentation, collecting or inputting digital status and 

values of analog variables -- and performing the inverse function of actuating discrete  

(binary)  and proportional (analog)  controllers. 

Historically, R

TU

s were built w

ith discrete logic electronic (i.e. non-programm

able)  com

ponents, but the incredible cost and functionality advantage of programm

able devices has resulted in R

TU

s being universally based on microprocessor-driven com

ponents.

The stored-program

 is typically kept in some type of read-only m

emory  (R

OM

)   -- thus the "softw

are" for these systems m

ay be more appropriately term

ed "firmw

are".

(40308)

Data C

omm

unications & Fieldbus S

ystems

188

Page 190: Data Communication &Fieldbus Systems

ELE

ME

NT

S O

F BA

SIC S

CA

DA S

YS

TE

MS

, cont.

K-052

A C

onnecting Netw

ork Infrastructure

The netw

ork infrastructure that connects the MT

U w

ith the associated group of RT

Us is the 

most variable and difficult-to-sum

marize part of S

CA

DA system

s:

The scale of distance involved can vary from

 a few feet/m

eters to half way around the 

world.

The capacity requirem

ents (i.e. bits per second data rate)  vary from sim

ple systems that 

operate at a few hundred bits per second to high-capacity, tim

e-critical applications that require m

illions of bits per second of network capacity.

Reliability requirem

ents vary from applications w

here the information is "nice to have" 

(but with no m

ajor penalty associated with failure)   to life- and/or m

ission-critical applications that sim

ply cannot be allowed to fail.

Som

e SC

AD

A system

s operate entirely within an urban setting  (e.g. typical m

unicipal w

ater systems),  w

ith the result that it is feasible to build a reasonable network 

infrastructure based on rented telephone company facilities.

Other system

s (e.g. some pipelines)  operate in w

ilderness areas where there is no 

telecomm

unications infrastructure, and where the capital cost of creating that 

infrastructure will have to be borne by the S

CA

DA project. 

(30818)

D

ata Com

munications &

Fieldbus System

s189

Page 191: Data Communication &Fieldbus Systems

K-087

SE

LEC

T BE

FO

RE O

PE

RA

TE vs.

OP

ER

AT

E W

ITH A

CK

NO

WLE

DG

E

The operation of S

CA

DA control procedures m

ay be set up in about three different ways:

Select B

efore Operate  (S

ometim

es called "Confirm

 Before O

perate")

High value, critical operations (typically those w

hose incorrect operation could result in facilities dam

age or financial loss) are typically handled with this tw

o-step procedure. 

The S

CA

DA operator sets up a control com

mand, and essentially arm

s the RT

U, ready to activate 

the designated comm

and.

The R

TU then sends a confirm

ing message back to the operator, effectively asking for confirm

ation that this action is w

hat is really intended. 

Direct O

perate With A

cknowledgem

ent

This procedure provides a sim

pler framew

ork, with a designated control procedure being 

implem

ented at the RT

U, no questions asked.  A

n acknowledgm

ent of the action follows.

Direct O

perate Without A

cknowledgem

ent

Very uncom

mon -- this procedure sim

ply performs the designated action w

ith no confirmation.

(41031)

Data C

omm

unications & Fieldbus S

ystems

190

Page 192: Data Communication &Fieldbus Systems

OB

JEC

T-O

RIE

NT

ED P

RO

GR

AM

MIN

G C

ON

CE

PT

S

The central difference betw

een Object-O

riented Program

ming  (O

OP

)  and more traditional 

programm

ing methods is the abstract notion of an object -- a class of data representation that 

enables a broad range of entities to be considered in a comm

on class.

A good exam

ple of objects and the range of entities that can be included in the description is visible in the fam

iliar Window

s screen, where files, printers and executable program

s are all represented by sim

ilar on-screen icons.

Probably the m

ost important uniqueness of object-oriented data representation and program

ming is 

the property of inheritance  -- where features and detailed data structures of prim

itive objects (called the base class)  are accum

ulated or aggregated into higher-level structures called derived classes. 

This enables sets of prim

itive objects to be defined  (somew

hat similar to the w

ay low-level 

subroutines can be defined)  and then higher level, derived classes of objects can inherit the cum

ulative features of the included base class objects  (again somew

hat similar to the w

ay higher level program

ming procedures can sim

ply access the features of lower level subroutines).

This inheritance m

odel is open-ended; A inherits from

 B, B

 inherits from C

, C inherits from

 D ...

Object-oriented program

s are significantly less procedural than conventional programm

ing structures, although ultim

ately there is a sequential or procedural component to their execution.

K-064

(40306)

D

ata Com

munications &

Fieldbus System

s191

Page 193: Data Communication &Fieldbus Systems

K-065

AN O

BJE

CT

-OR

IEN

TE

D V

IEW O

FIN

DU

ST

RIA

L DA

TA S

OU

RC

ES A

ND P

RO

CE

SS

ES

Traditionally, representing the different elem

ents of data that are accessible from, or are delivered 

to remote equipm

ent is massive, tedious and fraught w

ith human error.

Even m

ore troublesome, it is typically a very com

plex challenge to add a new class of data   (such 

as is provided by a new field instrum

ent),  increase the significant digits of data resolution or change the update or refresh rate on selected data elem

ents.

These kinds of configuration changes have historically required specialist-level skills to im

plement, 

tend to be highly platform/vendor dependent and poorly scalable.

The generality of object-oriented data representation enables:

The convenient database design and subsequent editing of detail-level data elem

ents   (such as m

ay be required when replacing a field instrum

ent).

Accom

modation of new

 requirements that em

erge after the systems are com

missioned, such as 

new H

MI features and display screens or new

 process control models.

Com

patibility with m

ajor trends in the IT comm

unity that embrace object-oriented m

ethodologies, and associated data m

anagement, graphical hum

an interfaces and web-based inform

ation access.

(40307)

Data C

omm

unications & Fieldbus S

ystems

192

Page 194: Data Communication &Fieldbus Systems

K-066

MT

U P

LAT

FO

RM R

ED

UN

DA

NC

Y

continued ....

When planning for high levels of availability in S

CA

DA and related industrial com

puting im

plementations, one alw

ays encounters the question of master station redundancy -- "D

o we w

ant it and how

 do we achieve it? "

Cold S

tandby/Warm

 Standby

These are redundancy, or fault-tolerance m

odes that typically require operator intervention to enable transfer of control by sw

itching or swapping out com

ponents or complete units, w

ith significant gaps in availability.  T

hat is, the functionality of systems w

ill be unavailable until a manual 

restoration is completed.

This w

ill typically involve transferring power and/or com

munications circuits and initializing system

 softw

are  (which m

eans data associated with w

ork in progress is lost).

Hot S

tandby  

This is a class of fault-tolerance that provides a pow

ered, operational replacement system

 ready and w

aiting for service.

Transfer of operational responsibility to the standby system

 may be autom

atic or manual.  A

s was 

the case in the previous example, w

ork in progress will be disrupted -- but w

ith a much sm

aller w

indow of dow

n time here.

(40307)

D

ata Com

munications &

Fieldbus System

s193

Page 195: Data Communication &Fieldbus Systems

K-067

MT

U P

LAT

FO

RM R

ED

UN

DA

NC

Y, cont.

Full Dynam

ic Redundancy

There are a num

ber of techniques for implem

enting a hands-free dynamic transfer of operational 

control from one M

TU to a back-up m

achine -- with varying degrees of confidence, cost, com

plexity, and duration of "dow

n time" during the transfer.

Hew

lett Packard's N

on-Stop E

nterprise Division produces the "S

-Series" line of fully redundant 

fault-tolerant computer system

s that are the most robust, fail-safe system

s in the market   (a 

certainty because they have no competition!).

These system

s (originally developed by Tandem

 Com

puters in the late 1970's and acquired by HP 

with their purchase of C

OM

PA

Q)   are designed to be fully fault-tolerant in every respect -- no single 

hardware or softw

are failure will interrupt service.

The technology supports standard "m

iddleware" developm

ent technologies like Tuxedo and C

orba -- and is strongly oriented tow

ard web service applications.

In most cases, it is too costly as a solution for S

CA

DA applications, but it w

ould deliver extraordinary availability if used as an M

TU host m

achine.

There are a num

ber of less ambitious fault-tolerant equipm

ent configurations based on Unix and 

Microsoft W

indows 2000 technologies -- but none w

ith a "no single point of failure architecture". 

(40308)

Data C

omm

unications & Fieldbus S

ystems

194

Page 196: Data Communication &Fieldbus Systems

D-333

SE

RV

ER D

ISK A

RR

AY S

YS

TE

MS

Fault-tolerant disk arrays enable on-line replacem

ent of failed disk hardware, and seam

less reconstruction of data -- transparent to the user

Data is broken into pieces and w

ritten in duplicate to at least two of several disks, using a 

process called 'striping'

The m

ost successful of these schemes is the five-level R

edundant Arrays of Inexpensive D

isk (R

AID

)  techmnology, w

hich has gained acceptance through MIcrosoft's support:

RA

ID-1: U

ses mirrored disks to provide one-on-one data redundancy; recovery requires 

disrupting service.

RA

ID-2: U

ses a more efficient data representation, requiring less than 100%

 duplication of data volum

e; not comm

only used. 

RA

ID-3 and R

AID

-4: Use disk guarding, w

hich provides data striping on two or m

ore data drives, plus a dedicated error recovery  (guard)  drive w

hich carries comprehensive error 

correcting code information for the data drives.  R

AID

-3 writes stripes in bytes; R

AID

-4 writes 

in blocks and supports concurrent read and write activities. 

RA

ID-5: U

ses distributed data guarding, eliminating the dedicated guard drive -- resulting in all 

drives having equal status, and supporting multiple sim

ultaneous reads and writes.

(99999)

D

ata Com

munications &

Fieldbus System

s195

Page 197: Data Communication &Fieldbus Systems

SE

RIA

LC

OM

MU

NIC

AT

ION

PO

RT CP

U

ME

MO

RY

TE

RM

INA

L ST

RIP F

OR

CO

NN

EC

TIN

G O

UT

PU

TS

TE

RM

INA

L ST

RIP F

OR

CO

NN

EC

TIN

G IN

PU

TS

INP

UT S

IGN

AL

INT

ER

FA

CE

OU

TU

T SIG

NA

LIN

TE

RF

AC

E

RT

U B

LOC

K D

IAG

RA

M

MO

DE

M O

OT

HE

RC

OM

MU

NIC

AT

ION

SD

EV

ICE

NO

TE T

HIS D

IAG

RA

M IS

 R

EM

AR

KA

BLY

 SIM

ILAR 

TO A P

LC B

LOC

DIA

GR

AM

-- TH

US T

HE 

CO

MM

ON 

INT

ER

CH

AN

GE

AB

LE 

RO

LES

.

K-060

TW

O-W

AY E

XT

ER

NA

LC

OM

MU

NIC

AT

ION

(31011)

Data C

omm

unications & Fieldbus S

ystems

196

Page 198: Data Communication &Fieldbus Systems

K-041

CO

NT

RO

LS A

RE IM

PLE

ME

NT

ED A

S E

ITH

ER

CLO

SE

D LO

OP O

R O

PE

N LO

OP S

YS

TE

MS

CO

NT

RO

LLER

AC

TU

AT

OR

PLA

NT O

RP

RO

CE

SS

CO

NT

RO

LS

IGN

AL

AC

TU

AT

ING

SIG

NA

L

PLA

NT

/P

RO

CE

SS

OU

TP

UT

+

-

OP

EN

-LOO

P C

ON

TRO

L

HU

MA

OP

ER

AT

OR

SE

NS

OR

INP

UT

SO

PE

RA

TO

RC

ON

TR

OLS

INIT

IAL

INP

UT

continued ....

Open Loop S

ystems

An open loop process is a one-w

ay process -- input control signals pass through a logical sequence, or process and result in m

odifying the behavior of the plant or process.

Where S

CA

DA system

s are used, information is collected from

 the output and presented to a hum

an operator who w

ill assess output information and possibly im

plement changes to input 

conditions.  There is no autom

atic feedback  from the output back to input.

Data C

omm

unications & Fieldbus S

ystems

197

Page 199: Data Communication &Fieldbus Systems

continued ....

CO

NT

RO

LS A

RE IM

PLE

ME

NT

ED A

S E

ITH

ER

CLO

SE

D LO

OP O

R O

PE

N LO

OP S

YS

TE

MS

, cont.

K-042

Open Loop S

ystems, cont.

A good exam

ple of an open loop control system is the fuel control m

echanism used in an 

automobile.

The desired input is defined by the position of the accelerator pedal; the actuator is the throttle 

valve and the process output is a modified engine operating speed.

Hum

an observations will typically result in an assessm

ent of the suitability of a given engine speed and the operator w

ill change the accelerator pedal position accordingly.

SC

AD

A system

s almost alw

ays operate as open loop control processes -- with the process 

control operator performing a function analogous to the autom

obile driver above.

The lack of any feedback m

echanism for allow

ing output conditions to automatically influence 

input signals puts some constraints on the process:

The system

 response/operating dynamics m

ust be compatible w

ith human reaction tim

es.

Hum

an vigilance is required to ensure safe, continued operation.

Data C

omm

unications & Fieldbus S

ystems

198

Page 200: Data Communication &Fieldbus Systems

continued ....

CO

NT

RO

LLER

AC

TU

AT

OR

PLA

NT O

RP

RO

CE

SS

CO

NT

RO

LS

IGN

AL

AC

TU

AT

ING

SIG

NA

LD

ES

IRE

DIN

PU

T

K-043

CLO

SE

D-LO

OP C

ON

TRO

L

SE

NS

OR

PLA

NT

/P

RO

CE

SS

OU

TP

UT

+

-

Closed Loop S

ystems

Closed loop control system

s take advantage of process output information, and derive a signal 

(using some kind of sensor) that is passed back to the system

 input -- resulting in the autom

atic adjustment of the controlled process.

Closed loop control system

s have the potential for being unstable in some or all-operating 

conditions -- and must be carefully designed to operate reliably under all conditions.

CO

NT

RO

LS A

RE IM

PLE

ME

NT

ED A

S E

ITH

ER

CLO

SE

D LO

OP O

R O

PE

N LO

OP S

YS

TE

MS

, cont.

(30615)

Data C

omm

unications & Fieldbus S

ystems

199

Page 201: Data Communication &Fieldbus Systems

K-044

JAM

ES W

ATT'S

FLY-B

ALL G

OV

ER

NO

R

CO

NT

RO

LS A

RE IM

PLE

ME

NT

ED A

S E

ITH

ER

CLO

SE

D LO

OP O

R O

PE

N LO

OP S

YS

TE

MS

, cont.

Closed Loop S

ystems, cont.

Exam

ples of closed loop control systems include:

An autom

obile "cruise-control" system for 

regulating throttle position based on the speed of the vehicle.

A household furnace or air conditioner that uses 

a simple on-off sw

itching thermostat to activate 

the required temperature control system

.

James W

att's fly-ball governor,  (see accom

panying illustration) which w

as one of the first closed loop control system

s.

In each of these examples, a desired input value 

(set point) is modified by inform

ation returned via a feedback link, enabling the input instructions to the control process to be m

odified or adjusted so as to m

ore exactly conform to the desired input value, or 

set point.

Data C

omm

unications & Fieldbus S

ystems

200

Page 202: Data Communication &Fieldbus Systems

K-028

RE

AL-T

IME

OP

ER

AT

ION

S

Industrial computer system

s are typically required to service their "clients" -- robots, instruments,

device actuators, controllers, etc. -- in real-time, m

eaning that results/outputs must be assured of

being available while the input conditions are still valid.

There are num

erous alternative definitions of real-time com

puting, but all interpretations of the concept em

phasize a guarantee of timeliness of results, w

here the meaning of "tim

eliness" depends on application-specific details.

Exam

ples of real-time com

puting applications include:

a servo control sub-system in an aircraft fly-by-w

ire system that m

ust respond quickly enough to m

odify flight attitude to assure timely reaction to changing flight circum

stances

a factory production system that involves a robot arm

picking something off a conveyor belt --

in which delayed response from

the arm w

ould mean the object had m

oved beyond recovery reach

In both cases, the computational result m

ust be complete in a tim

e-frame that w

ill assure timely

accomplishm

ent of the overall system's operating objectives.

The achievem

ent of effective real-time com

puting is more than a com

puter hardware/softw

are problem

, since it includes data recovery delays, network transit delays, output delays and

actuator operation delays.

Data C

omm

unications & Fieldbus S

ystems

201

Page 203: Data Communication &Fieldbus Systems

K-029

FE

AT

UR

ES

OF

RE

AL-T

IME

OP

ER

AT

ING

SY

ST

EM

SR

eal-Tim

e Operating S

ystems (R

TO

S) have distinctly different features and requirem

ents, com

pared with typical business applications.

Sum

mary features that are necessary to support tim

e-critical, event-driven industrial computing

applications include:

multi-thread operation - alternatively know

n as reentrancy, is the ability to support multiple

concurrent processes with a single m

emory-resident version of key softw

are modules.

preemptible tasking - capability of designating tim

e-critical processes as top priority, and therefore eligible to be scheduled for im

mediate execution.

interrupt driven (asyn

chro

nous sch

edulin

g) - capable of responding to external events that

trigger hardware-level interrupts (to

norm

al, o

therw

ise se

quentia

l pro

cessin

g)

controlled, short intervals with interrupts disabled - processes w

hich normally operate w

ith interrupts enabled m

ust disable interrupts while context sw

itching activities are under way

(and w

hile

certa

in d

iscrete

pro

cesse

s opera

te) -- but m

ust assure a rigorous bound on the m

aximum

time interval that w

ill be encountered with interrupts disabled.

The unique data handling processes associated w

ith real time applications are frequently w

ell served by a tw

o-stage architecture, where the front-end process is supported by a R

TO

S (a

nd

desig

ned to

be le

an a

nd sim

ple

), feeding a conventional scheduled environment operated on a

backend process.

Data C

omm

unications & Fieldbus S

ystems

202

Page 204: Data Communication &Fieldbus Systems

K-039

RE

LAY B

AS

ICS & C

ON

CE

PT

S

BA

SIC R

ELA

Y FE

ATU

RE

S

BA

TT

ER

YN

/ON

/C

SW

ITC

H

CO

NT

RO

LC

IRC

UIT

There w

as a time w

hen industrial control systems w

ere entirely based on the use of electrom

agnetic relays to sense electrical operating conditions and activate control functions.

Those days are gone -- but the design processes used to im

plement relay-based logic are still 

important in the developm

ent, implem

entation and use of programm

able logic controllers  (PLC

s).

The essential feature of electrom

agnetic relays is the way in w

hich the magnetic field that results 

from a controlled current flow

 actuating a switched electrical contact for a different circuit.

In the diagram here, w

ith no current flowing in the 

control circuit, the resting position of the relay contacts is dow

n, making contact betw

een the bottom

 pair of contact points.

The resting position of a relay w

ith no current flow

ing in its magnetic coil is the "N

ormal" position, 

so contacts that are closed in this condition are "N

ormally C

losed" or N/C  -- and contacts that are 

open in this condition are "Norm

ally Open", or N

/O.

When the sw

itch is closed, and current flows in the 

relay coil, these contact conditions reverse -- but the "N

ormal" definition rem

ains as before.

(30616)

Data C

omm

unications & Fieldbus S

ystems

203

Page 205: Data Communication &Fieldbus Systems

K-040

IN T

HE B

EG

INN

ING P

RO

CE

SS

ES W

ER

EC

ON

TR

OLLE

D W

ITH R

ELA

YS

The first autom

ation solutions for process control and related applications were based on 

electro-magnetic relays -- m

any, many of them

.

In order to manage the m

yriad of details required to operate complex processes w

ith this class of device, a disciplined, system

atic way of representing relay control inputs and outputs w

as developed -- the result of w

hich is the "ladder diagram"

The first P

LC im

plementations w

ere designed as functional replacements for relay-based 

control systems -- and w

ere supported by technicians already familiar w

ith the logical processes of designing, im

plementing, testing and m

aintaining relay-based systems.

For this reason, P

LCs inherited the sam

e logical system for representing their operation as the 

technology they replaced.

Thus, the "ladder diagram

" lives on as a design concept that is imbedded in the program

ming 

tools that are used to develop modern P

LC instructions, or program

s.

Of course, num

erous extensions to the original relay-equivalent ladder diagram program

ming 

features have emerged, including com

munications support, hum

an interface functions and tim

er-based process sequencing to name a few

.

Data C

omm

unications & Fieldbus S

ystems

204

Page 206: Data Communication &Fieldbus Systems

K-053

LAD

DE

R D

IAG

RA

MS

The first process and industrial control autom

ation solutions were based on 

electro-magnetic relays -- typically m

any of them.

In order to manage the am

ount of detail involved in managing com

plex control processes w

ith this class of device, it was useful for the industry to develop a system

atic, disciplined w

ay of diagramm

ing and working w

ith relay controls -- particularly with regard to their 

various inputs and outputs -- the result of which is the "ladder diagram

"

The first P

LC im

plementations w

ere designed as functional replacements for relay-based 

control systems, and w

ere supported by technicians already familiar w

ith the logical processes of designing, im

plementing, testing and m

aintaining relay-based systems.

For this reason, P

LCs inherited the sam

e logical system for representing their operation as 

the relay-based technology they replaced.

Thus, the "ladder diagram

" lives on as a design concept that is imbedded in the 

programm

ing tools that are used to develop modern P

LC instructions, or program

s.

Of course, num

erous extensions to the original relay-equivalent ladder diagram 

programm

ing features have emerged, including com

munications support, hum

an interface functions and tim

er-based process sequencing to name a few

.

(30906)

Data C

omm

unications & Fieldbus S

ystems

205

Page 207: Data Communication &Fieldbus Systems

BA

TT

ER

YC

OIL

SW

2S

W1

K-059

LAD

DE

R D

IAG

RA

M C

ON

CE

PT

S

INP

UT

S

SW

1S

W2

OU

TP

UT

CO

IL1

EN

D

VE

RY S

IMP

LE R

ELA

Y C

IRC

UIT A

ND

CO

RR

ES

PO

ND

ING LA

DD

ER D

IAG

RA

M

Elem

ents of a simple Ladder D

iagram are illustrated 

in the box on the right.

SW

1 and SW

2 are switches; S

W1 is norm

ally open (N

O) and S

W2 is norm

ally closed  (NC

).

The battery positive rail is the left-side vertical line; 

the battery negative rail is the right-side vertical line.

Sequential logic (w

hich is remarkably sim

ple here)  flow

s top-to-bottom  -- either looping, or term

inating on the "E

ND

" comm

and.

Each logical input and output is assigned a m

emory 

address value so that operations can reference the T

RU

E or F

ALS

E condition of each elem

ent.

Elem

ents are considered to be FA

LSE w

hen in their norm

al, or resting state, and TR

UE w

hen activated.

Thus, N

O inputs are F

ALS

E w

hen open; NC inputs 

are TR

UE w

hen open. 

Outputs are energized only w

hen all input conditions are T

RU

E.

(31011)

Data C

omm

unications & Fieldbus S

ystems

206

Page 208: Data Communication &Fieldbus Systems

FU

NC

TIO

N B

LOC

K IN

ST

RU

CT

ION

S

K-057

The basic P

LC ladder diagram

 programm

ing approach is satisfactory for doing simple 

things, but becomes unw

ieldy with m

ore complex tasks.

Exam

ples include:

Program

ming a shift register or a push-pop stack

Configuring a com

munication m

odule (serial or network card)

continued ....

Tasks of this sort could be program

med w

ith combinations of standard, sim

ple instructions - but the function block w

as introduced in order to make these m

ore complex tasks easier.

Just as with an arithm

etic rung in a ladder diagram, a function block rung has three parts:

Input conditions consisting of combinations of exam

ine instructions. There w

ill typically be several input conditions that are "exam

ined", or used to drive the function block.

The actual function block, w

hich will often depend on a num

ber of locations - or variables -- that w

ill affect its action.

Outputs, w

hich behave like relay contacts, are the means by w

hich the function block interacts w

ith other ladder rungs in the system.

(31011)

Data C

omm

unications & Fieldbus S

ystems

207

Page 209: Data Communication &Fieldbus Systems

FU

NC

TIO

N B

LOC

K IN

ST

RU

CT

ION

S, cont.

K-058

Like inputs, there are comm

only several outputs:

Num

erical outputs are comm

only used by other rungs (function blocks) as inputs to their arithm

etic instructions.

Relay coil (bit-level, or binary) outputs 

can be "examined", or read by exam

ine instructions in other functions.

There has been a clear trend tow

ard P

LC m

anufacturers converting timing, 

counting, and arithmetic instructions to 

the more user-friendly function block 

format.

Program

ming docum

entation available for any particular P

LC w

ill explain the program

ming of the various available 

function block instructions in detail.

INP

UT

S

SW

1S

W2

FU

NC

TIO

NB

LOC

K

SW

3

SW

4

OU

TP

UT

CO

IL1

OU

TP

UT

CO

IL2

EN

D

FUN

CTIO

N B

LOC

K U

SE

D IN

 A 

SIM

PLE

 LAD

DE

R D

IAG

RA

(31011)

Data C

omm

unications & Fieldbus S

ystems

208

Page 210: Data Communication &Fieldbus Systems

K-024

PR

OG

RA

MM

AB

LE LO

GIC

CO

NT

RO

LLER

S

The P

rogramm

able Logic Controller originated in the late 1960's as a discrete electronic logic

system intended to replace hardw

ired relay control systems.

Relay system

s have been designed using a so-called ladder diagram, or ladder logic -- effectively

a Boolean logic schem

e where relay features (su

ch a

s make

-befo

re-b

reak a

nd la

tchin

g

opera

tion) are central to the logical operation of the system

.

With P

LCs, these relay features are m

odeled and embedded in the program

mable

characteristics of the controller.

Although the program

ming interface to P

LCs typically focuses on the logical relay-based

equivalent, the PLC

is really a computer w

ith computer-like com

ponents, including:

Central P

rocessing Unit (C

PU

)M

emory U

nitInput InterfacesO

utput Interfaces

The P

LC has been adapted to countless applications, m

any well beyond the original scope

intended by the original concept -- but the core application remains local control of com

plex m

achines based on Boolean logic conditions (su

ch a

s tank le

vels, m

oto

r or p

um

p sta

tus,

pre

ssure

conditio

ns, p

ositio

n o

f mova

ble

parts, e

tc.)

(11206)

Data C

omm

unications & Fieldbus S

ystems

209

Page 211: Data Communication &Fieldbus Systems

K-054

PLC

 BLO

CK D

IAG

RA

M���

SE

RIA

LC

OM

MU

NIC

AT

ION

PO

RT CP

U

ME

MO

RY

TE

RM

INA

L ST

RIP F

OR

CO

NN

EC

TIN

G O

UT

PU

TS

TE

RM

INA

L ST

RIP F

OR

CO

NN

EC

TIN

G IN

PU

TS

PC S

ER

VE

S A

S H

UM

AN 

INT

ER

FA

CE F

OR B

OT

PR

OG

RA

MM

ING 

AC

CE

SS A

ND A

S A

OP

ER

AT

ION

AL  H

MI/M

MI

INP

UT S

IGN

AL

INT

ER

FA

CE

OU

TU

T SIG

NA

LIN

TE

RF

AC

E

Data C

omm

unications & Fieldbus S

ystems

210

Page 212: Data Communication &Fieldbus Systems

K-026

OP

PO

RT

UN

ITIE

S A

ND

AD

VA

NT

AG

ES

OF

PLC

s

The P

LC has proven to be a rem

arkable efficiency tool to industry, offering the following key

advantages over precursor electro-mechanical hardw

are solutions:

Superior flexibility to accom

modate various applications

Superior reliability (m

ain

tenance

is radica

lly simplifie

d)

Superior econom

y (cost to

insta

ll and o

pera

te/m

ain

tain

)Investm

ent is recyclable (a so

ftware

change ch

anges th

e e

ntire

system

)D

evelopment effort is portable (o

ne so

ftware

deve

lopm

ent e

ffort ca

n se

rve m

any in

stalla

tions)

Other features that have no direct com

parison to hardware relay logic solutions includes:

PLC

s can be applied to applications where critical response tim

es must be guaranteed

PLC

s can support networked com

munication w

ith peers and/or master control system

sP

LCs can support graphical, user-friendly hum

an interface sub-systems

PLC

s can support a wide range of sophisticated instrum

ents, creating a systems control

capability that is incomparable to precursor technology.

The range of P

LC product size, sophistication, capacity and cost is rem

arkable; PLC

s can be cost-effectively used in applications w

here only a handful of relays might otherw

ise be used, all the w

ay to big, complex, netw

orked multi-m

illion dollar process control applications.

With this range of applications and scale of capacity available, the understanding the technology

and capabilities of PLC

systems is a technical specialty in its ow

n right.

(11206)

Data C

omm

unications & Fieldbus S

ystems

211

Page 213: Data Communication &Fieldbus Systems

K-025

CR

OS

S-S

EC

TIO

N O

F P

LC A

PP

LICA

TIO

NS

The P

rogramm

able Logic Controller has been adapted to m

any industrial automation

applications -- but most are applied to factory autom

ation (FA

) systems, and m

ost are stand-alone configurations operating independently of other control system

s.

A sam

pler of PLC

applications includes:

Injection molding

Warehouse autom

ationP

ump (w

ate

r, chem

icals, fo

od p

roducts) control

Rolling m

illsIndustrial m

ixing and blending applicationsP

roduction line testingB

ottling and filling applicationsM

otor controlsP

aper machine controllers

Speed control (su

ch a

s ele

vato

rs, esca

lato

rs and co

nve

yor syste

ms)

Cutting, drilling, w

elding and stamping applications

Rem

ote Term

inal Unit (R

TU

) interfaces to SC

AD

A system

sP

etrochemical distillation/cracking/blending/m

ixing applicationsF

low control system

s (aggre

gate

s, liquid

s, discre

te ite

ms)

Data C

omm

unications & Fieldbus S

ystems

212

Page 214: Data Communication &Fieldbus Systems

K-027

PR

OG

RA

MM

AB

LE LO

GIC C

ON

TR

OLLE

RS

-- PA

RT

IAL V

EN

DO

R LIS

T

A sam

pler of the better known P

LC vendors includes:

(ww

w.abb.com

)(w

ww

.rockwell.com

)(w

ww

.aromat.com

/pgh.htm)

(ww

w.controlm

icrosystems.com

)(w

ww

.cutler-hamm

er.eaton.com)

(ww

w.gefanuceur.com

)(w

ww

.hitachi-ds.com)

(ww

w.idec.com

)(w

ww

.keyence.com)

(ww

w.global.m

itsubishielectric.com)

(ww

w.om

ron.com)

(ww

w.schneider-electric.com

)(w

ww

.seprol.com)

(ww

w.sea.siem

ens.com/controls/)

(ww

w.tic.toshiba.com

)

AB

BA

llen Bradley (R

ockwell A

utomation)

Arom

at C

ontrol Microsystem

s E

aton / Cutler-H

amm

er G

E Fanuc (G

eneral Electric)

Hitachi

IDE

CK

eyenceM

itsubishiO

mron

Schneider E

lectric (Modicon)

Seprol

Siem

ensToshiba

(30615)

Data C

omm

unications & Fieldbus S

ystems

213

Page 215: Data Communication &Fieldbus Systems

K-017

The technical feasibility of using m

icroprocessor-based intelligence as an integral part of field instrum

ents opens many doors of opportunity for enhancing the operational effectiveness of

industrial networked control system

s.

With this opportunity com

es the inevitable requirement that a different m

eans of com

municating w

ith this class of instrumentation is necessary -- m

ore consistent with the

functions of business local area networks.

From

this need and opportunity the fieldbus concept was born.

Unfortunately, like m

any good ideas, the fieldbus concept has not lived up to industry expectations because of a lack of standards and industry consensus about the m

yriad of technical details that m

ust be coordinated in actually making it all happen.

This problem

is especially acute in the industrial context because:

The m

any vendors involved have a vested interest in promoting their proprietary solutions,

which lock custom

ers into their complete system

s solution.

Reliability and safety priorities discourage experim

entation and end-user innovation

The industry does not have a history of creating system

s from plug-and-play m

odular com

ponents -- systems integration is a com

plex, specialists domain.

Industrial practice and preferred vendors vary from country-to-country, creating regional

centers of influence.

FIE

LDB

US

-- SY

ST

EM

CO

NC

EP

TS

Data C

omm

unications & Fieldbus S

ystems

214

Page 216: Data Communication &Fieldbus Systems

K-018

There are at least 10 alternative fieldbus technologies m

aking claim to a "standard" industrial

network solution. O

f these, the following are m

ost credible:

Pro

fibu

s DP

/PA

■ Netw

ork technology similar to IE

EE

802.4 Token B

us■ S

tandardized as a Germ

an National S

tandard (D

IN 1

9245, P

art 3

/4), and is a E

uropean "interim

fieldbus" standard CE

NE

LEC

50170.■ S

iemens and other G

erman industry suppliers have been principal advocates.

■ Prim

ary/initial application is networking P

LC equipm

ent■ P

rofibus DP

is a 12 Mbps technology, P

rofibus PA

operates at 31.35 kbps.

LO

Nw

orks

■ Features a non-determ

inistic network technology (u

ses C

SM

A/C

D a

ccess te

chniq

ue like

E

thern

et)

■ LON

works is not a form

al standard technology, although it is an openly published technical specification and coordinated by A

SH

RA

E of B

AC

net.■ A

major application area is w

ith control applications in intelligent buildings; (HV

AC

, fire-safety, security, elevator controls, etc.), although m

any applications in general fieldbus use (p

etro

chem

icals, w

ate

r contro

l, food p

roce

ssing a

nd e

nerg

y managem

ent)

have been successfully developed.■ LO

Nw

orks networks operate at 1.25 M

bps full duplex over various media.

FIE

LDB

US

- ALT

ER

NA

TIV

E "S

TA

ND

AR

DS

"

(11206)

Data C

omm

unications & Fieldbus S

ystems

215

Page 217: Data Communication &Fieldbus Systems

K-019

Wo

rldF

IP

■ Works w

ith a twisted pair or fiber optic bus architecture netw

ork■ W

orldFIP

is a European standard technology (o

rigin

ally d

eve

loped a

nd sp

onso

red in

F

rance

) ■ W

orldFIP

technology has been very influential in the creation of Foundation F

ieldbus standards -- being the source technology m

ost closely adopted.■ F

IP is a F

rench National S

tandard, and is one of four European C

EN

ELE

C 50170

"interim fieldbus" standards.

■ FIP

is based on a 31.25 kbps, 1 Mbps, 2.5 M

bps or 6 Mbps peer-to-peer netw

ork infrastructure.

IEC

/ISA

SP

50 Field

bu

s

■ The IE

C/IS

A S

P50 F

ieldbus standardization initiative is an attempt to pull together m

uch of the divergent architecture of the various "fieldbusses".

■ Part of w

hat makes this initiative challenging is the vested interest groups; several

national interest groups (nota

bly P

rofib

us a

nd W

orld

FIP

) and groups of equipment

manufacturers, none of w

hich have much m

otivation to simplify the user's situation.

■ The design features of the S

P50 initiative are intended to be flexible, w

ith a view to

accomm

odating as many of the other technology features as possible.

■ The S

P50 F

ieldbus supports a 31.25 kbps service, as well as 1, 2.6 and 5 M

bps mode.

of operation.

FIE

LDB

US

- ALT

ER

NA

TIV

E "S

TA

ND

AR

DS

", cont.

Data C

omm

unications & Fieldbus S

ystems

216

Page 218: Data Communication &Fieldbus Systems

K-020

Fo

un

datio

n F

ieldb

us

■ Foundation F

ieldbus is the result of an industry-sponsored initiative to unify the diverse segm

ents of the fieldbus industry. ■ T

he Foundation F

ieldbus technology development and standards are coordinated w

ith the IE

C/IS

A S

P50 initiative, although there is no com

mitm

ent to synchronizing the two

standards tracks.■ T

here are two categories of com

munication services defined (a

s with

seve

ral o

f the

oth

er fie

ldbusse

s) :● T

he H1 Instrum

ent Bus - oriented tow

ard servicing field instruments

■ operates at 31.25 kbps.■ 1.9 km

maxim

um cable length

● The H

2 System

s Netw

ork Bus - oriented tow

ard supporting networked connectivity

between P

LCs, D

CS

systems, hum

an interface subsystems, etc.

■ operates at 1.0 or 2.5 Mbps.

■ 750 m m

aximum

cable length

■ Intrinsically safe operation is supported in both bus configurations.■ B

oth configurations operate over (nom

inally sh

ield

ed ) tw

isted pair cable media.

■ Both configurations support bus-pow

ered instruments, although the bus pow

ered feature lim

its the number of devices that can be connected per fieldbus segm

ent (and re

stricts th

e H

2 se

rvice to

1.0

Mbps).

■ The standard is m

uch more than a netw

ork technology; it includes a so-called User

Layer set of features that facilitate coordination of measurem

ent units and point descriptions (b

ase

d o

n a

pro

cedure

and d

ata

repre

senta

tion m

eth

od re

ferre

d to

as

functio

n b

locks).

FIE

LDB

US

- ALT

ER

NA

TIV

E "S

TA

ND

AR

DS

", cont.

(11206)

Data C

omm

unications & Fieldbus S

ystems

217

Page 219: Data Communication &Fieldbus Systems

K-021

FO

UN

DA

TIO

N F

IELD

BU

S --

CO

NC

EP

TU

AL C

ON

FIG

UR

AT

ION

BR

IDG

E

H2 (M

egab

it rate) Bus

1.0 or 2.5 Mbps operation

Tw

isted pair or fiber optic cableS

upports redundant mode

Bus pow

ered devices supported750 m

. maxim

um length @

1 Mbps

Intrinsically safe at 1.0 Mbps

H1 (K

ilob

it rate) Bus

31.25 kbps operationT

wisted pair or fiber optic

cableIntrinsically safe operationB

us powered devices supported

1,900 m. m

aximum

length

CO

NT

RO

LLER

Data C

omm

unications & Fieldbus S

ystems

218

Page 220: Data Communication &Fieldbus Systems

K-045

CO

MP

AR

ISO

N A

ND U

SA

GE O

F CO

MM

ON

IND

US

TR

IAL N

ET

WO

RK

S

NE

TWO

RK

AR

CN

et

AS

I

CA

NO

pen

ControlN

et

DeviceN

et

Ethernet

FoundationF

ieldbus

Interbus

LonWorks

Modbus

Profibus D

P/P

A

LEV

EL

Enterprise

Device

Device

Control

Device

Enterprise

Control

Device

Device

Control/D

evice

Control/D

evice

ME

DIA

Flat or U

TP

UT

P

Coax, F

iber

UT

P

UT

P, F

iber

UT

P

UT

P, F

iber

UT

P, F

iber,P

ower line

UT

P

UT

P, F

iber

UT

P, C

oax,F

iber

MA

X R

ATE

10 Mbps

167 Kbps

1 Mbps

5 Mbps

500 Kbps

10 Gbps

100 Mbps

500 Kbps

1.25 Mbps

38.4 Kbps

12 Mbps

MA

X D

IST.

100 m

10 Km

1 Km

30 Km

500 m

2 Km

1.9 Km

400 m

2 Km

500 m

24 Km

MA

X N

OD

ES

255

31

127

9964

1024

240

256

32000

250

127

US

A U

SA

GE

9%2%3%

15%

22%

73%

3%7%4%

29%

8%

INT'L U

SA

GE

12%

9%

12%

14%

17%

50%

7%7%6%

22%

26%

NO

TE

: Usage data taken from

 a 1999 survey by Control E

ngineering apparently indicating the percentage of organizations actually using each technology  (i.e. installed base at that tim

e)

(30616)

Data C

omm

unications & Fieldbus S

ystems

219

Page 221: Data Communication &Fieldbus Systems

K-031

TH

E M

OD

BU

S /A

RC

HIT

EC

TU

RE

PR

OT

OC

OL

Modbus is a nom

inally proprietary comm

unications architecture/protocol initially developed as part of the M

odicon brand of PLC

s and attached equipment.

Modbus is a w

idely used industrial comm

unications environment that specifies both:

an equipment configuration (e

ither a

bus o

r star to

polo

gy)

a comm

unications protocol ( a m

aste

r-slave

pollin

g p

roto

col)

The m

aster-slave architecture of Modbus supports only one m

aster device per bus segment,

consistent with a single (n

on-re

dundant) P

LC interacting w

ith a number of slave devices.

Applications w

hich require interaction with higher-level system

s (such

as H

um

an M

ach

ine

Inte

rface

s [HM

Is] or p

ossib

ly SC

AD

A syste

ms) are often configured redundantly -- requiring

duplicate Modbus netw

orks to support redundant operations.

A new

er version of Modbus (M

odbus P

lus) is a m

ore sophisticated architecture/protocol, but is not nearly as w

idely accepted as an industry standard.

Modbus P

lus is a token-passing, distributed control network system

-- not remarkably different

from the com

mon token passing LA

N system

s used in business comm

unications applications.

A key feature of this approach is it offers peer-to-peer capability, in distinct contrast to the

master/slave com

munication in basic M

odbus.

Data C

omm

unications & Fieldbus S

ystems

220

Page 222: Data Communication &Fieldbus Systems

K-032

TH

E M

OD

BU

S N

ET

WO

RK

TO

PO

LOG

IES

The tw

o comm

on Modbus netw

ork configurations are bus and star topology -- and several variations w

ithin each. Typical im

plementations are suggested in the accom

panying sketches.

MA

ST

ER

DE

VIC

EB

US

TO

PO

LO

GY

MO

DE

M

MO

DE

M

SLA

VE

DE

VIC

E

MO

DE

M

SLA

VE

DE

VIC

E

CO

NF

IGU

RA

TIO

N S

HO

WN

SU

GG

ES

TS

T

ELE

PH

ON

E C

ON

NE

CT

IVIT

Y. 4-W

AY

4-W

IRE

BR

IDG

ES

WO

ULD

SU

PP

OR

T A

LO

CA

L HA

RD

-WIR

ED

CO

NF

IGU

RA

TIO

N

MA

ST

ER

DE

VIC

E

ST

AR

TO

PO

LO

GY

DIG

ITA

LB

RID

GE

SLA

VE

DE

VIC

E

SLA

VE

DE

VIC

E

SLA

VE

DE

VIC

E

DIG

ITA

L BR

IDG

E IS

AN

AC

TIV

E

ELE

CT

RO

NIC

RS

-232 (typica

lly) B

RO

AD

CA

ST

OR

RE

PE

AT

ER

UN

IT

(11206)

Data C

omm

unications & Fieldbus S

ystems

221

Page 223: Data Communication &Fieldbus Systems

K-033

TH

E M

OD

BU

S P

RO

TO

CO

L

The M

odbus protocol is a master-slave polling regim

e, where sim

ple polling instructions are issued to addressed destination devices, and a corresponding response is received.

Typical M

odbus master station polling m

essage format is illustrated in the accom

panying box.

The key to flexibility w

ith the Modbus protocol is the approxim

ately 21 standard function codes (p

lus 2

00-o

dd re

serve

d/sp

ecia

l use

codes).

The polling m

essage example suggested in the accom

panying box consists of five fields:

Slave A

ddress (05) -- allows up to 247 slave addresses per bus segm

ent.

Function C

ode (03) -- designates the functional purpose of this m

essage (se

e co

de su

mm

ary n

ext

page)

Read at S

tart Register

(00F1) designates the

register number at w

hich data recovery is to begin

SLA

VE

AD

DR

ES

SF

UN

CT

ION

CO

DE

RE

AD

A

T S

TA

RT

R

EG

IST

ER

NU

MB

ER

OF

R

EG

IST

ER

ST

O R

EA

D

ER

RO

RC

HE

CK

CO

DE

TY

PIC

AL M

OD

BU

S P

OLLIN

G M

ES

SA

GE

FIE

LD

DE

SC

RIP

TIO

NS

EX

AM

PLE

FIE

LD

CO

NT

EN

TS

(HE

X F

OR

MA

T)

0503

00F1

0002E

3

Data C

omm

unications & Fieldbus S

ystems

222

Page 224: Data Communication &Fieldbus Systems

K-034

TH

E M

OD

BU

S P

RO

TO

CO

L, cont.

Modbus protocol fields, cont.

Num

ber of registers to Read (0002) -- specifies the num

ber of data register contents to be recovered in this transaction

Error C

heck Code (E

3) -- data integrity calculation used to validate received data in preceding m

essage.

A sam

pler of Modbus function codes is given in the accom

panying box.

Data is alw

ays sent as an asynchronous character, and will be encoded either as:

AS

CII representations of H

EX

characters, orB

inary codes (8-b

it byte

s, or o

ctets)

010203040506070809

RE

AD

CO

IL ST

AT

US

RE

AD

INP

UT

ST

AT

US

RE

AD

HO

LDIN

G R

EG

IST

ER

SR

EA

D IN

PU

T R

EG

IST

ER

SF

OR

CE

SIN

GLE

CO

ILR

ES

ET

SIN

GLE

RE

GIS

TE

RR

EA

D E

XC

EP

TIO

N S

TA

TU

SLO

OP

BA

CK

DIA

GN

OS

TIC

TE

ST

PR

OG

RA

M

101114151617192021

PO

LL PR

OG

RA

M C

OM

PLE

TE

FE

TC

H E

VE

NT

CO

UN

TE

RP

OLL P

RO

GR

AM

CO

MP

LET

EF

OR

CE

MU

LTIP

LE C

OILS

PR

ES

ET

MU

LTIP

LE R

EG

IST

ER

SR

EP

OR

T S

LAV

E ID

RE

SE

T C

OM

MU

NIC

AT

ION

S LIN

KR

EA

D G

EN

ER

AL R

EF

ER

EN

CE

WR

ITE

GE

NE

RA

L RE

FE

RE

NC

E

SA

MP

LE

R O

F M

OD

BU

S F

UN

CT

ION

CO

DE

S

(11206)

Data C

omm

unications & Fieldbus S

ystems

223

Page 225: Data Communication &Fieldbus Systems

K-061

ET

HE

RN

ET

/IP

Ethernet/IP

 is an emerging standard specification for open architecture industrial 

networking that is confusing in its first encounter:

The "IP

" part of the specification does not denote Internet Protocol as one m

ight anticipate, but rather Industrial P

rotocol -- Thus, it is  E

thernet Industrial Protocol.

Having said that, E

thernet/IP is based on a T

CP over Internet P

rotocol framew

ork.

It is a whole m

ulti-layer protocol specification with m

uch more broad im

plications than sim

ply adapting Ethernet to the industrial environm

ent -- although that is an included feature of the technology.

The m

ost important feature of E

thernet/IP is not the adaptation of IT

-oriented lower layer 

technologies like Ethernet and T

CP

/IP but the unique A

pplication Layer, which is the 

industrially oriented Control and Inform

ation Protocol  (C

IP).

CIP provides a set of real-tim

e I/O - and peer-to-peer m

essaging services that supports the M

TU in its com

munication w

ith both the RT

U and w

ith the HM

I.

CIP is an application-layer protocol that w

as in place prior to Ethernet/IP

 developments.  It 

was created initially to provide a sim

ilar set of application-layer messaging services for 

ControlN

et and DeviceN

et.

(40308)

D

ata Com

munications &

Fieldbus System

s224

Page 226: Data Communication &Fieldbus Systems

K-062

CIP LA

YE

RE

D A

RC

HIT

EC

TU

RE V

IEW

INTE

RN

ET P

RO

TOC

OL

TCP

UD

P

IEE

E 802.3 E

THE

RN

ET - LLC

 & M

AC LA

YE

RS

IEE

E 802.3 E

THE

RN

ET - P

HY

SIC

AL LA

YE

R

CO

NTR

OL-

NE

TTR

AN

S-

PO

RT

DE

VIC

E-

NE

TTR

AN

S-

PO

RT

CTD

MA

CA

NC

SM

A/N

BA

PH

YS

ICA

LP

HY

SIC

AL

CIP M

ES

SA

GE R

OU

TING & C

ON

NE

CTIO

N M

AN

AG

EM

EN

T

CIP D

ATA

 MA

NA

GE

ME

NT S

ER

VIC

ES (E

xplicit Messages &

 I/O M

essages)

CIP A

PP

LICA

TION LA

YE

R & A

PP

LICA

TION O

BJE

CT LIB

RA

RY

VA

RIO

US D

EV

ICE P

RO

FILES (S

EN

SO

RS

, CO

NTR

OLS

, etc.)

CONTROL AND INFORMATIONPROTOCOL

EN

CA

PS

ULA

TION

(40306)

Data C

omm

unications & Fieldbus S

ystems

225

Page 227: Data Communication &Fieldbus Systems

K-063

DE

VIC

EN

ET

'S C

SM

A/N

BA P

RO

TO

CO

L

DeviceN

et is an industry-standard, open specification device-level network that has been designed 

with a high priority on real-tim

e control applications.

A key feature of this class of application is the need for a highly predictable, or determ

inistic network 

delivery subsystem.

Ethernet shares the C

arrier Sense M

ultiple Access   (C

SM

A)  feature of this protocol, w

hich really m

eans that devices respect active traffic on the network, and w

ait for a gap in the traffic before starting to transm

it, much like the w

ay vehicular traffic yields the right-of-way.

Ethernet tolerates the inevitable collisions that occur in this process by detecting them

, accepting the destruction of data, and queuing the traffic for later retransm

ission -- which results in 

troublesome delays for real-tim

e, or  delay-sensitive traffic.

The C

ontrol Area N

etwork  (C

AN

)  over which D

eviceNet operates is based on a unique variation on 

this idea -- instead of detecting and accepting collisions, it uses what they call C

arrier Sense 

Multiple A

ccess with N

on-destructive Bitw

ise Arbitration  (C

SM

A/N

BA

).

CS

MA

/NB

A em

ploys a dynamic arbitration m

echanism, such that w

hen a collision is detected, one of the colliding sending devices is allow

ed to continue to completion, rather than w

aiting for a later clear opportunity.

This difference m

akes the CS

MA

/NB

A access protocol m

uch more determ

inistic and thus suitable to tim

e-critical applications.

(40306)

Data C

omm

unications & Fieldbus S

ystems

226

Page 228: Data Communication &Fieldbus Systems

MO

DB

US

PR

OTO

CO

L

►D

efines a message structure that

controllers will recognize and use

►Independent to the type of netw

orks (R

S-232, RS-422/485, Ethernet, etc)

►D

escribes the process a controller uses to :o

request access to another device, o

respond to requests from the other

devices, o

detects and reports errors.►

Master-slave arrangem

ent

►Establishes a com

mon form

at for the layout and contents of m

essage fields

Data C

omm

unications & Fieldbus S

ystems

227

Page 229: Data Communication &Fieldbus Systems

MO

DB

US

TRA

NS

AC

TION

►D

ata exchange between devices is called

“transaction”►

Only the m

aster can initiate transactions (“query”)

►The slave respond by supplying the requested data to the m

aster, or by taking the action requested in the query.

►The m

aster can address individual slaves, or can initiate a broadcast m

essage to all slaves. ►

Maxim

um 246 slaves can be addressed (1-247)

►Slaves return a m

essage (called a ‘response’) to queries that are addressed to them

individually. ►

Responses are not returned to broadcast

queries from the m

aster.

Data C

omm

unications & Fieldbus S

ystems

228

Page 230: Data Communication &Fieldbus Systems

ME

SS

AG

E FO

RM

AT

►STA

RT

ostarting delim

iter of a message

►A

DD

RESS

oaddress of destination devices

oaddress 0 is used for broadcast

►FU

NC

TION

ocode of m

aster’s comm

and function

►D

ATA

oadditional inform

ation which the slave m

ust use to take the action defined by the function code

►LR

C/C

RC

CH

ECK

om

essage frame check

►EN

Do

ending delimiter of a m

essage

ASC

IIForm

at

RTU

Format

Data C

omm

unications & Fieldbus S

ystems

229

Page 231: Data Communication &Fieldbus Systems

FUN

CTIO

N C

OD

ES

►Each code represents the m

aster’s com

mand to the slaves

►C

ategories :o

Data query (coil/register)

oS

tatus/register change comm

ando

Program

ming com

mand

oD

iagnosticso

Device inform

ation query►

Some function codes are not

supported by all devices

Data C

omm

unications & Fieldbus S

ystems

230

Page 232: Data Communication &Fieldbus Systems

ER

RO

R C

HE

CK

ING

►Error checking m

ethod :o

Parity check (even/odd) for each character (optional)

oFram

e check for entire message (C

RC

/LRC

)►

Both the character check and m

essage frame check (C

RC

/LRC

) are generated in the master

device and applied to the message contents before transm

ission►

The slave device checks each character and the entire message fram

e during receipt and generates C

RC

’/LRC

’►

If the LRC

/CR

C generated by m

aster device is not the same as LR

C’/C

RC

’ generated by slave device, the m

essage contains some errors

Data C

omm

unications & Fieldbus S

ystems

231

Page 233: Data Communication &Fieldbus Systems

AN

EX

AM

PLE

OF M

OD

BU

S TR

AN

SA

CTIO

N

►R

ead inputs 10197–10218 from slave

device 17►

Message form

at : RTU

►A

ddress = 17 = 11 hex►

Function codes = 02 (Read Input

Status)►

Datao

Starting input address = 10197

relative to 10000 = 00C4 hex (P

LC

address)o

Num

ber of input points = 20 points = 14 hex.

Data C

omm

unications & Fieldbus S

ystems

232

Page 234: Data Communication &Fieldbus Systems

MO

DB

US

PLU

S

►Local area netw

ork system designed

for industrial control applications. ►

Each network supports up to 32

addressable node devices (64 if repeater is used)

►1 M

bps data transfer rate ►

Token passing derivative that uses the M

OD

BU

S messaging structure

►Provides host level peer-to-peer com

munication for the netw

ork devices.

►A

pplications include transferring of process control and supervisory m

essages.

Data C

omm

unications & Fieldbus S

ystems

233

Page 235: Data Communication &Fieldbus Systems

MO

DB

US

PLU

S FR

AM

E (1)

►M

odbusm

essages sent on Modbus

Plus networks are em

bedded into the Logical Link C

ontrol (LLC) level fram

e.

►M

odbusm

essage fields consist of 8–bit bytes, similar to those used w

ith RTU

framing.

►The Slave A

ddress field is converted to a Modbus

Plus routing path by the sending device.

►The C

RC

field is not sent in the Modbus

message, because it w

ould be redundant to the CR

C

check performed at the H

igh–level Data Link C

ontrol (HD

LC) level.

►The rest of the m

essage remains as in the standard serial form

at.

►The application softw

are (e.g., MSTR

blocks in controllers, or Modcom

III in hosts) handles the fram

ing of the message into a netw

ork packet.

Data C

omm

unications & Fieldbus S

ystems

234

Page 236: Data Communication &Fieldbus Systems

MO

DB

US

PLU

S FR

AM

E (2)

Data C

omm

unications & Fieldbus S

ystems

235

Page 237: Data Communication &Fieldbus Systems

MO

DB

US

TCP

►A

variant of the MO

DB

US fam

ily of simple, vendor-neutral com

munication protocols intended

for supervision and control of automation equipm

ent.

►C

overs the use of MO

DB

US m

essaging in an ‘Intranet’ or ‘Internet’ environment using the

TCP/IP protocols.

►U

se mostly for Ethernet attachm

ent of PLC’s, I/O

modules, and ‘gatew

ays’ to other simple

field buses or I/O netw

orks.

►B

eing promoted as ‘de-facto standard’

Data C

omm

unications & Fieldbus S

ystems

236

Page 238: Data Communication &Fieldbus Systems

MO

DB

US

TCP

FRA

ME

►Em

beds a MO

DB

US fram

e into a TCP fram

e

►The connection-oriented TC

P protocol is used rather than the datagram-oriented

UD

P to keep control of an individual ‘transaction’

►The M

OD

BU

S checksum is not used as the Ethernet TC

P/IP link layer checksum

mechanism

s are relied upon to guarantee data integrity

Data C

omm

unications & Fieldbus S

ystems

237

Page 239: Data Communication &Fieldbus Systems

DA

TA H

IGH

WA

Y P

LUS

(DH

+)

►A

local area network designed to support rem

ote programm

ing for factory-floor applications.o

Connects a m

aximum

of 64 devices per link (although 15 or fewer nodes are recom

mended per

link)oP

LC-5 and S

LC 5/04 program

mable controllers

oC

olor graphics systems

oP

ersonal computers

oH

ost computers

oN

umerical controls

oP

rogramm

able RS

-232-C/R

S-422 devices

oC

abling(1770-CD

shielded twin-axial):

otrunk-line -10,000 ft m

ax o

drop-lines -100 ft max

o“floating m

aster” token passing arrangement

o57.6k bit/s data rate

Data C

omm

unications & Fieldbus S

ystems

238

Page 240: Data Communication &Fieldbus Systems

DH

PLU

S N

ETW

OR

K

Data C

omm

unications & Fieldbus S

ystems

239

Page 241: Data Communication &Fieldbus Systems

DH

-485

►D

H-485 is a local area netw

ork (LAN

) designed for factory-floor applications.

oC

onnects up to 32 devices, including SLC

500 and MicroLogix

1000 programm

able controllers, color graphics system

s, and personal computers (w

ith RS

Linxsoftw

are)

►The D

H-485 link together w

ith auxiliary RS-232-C

(DF1 protocol) links m

ake up the D

H-485 netw

ork.

►A

single PC connected to netw

ork can be used to program all the SLC

500 controllers (using SLC

500 programm

ing software)

oTrunkline

length 4000 ft max

o19.2k bit/s m

ax data transfer rate

Data C

omm

unications & Fieldbus S

ystems

240

Page 242: Data Communication &Fieldbus Systems

DH

-485 NE

TWO

RK

Data C

omm

unications & Fieldbus S

ystems

241

Page 243: Data Communication &Fieldbus Systems

HA

RT

(Highw

ay Addressable R

emote Transducer)

►Interconnects sm

art transmitter in a tw

o-wire netw

orko

1200 bps data rateo

Shielded Tw

isted Pair (2 w

ire loop)o

Support m

ultivariable transmitter w

ith the use of HA

RT splitter

oC

an be used as either conventional transmitter or sm

art transmitter

►N

ormally not used for control caused by low

data rate

►Sm

art instrument benefits :

oIncreased reliability

oS

elf-diagnosticso

Greater accuracy and precision

Data C

omm

unications & Fieldbus S

ystems

242

Page 244: Data Communication &Fieldbus Systems

HA

RT LA

YE

RS

Data C

omm

unications & Fieldbus S

ystems

243

Page 245: Data Communication &Fieldbus Systems

HA

RT B

AS

ICS

HA

RT (H

ighway A

ddressable Rem

ote Transducer) was developed by Fisher-R

osemount

to retrofit 4-to-20mA current loop transducers w

ith digital data comm

unication.

►N

ormally not used for control caused by low

data rate

►H

AR

T modulates the 4-20m

A current with a low

-level frequency-shift-keyed (FSK

) sine-w

ave signal, without affecting the average analogue signal.

►H

AR

T uses low frequencies (1200H

z and 2200 Hz) to deal w

ith poor cabling, its rate is 1200 B

aud -but sufficient.

►H

AR

T uses Bell 202 m

odem technology, A

DS

L technology was not available in 1989, at

the time H

AR

T was designed

Data C

omm

unications & Fieldbus S

ystems

244

Page 246: Data Communication &Fieldbus Systems
Page 247: Data Communication &Fieldbus Systems
Page 248: Data Communication &Fieldbus Systems

HA

RT FR

AM

E FO

RM

AT

preamble

startaddress

comm

andbytecount

[status]data

datachecksum

11..5

5..20(xFF)

11

[2](slave response)

0..25(recom

mended)

1

Hart fram

e format (character-oriented):

Data C

omm

unications & Fieldbus S

ystems

247

Page 249: Data Communication &Fieldbus Systems

HA

RT M

ES

SA

GE

STR

UC

TUR

E

Data C

omm

unications & Fieldbus S

ystems

248

Page 250: Data Communication &Fieldbus Systems

HA

RT C

OM

MA

ND

S

►The H

AR

T comm

and set provides uniform and consistent com

munication for all field devices

Host applications m

ay implem

ent any of the necessary comm

ands for a particular application.

►U

NIVER

SAL :

oU

nderstood by all devices o

Provide access to inform

ation useful in normal operations (e.g., read prim

ary variable and units).

►C

OM

MO

N PR

AC

TICE

oP

rovide functions implem

ented by many, but not necessarily all, H

AR

T comm

unication devices.

►D

EVICE SPEC

IFIC

oR

epresent functions that are unique to each field device.o

Access setup, calibration, and construction inform

ationo

Available from

device manufacturers.

Data C

omm

unications & Fieldbus S

ystems

249

Page 251: Data Communication &Fieldbus Systems

HA

RT C

OM

MA

ND

S

Data C

omm

unications & Fieldbus S

ystems

250

Page 252: Data Communication &Fieldbus Systems

HA

RT -C

omm

ands►

Universal com

mands (m

andatory):•

identification,•

primary m

easured variable and unit (floating point format)

•loop current value (%

) = same info as current loop

•read current and up to four predefined process variables

•w

rite short polling address•

sensor serial number

•Instrum

ent manufacturer, m

odel, tag, serial number, descriptor,

range limits, …

►C

omm

on practice (optional)•

time constants, range,

•E

EP

RO

M control, diagnostics,…

►Total: 44 standard com

mands, plus user-defined com

mands

►Transducer-specific (user-defined)•

calibration data,•

trimm

ing,…

Data C

omm

unications & Fieldbus S

ystems

251

Page 253: Data Communication &Fieldbus Systems

HA

RT -IM

PO

RTA

NC

E

Practically all 4-20m

A devices come equipped w

ith HA

RT today

About 40 M

illion devices are sold per year.

more info:

http://ww

w.thehartbook.com

/default.asp

http://ww

w.hartcom

m.org/

Data C

omm

unications & Fieldbus S

ystems

252

Page 254: Data Communication &Fieldbus Systems

AS

I A

ctuator Sensor Interface

►Very sim

ple sensor bus for building automation, com

bining power and data on the sam

e w

ires, transmitting m

ostly binary signals

D0 = sensor 1

D1 = sensor 2

D2 = actuator 1

D3 = actuator 2

P0

up to 4 sensorsor/and

4 actuatorsenergy

AS

-InterfaceS

lave IC

1 module

enclosure

oneconnection

Watchdog

Data C

omm

unications & Fieldbus S

ystems

253

Page 255: Data Communication &Fieldbus Systems

AS

I

►M

echanically coded flat cable -two w

ires for data and power

►insulation piercing connectorso

simple &

safeo

protection class up to IP67,

oeven after disconnecting

►directly connected slaveso

sensors, actuatorso

valve terminals

oelectrical m

odules etc.

vampire-connector

Data C

omm

unications & Fieldbus S

ystems

254

Page 256: Data Communication &Fieldbus Systems

AS

I►

Master-slave principleo

up to 31 slaves on one lineo

cycle time < 5 m

s►

Each slave can have up to 4 digital inputs + 4 digital outputso

additional 4 parameter bits / slave

oM

ax. 248 digital Inputs and Outputs

►A

utomatic address num

bering via bus connection

master

controller

ToSlave1

Slave1

ToSlave2

Slave2

ToSlave1

Slave1

ToSlave31

Slave31

master calls

slave response

Data C

omm

unications & Fieldbus S

ystems

255

Page 257: Data Communication &Fieldbus Systems

AS

I TOP

OG

RA

PH

Yo

no terminating resistor necessary

ofree tree structure of netw

orko

protection class up to IP67

ounshielded 2-w

ire cable

odata and pow

er on one cableo

extension: 100 m (300 m

with

extender)

starline

branch linestree

controller

Master

controller

Master

Master

Master

Slave

Slave

Slave

Slave

Slave

Slave

Slave

Slave

Slave

Slave S

laveS

lave

Slave

Slave

Slave

Slave

SlaveS

lave Slave

Slave

controllercontroller

Data C

omm

unications & Fieldbus S

ystems

256

Page 258: Data Communication &Fieldbus Systems

INTE

RB

US

-S►

Discrete M

anufacturing bus

+Standard in C

ENELEC

+1700 products, 270 m

anufacturers,375.000 applications

+G

ood experience in field wiring

(intelligent wiring bar)

+Easy to engineer

+Easy to program

(IEC 61131)

+Far extension (400m

-13 km)

+G

ood response time

+C

onformance test

-M

arket centered on manufacturing

-Lim

ited number of variables (4096 bits)

-R

ing structure sensitive to disruptions

-Sensitive to m

isplacement

-C

lumsy and slow

message service

-M

edium user com

munity

-Few

and costly tools

-Strong ties to Phoenix C

ontact

Data C

omm

unications & Fieldbus S

ystems

257

Page 259: Data Communication &Fieldbus Systems

INTE

RB

US

-S TO

PO

LOG

Y

Master

400 m betw

eendevices

bus coupler

localbus (flat cable)

IO

loop (2 wire, includes pow

er)

IOIO

BC

remote "bus"(ring)

BA

BA

5-wire

optical fibresalso available

Data C

omm

unications & Fieldbus S

ystems

258

Page 260: Data Communication &Fieldbus Systems

Day Four

►C

AN

BU

S

►P

rofiBU

S

►Foundation Fieldbus

►S

afety & R

eliability

Data C

omm

unications & Fieldbus S

ystems

259

Page 261: Data Communication &Fieldbus Systems

►C

AN

is an important em

bedded protocolo

Prim

arily automotive, but used in m

any other places

►C

AN

specifies:o

Physical layer

oP

rotocol layero

Message filtering layer (w

ith add-on protocols)

►N

ote o

How

message prioritization achieved

oH

ow “sm

all” nodes can be kept from overloading w

ith received messages

CA

N O

VE

RV

IEW

Data C

omm

unications & Fieldbus S

ystems

260

Page 262: Data Communication &Fieldbus Systems

THE

DE

VE

LOP

ME

NT O

F CA

N

►The developm

ent of CA

N began w

hen more and m

ore electronic devices were

implem

ented into modern m

otor vehicles. Exam

ples of such devices include engine m

anagement system

s, active suspension, AB

S, gear control, lighting control, air

conditioning, airbags and central locking. All this m

eans more safety and m

ore comfort for

the driver and of course a reduction of fuel consumption and exhaust em

issions.

►To im

prove the behavior of the vehicle even further, it was necessary for the different

control systems (and their sensors) to exchange inform

ation. This was usually done by

discrete interconnection of the different systems (i.e. point to point w

iring). The requirem

ent for information exchange has then grow

n to such an extent that a cable netw

ork with a length of up to several m

iles and many connectors w

as required. This produced grow

ing problems concerning m

aterial cost, production time and reliability.

Data C

omm

unications & Fieldbus S

ystems

261

Page 263: Data Communication &Fieldbus Systems

BE

FOR

E C

AN

Data C

omm

unications & Fieldbus S

ystems

262

Page 264: Data Communication &Fieldbus Systems

WITH

CA

N

►The solution to this problem

was the

connection of the control systems via a

serial bus system. This bus had to fulfill

some special requirem

ents due to its usage in a vehicle. W

ith the use of CA

N,

point-to-point wiring is replaced by one

serial bus connecting all control systems.

This is accomplished by adding som

e C

AN

-specific hardware to each control unit

that provides the "rules" or the protocol for transm

itting and receiving information via

the bus.

Data C

omm

unications & Fieldbus S

ystems

263

Page 265: Data Communication &Fieldbus Systems

THE

CA

N B

US

►C

AN

is a broadcast type of bus. o

This means that all nodes can "hear" all transm

issions. There is no way to send a m

essage to just a specific node; all nodes w

ill invariably pick up all traffic. The CA

N hardw

are, how

ever, provides local filtering so that each node may react only on the “interesting”

messages.

Data C

omm

unications & Fieldbus S

ystems

264

Page 266: Data Communication &Fieldbus Systems

BA

SIC

CO

NFIG

UR

ATIO

N

Data C

omm

unications & Fieldbus S

ystems

265

Page 267: Data Communication &Fieldbus Systems

CA

N B

US

OV

ER

VIE

W

►The physical layer uses differential transm

ission on a twisted pair w

ire. The bus uses N

on-Return To Zero (N

RZ) w

ith bit-stuffing.

►The nodes are connected to the bus in a w

ired-andfashion: if just one node

is driving the bus to a logical 0, then the whole bus is in that state regardless

of the number of nodes transm

itting a logical 1.

►M

ax. transfer rate of 1000 kilobits per second at a maxim

um bus length of 40

meters or 130 feet w

hen using a twisted w

ire pair which is the m

ost comm

on bus m

edium used for C

AN

.

►M

essage length is short with a m

aximum

of 8 data bytes per message and

there is a low latency betw

een transmission request and start of transm

ission. The m

essages are protected by a CR

C type checksum

Data C

omm

unications & Fieldbus S

ystems

266

Page 268: Data Communication &Fieldbus Systems

CA

N B

US

OV

ER

VIE

W

►The bus access is handled via the advanced serial com

munications protocol

Carrier S

ense Multiple A

ccess/Collision D

etection with N

on-Destructive

Arbitration. This m

eans that collision of messages is avoided by bitw

ise arbitration w

ithout loss of time.

►There is no explicit address in the m

essages, instead, each message carries

a numeric value w

hich controls its priority on the bus, and may also serve as

an identification of the contentsof the m

essage.

►A

n elaborate error handling scheme that results in retransm

itted messages

when they are not properly received.

►There are effective m

eans for isolating faults and removing faulty nodes from

the bus.

Data C

omm

unications & Fieldbus S

ystems

267

Page 269: Data Communication &Fieldbus Systems

BA

SIC

BIT E

NC

OD

ING

Data C

omm

unications & Fieldbus S

ystems

268

Page 270: Data Communication &Fieldbus Systems

CA

N B

US

CH

AR

AC

TER

STIC

S

Data C

omm

unications & Fieldbus S

ystems

269

Page 271: Data Communication &Fieldbus Systems

BU

S C

HA

RA

CTE

RIS

TICS

–W

IRE

D A

ND

Only if all nodes transm

it recessive bits (ones), the B

us is in the recessive state.If any one node transm

its a dominant bit (zero), the

bus is in the dominant state.

oT is Transmitter, R

is receiver. Note nodes can therefore check the line w

hile transmitting. This is

important particularly during arbitration.D

ata Com

munications &

Fieldbus System

s270

Page 272: Data Communication &Fieldbus Systems

BU

S A

CC

ES

S A

ND

AR

BITR

ATIO

N –

CS

MA

/CD

ND

A

CSM

A/C

D N

DA –

Carrier Sense M

ultiple Access/C

ollision avoidance by Non D

estructive arbitration

Data C

omm

unications & Fieldbus S

ystems

271

Page 273: Data Communication &Fieldbus Systems

BU

S TR

AN

SM

ISS

ION

SP

EE

DA

rbitration limits bus speed. M

aximum

speed = 2 x tpdtpd

= propagation delay of electrical medium

Data C

omm

unications & Fieldbus S

ystems

272

Page 274: Data Communication &Fieldbus Systems

THE

CA

N P

RO

TOC

OL

►Specifies how

small packets of data m

ay be transported from point A

to point B using a

shared comm

unications medium

.

►It (quite naturally) contains nothing on topics such aso

flow control

otransportation of data larger than can fit in a 8-byte m

essageo

node addresseso

establishment of com

munication, etc.

Data C

omm

unications & Fieldbus S

ystems

273

Page 275: Data Communication &Fieldbus Systems

HIG

HE

R LA

YE

R P

RO

TOC

OLS

►H

igher layer protocols are used in order to

ostandardize startup procedures including bit rate setting

odistribute addresses am

ong participating nodes or kinds of messages

odeterm

ine the layout of the messages

oprovide routines for error handling at the system

level

►Som

e high layer protocols

oD

evice neto

CA

NK

ingdomo

CA

Nopen

Data C

omm

unications & Fieldbus S

ystems

274

Page 276: Data Communication &Fieldbus Systems

THE

CA

N S

TAN

DA

RD

►The C

AN

standard defines four message types

oD

ata Frame –

the predominantly used m

essage typeo

Rem

ote Frame

oE

rror Frame

oO

verload Frame

►The m

essages uses a clever scheme of bit-w

ise arbitration to control access to the bus, and each m

essage is tagged with a priority.

►The C

AN

standard also defines an elaborate scheme for error handling and confinem

ent.

►C

AN

may im

plemented using different physical layers, and there are also a num

ber of different connector types in use.D

ata Com

munications &

Fieldbus System

s275

Page 277: Data Communication &Fieldbus Systems

THE

DA

TA FR

AM

E

►Sum

mary: "H

ello everyone, here's some data labeled X, hope you like it!"

►The D

ata Frame is the m

ost comm

on message type. It com

prises the following m

ajor parts (a few

details are omitted for the sake of brevity):

oThe A

rbitration Field, which determ

ines the priority of the message w

hen two or m

ore nodes are contending for the bus. The A

rbitration Field contains:o

For CA

N 2.0A

, an 11-bit Identifier and one bit, the RTR

bit, which is dom

inant for data fram

es. o

For CA

N 2.0B

, a 29-bit Identifier (which also contains tw

o recessive bits: SR

R and ID

E)

and the RTR

bit.

othe D

ata Field, which contains zero to eight bytes of data.

othe C

RC

Field, which contains a 15-bit checksum

calculated on most parts of the m

essage. This checksum

is used for error detection.

oan A

cknowledgem

ent Slot; any

CA

N controller that has been able to correctly receive the

message sends an A

cknowledgem

ent bit at the end of each message. The transm

itter checks for the presence of the A

cknowledge bit and retransm

its the message if no acknow

ledge was

detected.

Data C

omm

unications & Fieldbus S

ystems

276

Page 278: Data Communication &Fieldbus Systems

CA

N D

ATA

FRA

ME

SN

ote 1: It is worth noting that the presence of an A

cknowledgem

ent Bit on the bus does not m

ean that any of the intended

addressees has received the message. The only thing w

e know is that one or m

orenodes on

the bus has received it correctlyN

ote 2: The Identifier in the Arbitration Field is not, despite of its nam

e, necessarily identifying the contents of the m

essage.

►C

AN

2.0A (“standard C

AN

” 11-bit ID) D

ata Frame.

►C

AN

2.0B (“extended C

AN

” 29-bit ID) D

ata Frame.

Data C

omm

unications & Fieldbus S

ystems

277

Page 279: Data Communication &Fieldbus Systems

THE

RE

MO

TE FR

AM

E

►Sum

mary: "H

ello everyone, can somebody please produce the data labeled X?"

►The R

emote Fram

e is just like the Data Fram

e, with tw

o important differences:

oIt is explicitly m

arked as a Rem

ote Frame (the R

TR bit in the A

rbitration Field is recessive), and

othere is no D

ata Field.

►The intended purpose of the R

emote Fram

e is to solicit the transmission of the

corresponding Data Fram

e. If, say, node A transm

its a Rem

ote Frame w

ith the Arbitration

Field set to 234, then node B, if properly initialized, m

ight respond with a D

ata Frame w

ith the A

rbitration Field also set to 234.

►R

emote Fram

es can be used to implem

ent a type of request-response type of bus traffic m

anagement. In practice, how

ever, the Rem

ote Frame is little used. It is also w

orth noting that the C

AN

standard does not prescribethe behaviouroutlined here. M

ost CA

N controllers

can be programm

ed either to automatically respond to a R

emote Fram

e, or to notify the local C

PU instead.

Data C

omm

unications & Fieldbus S

ystems

278

Page 280: Data Communication &Fieldbus Systems

RE

MO

TE FR

AM

E (C

ON

TD.)

►There's one catch w

ith the Rem

ote Frame: the D

ata Length Code m

ust be set to the length of the expected response m

essage. Otherw

ise the arbitration will not w

ork.

►Som

etimes it is claim

ed that the node responding to the Rem

ote Frame is starting its

transmission as soon as the identifier is recognized, thereby "filling up" the em

pty Rem

ote Fram

e. This is not the case.

►A

Rem

ote Frame (2.0A

type):

Data C

omm

unications & Fieldbus S

ystems

279

Page 281: Data Communication &Fieldbus Systems

THE

ER

RO

R FR

AM

E

Summ

ary: (everyone, aloud) "OH

DEA

R, LET'S TR

Y A

GA

IN"

Sim

ply put, the Error Fram

e is a special message that

violates the framing rules of a C

AN

message. It is

transmitted w

hen a node detects a fault and will cause all

other nodes to detect a fault -so they will send E

rror Fram

es, too. The transmitter w

ill then automatically try to

retransmit the m

essage. There is an elaborate scheme of

error counters that ensures that a node can't destroy the bus traffic by repeatedly transm

itting Error Fram

es.

The Error Frame

The Error Fram

e consists of an Error Flag, w

hich is 6 bits of the sam

e value (thus violating the bit-stuffing rule) and an E

rror Delim

iter, which is 8 recessive bits. The E

rror D

elimiter provides som

e space in which the other nodes on

the bus can send their Error Flags w

hen they detect the first E

rror Flag.

Data C

omm

unications & Fieldbus S

ystems

280

Page 282: Data Communication &Fieldbus Systems

THE

OV

ER

LOA

D FR

AM

E

Summ

ary: "I'm

a very busy little 82526 device, could you please wait for a m

oment?"

►The O

verload Frame is m

entioned here just for completeness. It is

very similar to the Error Fram

e with regard to the form

at and it is transm

itted by a node that becomes too busy. The O

verload Frame is

not used very often, as today's CA

N controllers are clever enough not

to use it. In fact, the only controller that will generate O

verload Frames

is the now obsolete 82526

Data C

omm

unications & Fieldbus S

ystems

281

Page 283: Data Communication &Fieldbus Systems

ISO

PH

YS

ICA

L LAY

ER

One of the m

ost comm

on and cheapest im

plementations is to use

a twisted w

ire pair. The bus lines are then called "C

AN

_H" and "C

AN

_L".

The two bus lines C

AN

_H

and CA

N_L are driven by

the nodes with a

differential signal.

The twisted w

ire pair is term

inated by terminating

resistors at each end of bus line, typically 120 ohm

s.

Data C

omm

unications & Fieldbus S

ystems

282

Page 284: Data Communication &Fieldbus Systems

CA

N A

ND

EM

I

Due to the differential

nature of transmission

CA

N is insensitive to

electromagnetic

interference, because both bus lines are affected in the sam

e way w

hich leaves the differential signal unaffected.

To reduce the sensitivity against electrom

agnetic interference even m

ore, the bus lines can additionally be shielded. This also reduces the electrom

agnetic emission

of the bus itself, especially at high baud rates.

Data C

omm

unications & Fieldbus S

ystems

283

Page 285: Data Communication &Fieldbus Systems

STA

ND

AR

DIZA

TION

•Vehicle bus system applications can be separated in three different categories according to their

real-time capabilities.

•Class A for a low

speed bus with bit rates up to 10 kbps, e.g

for body control applications,•C

lass B for a low

speed bus with bit rates from

10 kbps to 125 kbps, e.g. for dashboard and diagnostics,•C

lass C for a high speed bus w

ith bit rates from 125 kbps to 1 M

bps for real time

applications like engine managem

ent, Gearbox, A

BS

etc.

For the use of CA

N in vehicles tw

o standards have been defined for the bus interface:

CA

N H

igh Speed according to IS

O-IS

11898 for bit rates betw

een 125 kbps and 1 M

bps C

AN

Low S

peed according to ISO

-IS

11519-2 for bit rates up to 125 kbps

Data C

omm

unications & Fieldbus S

ystems

284

Page 286: Data Communication &Fieldbus Systems

BU

S LE

VE

LS A

CC

OR

DIN

G TO

ISO

-IS 11898

•These are the bus levels according to ISO

-IS 11898. A recessive bit is represented by both C

AN

bus lines driven to a level of about 2.5 V

so that the differential voltage between C

AN

_H and C

AN

_L is around 0 V.•A dom

inant bit is represented by CA

N_H

going to about 3.5 V and C

AN

_L going to about 1.5 V. This results in a differential voltage for a dom

inant bit of about 2V.

Data C

omm

unications & Fieldbus S

ystems

285

Page 287: Data Communication &Fieldbus Systems

A B

AS

IC C

AN

CO

NTR

OLLE

R

►C

heap CA

N controller –

CPU

could get overrun with m

essages even if it didn’t need them

.

Data C

omm

unications & Fieldbus S

ystems

286

Page 288: Data Communication &Fieldbus Systems

FULL C

AN

CO

NTR

OLLE

R

►H

ardware m

essage filters sort & filter m

essages without interrupting C

PU

Data C

omm

unications & Fieldbus S

ystems

287

Page 289: Data Communication &Fieldbus Systems

CA

N (S

AE

J1939) EX

AM

PLE

: CA

TER

PILLA

R 797

Data C

omm

unications & Fieldbus S

ystems

288

Page 290: Data Communication &Fieldbus Systems

CA

TER

PILLA

R E

XA

MP

LE

Data C

omm

unications & Fieldbus S

ystems

289

Page 291: Data Communication &Fieldbus Systems

CA

TER

PILLA

R E

XA

MP

LE

Data C

omm

unications & Fieldbus S

ystems

290

Page 292: Data Communication &Fieldbus Systems

Data C

omm

unications & Fieldbus S

ystems

291

Page 293: Data Communication &Fieldbus Systems

►Fieldbus is the generic nam

e of a family of industrial netw

ork systems for real-tim

e distributed control. H

uman M

achine Interface (HM

I)at the top, Program

mable Logic C

ontrollers (PLCs)in

the middle, and the Fieldbus

at the bottom.

FactoryLevel

Cell

Level

FieldLevel

Bus C

ycleTim

e< 1000 m

s

Bus C

ycleTim

e< 100 m

s

Bus C

ycleTim

e< 10 m

s

MM

S, TCP/IP B

ackbone

Profibus-FMS

Profibus-DP

Profibus-PA

I/OD

riveValves

FieldD

eviceTrans-m

itterField

Device

AreaC

ontroller

PR

OFIB

US

Data C

omm

unications & Fieldbus S

ystems

292

Page 294: Data Communication &Fieldbus Systems

PR

OFIB

US

►P

RO

cessFieldB

US

oD

IN 19245

oFM

S (Fieldbus

Message S

pecification)o

DP

(Distributed P

eripheral)o

PA

(Process A

utomation)

►32 stations per segm

ent

►9.6, 19.2, 93.75 kbps for segm

ent length less than 1200 m

Data C

omm

unications & Fieldbus S

ystems

293

Page 295: Data Communication &Fieldbus Systems

PR

OFIB

US

(CO

NS

OR

TIUM

FIELD

BU

S)

►V

endor-independent ensured by EN

50170 and EN

50254 International Standard

►O

pen field bus standard for a wide range of applications in m

anufacturing and process autom

ation

►C

onforms to O

SI reference m

odel

►A

llows com

munication betw

een devices of different manufacturers w

ithout any special interface adjustm

ents

►C

an be used for both high-speed time critical applications and com

plex comm

unication tasks

►C

ontinuing further technical developments prepared for the future

►W

idely accepted in European industrial com

munity

Data C

omm

unications & Fieldbus S

ystems

294

Page 296: Data Communication &Fieldbus Systems

ME

DIU

M A

CC

ES

S P

RO

TOC

OL

►Token passing procedure

oE

nsures that the bus access right (token) is assigned to each master w

ithin a precisely defined tim

eframe

oThe token is passed around the logical token ring once to all m

asters within a

maxim

um token rotation tim

eo

Used only for com

munication betw

een complex stations (m

asters)

►M

aster-slave procedureo

Perm

its the master (active station) w

hich currently owns the token to access the

assigned slaves (passive stations)o

Enables the m

aster to send messages or retrieve them

from the slaves inithe

following configurations :

•P

ure master-slave system

•P

ure master-m

aster system (token-passing)

•A

combination of the tw

o

Data C

omm

unications & Fieldbus S

ystems

295

Page 297: Data Communication &Fieldbus Systems

ME

DIU

M A

CC

ES

S C

ON

TRO

L►

Token passing among m

aster stations on list of active station (LAS

)

►Transm

issionfrom

slavestations

onlyby

masterstation’s

polling

Data C

omm

unications & Fieldbus S

ystems

296

Page 298: Data Communication &Fieldbus Systems

PR

IOR

ITY M

EC

HA

NIS

M

►Tw

o priority classes: high and lowo

TTR: target rotation tim

eo

TRR

: real rotation time

oTTH

: token holding time, TTH

=TTR –

TRR

►A

t least one high priority message per token reception regardless of TTH

►A

dditional high priority messages only if TTH

is still positive

►Low

priority messages after high priority m

essage transmission if TTH

is still positive

Data C

omm

unications & Fieldbus S

ystems

297

Page 299: Data Communication &Fieldbus Systems

PR

IOR

ITY M

EC

HA

NIS

M

Data C

omm

unications & Fieldbus S

ystems

298

Page 300: Data Communication &Fieldbus Systems

PR

OFIB

US

PR

OTO

CO

L AR

CH

ITEC

TUR

E

Data C

omm

unications & Fieldbus S

ystems

299

Page 301: Data Communication &Fieldbus Systems

CO

MM

UN

ICA

TION

PR

OFILE

S

►D

efines how users transm

it their data serially via the comm

on transmission m

edium

►D

ecentralized Periphery (D

P)

oThe m

ost frequently usedo

Optim

ized for speed, efficiency, and low connection cost

oD

esigned especially for comm

unication between autom

ation systems and distributed

peripherals (PLC

and field devices)o

Suitable as a replacem

ent for conventional, parallel signal transmission

►Fieldbus

Message S

pecification (FMS

)o

Universal com

munication profile for dem

anding comm

unication taskso

Offers m

any sophisticated application functions for comm

unication between intelligent

devices (PLC

s and PC

s)o

Will be less frequently used in the future w

ith the usage of TCP

/IP in cell level netw

ork

Data C

omm

unications & Fieldbus S

ystems

300

Page 302: Data Communication &Fieldbus Systems

H1 M

AC

RO

CY

CLE

Data C

omm

unications & Fieldbus S

ystems

301

Page 303: Data Communication &Fieldbus Systems

FIELD

BU

S M

ES

SA

GE

SP

EC

IFICA

TION

(FMS

)

►A

pplication layero

program invocation m

anagement

ovariable access

oevent m

anagement

ocontext m

anagement (connection establishm

ent)o

virtual fieldbusdevice object

oobject dictionary m

anagement

Data C

omm

unications & Fieldbus S

ystems

302

Page 304: Data Communication &Fieldbus Systems

AV

AILA

BLE

BLO

CK

S IN

DFI302

RE

SO

UR

CE

DE

SC

RIP

TION

RS

RE

SO

UR

CE

TRAN

SDU

CER

BLOC

KSD

ES

CR

IPTIO

ND

IAG

Diagnostics Transducer

HC

Hardw

are Configuration Transducer

MB

CF

Modbus C

onfigurationTR

DTransducer

INPU

T TRAN

SDU

CER

BLOC

KS

DE

SC

RIP

TION

TEM

PTem

perature Transducer

INP

UT FU

NC

TION

BLO

CK

SD

ES

CR

IPTIO

NA

IAnalog Input

DI

Discrete Input

MA

IM

ultiple Analog InputM

DI

Multiple D

iscrete InputP

UL

Pulse Input

Data C

omm

unications & Fieldbus S

ystems

303

Page 305: Data Communication &Fieldbus Systems

AV

AILA

BLE

BLO

CK

S IN

DFI302

CO

NTR

OL A

ND

CA

LCU

LATION

FUN

CTIO

N B

LOC

KS

DE

SC

RIP

TION

PID

PID

Control

EP

IDE

NH

AN

CE

D P

ID –

It has all the standard features plus : bum

pless or hard transfer from a “m

anual” m

ode to an “automatic” m

ode and bias.

AP

ID

AD

VANC

ED

PID

–It has all the standard features

plus: bumpless or hard transfer from

a“m

anual” mode to an “autom

atic” mode, bias.

Adaptive gain, P

I sampling, deadband for error,

special treatment for error, IS

A or parallel algorithm,..

AR

THA

rithmetic -9 predefined equation types

SP

LTS

plitter -split ranging and sequencing.C

HA

RS

ignal Characterizer -20 points curve

INTG

IntegratorA

ALM

Analog A

larmIS

EL

Input Selector -4 inputs

SP

GS

etpoint Ram

p Generator

TIME

Timer

Data C

omm

unications & Fieldbus S

ystems

304

Page 306: Data Communication &Fieldbus Systems

AV

AILA

BLE

BLO

CK

S IN

DFI302

CO

NTR

OL A

ND

CA

LCU

LATION

FUN

CTIO

N B

LOC

KS

DE

SC

RIP

TION

LLAG

Lead LagD

ENS

Density

CT

Constant

FFET

FLIP-FLO

P and ED

GE

TRIG

GE

RM

BC

SM

odbus Control S

laveM

BS

SM

odbus Supervision S

laveM

BC

MM

odbus Control M

asterM

BC

SM

odbus Control S

laveA

EQ

UA

dvanced Equations

OU

TPU

T FUN

CTIO

N B

LOC

KS

DE

SC

RIP

TION

AO

Analog O

utputD

OD

iscrete Output

MA

OM

ultiple Analog O

utputM

DO

Multiple D

iscrete Output

STE

PS

tep Output P

ID

Data C

omm

unications & Fieldbus S

ystems

305

Page 307: Data Communication &Fieldbus Systems

PRO

FIBUS uses a single, open com

munication protocol

(PRO

FIBUS D

P, Decentralized Periphery) for all applications

The protocol uses the

“Master-S

lave“ model:

One device (m

aster) controls one or m

ore other devices (slaves).

The protocol uses the “Token P

assing“ model:

The “token“ is transmitted

across the network; the

station in possession of the token controls the access to the netw

ork.

CO

MM

UN

ICA

TION

PR

OTO

CO

L DP

DP Slave

1

PRO

FIBUS D

PM

aster Class

1PR

OFIBU

S DP

Master C

lass2

DP Slave2

DP Slave

3

Token

Slave1

Slave3

Slave2

Slave3

Cyclic

Access

( Master 1)

Acyclic

Access

(Master 2)

.....

Cycle

DP Slave

1

PRO

FIBUS D

PM

aster Class

1PR

OFIBU

S DP

Master C

lass2

DP Slave2

DP Slave

3

Token

Slave1

Slave3

Slave2

Slave3

Cyclic

Access

( Master 1)

Acyclic

Access

(Master 2)

.....

Cycle

Data C

omm

unications & Fieldbus S

ystems

306

Page 308: Data Communication &Fieldbus Systems

PRO

FIBUS D

P exists in

three versions:

DP-V0: O

verall comm

and structure, cyclic data exchange

D

P-V1: Extension by

acyclic data exchange et al.

D

P-V2: Further extension by tim

e stamp, clock

synchronization et al.

Time

FunctionalLevels

DP-V2

Data Exchange Broadcast(Publisher /Subscriber)

IsochronousM

ode(E

quidistance

plus extensions:

Clock Synchronization& Tim

eStam

ps

HART on PR

OFIBUS

Up/Dow

nload (Segmentation)

Redundancy

DP-V1

AcyclicData Exchange

between

PCorPLC

and Slave Devices

plus extensions:

Integration within

Engineering: EDD

and FDT

Portable P

LC S

oftware Function B

locks (IEC 61131-3)

Fail-Safe Comm

unication (PRO

FIsafe)

Alarms

DP-V0

C

yclic Data Exchangebetw

eenPLC

and Slave Devices

plusextensions:

G

SDC

onfiguration

Diagnosis

Device Features

Time

FunctionalLevels

DP-V2

Data Exchange Broadcast(Publisher /Subscriber)

IsochronousM

ode(E

quidistance

plus extensions:

Clock Synchronization& Tim

eStam

ps

HART on PR

OFIBUS

Up/Dow

nload (Segmentation)

Redundancy

DP-V1

AcyclicData Exchange

between

PCorPLC

and Slave Devices

plus extensions:

Integration within

Engineering: EDD

and FDT

Portable P

LC S

oftware Function B

locks (IEC 61131-3)

Fail-Safe Comm

unication (PRO

FIsafe)

Alarms

DP-V0

C

yclic Data Exchangebetw

eenPLC

and Slave Devices

plusextensions:

G

SDC

onfiguration

Diagnosis

Device FeaturesDevice Features

CO

MM

UN

ICA

TION

PR

OTO

CO

L DP

Data C

omm

unications & Fieldbus S

ystems

307

Page 309: Data Communication &Fieldbus Systems

PRO

FIBU

S D

P (RS-485)

32 devices max. (incl. controller) on one segm

ent. D

evices must be daisy chained; no spur lines.

Segm

ent must be term

inated (T). B

aud rate depends on segment length.

Repeater are possible, 9 m

ax. per segment.

Use of “recom

mended grounding m

ethods”.

Controller

T

Devices

Segment

Data C

omm

unications & Fieldbus S

ystems

308

Page 310: Data Communication &Fieldbus Systems

PRO

FIBU

S PA - Trunk topology

One m

ain cable (trunk) and spur lines M

aximum

length of spurs depends on number of spurs

T-connectors with or w

ithout short-circuit protection W

ith optional overvoltage protection

T L

ink

/ C

ou

ple

r T

PRO

FIBU

S DP

PRO

FIBU

S PA

Trunk

Spur lines

Devices

Data C

omm

unications & Fieldbus S

ystems

309

Page 311: Data Communication &Fieldbus Systems

PRO

FIBU

S PA - Star topology

Junction Box w

ith or without short-circuit protection

All spur lines com

e from the junction box:

Lin

k/

Co

up

ler

T PR

OFIB

US D

P PR

OFIB

US PA

Junction B

ox T

Devices

Data C

omm

unications & Fieldbus S

ystems

310

Page 312: Data Communication &Fieldbus Systems

PRO

FIBU

S PA - Trunk-and-spur topology

Short-circuit protection at the spur lines

Clearly arranged and easy to docum

ent

Lin

k/

Co

up

ler

T PR

OFIB

US D

P PR

OFIB

US PA

T Junction

Box

Junction B

ox

Spur lines

Trunk

Devices

Data C

omm

unications & Fieldbus S

ystems

311

Page 313: Data Communication &Fieldbus Systems

PRO

FIBU

S PA - Ring topology

Two redundant links/couplers

High availability of the trunk

Short-circuit protection at the spur

Lin

k/

Co

up

ler

T

T L

ink

/ C

ou

ple

r

Junction B

ox Junction

Box

Junction B

ox

PRO

FIBU

S PA Intern

Spur lines

Trunk

Devices

Data C

omm

unications & Fieldbus S

ystems

312

Page 314: Data Communication &Fieldbus Systems

TRA

NS

MIS

SIO

N TE

CH

Com

munication

Technology

Transmission

Technologies

PRO

FIBUS D

P (DP-V0, -V1, -V2)

Wired

RS485 / R

S485-IS

MBP

/ MBP

-IS

Engineering TechnologiesGSD, EDD, FDT / DTM, TCI

Optical

Glass, PC

F, PlasticW

ireless

PROFIdrive

PA Devices

Encoder

Ident Systems

Weighing & Dosage

HART on PROFIBUS

LabAutomation

SpecificApplication Profiles

Com

mon

Application Profiles

XY

. . . .

PRO

FIsafe, I&M, iPar-Server,

Time S

tamp, R

edundancy, …

Com

munication

Technology

Transmission

Technologies

PRO

FIBUS D

P (DP-V0, -V1, -V2)

Wired

RS485 / R

S485-IS

MBP

/ MBP

-IS

Engineering TechnologiesGSD, EDD, FDT / DTM, TCI

Optical

Glass, PC

F, PlasticW

ireless

PROFIdrive

PA Devices

Encoder

Ident Systems

Weighing & Dosage

HART on PROFIBUS

LabAutomation

SpecificApplication Profiles

Com

mon

Application Profiles

XY

. . . .

PRO

FIsafe, I&M, iPar-Server,

Time S

tamp, R

edundancy, …

Wired, O

ptical, and Wireless

Data C

omm

unications & Fieldbus S

ystems

313

Page 315: Data Communication &Fieldbus Systems

RS - 485

PRO

FIBU

S DP

MB

P PR

OFIB

US PA

MB

P- IS PR

OFIB

US PA

Baud rate

9.6 ... 12.000 kBit/s31.25 kBit/sec

31.25 kBit/sec

Devices/segm

ent (max.)

3232

32

Devices/segm

ent (typic.)14 ... 20

4 ... 6

Cable length m

ax.1200

1900 m1000 m

Spur line length max.

120 m60 m

Wired transm

ission

RS

485; MB

P

R

S 485-IS

; MB

P-IS

(Intrinsically Safe)

TRA

NS

MIS

SIO

N TE

CH

Data C

omm

unications & Fieldbus S

ystems

314

Page 316: Data Communication &Fieldbus Systems

Wired transm

ission

MB

P transmission technology

Fieldbus standard IEC 61158-2 for

MB

P transmission technology

Up to 32 nodes in one segm

ent

Data transm

ission rate 31.25 Kbit/s

Per field device: M

in. working voltage 9 V D

CM

in. current consumption 10 m

A

Transmission of digital com

munication signal in zero-m

ean M

anchester II coding (MBP

) through ± 9 mA

amplitude

Signal transm

ission and remote pow

er supply using twisted-pair

cable

Fieldbus cable type A

Connection of field devices via stubs (spur) to a m

ain cable (trunk) for trouble-free disconnection of devices w

ithout affecting other nodes

Max. total length of m

ain cable, including all stubs, is 1900 m

TRA

NS

MIS

SIO

N TE

CH

Data C

omm

unications & Fieldbus S

ystems

315

Page 317: Data Communication &Fieldbus Systems

Optical transm

ission

Various types of fiberoptic cables are supported.

Typical topology structures are star and ring, linear structures are also possible.

The im

plementation of a fiberoptic cable netw

ork involves the use of electrooptical converters.

Fiber type C

ore diameter [µm

] Transm

ission range M

ulti-mode glass fiber

62,5 / 125 2 - 3 km

Single-m

ode glass fiber 9 / 125

> 15 km P

lastic fiber 980 / 1000

Up to 100 m

HC

fiber 200 / 230

Approx. 500 m

TRA

NS

MIS

SIO

N TE

CH

Data C

omm

unications & Fieldbus S

ystems

316

Page 318: Data Communication &Fieldbus Systems

Wireless transm

ission

PR

OFIB

US

& P

RO

FINE

T International do not specify its ow

n wireless solution.

Num

erous wireless solutions are available for P

RO

FIBU

S

from different vendors using gatew

ays to translate the electric signals into a w

ireless signal. S

ee the product guide on the PR

OFIB

US

website and search

for wireless. Various types of fiberoptic cables are supported.

TRA

NS

MIS

SIO

N TE

CH

Data C

omm

unications & Fieldbus S

ystems

317

Page 319: Data Communication &Fieldbus Systems

AS

SE

T MA

NA

GE

ME

NT

Controller

One variable,

One direction

Conventional system

Very limited system

view, device details are „invisible“.

PRO

FIBU

S

Expanded system

view, device details are „visible“

Devices

Unlike conventional com

munication system

s, PR

OFIBU

S allows a detailed “view

into field devices”.

M

ultiple variables, Tw

o directions

Controller

Devices

T T

Data C

omm

unications & Fieldbus S

ystems

318

Page 320: Data Communication &Fieldbus Systems

Example from

a chemical plant:

“Level in reactor 2B gets out of spec”

Conventional system

(left) reports just undefined “Failure”.

PR

OFIB

US

(right) reports exact diagnosis information.

“Failure” U

ndefined inform

ation

Controller

One variable,

one direction

Same failure

„Level in reactor B2 out of spec“

happens in both systems.

“Level in reactor B2

out of spec” Exact inform

ation

Multiple variables,

two directions

Controller

T T

AS

SE

T MA

NA

GE

ME

NT

Data C

omm

unications & Fieldbus S

ystems

319

Page 321: Data Communication &Fieldbus Systems

DIAG

NO

STICS

Process control, m

aintenance, condition monitoring, …

PRO

FIBU

S PA

Device A

Device C

D

evice B

Before profile 3.02 w

as introduced

all diagnosis messages have been provided to all users.

>> Difficult to m

anage by the operators

Data C

omm

unications & Fieldbus S

ystems

320

Page 322: Data Communication &Fieldbus Systems

With Profile 3.02

Diagnosis m

essages are mapped to categories already by the

manufacturer, categories com

ply with N

AM

UR

NE

107. P

lant operator gets categorized information.

Maintenance departm

ent gets full information.

PRO

FIBU

S PA

Device A

Diag 1

Diag2

Diag 3

Diag 4

------

Diag n

Maintenance R

equired Failure

Functional C

heck O

ut of S

pecification D

iagnosis messages are

mapped to 4 categories.

Plant operator M

aintenance departm

ent

DIAG

NO

STICS

Data C

omm

unications & Fieldbus S

ystems

321

Page 323: Data Communication &Fieldbus Systems

In hazardous environments, fieldbus system

s must

comply w

ith two IEC

standards: IE

C 60079: E

xplosive atmospheres

IEC

61158-2: Fieldbus/Physical layer specification

H

azardous zones and PRO

FIBUS solution

Zone 0, 1 and 2 define areas of a plant, where explosive

substances may exist in the air and an electrical spark

could trigger an explosion

The respective PR

OFIB

US

solution limits the energy going to

the bus and the devices to eliminate the danger of generating

a sparc

The „Intrinsically Safe (IS)“ version of the MBP physical layer

(MBP-IS) com

plies with this approach.

INTR

INS

ICA

LLY S

AFE

ISS

UE

S

Data C

omm

unications & Fieldbus S

ystems

322

Page 324: Data Communication &Fieldbus Systems

Data of M

BP and M

BP-IS physical layers

N

ote: R

S485 is also available in an IS

-version, which runs at low

er power

levels with a special coupler and a special w

iring. .

MB

P PR

OFIB

US PA

MB

P- IS PR

OFIB

US PA

Baud rate

31.25 kBit/sec31.25 kBit/sec

Voltage24 ... 30 V

13,2 V

Current

1000 mA

110 mA

Devices/segm

ent (max.)

32

Devices/segm

ent (typic.)14 ... 20

4 ... 6

Cable length m

ax.1900 m

1000 m

Spur line length max.

120 m60 m

INTR

INS

ICA

LLY S

AFE

ISS

UE

S

Data C

omm

unications & Fieldbus S

ystems

323

Page 325: Data Communication &Fieldbus Systems

Fieldbus Intrinsically Safe Concept (FISC

O)

The FIS

CO

(Fieldbus Intrinsically Safe C

oncept) provides easy and fast design of P

RO

FIBU

S PA installations in

hazardous areas. FIS

CO

enables to get IS approval w

ithout individual calculations. FIS

CO

requirements:

Only one pow

er source permitted.

All other com

ponents are drains. M

aximum

overall cable length 1000 m

Maxim

um spur line length 60 m

P

ower supply, coupler and field devices m

ust be FISC

O certified.

INTR

INS

ICA

LLY S

AFE

ISS

UE

S

Data C

omm

unications & Fieldbus S

ystems

324

Page 326: Data Communication &Fieldbus Systems

From Intrinsic Safety to the H

igh-Power-Trunk

Intrinsic safety (I.S

.) is the method of choice for

instrument connections in hazardous areas.

I.S. does not satisfy com

pletely the needs regarding to cable length and num

ber of devices compared to applications

outside of hazardous areas. The H

igh-Pow

er Trunk Concept solves this lim

itation for use in hazardous areas.

INTR

INS

ICA

LLY S

AFE

ISS

UE

S

Data C

omm

unications & Fieldbus S

ystems

325

Page 327: Data Communication &Fieldbus Systems

PRO

FIBUS P

A intern

T

FieldDevices

Terminator

Segment coupling

and power supply

PROFIB

US DP

PROFIB

US PA

Spur: Ex i

Trunk: Ex e

Zone 2C

lassI, D

iv. 2

Zone 1C

lassI, D

iv. 1/2

General P

urpose/ Safe A

rea

FieldBarriers

Zone 0C

lassI, D

iv. 1

T

FieldDevices

Terminator

Segment coupling

and power supply

PROFIB

US DP

PROFIB

US PA

Spur: Ex i

Trunk: Ex e

Zone 2C

lassI, D

iv. 2

Zone 1C

lassI, D

iv. 1/2

General P

urpose/ Safe A

rea

FieldBarriers

Zone 0C

lassI, D

iv. 1

High-Pow

er-Trunk to supply Zone 1 The trunk is installed w

ith increased protection in zone 1 to allow

increased supply current for more field devices.

The field devices are connected using Ex i ignition protection.

Data C

omm

unications & Fieldbus S

ystems

326

Page 328: Data Communication &Fieldbus Systems

PRO

FIBUS P

A

intern

FieldDevices

T

Terminator

Segment coupling

and power supply

High pow

er, withoutignition

protection

PROFIB

US DP

PROFIB

US PA

Spur: Ex ic/nLEnergy lim

ited

Trunk: Ex nAN

on sparking

Zone 2C

lassI, D

iv. 2

Coupler

With

Short-circuitProtection

General P

urpose/ Safe A

rea

FieldDevices

T

Terminator

Segment coupling

and power supply

High pow

er, withoutignition

protection

PROFIB

US DP

PROFIB

US PA

Spur: Ex ic/nLEnergy lim

ited

Trunk: Ex nAN

on sparking

Zone 2C

lassI, D

iv. 2

Coupler

With

Short-circuitProtection

General P

urpose/ Safe A

rea

High-Pow

er-Trunk to supply zone 2

Data C

omm

unications & Fieldbus S

ystems

327

Page 329: Data Communication &Fieldbus Systems

Objective: R

educe the risk to an acceptable level.

PRO

FIsafe e. g. modified

process design

Risk of a technical setup

Risk

Zero risk

Acceptable risk

Risk

reduction m

easures

Unfeasible zero risk

Other m

easures

Safety Instrumented

Systems (SIS)

Data C

omm

unications & Fieldbus S

ystems

328

Page 330: Data Communication &Fieldbus Systems

SIL: A perform

ance criteria of a Safety Instrum

ented System

(SIS

)

which describes, am

ong other things, the Probability of

Failure on Dem

and (PFD

). S

IL covers four levels SIL 1 to S

IL 4.

PFD

: A value that indicates the probability of a system

failing to respond to an actual demand.

PFD

is also referred to as “safety unavailability”.

Safety Integrity Level (S

IL)P

robability of failure on dem

and (PFD

) per year

Risk R

eduction Factor (1 / P

FD)

SIL 1>= 10 -2 to <10 -1

100 to 10

SIL 2>= 10 -3 to <10

-21000 to 100

SIL 3>= 10 -4 to <10 -3

10 000 to 1000

SIL 4>= 10 -5 to <10 -4

100 000 to 10 000

PR

OFIsafe is standardized in IE

C 61784-3-3

and complies w

ith SIL 3 according to IE

C 61508.

PRO

FIsafe

Data C

omm

unications & Fieldbus S

ystems

329

Page 331: Data Communication &Fieldbus Systems

Standard and safety comm

unication on the same bus

B

lack Channel:

Not safety-related com

ponents such as AS

ICs, links, cables etc.

PRO

FIsafe (Safety Function, Safety Layer) P

art of the safety-related comm

unication system, located above layer 7

Safety Layers checks addressing, signature, fault tolerance tim

e etc.

Safety-related components (I/O

s, controller, control systems)

These are not part of PR

OFIsafe!

Not safety-related functions, e.g. diagnosis

SF

1 7 2

1 7 2

Standard I/O

Standard C

ontroller

Safety Input

Safety C

ontroller

1 2 7

1 2 7

1 2 7

1 7 2

1 7 2

SF SF

SF SF

Safety O

utput

PRO

FIsafe

Data C

omm

unications & Fieldbus S

ystems

330

Page 332: Data Communication &Fieldbus Systems

WO

RLD

FIP

►Field Instrum

entation Protocol

oFrench standard

►N

etwork configuration and transm

ission speed

o32 stations per segm

ento

up to 256 stationso

31.25kbps,1M

bps,2.5M

bps

Data C

omm

unications & Fieldbus S

ystems

331

Page 333: Data Communication &Fieldbus Systems

ME

DIU

M A

CC

ES

S C

ON

TRO

L

►C

entralized pollingo

Bus arbitrator

oP

roducer-consumer m

odelo

Bus arbitrator transm

itting an ID fram

e for a certain pair of producer and consum

erso

Elem

entary cycle with a period equal to that of m

ost frequent message

oA

periodicvariable and m

essage exchange after periodic data transm

issiono

Filling for excess timeD

ata Com

munications &

Fieldbus System

s332

Page 334: Data Communication &Fieldbus Systems

ME

DIU

M A

CC

ES

S C

ON

TRO

L

Data C

omm

unications & Fieldbus S

ystems

333

Page 335: Data Communication &Fieldbus Systems

ME

DIU

M A

CC

ES

S C

ON

TRO

L

Data C

omm

unications & Fieldbus S

ystems

334

Page 336: Data Communication &Fieldbus Systems

►IE

C 61158 Fieldbus

standard for use in industrial control systems (IE

C/S

C/65C

)

oType 1: IE

C Fieldbus

Technical Specifications

oType 2: C

ontrol Net

oType 3: P

rofibuso

Type 4: Pnet

oType 5: H

SE

of the FieldbusFoundation

oType 6: S

wiftN

eto

Type 7: WorldFip

oType 8: Interbus

IEC

61158

Data C

omm

unications & Fieldbus S

ystems

335

Page 337: Data Communication &Fieldbus Systems

►IS

O 15745 Industrial autom

ation systems and integration -O

pen systems

application integration framew

orks (TC 184 S

C5)

oP

art 2: ISO

11898 based control systems

•D

eviceNet, C

AN

Kingdom

, CA

NO

pen

oP

art 3: IEC

61158-based control systems

•P

-Net, P

rofibus, WorldFIP

, ControlN

et, Interbus

oP

art 4: Ethernet-based control system

s •

Ethernet/IP

, AD

S-net, FL-net

ISO

15745

Data C

omm

unications & Fieldbus S

ystems

336

Page 338: Data Communication &Fieldbus Systems

FOU

ND

ATIO

N FIE

LDB

US

►The Fieldbus m

arket is dominated by Foundation Fieldbus and P

RO

FIBU

S. B

oth technologies use the sam

e physical layer but are not interchangeable.

►A

s a general guide, applications which are controlled and m

onitored by PLC

s tend tow

ards PR

OFIB

US

, and applications which are controlled and m

onitored by a DC

S

(digital/distributed control system) tend tow

ards FOU

ND

ATIO

N Fieldbus.

►Foundation Fieldbus

is an all-digital, serial, two-w

ay comm

unications system that

serves as the base-level network in a plant or factory autom

ation environment.

Developed and adm

inistered by the FieldbusFoundation.

Data C

omm

unications & Fieldbus S

ystems

337

Page 339: Data Communication &Fieldbus Systems

FIELD

BU

S S

YS

TEM

NIC

HE

S

Data C

omm

unications & Fieldbus S

ystems

338

Page 340: Data Communication &Fieldbus Systems

HO

W IS

FIELD

BU

S D

IFFER

EN

T FRO

M 4-20M

A?

oIn 4-20m

A circuits, the pow

er supply, field device and input card are connected in series.

oIn a Fieldbus

system, the pow

er supply, field devices and input card are connected in parallel.

4-20mA

Power

Supply

fieldbus

Power

Supply

Input card

Data C

omm

unications & Fieldbus S

ystems

339

Page 341: Data Communication &Fieldbus Systems

TYP

ICA

L FIELD

BU

S IN

STA

LLATIO

N

Safe area

Redundant,

isolated Fieldbus

power

conditioner

Field wiring hub

with spur short-

circuit protection

FO

UN

DATIO

NFieldbus

Devices

FIELD

CO

NTR

OL R

OO

M

Fieldbuscontrol

system (D

CS)

Data C

omm

unications & Fieldbus S

ystems

340

Page 342: Data Communication &Fieldbus Systems

►Tw

o related implem

entations of FOU

ND

ATION

fieldbus have been introduced to m

eet different needs within the process autom

ation environment.

oH

1is a bi-directional com

munications protocol used for com

munications am

ong field devices and to the control system

. It works at 31.25 kbit/s and generally

connects to field devices. It provides comm

unication and power over standard

twisted-pair w

iring. H1 is currently the m

ost comm

on implem

entation.

oH

SE

(High-speed E

thernet) works at 100 M

bit/s and generally connects input/output subsystem

s, host systems, linking devices, gatew

ays, and field devices using standard E

thernet cabling. It doesn't currently provide power over

the cable.

CU

RR

EN

TS

TATE

Data C

omm

unications & Fieldbus S

ystems

341

Page 343: Data Communication &Fieldbus Systems

CU

RR

EN

TS

TATE

Data C

omm

unications & Fieldbus S

ystems

342

Page 344: Data Communication &Fieldbus Systems

FOU

ND

ATIO

N FIE

LDB

US

IN IN

DU

STR

Y

►Installed base w

orldwide (published by Fieldbus

Foundation, 2008):o

>10,000 systems

o>700,000 field instrum

ents

►D

iverse adoption:o

9 of the top 10 oil & gas com

panieso

24 of the top 25 pharmaceutical m

anufacturerso

23 of the top 25 chemical producers

o15 of the top 20 pulp &

paper companies

o10 of the top 20 food &

beverage companies

►A

RC

Advisory G

roup:“…

powerful value proposition for fieldbus

in the hybrid industries-namely, food &

beverage and pharm

aceutical, particularly when it com

es to easing the process of validation and regulatory com

pliance and the integration of batch procedural operations w

ith continuous processes. The function block structure of Foundation technology lends itself to these processes very w

ell.”

Data C

omm

unications & Fieldbus S

ystems

343

Page 345: Data Communication &Fieldbus Systems

MA

RK

ET D

ISTR

IBU

TION

Global

LA12 %

NA43 %

AP

13 %MEA

7%

EU R25%

Other8%

Mining and M

etals3%

Education3%

Pulp and Paper

4%

Food &

Beverage

9%

Pharm-

aceutical9%

Power

13%

Oil &

Gas

29%

Chem

ical22%

Industry

Data C

omm

unications & Fieldbus S

ystems

344

Page 346: Data Communication &Fieldbus Systems

►Fieldbus C

omponents:

oB

us Terminal

oE

therCA

To

Fieldbus Box

oLightbus

oP

C Fieldbus C

ardso

Sw

itcheso

And m

ore …

SU

PP

OR

TING

TEC

HN

OLO

GY

Data C

omm

unications & Fieldbus S

ystems

345

Page 347: Data Communication &Fieldbus Systems

WH

EN

SH

OU

LD FIE

LDB

US

BE

CO

NS

IDE

RE

D?

►‘G

reen Field’ Facility

►Facility U

pgradeo

New

unit operation

►P

rocess Autom

ation Focuso

≥ 60% of sensors are analogue

►E

xisting cabling infrastructure is overloaded

Data C

omm

unications & Fieldbus S

ystems

346

Page 348: Data Communication &Fieldbus Systems

WH

Y U

SE

FOU

ND

ATIO

N FIE

LDB

US

?

►Integrated digital architecture

►“Future proof”o

Sensors can be field upgraded w

ith new features

►E

conomic savings

oD

ifferent incentives at each stage of a facility life cycle:•

Capital/C

onstruction•

Com

missioning

•O

perations, maintenance

oR

educed infrastructure

Data C

omm

unications & Fieldbus S

ystems

347

Page 349: Data Communication &Fieldbus Systems

RE

-US

ING

INS

TALLE

D C

AB

LES

Three existing4-20 m

APairs

J-Box

TT

Fieldbusdevices

Three existingpairs, one usedfor fieldbus

J-Box

Data C

omm

unications & Fieldbus S

ystems

348

Page 350: Data Communication &Fieldbus Systems

Replace

Operations &

Maintenance

Engineering, C

onstruction,&

Com

missioning/S

tart-up

EC

ON

OM

IC LIFE

CY

CLE

Cash Flow

Analog

fieldbus

Time

Data C

omm

unications & Fieldbus S

ystems

349

Page 351: Data Communication &Fieldbus Systems

EN

GIN

EE

RIN

G, C

ON

STR

UC

TION

& S

TAR

T-UP

Time

startup

Cash Flow

Reduce im

plementation

risk and cost

Engage in FE

ED

stageS

ooner and faster start-up

Data C

omm

unications & Fieldbus S

ystems

350

Page 352: Data Communication &Fieldbus Systems

TER

MIN

ATIO

N C

OU

NT

FT-100

+-

FCV-100+-

TT-100

+-

Field

PT-101

+-

123456789101112

Junction Box

123456789101112

Marsh C

ab.

1234

+-+-+-+-

+-+-+-+-

I.S.

Barrier

8

2420

5

164

82

15

+-+-+-+-+-+- I/OA

ssembly

Conventional analog term

ination

Fieldbusterm

ination (also includedin conventional term

ination count)M

arshalling done in Junction Box w

ith Fieldbusso

Marsh C

ab is optional

Totals:75 Analog34 Fieldbus

4 pr4 pr

4 pr

1 pr1 pr

1 pr

Data C

omm

unications & Fieldbus S

ystems

351

Page 353: Data Communication &Fieldbus Systems

EN

GIN

EE

RIN

G -N

ETW

OR

K LO

AD

ING

►N

umber of devices per netw

ork segment

o15-20 m

Aper transm

ittero

20-25 mA

per valve

►S

egment Length

oD

efined by Fieldbusstandard

•function of num

ber of devices•

Segm

ent topology

►V

oltage Calculations

o9 volt m

inimum

at field deviceo

design for 12 volts

►B

us Bandw

idtho

Balance cycle tim

e against num

ber of deviceso

Function of host control system

►V

irtual Com

munication R

esourceso

Required for com

munication

between devices and host

Data C

omm

unications & Fieldbus S

ystems

352

Page 354: Data Communication &Fieldbus Systems

OP

ER

ATIO

NS

& M

AIN

TEN

AN

CE

Cash Flow

Higher sustained

production with

minim

ize costs

Faster time-to

profitS

afer operation

Fewer unscheduled

outages

Shorter scheduled outage

Longer duration to scheduled outage

Data C

omm

unications & Fieldbus S

ystems

353

Page 355: Data Communication &Fieldbus Systems

ME

AS

UR

EM

EN

T AC

CU

RA

CY

IS InterfaceI/O

card

PV = 392.8mb

12.83mA

PV = 393.1mb

12.87mA

IS InterfaceH

1 I/O card

PV = 392.8mb

PV = 392.8mb

PV = 392.8mb Field JB

+ m

arshalling

Field JB +

marshalling 12.86m

A

PV = 392.8mb

PV = 392.8mb

Leakage + noiseC

onversion error

Conversion

error

4-20mA

Fieldbus

Data C

omm

unications & Fieldbus S

ystems

354

Page 356: Data Communication &Fieldbus Systems

DIA

GN

OS

TICS

SA

VE

WA

STE

D M

AIN

TEN

AN

CE

0% 5%

10%

15%

20%

25%

30%

35%

Routin

ech

eck

No

Pro

ble

mC

alibratio

nsh

iftZe

ro O

ffPlu

gged

lines

Faile

d

63% of instrum

ent maintenance labor results in no action taken: w

aste of resources

35%

28%

20%

6%6%

4%

Shell G

lobal Solutions

Data C

omm

unications & Fieldbus S

ystems

355

Page 357: Data Communication &Fieldbus Systems

FIELD

BU

S P

RO

JEC

T CO

STS

►E

stimated P

roject Savings

oM

aterials and Field Devices

•S

ome increase

oInstallation Labor•

Savings up to 50%

o

Com

missioning:

•S

ignificant savings up to 60%

►O

verall Capital S

avings of 25–30%H

owever savings w

ill only be realized if the project is planned as a fieldbus

project from the start.

Data C

omm

unications & Fieldbus S

ystems

356

Page 358: Data Communication &Fieldbus Systems

►C

osts below are a per device cost

oTraditional field instrum

ents $890o

Ff devices w/ single-pair hom

erun $672o

Ff devices w/ m

ulti-pair homerun $652

oFf devices w

/ connectors $567

FF DE

VIC

E C

OS

TS

Data C

omm

unications & Fieldbus S

ystems

357

Page 359: Data Communication &Fieldbus Systems

►A

dvantages

oR

educes installation costs, wiring,

less termination and few

er screw

driver turns.o

Reduces hardw

are requirements

and Capital E

xpenditures. o

Reduces O

perating expenses through plant efficiencies, better asset m

anagement, and less

maintenance.

►Lim

itations

oFieldbus system

s are more com

plex, so users need to be m

ore extensively trained or m

ore highly qualified

oThe price of Fieldbus com

ponents is higher

oFieldbus test devices are m

ore com

plex compared to a (high-spec)

multim

eter that can be used to read and sim

ulate analog 4-20 mA

signals

oO

ne or more Fieldbus standards

may predom

inate in future and others m

ay become obsolete. This

increases the investment risk w

hen im

plementing Fieldbus.

AD

VA

NTA

GE

S A

ND

LIMITA

TION

S

Data C

omm

unications & Fieldbus S

ystems

358

Page 360: Data Communication &Fieldbus Systems

VE

ND

OR

S

Data C

omm

unications & Fieldbus S

ystems

359

Page 361: Data Communication &Fieldbus Systems

PR

OTO

CO

L AR

CH

ITEC

TUR

E

Data C

omm

unications & Fieldbus S

ystems

360

Page 362: Data Communication &Fieldbus Systems

ME

SS

AG

E FO

RM

AT

►P

DU

= Protocol D

ata Unit

►P

CI = P

rotocol Control Inform

ation

Data C

omm

unications & Fieldbus S

ystems

361

Page 363: Data Communication &Fieldbus Systems

PH

YS

ICA

L PR

OFILE

S : M

AN

CH

ES

TER

CO

DE

►S

elf-clocking

►S

ynchronous

►H

alf-duplex

Data C

omm

unications & Fieldbus S

ystems

362

Page 364: Data Communication &Fieldbus Systems

DA

TA LIN

K LA

YE

R

►C

ontrols transmission of m

essages onto the fieldbus

►M

anages access to the fieldbusthrough a determ

inistic centralized bus scheduler (Link Active

Scheduler -LA

S)

►D

ata transfer :o

Scheduled (C

yclic)o

Unscheduled (Token P

assing)D

evice Hierarchy :

•Link Master

•Basic D

evice

Data C

omm

unications & Fieldbus S

ystems

363

Page 365: Data Communication &Fieldbus Systems

SC

HE

DU

LED

DA

TA TR

AN

SFE

R

►The m

essage in the data buffer is broadcastto all devices on the fieldbusw

hen the LA

S issues the com

pel data (CD

) to the publisher►

The subscribers listen to the message broadcast

Data C

omm

unications & Fieldbus S

ystems

364

Page 366: Data Communication &Fieldbus Systems

UN

SC

HE

DU

LED

DA

TA TR

AN

SFE

R

►The m

essage in the queue buffer is transmitted on the fieldbus

when the LA

S issues

the pass token message to device x

►The m

essage can be sent to a single destination or to multiple destinations

(multicast)

Data C

omm

unications & Fieldbus S

ystems

365

Page 367: Data Communication &Fieldbus Systems

DE

VIC

E D

ES

RIP

TION

S A

ND

ED

DL

►W

hat is a Device D

escription?

►A

clear, and unambiguous, structured text description that precisely

describes field device data to host systems.

Data C

omm

unications & Fieldbus S

ystems

366

Page 368: Data Communication &Fieldbus Systems

DE

VIC

E D

ES

CR

IPTIO

NS

►A

DD

contains the following inform

ation about the parameters of a device:

oA

ttributes like coding, name, engineering unit, w

rite protection, how to display etc.

oThe arrangem

ent of the parameters in a m

enu structure, names of m

enus and submenus.

oInform

ation about the relation of parameters to others.

oInform

ation about help texts and help procedures.

oInform

ation about necessary operating interactions (e.g. calibration), also called methods.

oInform

ation about visualization tools (i.e.: charts and graphs)

Data C

omm

unications & Fieldbus S

ystems

367

Page 369: Data Communication &Fieldbus Systems

ED

DL TE

CH

NO

LOG

Y E

NH

AN

CE

ME

NTS

►W

hat is the Electronic

Device D

escription Language?

►The international standard for developing E

lectronic Device D

escriptions (E

DD

s) according to the IEC

61804-2.

►The Fieldbus

Foundation FF-900 “Device D

escription Language S

pecification” is fully conformant to the IE

C 61804-2 E

DD

L Standard.

Data C

omm

unications & Fieldbus S

ystems

368

Page 370: Data Communication &Fieldbus Systems

IEC

61804-2ED

DL

2004

19921993

19941995

19961997

19981999

20002001

20022003

20042005

20062007

FF DD

L1996

HA

RT

DD

L1992

ISPD

DL

1993PR

OFIB

US

DD

L2000

ED

DL H

ISTO

RY

Data C

omm

unications & Fieldbus S

ystems

369

Page 371: Data Communication &Fieldbus Systems

ED

DL TE

CH

NO

LOG

Y E

NH

AN

CE

ME

NTS

►E

lectronic Device D

escription Language Specifications

oIE

C 61804

oFunction B

locks (FB) for Process C

ontrol•

Part 1: Overview

of system aspects

•Part 2: Specification of FB

concept and Electronic Device D

escription Language (ED

DL)

oC

overs DD

L used in the FOU

ND

ATIO

N fieldbus™

, HA

RT®

and Profibuscom

munication protocol

oB

ecame an International Standard in M

arch 2004

Data C

omm

unications & Fieldbus S

ystems

370

Page 372: Data Communication &Fieldbus Systems

DE

VIC

E D

ES

RIP

TION

S

►W

hat is ED

DL?

oE

DD

is an extended description of the data, user interface and comm

unication in a device w

hich is used by PC

applications and handhelds for engineering, com

missioning, m

onitoring, operation and diagnostics.

oE

DD

s are written in a language called E

lectronic Device D

escription Language (E

DD

L).

oE

DD

s are operating system (O

S) and com

munication protocol independent:

•E

DD

s are not executable code, do not affect OS

configuration•

Adding a new

ED

D w

ill not disrupt existing applications•

ED

Ds support H

AR

T, PR

OFIB

US

, FOU

ND

ATIO

N fieldbus™

& other

protocols

Data C

omm

unications & Fieldbus S

ystems

371

Page 373: Data Communication &Fieldbus Systems

ED

DL B

EN

EFITS

•E

stablished –m

illions of devices worldw

ide•

System

Independent (including OS

)•

A single E

DD

for all hosts•

Robust R

evision Control

•Testing and R

egistration•

International Standard

•U

niformity

•S

upported by major suppliers

•B

ackward com

patible•

Preserves investm

ent•

Easy to im

plementD

ata Com

munications &

Fieldbus System

s372

Page 374: Data Communication &Fieldbus Systems

ED

DL C

OO

PE

RA

TION

PR

OJE

CT

►Joint Fieldbus

Foundation, PN

O and H

CF project to specify visualization and data storage

managem

ent extensions

Data C

omm

unications & Fieldbus S

ystems

373

Page 375: Data Communication &Fieldbus Systems

WH

Y E

XTE

ND

THE

LAN

GU

AG

E

►C

omplex devices use advanced

visualization and data storage m

anagement

•valve signatures

•sensor calibration curves

•persistent data storage

•trends

►H

uge worldw

ide ED

D investm

ent •

development tools

•testing tools

•P

C, handheld hosts

Proven technology: E

DD

has been in use for over 10 years

Easy to use:

Developers and end users like it

Open and interoperable

Data C

omm

unications & Fieldbus S

ystems

374

Page 376: Data Communication &Fieldbus Systems

•Attributes for D

isplay Coding

•Engineering U

nits•M

enu Structure

•Menus, S

ubmenu N

ames

•Param

eter Relationships

•Help Texts

•Help P

rocedures•M

ethods for operating interactions like calibrationS

ystem Independent (including O

S)

IEC 61804-2 Standard

Protocol documentation

Product SpecificationH

ost Mapping Spec.

ED

DL C

OM

BIN

ES

Data C

omm

unications & Fieldbus S

ystems

375

Page 377: Data Communication &Fieldbus Systems

ED

DL C

OO

PE

RA

TION

TEA

M C

HA

RTE

R

oE

xtension to the IEC

61804-2 International Standard

oO

perating System

& C

omm

unication Protocol Independent

oN

o Changes to E

xisting Device D

escriptions

oP

rotects Investment in D

D-based D

evices, Tools & Training

oS

ingle Technology for Suppliers and E

nd Users

oR

educes Device D

evelopment Tim

e & D

evelopment C

ost

oIm

proves Asset M

anagement C

apability

Data C

omm

unications & Fieldbus S

ystems

376

Page 378: Data Communication &Fieldbus Systems

ED

DL E

XTE

NS

ION

S

►C

hartingo

Enables graphical data display real-tim

e (continuous)•

New

CH

AR

T construct to define display characteristics•

New

SO

UR

CE

construct enables multiples curves on a C

HA

RT

•N

ew A

XIS

construct

►G

raphingo

Enables graphical display of static Y

-t and XY

data•

New

GR

AP

H construct to define display characteristics

•N

ew W

AV

EFO

RM

construct enables multiple curves on a G

RA

PH

.•

New

AX

IS construct

►Im

proved Data Storage

oE

nables DD

Developer to securely store data on host

•N

ew FILE

construct describes parameters that w

ill be stored•

New

LIST construct is used w

ith FILE to access specific param

eters

Data C

omm

unications & Fieldbus S

ystems

377

Page 379: Data Communication &Fieldbus Systems

GR

AP

HS

A GR

AP

His used to present

one or more w

aveforms.

Waveform

s may be device

data, calculated data or persisted data.

Radar C

alibration

AXIS

FILE/LIST

GR

APH

WAVEFO

RM

Data C

omm

unications & Fieldbus S

ystems

378

Page 380: Data Communication &Fieldbus Systems

CH

AR

TS

Blue line is a reference retrieved

via FILE and A

RR

AY

A CH

AR

Tis used to present

the real-time (continuous)

device values

AXIS

CH

AR

T

SOU

RC

E

Valve Step Response

Data C

omm

unications & Fieldbus S

ystems

379

Page 381: Data Communication &Fieldbus Systems

VIS

UA

LIZATIO

NS

AN

D P

ER

SIS

TEN

T DA

TA

►V

isualization Built-ins

oM

en

uD

is

pl

ay

for enabling “Wizard-like” interface using enhanced

Menus

►List (persistent storage)o

Li

st

In

se

rt

inserts an element into a list

oL

is

tD

el

et

eE

le

me

nt

At

deletes an element from

a list

►Im

proved User Interface (U

I) o

DD

Developer can describe screen layout

•E

nhanced ME

NU

construct with screen layout attributes (e.g. dialog

boxes)

Data C

omm

unications & Fieldbus S

ystems

380

Page 382: Data Communication &Fieldbus Systems

IMA

GE

S A

ND

EN

HA

NC

ED

VIS

UA

LIZATIO

N

IM

AG

E

Language codes permit different

images for each language

supportedin E

DD

L

Data C

omm

unications & Fieldbus S

ystems

381

Page 383: Data Communication &Fieldbus Systems

SC

AD

AS

EC

UR

ITY

►S

CA

DA

insecuritym

ayhave

contributedto

theend

ofthe►

SC

AD

Ainsecurity m

ay have contributed to the end of the C

old War

►S

CA

DA

may be of substantial interest to m

ajor terrorists

►S

CA

DA

systems m

ay suffer sabotage by disgruntled insiders,acting

individuallyinsiders, acting individually

►S

CA

DA

may

have“big”technicalfailures

►S

CA

DA

may have big

technical failures

Data C

omm

unications & Fieldbus S

ystems

382

Page 384: Data Communication &Fieldbus Systems

“The Most M

onumental N

on-Nuclear E

xplosion and Fire Ever

Seen From

Space."

►Thom

as C. R

eed, Ronald R

egan’s Secretary of the A

ir Force, described in his book A

t The Abyss

(Ballantine, 2004, IS

BN

0-89141-821-0) how the U

nited States

arranged for the Soviets to receive intentionally flaw

ed process control software

for use in conjunction w

ith the US

SR

's natural gas pipelines, pipelines which w

ere to t

itill

dd

hd

fth

US

SR

generate critically needed hard currency for the US

SR

.

Reed stated that "The pipeline softw

are that was to run the pum

ps, turbines, and values

was

programm

edto

gohayw

ireaftera

decentintervalto

resetpump

values was program

med to go hayw

ire, after a decent interval, to reset pump

speeds and valve settings to produce pressures far beyond those acceptable to pipeline joints and w

elds."

The result? A three-kiloton blast in a rem

ote area of Siberia in 1982, w

hich, only by som

e miracle, apparently didn't result in any deaths. (For context, the H

alifax Fire M

useumlists

them

assive1917

MontB

lancship

explosionin

theH

alifaxH

arboratM

useum lists the m

assive 1917 Mont B

lanc ship explosion in the Halifax H

arbor at a force of 2.9 kilotons.)

Data C

omm

unications & Fieldbus S

ystems

383

Page 385: Data Communication &Fieldbus Systems

Nation-S

tates Aren’t the O

nly Ones Interested in S

CA

DA

Security

►‘A

forensic summ

ary of the investigation, prepared in the Defense

Departm

ent, said the bureau found "multiple casings of sites" nationw

ide. R

outed through telecomm

unications switches in the G

ulf, Indonesia and P

akistan, the visitors studied emergency telephone system

s, electrical ,

gy

py

,generation and transm

ission, water storage and distribution, nuclear

power plants and gas facilities.

‘ Som

eofthe

probessuggested

planningfora

conventionalattackU

SS

ome of the probes suggested planning for a conventional attack, U

.S.

officials said. But others hom

ed in on a class of digital devices that allow

remote control of services such as fire dispatch and of equipm

ent such as pipelines

More

information

aboutthosedevices

andhow

toprogram

pipelines. More inform

ation about those devices --and how to program

them

--turned up on al Qaeda com

puters seized this year, according to law

enforcement and national security officials.’

Data C

omm

unications & Fieldbus S

ystems

384

Page 386: Data Communication &Fieldbus Systems

SA

BO

TAG

EB

YIN

SID

ER

SM

AY

ALS

OS

AB

OTA

GE

BY

INS

IDE

RS

MA

Y A

LSO

PO

SE

A R

ISK

TO S

CA

DA

SY

STE

MS

►In 2000, in M

aroochyS

hire, Queensland, V

itekB

odenreleased

millions of liters of untreated sew

age using a wireless laptop,

apparently taking revenge against former em

ployers. He w

as arrested

convictedand

jailed*

arrested, convicted and jailed.*

*Tht

ftht

*The rest of the story…

Data C

omm

unications & Fieldbus S

ystems

385

Page 387: Data Communication &Fieldbus Systems

WIR

ELE

SS

NE

TWO

RK

PO

RO

SITY

IS C

OM

MO

N

►‘P

aul Blom

gren[…

] measures control system

vulnerabilities. Last year, his com

pany assessed a large southwestern utility that serves about four m

illion custom

ers.“ Our people drove to a rem

ote substation," he recalled. "Without

leavin g their vehicle, they noticed a wireless netw

ork antenna. They plugged g

,y

yp

ggin their w

ireless LAN

cards, fired up their notebook computers, and

connected to the system w

ithin five minutes because it w

asn't using passw

ords[

]Within

15m

inutesthey

mapped

everypiece

ofequipmentin

passwords. […

] Within 15 m

inutes, they mapped every piece of equipm

ent in the operational control netw

ork. Within 20 m

inutes, they were talking to the

business network and had pulled off several business reports.

Data C

omm

unications & Fieldbus S

ystems

386

Page 388: Data Communication &Fieldbus Systems

THE

($50B)9/14/2003

US

BLA

CK

OU

TTH

E ($50B

) 9/14/2003 U.S

. BLA

CK

OU

T

►“S

tarting around 14:14, FE [FirstE

nergy] control room operators lost

the alarm function that provided audible and visual indications w

hen a significant piece of equipm

ent changed from an acceptable to problem

atic status. Analysis of

the alarm problem

performed by FE

after the blackout suggests that the alarm

till

“t

lld”

hili

lt

With

thft

processor essentially “stalled” while processing an alarm

event. With the softw

are unable to com

plete that alarm event and m

ove to the next one, the alarm

processor buffer filled and eventually overflowed. A

fter 14:14, the FE control

computerdisplays

didnotreceive

anyfurtheralarm

snorw

ereany

alarms

beingcom

puter displays did not receive any further alarms, nor w

ere any alarms being

printed or posted on the EM

S’s alarm

logging facilities.“FE

operators relied heavily on the alarm processor for situational aw

areness, since

theydid

nothaveany

otherlargescale

visualizationtoolsuch

asa

dynamic

since they did not have any other large-scale visualization tool such as a dynamic

map board. The operators w

ould have been only partially handicapped without the

alarm processor, had they know

n it had failed. How

ever, by not knowing that they

were

operatingw

ithoutanalarm

processorthe

operatorsdid

notrecognizesystem

were operating w

ithout an alarm processor, the operators did not recognize system

conditions w

ere changing and were not receptive to inform

ation received later from

MIS

Oand neighboring system

s. The operators were unaw

are that in this situation they

neededto

manually,and

more

closely,monitorand

interprettheS

CA

DA

they needed to manually, and m

ore closely, monitor and interpret the S

CA

DA

information they w

ere receiving.”

Data C

omm

unications & Fieldbus S

ystems

387

Page 389: Data Communication &Fieldbus Systems

BLA

CK

OU

TB

LAC

KO

UT

Data C

omm

unications & Fieldbus S

ystems

388

Page 390: Data Communication &Fieldbus Systems

MU

ND

AN

EA

TTAC

KS

CO

ULD

TAR

GE

TS

CA

DA

NE

TWO

RK

MU

ND

AN

E A

TTAC

KS

CO

ULD

TAR

GE

T SC

AD

AN

ETW

OR

K

FIBE

R A

S E

AS

ILY A

S P

OW

ER

LINE

S►

SC

AD

Asystem

sare

oftenphysically

distributedoverlarge

areas,making

physicalsecurity►

SC

AD

Asystem

s are often physically distributed over large areas, making physical security

a challenge. Sim

ple vandalism is a real/w

ell known risk:

--“[…] vandals shot out approxim

ately 80 individual insulators on the BP

A C

ougar-Thurston 115

000ltt

ii

lii

ittt

fi

tthtti

Thd

li115,000 volt transm

ission line causing it to go out of service at that time. The vandalism

occurred near C

ougar Dam

, which is approxim

ately 25 miles east of E

ugene. BP

A crew

s replaced the dam

aged insulators at an estimated cost of $6,000. E

ven though no electrical service to E

WE

Band Lane E

lectric Cooperative custom

ers was disrupted by the vandalism

, p

py

,E

ugene Water and E

lectric had to purchase additional power to serve its custom

ers during the 13 hours that it took to repair the dam

aged line.”

‘AW

ashingtonm

anw

hoadm

ittedto

tampering

with

more

than20

highvoltage

--A

Washington m

an who adm

itted to tampering w

ith more than 20 high-voltage

transmission tow

ers in four Western states said yesterday he w

as trying to point out the pow

er system's vulnerabilities. "I intended to loosen the bolts and by doing so illustrate the

vulnerabilities of these towers," P

oulintold the judge. P

oulinsaid in a telephone interview

before his arrest that he considered his actions necessary to point out that he w

as able to dam

age the towers despite being "62 years old, overw

eight, arthritic, diabetic, half-blind and a cancer patient living on a m

inimum

of 12 medication pills a day.“’

Data C

omm

unications & Fieldbus S

ystems

389

Page 391: Data Communication &Fieldbus Systems

SC

AD

AS

EC

UR

ITYTO

DA

YS

CA

DA

SE

CU

RITY

TOD

AY

: W

HE

RE

EN

TER

PR

ISE

SE

CU

RITY

WA

S 10 Y

EA

RS

AG

O

►“The present state of security for S

CA

DA

is not comm

ensurate with

thethreatorpotentialconsequences

Theindustry

hasgenerated

athe threat or potential consequences. The industry has generated a large base of relatively insecure system

s, with chronic and pervasive

vulnerabilities that have been observed during security assessments.

Arbitrary applications of technology, inform

al security, and the fluid vulnerability environm

ent lead to unacceptable risk. […] S

ecurity for S

CA

DA

istypically

fiveto

tenyears

behindtypicalinform

ationS

CA

DA

is typically five to ten years behind typical information

technology (IT) systems because of its historically isolated stovepipe

organization.”

Data C

omm

unications & Fieldbus S

ystems

390

Page 392: Data Communication &Fieldbus Systems

THE

“HID

DE

NH

ALF”O

FTH

EN

ETW

OR

KTH

E H

IDD

EN

HA

LF O

F THE

NE

TWO

RK

►Traditionally

network

andsecurity

peoplehave

focusedvirtually

allour►

Traditionally network and security people have focused virtually all our

attention on the “enterprise” side of the network, ignoring the parallel

“hidden” half of the network associated w

ith process control systems and

embedded

systems

embedded system

s.

►P

rocess control systems and em

bedded systems use different protocols,

yy

pdifferent jargon, and no one ever really m

entioned them. They w

ere out of sight and out of m

ind, and “handled” by hardware guys.

Data C

omm

unications & Fieldbus S

ystems

391

Page 393: Data Communication &Fieldbus Systems

UN

FOR

TUN

ATE

LY“H

IDD

EN

”DO

ES

NO

TA

LWA

YS

EQ

UA

LU

NFO

RTU

NA

TELY

, “HID

DE

N” D

OE

S N

OT A

LWA

YS

EQ

UA

L P

HY

SIC

ALLY

SE

PA

RA

TED

►In the old days, process control system

s used proprietary protocols and ran w

ith serial comm

unications (e.g., modem

s) or on physically separated (“air gapped”) private dedicated netw

orks, but that’s no longer always the

case.

►These days, process control system

s often run using MO

DB

US

/TCP

on the enterprise LA

N and over the Internet; process control traffic m

ay be i

ld

ithb

ilP

2Pt

ffiV

IPt

ffit

comm

ingled with w

eb pages, email, P

2P traffic, V

oIP traffic, etc.

Data C

omm

unications & Fieldbus S

ystems

392

Page 394: Data Communication &Fieldbus Systems

BU

TD

ON

’TTA

KE

MY

WO

RD

FOR

ITB

UT D

ON

T TAK

E M

Y W

OR

D FO

R IT…

►‘M

ISC

ON

CE

PTIO

N#1

“ThS

CA

DA

tid

hi

ll►

‘MIS

CO

NC

EP

TION

#1 –“The S

CA

DA

system resides on a physically

separate, standalone network.”

‘Most S

CA

DA

systems w

ere originally built before and often separate from

other corporate networks. A

s a result, IT managers typically operate on the

assumption that these system

s cannot be accessed through corporate p

yg

pnetw

orks or from rem

ote access points. Unfortunately, this belief is usually

fallacious.’

“Understanding S

CA

DA

System

Security V

ulnerabilities”

Data C

omm

unications & Fieldbus S

ystems

393

Page 395: Data Communication &Fieldbus Systems

SE

RIO

US

CO

NS

EQ

UE

NC

ES

OF

SE

RIO

US

CO

NS

EQ

UE

NC

ES

OF

SC

AD

A-R

ELA

TED

CO

MP

RO

MIS

ES

►W

hile enterprise network security is undeniably im

portant, unlike enterprise netw

orksecurity

SC

AD

Acom

promises

canhave

realworld

lifesafety

impacts

network security, S

CA

DA

comprom

ises can have real world life safety im

pacts.

►E

nterprise network security breach: financial consequences, custom

er privacy p

yq

,p

yis com

promised, system

s need to be rebuilt, spam gets sent, etc., but life goes

on.

►S

CA

DA

security breach? Property can be destroyed and people can be hurt

or killed.

Data C

omm

unications & Fieldbus S

ystems

394

Page 396: Data Communication &Fieldbus Systems

SIM

PLE

PR

OTO

CO

LSS

IMP

LE P

RO

TOC

OLS

►B

ecauseS

CA

DA

devicesw

ithem

beddedcontrollers

tendto

havelim

ited►

Because S

CA

DA

devices with em

bedded controllers tend to have limited

computational pow

er, and were historically connected via low

speed serial lines, S

CA

DA

protocols tend to be quite simple, w

ith little or no protection i

tfi

ltt

ki

tfd

il

fi

ttk

against spoofing, replay attacks, or a variety of denial of service attacks.

►‘In

adem

onstrationata

recentsecurityconference

[JeffDagle

aP

NN

L►

In a demonstration at a recent security conference, [Jeff D

agle, a PN

NL

(Pacific N

orthwest N

ational Laboratory) EE

] hacked into his testbedsystem

and tripped an electrical breaker. The breaker then signaled the S

CA

DA

software

thatithadopened

Butthe

SC

AD

Acontrollerdid

notS

CA

DA

software that it had opened. B

ut the SC

AD

Acontroller did not

respond because it had not instructed the breaker to open. It was a classic

denial-of-service attack. "We w

ere demonstrating a w

eakness at the t

lllit

lf"id

Dl

’protocol level itself," said D

agle.’

Data C

omm

unications & Fieldbus S

ystems

395

Page 397: Data Communication &Fieldbus Systems

LON

G LIFE

CY

CLE

DE

VIC

ES

►Industrial plants, and the instrum

entation they include, tend to be long life cycle projects –

ten, fifteen or twenty year project lives are by no m

eans uncom

mon. A

s a result, the devices that may be deployed as part of that

construction may be virtual antiques by the tim

e the facility is finally decom

missioned, and there’s no provision for refreshing those devices the

pg

way you m

ight upgrade out of date PC

s in some office.

►‘"A

tii

ftd

'tk

thS

CA

DA

t"

idR

bt

►‘"A

nti-virus software doesn't w

ork on these SC

AD

Asystem

s," said Robert

Childs, inform

ation security analyst at the Public S

ervice Com

pany of New

M

exico, who spoke at N

etSec

about the challenges in working w

ith SC

AD

Avendors to get them

to comply w

ith the new rules. "M

any of these systems

are based on old Intel 8088 processors, and security options are limited to

us.“

Data C

omm

unications & Fieldbus S

ystems

396

Page 398: Data Communication &Fieldbus Systems

WIN

DO

WS

-BA

SE

D C

ON

TRO

L STA

TION

S

►S

CA

DA

devices are often controlled from central m

onitoring i

(MTU

“i

li

”)H

ii

llh

stations (MTU

s, or “master term

inal units”). Historically those

were U

nix-based systems, but m

any contemporary M

TUs

are now

MicrosoftW

indows

based.now

Microsoft W

indows based.

Data C

omm

unications & Fieldbus S

ystems

397

Page 399: Data Communication &Fieldbus Systems

HA

RD

-TO-U

PG

RA

DE

RE

MO

TE D

EV

ICE

S

►R

emote devices (R

TUs

and PLC

s) also tend to be hard to upgrade :

--the device may use an O

S and application that w

as burned to RO

M, and

which is not rew

ritable (“upgrade” = replacing RO

Ms)

--the device may be physically sealed and not upgradeable, or be located in a

difficult location, or have no removable m

edia

---the vendor may no longer be in business, or m

ay not be producing upgrades, or the vendor m

ay not be allowing

upgrades

Data C

omm

unications & Fieldbus S

ystems

398

Page 400: Data Communication &Fieldbus Systems

CE

RTIFY

ING

PA

TCH

ES

►A

n example from

the embedded system

world:

“Health care IT professionals say m

edical device makers prohibit them

from

changing the systems and even from

running anti-virus software in

ThIT

di

it

tf

tft

lt

some cases. These IT adm

inistrators say manufacturers often are slow

to supply softw

are patch updates and routinely claim the Food and D

rug A

dministration (FD

A) requires approval of patch-base changes. H

owever

the FDA

says it has no such rules…”

Data C

omm

unications & Fieldbus S

ystems

399

Page 401: Data Communication &Fieldbus Systems

NE

ED

FOR

PO

SITIV

E C

ON

TRO

L –S

IMP

LE K

NO

WN

/SH

AR

ED

PA

SS

WO

RD

S

►B

ecause of the need for positive access and control, there is a trend toward

psim

ple, known, and shared passw

ords. Users like to avoid situations such as:

“Do you know

the password to turn off the nuclear reactor before it m

elts dow

n?Iforgotm

inetoday…

”dow

n? I forgot mine today…

►B

ut there’s hope: people in the SC

AD

Acom

munity are beginning to talk about

strong authorization systemsD

ata Com

munications &

Fieldbus System

s400

Page 402: Data Communication &Fieldbus Systems

CO

MM

ON

PA

SS

WO

RD

SC

OM

MO

N P

AS

SW

OR

DS

A

CR

OS

S M

ULTIP

LE D

EV

ICE

S

►There’s also the sheer issue of m

anaging passwords for thousands of

devices–

passwords

willtend

tobe

comm

onacross

devicesas

apractical

devices –passw

ords will tend to be com

mon across devices as a practical

matter (this is m

uch like SN

MP

comm

unity strings)

►►A

nd of course those passwords aren’t changed very often (if at all), even

when staff transitions occur or years have gone by…

Data C

omm

unications & Fieldbus S

ystems

401

Page 403: Data Communication &Fieldbus Systems

PLA

IN TE

XT (U

NE

NC

RY

PTE

D) TR

AFFIC

►These days, few

of us would be w

illing to send our passwords over plain

text transmissions paths (as w

e would w

hen using telnet), yet plain text transm

issions are still very comm

on in the SC

AD

Aw

orld.

►In the realtim

ew

orld, encryption overhead and jitter m

ay be the crucial problems to overcom

e…

Data C

omm

unications & Fieldbus S

ystems

402

Page 404: Data Communication &Fieldbus Systems

ALL TR

AFFIC

IS O

N JU

ST O

NE

PO

RT

►In m

any cases, SC

AD

Atraffic w

ill be on just one port such as 502/tcp(e.g., M

odbus/TCP

). This is both good and bad.

►The use of a single port (or just a couple of ports) m

akes it easy to track thattraffic

ortopoke

ahole

infirew

allsto

allowthattraffic

topass

butitthat traffic, or to poke a hole in firew

alls to allow that traffic to pass, but it

also makes it easy for the bad guys to scan for connected devices, and it

makes it im

possible to do port-based selective filtering.

Data C

omm

unications & Fieldbus S

ystems

403

Page 405: Data Communication &Fieldbus Systems

IN TH

E IN

TER

ES

T OF B

ALA

NC

E:

A D

ISS

EN

TING

OP

INIO

N►

“Despite tantalising

accounts of terrorist interest in targeting SC

AD

Anetw

orks and other critical infrastructure, there actually appears to be little interest am

ongthe

hackercomm

unityin

developingtools

andexploits

againstPLC

oram

ong the hacker comm

unity in developing tools and exploits against PLC

or industrial protocols such as M

odbus/TCP

or Ethernet/IP

. Unlike IT products,

tools for automatically "hacking " P

LCs, rem

ote IO devices, robots, or E

thernet-b

dt

dilil

blbased sensors are not readily available.

“Bedroom

hackers with little or no know

ledge of automation system

s are, in reality, unlikely to cause deliberate harm

.”

Data C

omm

unications & Fieldbus S

ystems

404

Page 406: Data Communication &Fieldbus Systems

Day Five

►E

thernet

►H

ost to Host layer protocols

►P

lanning SC

AD

A projects

►G

lossary

Data C

omm

unications & Fieldbus S

ystems

405

Page 407: Data Communication &Fieldbus Systems

ETH

ER

NE

T LAN

CO

NC

EP

T VIE

W

Ethernet w

as the first LAN

technology to be developed -- the pioneering research w

ork being done in the early 1970's.

It was developed by X

erox at a time w

hen support technology w

as not cost-effective, nor was there a

significant market.

The microprocessor developm

ents of the late 1970's changed both issues, m

aking the technology viable and creating a m

arket via the personal computer.

To further develop and promote ethernet technology, X

erox partnered with Intel and D

EC

, creating a strong corporate credibility that has helped m

ake ethernet the most popular LA

N technology.

The IEE

E adopted ethernet as the basis of the IE

EE

802.3 standard (alth

ough w

ith su

btle

diffe

rence

s from

the ve

rsion p

rom

ote

d b

y DE

C/IN

TE

L/X

ER

OX

-- the so

-calle

d "D

IX" e

thern

et).

Ethernet is a bus architecture system

(which

implie

s a co

mm

on, o

r party-lin

e b

roadca

st mediu

m)

which is shared using a contention access control technique know

n as carrier sense multiple

access with collision detection (C

SM

A/C

D).

D-116

D

ata Com

munications &

Fieldbus System

s406

Page 408: Data Communication &Fieldbus Systems

D-276

ETH

ER

NE

T CO

LLISIO

N R

EC

OV

ER

Y P

RO

CE

SS

Whenever there is a collision involving tw

o or more stations, they w

ill each independently determine

that there has been a problem, stop transm

itting, and reattempt the transm

ission later.

The retry waiting tim

e is randomly selected (fro

m w

ithin

a sp

ecifie

d tim

e in

terva

l), so as to minim

ize the risk of a second collision event.

How

ever, when the system

is busy, there is a significant probability of a second collision with som

e other station.

In order to separate (in tim

e) stations that have collided (a

nd to

smooth

out tra

ffic patte

rns th

at p

eak a

t so

me m

om

ent -- p

resu

mably ca

use

d b

y som

e e

xtern

al e

vent), the protocol provides for a station that

encounters more than one collision to double the size of the w

indow w

ithin which it sets its random

tim

er for each subsequent retry interval.

This process makes it increasingly likely that a station that has had a run of bad luck (in

gettin

g its

messa

ge tra

nsm

itted) w

ill encounter increasingly bad luck (i.e. It b

eco

mes a

first in - la

st out q

ueuin

g

pro

cess).

This doubling of the time w

indow continues for 10 events (so

that th

e ra

ndom

time se

lectio

n w

indow

ca

n g

row

to 2

**10 =

1024 tim

es its o

rigin

al va

lue). If the collisions continue beyond 10 events, the

time w

indow stays unchanged up to 16 collisions, at w

hich time an error is reported to the LLC

layer, typically requiring som

e kind of manual intervention. This tim

er control scheme is called the truncated

exponential backoff algorithm.

As a consequence of this m

echanism, it is not possible to guarantee a bound on ethernet access tim

e delay -- such as is often required for real-tim

e applications.

Data C

omm

unications & Fieldbus S

ystems

407

Page 409: Data Communication &Fieldbus Systems

CO

AX

IAL C

AB

LE: C

omprised of a center core conductor, cylindrical insulator and outer cylindrical

shield conductor surrounding the assembly. Typically, an outer insulating jacket is provided

around the composite cable. E

thernet uses a 50 Ohm

cable (simila

r to R

G 2

13

), colo

red

ye

llow

if it is PV

C in

sula

ted

; ora

ng

e if it is p

len

um

-safe

).

PH

YS

ICA

L ME

DIU

M A

TTAC

HM

EN

T

PH

YS

ICA

L (S

IGN

ALIN

G IN

TER

FA

CE

)

ME

DIU

M A

CC

ES

S C

ON

TRO

L

LOG

ICA

L LINK

CO

NTR

OL

UP

PE

R LE

VE

L FU

NC

TIO

NS

ATTA

CH

ME

NT U

NIT

CA

BLE

(9 wire, 15 pin

connector, maxim

um

length is 50 meters)

ATTA

CH

ME

NT U

NIT

INT

ER

FAC

E (A

UI)

CO

NN

EC

TOR

S

ME

DIU

M

ATTA

CH

ME

NT

UN

IT(TR

AN

SC

EIV

ER

)

ATTA

CH

ME

NT

UN

ITIN

TER

FAC

E

(AU

I)

TWO

CO

ND

UC

TOR

PR

ES

SU

RE

C

ON

TAC

T/CO

NN

EC

TION

(V

ampire Tap) LO

CA

TED

AT

MIN

. 2.5 m IN

TER

VA

LS(C

able is marked every 2.5 m

)

OS

IP

HY

SIC

AL

LAY

ER

OS

ILIN

KLA

YE

R

"THIC

K-W

IRE

" ETH

ER

NE

T CA

BLE

ATTA

CH

ME

NT

D-082

NE

TWO

RK

INTE

RFA

CE

CA

RD

(NIC

) FUN

CT

ION

S

D

ata Com

munications &

Fieldbus System

s408

Page 410: Data Communication &Fieldbus Systems

CO

AX

IAL C

AB

LE: C

omprised of a center core conductor, cylindrical insulator and outer cylindrical

shield conductor surrounding the assembly. T

hinwire coax is R

G58 R

/U, 50 O

hm cable,

approximately 1/4 inch diam

eter.

PH

YS

ICA

L (S

IGN

ALIN

G IN

TER

FAC

E)

ME

DIU

M A

CC

ES

S C

ON

TRO

L

LOG

ICA

L LINK

CO

NTR

OL

UP

PE

R LE

VE

L FU

NC

TION

S

OS

IP

HY

SIC

AL

LAY

ER

OS

ILIN

KLA

YE

R

"THIN

-WIR

E" E

THE

RN

ET C

AB

LE A

TTAC

HM

EN

T

D-084

NE

TWO

RK

INTE

RFA

CE

CA

RD

(NIC

) FUN

CTIO

NS

AAAA

AAAA

AAAAAAAAAAAA

AAAAAAAAA

AAAAAAAAAAAA

AAAAAAAAA

BN

C-Type tw

ist-lock connector is used. E

ach workstation has a "T" connection,

thus providing for an onward connection

to other users.

A cable term

ination is required at the last station on a cable run.

Data C

omm

unications & Fieldbus S

ystems

409

Page 411: Data Communication &Fieldbus Systems

���

���

���

D-021

ET

HE

RN

ET U

TP W

IRIN

G C

ON

CE

PT

RJ-45 P

ATC

H P

AN

EL 

(OP

TIO

NA

L)

WA

LL PLA

TE A

ND

RJ-45 C

ON

NE

CT

OR

PA

TC

H C

OR

D

TH

E W

IRIN

G H

UB T

AK

ES T

HE F

OR

M O

F A M

ULT

I-PO

RT R

EP

EA

TER (O

BS

OLE

TE

), IN

TE

LLIGE

NT O

R S

WIT

CH

ING H

UB

UN

SH

IELD

ED T

WIS

TE

D-P

AIR (U

TP

)H

OU

SE C

AB

LING IS

 ALW

AY

S "H

OM

E R

UN

"

Data C

omm

unications & Fieldbus S

ystems

410

Page 412: Data Communication &Fieldbus Systems

RJ-45 D

AT

AC

ON

NE

CT

OR

(RE

CE

PT

AC

LE 

VIE

W)

PIN N

UM

BE

R1 2 3 4 5 6 7 8

Ethernet T

ransmit P

air

Ethernet R

eceive Pair

+-+-

D-424

Standard C

able Configurations:

Ethernet (10 and 100 B

ase-T)

12345678

ET

HE

RN

ET R

J-45 PIN 

CO

NN

EC

TIO

N C

ON

VE

NT

ION

S

Data C

omm

unications & Fieldbus S

ystems

411

Page 413: Data Communication &Fieldbus Systems

K-074

IND

US

TR

IAL E

TH

ER

NE

T CO

NN

EC

TO

RS

AB

OV

E: C

ON

TA

CT 

CO

RR

OS

ION

;B

ELO

W: C

ON

TAC

T WE

AR 

DU

E T

O V

IBR

AT

ION 

RJ45 C

ON

TAC

T PR

OB

LEM

ST

he normal, office-oriented R

J-45 Ethernet connector is a 

source of concern when adapted to industrial 

applications.

This is m

ainly due to the light-duty, fragile connections that are m

ade when the connectors are crim

ped onto the cables, and the m

inimal conducting surface area w

hen they are m

ated.

Industrial environmental issues include exposure to dust, 

temperature extrem

es, excessive humidity levels, 

electromagnetic interference, and vibration -- all of w

hich can significantly jeopardize reliability.

In this context, standard RJ-45 plugs and jacks m

ay corrode, w

ear, clog with debris, and eventually fail.

Failing to take appropriate care w

ith these seemingly 

trivial items can lead to serious unreliability problem

s and resulting high m

aintenance costs.

continued ....

Data C

omm

unications & Fieldbus S

ystems

412

Page 414: Data Communication &Fieldbus Systems

K-075

Siem

on's Industrial Max connectors (w

ww

.siemon.com

)

AM

P N

etconnect Etherseal connectors (w

ww

.ampnetconnect.com

)

One approach is to fit the conventional R

J-45 plugs and jacks with an outer housing that w

ill protect them

 from dirt, hum

idity and vibration exposure -- see examples show

n in box below.

Variations on this idea typically include screw

 and bayonet-style sheaths, or jackets that are designed to protect the encased R

J-45 plug and jack assembly. 

IND

US

TR

IAL E

TH

ER

NE

T CO

NN

EC

TO

RS

, cont.

Alternatives to these "hardened" 

RJ-45 E

thernet connector designs is a com

pletely different connector approach.

Som

e have used DB

-9 shell connectors (com

monly used on 

PC serial ports) -- w

hich can be solder-connected and screw

 anchored.

Term

inating individual conductors w

ith screw lugs and barrier strips 

is another possibility -- a very reliable and robust solution, but labor-intensive to install.

Data C

omm

unications & Fieldbus S

ystems

413

Page 415: Data Communication &Fieldbus Systems

ETH

ER

NE

T CO

NFIG

UR

ATIO

N LIM

ITATIO

NS

D-085

TH

ICK

-WIR

E E

TH

ER

NE

T (10-B

AS

E-5)

Cable segm

ent maxim

um length: 500 m

etersM

aximum

number of attachm

ents per segment: 100 taps

Minim

um tap separation: 2.5 m

etersM

aximum

number of devices per netw

ork: 1024 (limita

tion

com

mo

n to

all co

nfig

ura

tion

s)

TH

IN-W

IRE

ET

HE

RN

ET

(10-BA

SE

-2)

Cable segm

ent maxim

um length: 200 m

eters (som

e 1

89

me

ters)

Maxim

um num

ber of attachments per segm

ent: 30 attachments

Minim

um connection-point separation: 1 m

eter

TW

IST

ED

-PA

IR E

TH

ER

NE

T (10-B

AS

E-T

)

Star-w

ired cable configuration; most vendors lim

it cable lengths to 100 meters

Each w

ire run supports only one userM

ulti-port repeater hubs aggregate multiple user connections

FIB

ER

OP

TIC

BA

SE

D E

TH

ER

NE

T (10-B

AS

E-F

)

Fiber cable configurations are nom

inally suited to "backbone" roles, linking star couplersM

aximum

fiber cable segment/system

length with passive star couplers: 2,200 m

etersM

aximum

fiber cable system (e

nd

-to-e

nd

) length with active collision detectors: 4,400 m

eters

Data C

omm

unications & Fieldbus S

ystems

414

Page 416: Data Communication &Fieldbus Systems

D-426

FIBE

R O

PTIC

ETH

ER

NE

T CO

NFIG

UR

ATIO

NS

Ethernet based on fiber optic cable segm

ents will deploy in one of three configurations; point-to-point,

passive star coupled and active star coupled.

Po

int-to

-Po

int

Point-to-point use of fiber optic technology is sim

ple, involving a copper-to-fiber repeater connection at each end

(of a

two-fib

er ca

ble

span).

This class of service is typically configured using com

ponents compatible w

ith passive star coupling (se

e b

elo

w). Thus, this connection is called a passive fiber optic segm

ent (PF

OS

).

Passive S

tar Co

up

led

The passive star coupler provides an optically coupled connection (light p

ath

) between all of its cable

ports -- really an optical hub.

Passive-connected ethernet com

ponents (mediu

m a

ttach

ment u

nits a

nd co

uple

rs) use a different data form

at and a different collision detection method than com

parable active components -- and also

different from conventional m

etallic cabled systems.

Passive optical segm

ents (PF

OS

) may be up to 500 m

eters length.

Data C

omm

unications & Fieldbus S

ystems

415

Page 417: Data Communication &Fieldbus Systems

D-427

FIBE

R O

PTIC

ETH

ER

NE

TC

ON

FIGU

RA

TION

S, cont.

Passive S

tar Co

up

led, cont.

Correct functioning of the collision detection logic in this passive configuration is based on a data

reformatting procedure som

ewhat like that used w

ith token ring, whereby an 'illegal' m

anchester data pattern is generated, thus elim

inating the long synchronization preamble in m

etallic ethernet data form

ats.

Active S

tar Co

up

led

The active star coupled configuration provides for complete optical signal regeneration at the coupler,

or hub point -- thus significantly increasing the number of ports that can be feasibly supported, and the

practical maxim

um span distance.

Maxim

um active fiber optic segm

ent length is 2,000 meters

Active hubs support collision detection at the hub itself (w

ith th

e S

QE

collisio

n sig

nal e

nco

ded in

the

modifie

d d

ata

stream

) -- this being the principal feature enabling the now 4,000 m

eter edge-to-edge optical backbone segm

ent.

D

ata Com

munications &

Fieldbus System

s416

Page 418: Data Communication &Fieldbus Systems

K-093

�������������������������������

�������������������������������

W/S

W/S

W/S

W/S

W/S

W/S

W/S

W/S

OH

H H

OH

H

FIE

LD T

ER

MIN

AL

FIE

LD T

ER

MIN

AL

CA

BLE

 CO

NN

EC

TIV

ITY B

ET

WE

EN B

UILD

ING

S

FIB

ER O

PT

ICC

AB

LE LIN

K

Where m

ultiple building structures are to be linked by a LAN or other netw

ork connection, it is  very im

portant  that all inter-building connections be made either w

ith fiber optic cable  (rather than a m

etallic medium

 like UT

P or coaxial cable),   or that careful attention be paid to the electrical 

characteristics (i.e. whether properly isolated or properly bonded)   of m

etallic grounds.

This is because the electrical and grounding system

s for the buildings will typically be 

independent, or poorly bonded -- with the result that netw

ork cables linking the two structures offer 

the lowest im

pedance connection.  The risk is that electrical fault or lightning current surges w

ould potentially destroy the connected equipm

ent -- and create a serious personnel hazard.

114

Data C

omm

unications & Fieldbus S

ystems

417

Page 419: Data Communication &Fieldbus Systems

TR

AF

FIC

DE

MA

ND

(Megabits per S

econd)2.5

5.07.5

10

D-241

ETH

ER

NE

T CH

AN

NE

L UTILIZA

TION

PR

OFILE

CO

LL

ISIO

N S

AT

UR

AT

ED

RE

GIO

N(T

raffic

Ja

m S

yn

dro

me

)

US

EF

UL

( Net) D

AT

A

TR

AN

SM

ISS

ION

RE

GIO

N

PA

CK

ET

S

(Incl. Overhead

)S

UC

CE

SS

FU

LL

Y T

RA

NS

MIT

TE

D

EFFECTIVE THROUGHPUT EFFICIENCY

0

100 %

0

UN

SA

TIS

FA

CT

OR

Y O

PE

RA

TIN

G R

EG

ION

(due to network saturation)

OP

TIM

AL O

PE

RA

TIN

G

RE

GIO

NH

IGH

CO

ST

OP

ER

AT

ING

R

EG

ION

80 %

60 %

40 %

20 %

Data C

omm

unications & Fieldbus S

ystems

418

Page 420: Data Communication &Fieldbus Systems

ET

HE

RN

ET F

RA

ME LE

NG

TH vs. P

HY

SIC

AL LE

NG

TH

W/S

A

2

W/S

B

W/S

A

3

W/S

BO

NE

-WA

Y TR

AN

SIT TIM

E = t  seconds

AW

/S

BO

NE

-WA

Y T

RA

NS

IT TIM

E = t  seconds

RE

TUR

N TR

AN

SIT TIM

E =  t seconds

1

TH

E W

OR

ST C

AS

E R

OU

ND T

RIP T

RA

NS

IT  T

IME (2 x  t seconds) D

ET

ER

MIN

ES T

HE 

MIN

IMU

M A

LLOW

AB

LE F

RA

ME LE

NG

TH

W/S

D-270

To appreciate the relationship betw

een m

essage (frame)  length and overall physical 

dimensions of the LA

N, consider the follow

ing:

Step 1:   A

ssume the channel is idle, and "A

" is ready to transm

it, and it does.  The fram

e from 

"A" propagates at finite speed to the extrem

ity of the cable system

, taking a time w

hich is dependent on cable length.

Step 2:  A

ssume  "B

" now m

akes the (unfortunate)  decision to start transm

itting m

omentarily before the fram

e from "A

" arrives, and before it is in a position to know

.that there is other traffic on the channel. 

Step 3:  "B

" learns imm

ediately that there has been a collision -- but "A" has no know

ledge of the conflict until sufficient tim

e elapses for two round-trip fram

e transits of the network.

Thus, the m

inimum

 length of an Ethernet fram

e must be sufficiently long so that "A

" is assured to be still busy transm

itting when the collision inform

ation comes available at "A

" (both parties must 

know w

hen there has been a collision).

Therefore, the m

inimum

 length message m

ust occupy the channel for  2 x t  seconds.  In practice, the IE

EE 802.3 standard specifies a 64 byte m

inimum

 frame length for this reason.

Data C

omm

unications & Fieldbus S

ystems

419

Page 421: Data Communication &Fieldbus Systems

D-743

DIS

TA

NC

E C

ON

ST

RA

INT

S W

ITH E

TH

ER

NE

T

There are tw

o unrelated constraints on cable length in Ethernet system

s:

Collision D

iameter

It is critical that devices that share a comm

on Ethernet segm

ent are capable of effectively detecting collisions that they have contributed to.

Each of the several 802.3-series of E

thernet standard specifications prescribe a maxim

um 

device separation within w

hich distance this capability is assured -- the collision diameter.

This issue is only m

eaningful in classical shared-cable configurations in which collisions can and 

do occur because of the half-duplex nature of the cable signalling -- and with full duplex 

configurations where collisions are im

possible, drive distance is the only concern.

Drive D

istance

The drive distance is sim

ply the maxim

um distance over w

hich a survivable electrical (or optical)  signal can be reliably delivered, considering cable and signal characteristics.

Drive distance is typically a less restrictive constraint than collision diam

eter, and depending on cable type selected can be as large as m

any kilometers.

Thus, full duplex fiber-connected E

thernet systems are feasibly able to operate over m

etropolitan area dim

ensions -- making E

thernet into a credible MA

N technology.      

Data C

omm

unications & Fieldbus S

ystems

420

Page 422: Data Communication &Fieldbus Systems

D-501

DR

IVE D

IST

AN

CE

Drive distance is the m

aximum

 distance a signal is able to travel over a specified medium

, and still be usable at the receiving end.

Minim

um drive distance is alw

ays specified as part of a LAN standard, although vendors are 

sometim

es able to extend these distances as long as only their technology is used (effectively, proprietary extensions of the standards).

100 BA

SE

-T supports a hub-centered LA

N diam

eter of 210 meters  (105 m

eters per lobe, or drop cable -- com

pared with 500 m

eters for 10 Mbps E

thernets).

Thus, in upgrading a netw

ork to 100 Mbps operation, it m

ay be necessary to reconfigure the netw

ork to ensure the physical size of the system m

eets these constraints -- by partitioning the netw

ork and replacing repeater-based hubs with bridging or routing sw

itching hubs.

Drive distance constraints are alw

ays much less lim

iting with the use of fiber optic m

edia, because of the superior transm

ission characteristics of the medium

.

Extrem

e Netw

orks (ww

w.extrem

enetworks.com

)  pioneered the use of full-duplex Ethernet 

(thus avoiding the distance constraints created by collision diameter lim

its)   over fiber optic m

edia, adapting Ethernet to m

etropolitan-scale networks  (M

AN

s). 

Data C

omm

unications & Fieldbus S

ystems

421

Page 423: Data Communication &Fieldbus Systems

FULL D

UP

LEX

LAN

TEC

HN

OLO

GY

,C

ON

FIGU

RA

TION

EX

AM

PLE

D-619

Full duplex LA

N technology elim

inates all problems w

ith access control (esp

ecia

lly significa

nt w

ith

eth

ern

et, w

here

the d

iam

ete

r of th

e co

llision d

om

ain

strongly in

tera

cts with

perfo

rmance

).

Full duplex configurations are by definition point-to-point (with

one d

evice

havin

g u

nch

alle

nged a

ccess

to o

ne co

mm

unica

tion p

ath

).

Application of the concept is typically lim

ited to backbone (hub-to

-hub) connectivity, but m

ay be reasonably extended to include high volum

e end systems, such as enterprise servers.

FU

LL DU

PLE

XB

AC

KB

ON

EH

UB

SY

STE

M(M

AY

SU

PP

OR

TD

IVE

RS

E

TE

CH

NO

LOG

IES

)

FU

LL DU

PLE

XE

XT

EN

SIO

N T

OH

IGH

DE

MA

ND

SE

RV

ER

S/U

SE

RS

D

ata Com

munications &

Fieldbus System

s422

Page 424: Data Communication &Fieldbus Systems

DA

TA

FIE

LD

(LO

GIC

AL

LIN

K

CO

NT

RO

L

INF

OR

MA

TIO

N)

FRA

ME

CH

EC

KS

EQ

UE

NC

E

4 B

YT

ES

14 o

r 22

BY

TE

S

SO

UR

CE

AD

DR

ES

SDESTINATIO

N ADDRESS

7 B

YT

ES

2 o

r 6 B

YT

ES

2 o

r 6 B

YT

ES

1 B

YT

E4 B

YT

ES

D-143

IEE

E 802.3 - E

THE

RN

ET FR

AM

E FO

RM

ATS

VA

RIA

BL

E L

EN

GT

H(M

INIM

UM

46

BY

TE

S)

STA

RT

FRA

ME

D

ELIM

ITER

SY

NC

H.

PR

EA

MB

LE

0 to

15

00

BY

TE

S

LEN

GTH

CO

UN

TER

2 B

YT

ES

PAD (FILL)CHARACTERS

INF

OR

MA

TIO

N(V

AR

IAB

LE

LE

NG

TH

)S

SA

PDSAP

1 B

YT

E4

2 to

14

97

BY

TE

S

CO

NTR

OL

FIELD

1 B

YT

E1

or 2

BY

TE

S

LO

GIC

AL

LIN

K C

ON

TR

OL

LA

YE

R(L

LC

) FR

AM

E S

TR

UC

TU

RE

ME

DIA

AC

CE

SS

CO

NT

RO

L L

AY

ER

(MA

C) F

RA

ME

ST

RU

CT

UR

E

PR

EA

MB

LE

: Consists of a 7 byte string of alternating 1's and 0's.

Purpose is to establish bit-level synchronization at all receiving stations.

ST

AR

T F

RA

ME

DE

LIM

ITE

R: C

onsists of a 10101011 bit pattern (contin

uatio

n

of th

e p

ream

ble

patte

rn, m

arke

d w

ith "1

1" a

t the e

nd) ; P

urpose is to mark

the start of the frame.

AD

DR

ES

S F

IEL

DS

: Message destination and source address specification.

There are tw

o forms; 2 byte form

is "locally administered", 6 byte form

is "universally adm

inistered" (no 2

device

s are

manufa

cture

d w

ith th

e sa

me

unive

rsal a

ddre

ss).

LE

NG

TH

CO

UN

TE

R: S

imple m

essage length specification (byte

count).

DA

TA

FIE

LD

: Contains data content provided by L

LC layer; com

bined with P

AD

F

IELD

, composite m

ust be no shorter than 46 bytes, ensuring com

plete m

essage is never less than 64 byte length.

PA

D F

IEL

D: O

ptional field provides filler characters to ensure compliance w

ithm

essage length requirements.

FR

AM

E C

HE

CK

SE

QU

EN

CE

: Consists of a 4 byte C

RC

error detection code.

DS

AP

and

SS

AP

: Destination and S

ource Service A

ccess Point indicators

(poin

ters o

r links to

upper la

yer p

roto

cols -- d

estin

atio

n a

nd so

urce

resp

ective

ly).

Data C

omm

unications & Fieldbus S

ystems

423

Page 425: Data Communication &Fieldbus Systems

100 BA

SE

-T (FAS

T ETH

ER

NE

T)

D-451

Ethernet users are m

oving rapidly to replace a default 10 BA

SE

-T architecture with 100 B

AS

E-T --

or at least implem

ent new system

s with a sim

ple upgrade path (switch

sele

ctable

NIC

's and

Cate

gory 5

UT

P).

100 BA

SE

-T technology operates over the same U

TP/fiber optic m

edia as 10 BA

SE

-T, and is capable of supporting the conventional 100 m

eters span required for typical workstation access.

This new technology is interoperable w

ith 10 BA

SE

-T, and supports the same shared cable

collision-arbitrated mode of operation.

Sim

ilarities to 10 BA

SE

-T

CS

MA

/CD

access protocolIE

EE

Standard 802.3 and broadly supported by vendor com

munity

100 meter lobe star topology (h

ub b

ase

d)

Cable m

edia: Category 3, 4 or 5 and fiber optic

Differences from

10 BA

SE

-T

10-fold increase in transmission speed

Does not support obsolescent bus topology cable plant

Operating diam

eter of collision domain m

ax. = 210 meters (c.f. 5

00 m

ete

rs for 1

0 B

AS

E-T

)

D

ata Com

munications &

Fieldbus System

s424

Page 426: Data Communication &Fieldbus Systems

D-452

MIX

ED

TE

CH

NO

LOG

Y E

TH

ER

NE

TS

AM

PLE

R

SW

ITC

HIN

GH

UB

SH

AR

ED

M

ED

IA H

UB

100 BA

SE

-TS

WIT

CH

ED

HU

B LA

N(10 B

AS

E-T

DR

OP

S)

100 BA

SE

-TS

HA

RE

D M

ED

IA H

UB

10 BA

SE

-TS

HA

RE

D M

ED

IA LA

N10 B

AS

E-T

SW

ITC

HE

D LA

N

10 BA

SE

-TC

ON

NE

CT

ION

100 BA

SE

-TC

ON

NE

CT

ION

SH

AR

ED

ME

DIA

HU

BS

WIT

CH

ING

HU

B

SW

ITC

HIN

GH

UB

100 BA

SE

-TS

WIT

CH

ED

HU

B LA

N(100 B

AS

E-T

DR

OP

S)

Data C

omm

unications & Fieldbus S

ystems

425

Page 427: Data Communication &Fieldbus Systems

D-659

100 BA

SE

-T E

TH

ER

NE

T

PR

OT

OC

OL S

TA

CK

PH

YS

ICA

L L

AY

ER

PR

OT

OC

OL

(PH

Y)

ME

DIA

AC

CE

SS

CO

NT

RO

L (M

AC

)

IEE

E 8

02

.3P

HY

SIC

AL

LA

YE

R

IEE

E 8

02

.3C

SM

A/C

D

IEE

E 8

02.2

LL

C

UP

PE

R L

AY

ER

S(e

.g. In

tern

et P

roto

co

l)

UP

PE

R L

AY

ER

S(e

.g. In

tern

et P

roto

co

l)

IEE

E 8

02.2

LL

C

IEE

E 8

02.3

CS

MA

/CD

or F

UL

L D

UP

LE

X M

AC

IEEE 802.3 100 Base-T ETHERNET

ANSI X3T9 FDDI IEEE 802.3 ETHERNET

Fast E

thernet (100 B

ase

-T) borrow

s the low

er layer protocols directly from

the AN

SI F

DD

I specifications, and the upper layers of the traditional IE

EE

802-series standards

PH

YS

ICA

L M

ED

IUM

DE

PE

ND

EN

T (P

MD

)

PH

YS

ICA

L L

AY

ER

PR

OT

OC

OL

(PH

Y)

PH

YS

ICA

L M

ED

IUM

DE

PE

ND

EN

T (P

MD

)

D

ata Com

munications &

Fieldbus System

s426

Page 428: Data Communication &Fieldbus Systems

D-500

An im

portant managem

ent challenge with any system

atic upgrade of technology is the logistical issue of m

aintaining operational continuity through the process.

The IE

EE standard specifies an optional speed sensing feature, properly called  N

way autosensing

, w

hich allows both 10 B

AS

E-T and 100 B

AS

E-T technology to coexist on the sam

e network.

Autosensing devices are able to sense w

hether or not there are 10 BA

SE

-T devices on the LAN

, or if the netw

ork is 100% 100 B

AS

E-T equipped.

The system

 runs as a 10 BA

SE

-T network as long as there are any rem

aining devices with only 10 

Mbps capability -- and w

hen the last 10 BA

SE

-T device is replaced, the whole system

 automatically 

shifts gears and operates at the higher rate.

This parallel 10/100 dual speed feature creates a big operational bonus by enabling a seam

less upgrade/transition path to the m

ore desirable 100 BA

SE

-T mode of operation.

Early versions of this autosensing technology had a problem

 with m

arginal cable configurations, ill advisedly shifting to 100 M

bps when connected by inferior cable infrastructure.

New

er autosensing algorithms sense signal quality as w

ell as bit rate, thus making a m

ore informed 

decision about operating speed  (and some w

ill send a SN

MP T

rap message to the adm

inistrator advising of deficient operating conditions).

AU

TO

SE

NS

ING

Data C

omm

unications & Fieldbus S

ystems

427

Page 429: Data Communication &Fieldbus Systems

GIG

AB

IT ET

HE

RN

ET

Gigabit E

thernet is a viable, popular super-high speed Ethernet technology that is capable of carrying 

standard Ethernet fram

es over backbone architected systems  (i.e. hub-to-hub connections)  at 1.062 

gigabit per second.

The application of gigabit E

thernet is principally deployed as a backbone technology, typically with 

100 Mbps E

thernet used for access to end devices.

The physical layer standard adopted for gigabit E

thernet is taken from pre-existing F

ibre Channel 

standards.

Although contention control procedures are part of the gigabit E

thernet standard, most of the actual 

applications operate full duplex, point-to-point between sw

itching hubs.

In order to preserve functional compatibility w

ith earlier versions, gigabit Ethernet m

aintains a true collision controlled (C

SM

A/C

D)  E

thernet capability, operating over the same 200 m

eter collision diam

eter that is supported by 100 BA

SE

-T.

This is achieved through a schem

e to modify the E

thernet frame to extend its length as it transits 

gigabit Ethernet segm

ents, so as to ensure that collision detection capability is sustained.

Gigabit E

thernet has overwhelm

ed the competitive alternative offered by A

TM

, partly because of slow 

progress in resolving outstanding standards details that have hobbled acceptance of AT

M, partly 

because of more attractive installed costs, and partly because of the obvious sim

plicity of maintaining 

a coherent technology all the way from

 the desktop to the backbone.

(20422)

D

ata Com

munications &

Fieldbus System

s428

Page 430: Data Communication &Fieldbus Systems

D-250

PR

ES

EN

TA

TIO

N

SE

SS

ION

TR

AN

SP

OR

T

AP

PLIC

ATIO

N

NE

TW

OR

K

DA

TA LIN

K

PH

YS

ICA

L

HT

ML

JAV

AS

CR

IPT

SE

CU

RE

SO

CK

ET

SLA

YE

R

HTTP

NE

TW

OR

AC

CE

SS 

LAY

ER (N

AL)

HO

ST

-TO

-HO

ST

 LAY

ER

EX

TE

NS

ION

S A

ND 

AD

DIT

ION

S  T

O T

HE 

BA

SE M

OD

EL S

UP

PO

RT 

FU

NC

TIO

NS N

OT 

PR

OV

IDE

D IN

 EA

RLIE

DE

FIN

ITIO

NS

INTE

RN

ET

CO

MP

UTIN

GA

RC

HITE

CTU

RE

 - BA

SE M

OD

EL

TC

P

PH

YS

ICA

L LA

YE

(PH

Y)

LLC S

UB

-LAY

ER

MA

C S

UB

-LAY

ER

IEE

E LA

N S

TA

ND

AR

DS 

PR

OV

IDE F

OR 

SP

LITT

ING T

HE D

AT

LINK LA

YE

R IN

TO T

WO 

PA

RT

S:

TH

E LO

GIC

AL LIN

CO

NT

RO

L S

UB

-LAY

ER (LLC

)T

HE M

ED

IA A

CC

ES

CO

NT

RO

L S

UB

-LAY

ER (M

AC

)

AP

PLIC

ATIO

NLA

YE

R

RE

LAT

ION

SH

IP: O

SI A

ND IC

A LA

YE

RE

D              P

RO

TO

CO

L VIE

WS

TRA

DITIO

NA

LO

SI 7-LA

YE

RM

OD

EL

INTE

RN

ET

CO

MP

UTIN

GA

RC

HITE

CTU

RE

- DE FA

CTO

INTE

RN

ET

PR

OTO

CO

LIN

TER

NE

TP

RO

TOC

OL

Data C

omm

unications & Fieldbus S

ystems

429

Page 431: Data Communication &Fieldbus Systems

CO

NN

EC

TIO

NLE

SS vs. 

CO

NN

EC

TIO

N-O

RIE

NT

ED S

ER

VIC

ES

Netw

ork technologies to which 

this concept applies:

OS

I standards : The O

SI 

standards are mostly 

connection-oriented at all layers.

TCP

/IP -- T

CP is connection- 

oriented; IP is connectionless.

LAN system

s - typically low-level 

LAN protocols are connectionless.

D-220

CO

NN

EC

TION

-OR

IEN

TED S

ER

VIC

ES

Involve a call (session)  set-up procedure, a continuing dialog and formal closure procedures.

Sim

ilar to X.25 packet sw

itching call control procedures -- and much like H

DLC

 control sequences.

Error recovery is the responsibility of these connection services -- at w

hatever layer they operate.

CO

NN

EC

TION

LES

S S

ER

VIC

ES

Often called unreliable service, m

essage units are called datagram

s.

Messages are sent w

ithout prior notice -- and without any 

prior agreement from

 the receiving station to participate.

Because there is no form

al custody transfer understanding, the receiver is not accountable for acknow

ledging receipt of messages delivered this w

ay.

Analogous to first class letter services -- the post office 

makes a "best efforts" attem

pt at delivery, but neither failure nor success are advised to the sender.

Data C

omm

unications & Fieldbus S

ystems

430

Page 432: Data Communication &Fieldbus Systems

TC

P/IP

LAY

ER

ED

ST

RU

CT

UR

E V

IEW

D-185

AP

PL

ICA

TIO

NL

AY

ER

HO

ST

-TO

-HO

ST

LA

YE

R

INT

ER

NE

TL

AY

ER

NE

TW

OR

K

AC

CE

SS

LA

YE

R

INT

ER

NE

T P

RO

TO

CO

L

TRA

NS

MIS

SIO

N C

ON

TRO

L PR

OTO

CO

LUSER DATAGRAM PROTOCOL

WE

B/W

WW

FILET

RA

NS

FE

RELEC

TRO

NIC

MAIL

NA

ME

SE

RV

ER

RE

AL TIM

EA

PP

LN'S

ET

HE

RN

ET

LAN

sC

OR

EB

AC

KB

ON

EN

ET

WO

RK

S(e

.g. W

orld

com

)P

HY

SIC

AL

C

ON

NE

CT

ION

LA

YE

R

UN

DE

RLY

ING

PH

YS

ICA

L N

ET

WO

RK

S A

RE

DIV

ER

SE

HT

TP

FT

PS

MT

P

PP

P

RE

GIO

NA

LN

ET

WO

RK

S

EN

TE

RP

RIS

EW

AN

s

RT

PD

NS

INT

ER

NE

T IN

FR

AS

TR

UC

TU

RE

INT

RA

NE

T IN

FR

AS

TR

UC

TU

RE

Data C

omm

unications & Fieldbus S

ystems

431

Page 433: Data Communication &Fieldbus Systems

T-084

RE

LAT

ION

SH

IP B

ET

WE

EN T

CP

/IP LA

YE

RS

HO

ST-TO-H

OST 

INT

ER

NE

NE

T. A

CC

ES

S

AP

PLIC

AT

ION

INT

ER

NE

NE

T. A

CC

ES

S

INT

ER

NE

NE

T. A

CC

ES

S

HO

ST-TO-H

OST 

INT

ER

NE

NE

T. A

CC

ES

S

AP

PLIC

AT

ION

NE

TWO

RK

"A"

NE

TWO

RK

"B"

NE

TWO

RK

"C"

SE

GM

EN

TT

CP

HD

R

ME

SS

AG

E

HO

ST S

YS

TEM

HO

ST S

YS

TEM

RO

UTE

RR

OU

TER

MS

GH

DR

PA

CK

ET

DA

TAG

RA

MIP

HD

R

PK

TH

DR

FR

AM

EH

DR

FR

AM

EF

RA

ME

TLR

PA

CK

ET

DA

TAG

RA

MIP

HD

R

PK

TH

DR

FR

AM

EH

DR

FR

AM

EF

RA

ME

TLR

PA

CK

ET

DA

TAG

RA

MIP

HD

R

PK

TH

DR

FR

AM

EH

DR

FR

AM

EF

RA

ME

TLR

Data C

omm

unications & Fieldbus S

ystems

432

Page 434: Data Communication &Fieldbus Systems

INTE

RN

ET P

RO

TOC

OL

T-355

BIT

PO

SIT

ION

S W

ITH

IN 32-B

IT W

OR

DS

32 BIT WORDS

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

22

22

22

22

22

33

11

11

11

11

11

12345678

IHL

VE

RS

ION

TY

PE

OF

SE

RV

ICE

TO

TA

L L

EN

GT

H

FR

AG

ME

NT

OF

FS

ET

FLAG

SID

EN

TIF

ICA

TIO

N

TIM

E T

O L

IVE

PR

OT

OC

OL

HE

AD

ER

CH

EC

KS

UM

SO

UR

CE

(IP) A

DD

RE

SS

DE

ST

INA

TIO

N (IP

) AD

DR

ES

S

VA

RIA

BL

E L

EN

GT

H O

PT

ION

S F

IEL

DP

AD

DIN

G

HO

ST

-to-H

OS

T L

AY

ER

INF

OR

MA

TIO

N (e.g

. TC

P H

EA

DE

R) B

EG

INS

HE

RE

INT

ER

NE

T P

RO

TO

CO

L H

EA

DE

R D

ET

AIL

The Internet Protocol (IP

) header (a

s illustra

ted in

the

box) is alw

ays found on the front of a datagram

-- a uniform

, and uniformly

interpreted part of an otherw

ise highly variable environm

ent.

The IP header is never

shorter than 5 words (2

0

octe

ts) in length, but options fields allow

it to be as large as 15 w

ords long. The Internet H

eader Length (IH

L) field specifies the

actual header length.

The Versio

n number field specifies the version of IP

to which the header form

at conforms --

here Version 4 is assum

ed (alth

ough V

ersio

n 6

is desig

nate

d a

s the n

ear-te

rm re

pla

cem

ent).

The Typ

e of S

ervice field specifies quality of service (QoS

) requirements; four bits in this

field specify routing priority based on minim

ization of delay, maxim

ization of throughput, optim

ization of reliability or minim

ization of cost (but n

ot a

ll route

rs are

able

to su

pport

multip

le ro

utin

g d

ecisio

n crite

ria).

Data C

omm

unications & Fieldbus S

ystems

433

Page 435: Data Communication &Fieldbus Systems

INTE

RN

ET P

RO

TOC

OL, cont.

T-356

To

tal Len

gth

specifies the total datagram length -- m

easured in octets. In practice, message length is

constrained by the associated network technology, w

hich will define the m

aximum

transmission unit

(MT

U) -- the largest m

essage payload that a given network technology can support.

Frag

men

tation

Issues

IP supports flexible interconnection of netw

orks with differing M

TU lim

itations -- resulting in a need to accom

modate m

essage size conversion at the point of interconnection (route

rs) -- a process described as frag

men

tation.

The Iden

tification field carries a unique num

ber -- effectively a sequence number -- that m

akes it possible for the receiving system

to properly associate all fragments of the original m

essage, making

reassembly feasible.

The Flag

s field carries two single bit flags used as follow

s:

The DF (d

on't fra

gm

ent) bit is used to prevent fragm

entation of a datagramThe M

F (more

fragm

ents fo

llow

ing) bit is used to indicate that this is not the last fragm

ent in a series.

The Frag

men

t Offset is a pointer (ca

libra

ted in

8 o

ctet u

nits) indicating the position that a given

fragment occupied in the original datagram

.

D

ata Com

munications &

Fieldbus System

s434

Page 436: Data Communication &Fieldbus Systems

INTE

RN

ET P

RO

TOC

OL, cont.

T-357

The Tim

e To

Live (T

TL) field is used to prevent the endless circulation of datagram

s that are undeliverable because of routing problem

s. The TTL is a counter which is initialized by the source

station (a

t typica

lly 128), and decrem

ented by one unit by each router that it transits along the way. If

the TTL counter value ever reaches zero, the datagram is judged to be undeliverable and is

destroyed.

The Pro

toco

l field specifies the transport layer protocol, which defines the form

at of the header which

follows the IP

header -- typically TC

P (a

short sa

mple

r of p

roto

cols a

nd th

eir a

ssocia

ted co

de n

um

bers

is pro

vided in

the a

ccom

panyin

g b

ox).

The Head

er Ch

ecksum

is defined by a simple error check calculation, and is used to verify that the IP

header contents are correct.

The 32-bit So

urce an

d D

estinatio

n IP

A

dd

resses define the logical end-to-end source and destination for a given datagram

. It is comm

on to represent these address values using a decim

al value for each octet individually, separated by decim

al points.

The resulting "dotted decimal" address

representation will be in the form

(for

exa

mple

) of 204.174.16.1

●P

RO

TO

CO

L DE

SIG

NA

TIO

NS

(NU

MB

ER

S) A

RE

AD

MIN

IST

ER

ED

BY

TH

E IN

TE

RN

ET

AS

SIG

NE

D N

UM

BE

RS

AU

TH

OR

ITY

(IAN

A)

136891729

ICM

PG

GP

TC

PE

GP

IGP

UD

PIS

O-T

P4

INT

ER

NE

T C

ON

TR

OL M

ES

SA

GE

PR

OT

OC

OL

GA

TE

WA

Y-T

O-G

AT

EW

AY

PR

OT

OC

OL

TR

AN

SM

ISS

ION

CO

NT

RO

L PR

OT

OC

OL

EX

TE

RIO

R G

AT

EW

AY

PR

OT

OC

OL

INT

ER

IOR

GA

TE

WA

Y P

RO

TO

CO

L (AN

Y)

US

ER

DA

TA

GR

AM

PR

OT

OC

OL

ISO

TR

AN

SP

OR

T P

RO

TO

CO

L CLA

SS

4

No

.A

CR

ON

YM

DE

SC

RIP

TIO

N

SA

MP

LE

R O

F P

RO

TO

CO

L C

OD

E A

SS

IGN

ME

NT

S

Data C

omm

unications & Fieldbus S

ystems

435

Page 437: Data Communication &Fieldbus Systems

INTE

RN

ET P

RO

TOC

OL, cont.

T-358

IP H

eader O

ptio

ns S

um

mary

A num

ber of options are supported by IP, four of w

hich are of general interest:

The Strict S

ource Routing option provides a com

plete list of the IP addresses of routers that the

datagram is required to visit along the w

ay (this co

mple

tely p

resp

ecifyin

g a

nd co

ntro

lling th

e ro

ute

th

e d

ata

gra

m is to

follo

w).

The Loose Source R

outing is similar, but only incom

pletely specifies the route to be taken.

The Record R

oute option provides for logging the IP addresses of routers visited along the w

ay (e

ffective

ly the in

verse

of so

urce

routin

g).

The Timestam

p option provides for capturing time-of-day clock inform

ation at routers visited (for

purp

ose

s of n

etw

ork tim

e syn

chro

niza

tion).

IP header options are form

atted as entries in a list, allowing m

ore than one option to be supported in a given datagram

(subje

ct to n

ot e

xceedin

g th

e m

axim

um

allo

wable

IP h

eader size

of 1

5 w

ord

s).

Frequent use of IP header options w

ill degrade router-based network perform

ance, because of the considerably greater com

putational burden which results from

forcing an interpretation of header options at every routing point along the w

ay.

D

ata Com

munications &

Fieldbus System

s436

Page 438: Data Communication &Fieldbus Systems

DO

TT

ED D

EC

IMA

L AD

DR

ES

S R

EP

RE

SE

NT

AT

ION

128.11.5.25

T-071

www.yahoo.com

10000000 00001011 00000101 00011001

The 32 bit binary form

at of an IP address is not a very useful w

ay of representing addresses for hum

an use or recognition.

In order to make these tedious binary sequences m

ore easily remem

bered   (that is, more 

'human-friendly')  a m

ore convenient format based on decim

al representation is comm

only used:

Consider the follow

ing example, a hypothetical 32 bit IP

 address:

Using w

hat is known as a  dotted decim

al  notation (sometim

es called a 'dotted quad'),   each 8-bit segm

ent (byte, or octet)  of the IP address is decoded as a decim

al value [0 through 255] , and written 

with a decim

al point separating each octet of data, as follows:

A still greater convenience to hum

an users of this information the association of these num

eric address values w

ith a descriptive name -- w

hich is practice is an AS

CII character string also delim

ited w

ith decimal points, and organized in a hierarchical form

at   (such as the hypothetical example 

following)  -- know

n as a domain nam

e .

The relationship betw

een the human-friendly A

SC

II domain nam

e and the technically essential IP 

binary address is made possible by m

eans of one or more  dom

ain name servers  -- com

puter system

s provided for just this service.

Data C

omm

unications & Fieldbus S

ystems

437

Page 439: Data Communication &Fieldbus Systems

T-069

INTE

RN

ET A

DD

RE

SS

ING

CO

NV

EN

TION

S

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

22

22

22

22

22

33

11

11

11

11

11

HO

ST

IDN

ET

WO

RK

ID00

12

34

56

78

90

12

34

56

78

90

12

34

56

78

90

12

22

22

22

22

23

31

11

11

11

11

1

HO

ST

IDN

ET

WO

RK

ID1

10

TH

ER

E A

RE

TH

RE

E P

RIN

CIP

AL N

ET

WO

RK

AD

DR

ES

S F

OR

MS

IN U

SE

ON

TH

E IN

TE

RN

ET

, ILLU

ST

RA

TE

D B

ELO

W (additional, less com

mon form

s are given on the next page)

CL

AS

S A

NE

TW

OR

K A

DD

RE

SS

ES, F

eaturing:

7 bits of NE

TW

OR

K ID

(Sufficient to identify 126 m

ajor networks)

24 bits of HO

ST

ID (S

ufficient to identify 16,777,214 hosts on each network)

CL

AS

S B

NE

TW

OR

K A

DD

RE

SS

ES, F

eaturing:

14 bits of NE

TW

OR

K ID

(Sufficient to identify 16,382 interm

ediate sized networks)

16 bits of HO

ST

ID (S

ufficient to identify 65,534 hosts on each network)

CL

AS

S C

NE

TW

OR

K A

DD

RE

SS

ES, F

eaturing:

21 bits of NE

TW

OR

K ID

(Sufficient to identify 2,097,150 sm

all networks)

8 bits of HO

ST

ID (S

ufficient to identify 254 hosts on each network)

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

22

22

22

22

22

33

11

11

11

11

11

HO

ST

IDN

ET

WO

RK

ID1

0

CLA

SS

"A"

AD

DR

ES

SE

SS

TA

RT

WIT

HV

ALU

ES

FR

OM

0 through 127

CLA

SS

"B"

AD

DR

ES

SE

SS

TA

RT

WIT

HV

ALU

ES

FR

OM

128 through 191

CLA

SS

"C"

AD

DR

ES

SE

SS

TA

RT

WIT

HV

ALU

ES

FR

OM

192 through 223

Data C

omm

unications & Fieldbus S

ystems

438

Page 440: Data Communication &Fieldbus Systems

T-070

INT

ER

NE

T AD

DR

ES

SIN

G C

ON

VE

NT

ION

S, cont.

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

22

22

22

22

22

33

11

11

11

11

11

MU

LTICA

ST A

DD

RE

SS

11

10

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

22

22

22

22

22

33

11

11

11

11

11

HO

ST ID

11

10

1

The fifth class of addressing  (illustrated below

) is reserved fo unspecified future use.

There are tw

o additional network address form

s provided for in the Internet structure:

Multicast addressing, w

hich provides for a kind of selective broadcast message to all m

embers of 

some predefined group.

Features and feasibility of m

ulticasting are dependent on the technology in use   (Ethernet, for 

example, supports m

ulticast operation).

Multicast can be thought of as m

ore specific than broadcast, and more general than unicast  (w

ith conventional, unique addressing).

To im

plement a m

ulticast addressing service it is necessary to perform a m

apping process, taking the IP

 address, and translating it into an appropriate address on the destination network   (typically 

Ethernet) -- not a trivial com

plexity.

Data C

omm

unications & Fieldbus S

ystems

439

Page 441: Data Communication &Fieldbus Systems

T-657

CLA

SS

LES

S IN

TE

RD

OM

AIN R

OU

TIN

G

The original three classes of centrally adm

inistered Internet addresses  (i.e. Class "A

", C

lass "B" and C

lass "C" addresses)  have proven to be too sim

plistic and too inefficient to support the levels of grow

th experienced (and expected)  in the Internet.

This problem

 was m

ost directly evident by the exhaustion of available Class "A

" and Class 

"B" address assignm

ents

Tw

o practical aspects of this address managem

ent crisis were:

With C

lass "A" and C

lass "B" addresses no longer available, end-user organizations 

had to make do w

ith Class "C

" address assignments, w

hich are only capable of supporting 254 host addresses.  G

roups of Class "C

" addresses are inconvenient to w

ork with.

A m

ore acute problem has to do w

ith linear increase in the size of core routing tables, since every new

 Class "C

" address assignment required another routing table entry            

(2 million possible C

lass "C" addresses w

ould mean 2 m

illion routing table entries).

Classless Interdom

ain Routing (C

IDR

)  was developed to deal w

ith these problems.

An im

portant part of the CID

R concept is a system

 for assigning blocks of addresses that are grouped and adm

inistered in topological (i.e. geographic)  order -- so that routers work 

with groups of addresses rather than sim

ple lists (i.e. a more hierarchical structure).

Data C

omm

unications & Fieldbus S

ystems

440

Page 442: Data Communication &Fieldbus Systems

T-658

CLA

SS

LES

S A

DD

RE

SS H

IER

AR

CH

Y

APN

ICRIPE N

CC

NIR

LIRLIR

ISPISP

ISP

IAN

A

END USEREND USER

END USEREND USER

END USER

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

22

22

22

22

22

33

11

11

11

11

11

11

0C

lass "C" F

ormat:

Regional Internet R

egistries(P

ossibly allocated bits 3 - 6)

National Internet R

egistries(P

ossibly allocated bits 7 - 12)

Local Internet Registries

(Possibly allocated bits 13 - 17)

Internet Service P

roviders(P

ossibly allocated bits 18 - 22)

End-U

ser Organizations

(Possibly allocated bits 23 - 31)

ARIN

LACN

ICAFR

INIC

Data C

omm

unications & Fieldbus S

ystems

441

Page 443: Data Communication &Fieldbus Systems

INTE

RN

ET C

ON

TRO

L ME

SS

AG

E P

RO

TOC

OL

T-359

Intern

et Co

ntro

l Messag

e Pro

toco

l (ICM

P) is used for a range of applications, prim

arily in the category of error reporting services.

The connectionless, "best efforts" delivery philosophy of IP is m

ade more effective w

ith feed back inform

ation that can be used to modify behavior at the sending site. IC

MP

provides that feedback m

echanism w

ith the following m

essage types:

Destination U

nreachable - Datagram

was undeliverable because of addressing or adm

inistrative prohibition (in

cludin

g 'D

F' b

it restrictio

n)

Time E

xceeded - Time-to-live or fragm

ent reassembly tim

ers expired

Source Q

uench - A flow

control feature designed to prevent data loss at network congestion points.

Redirect - A

routing advisory message (ro

ute

r-to-h

ost) instructing a better starting router choice.

ICM

P also supports tw

o administrative applications:

Timestam

p Request/R

eply - A host-to-host tim

e coordination service.

Echo R

equest/Reply - A

ddress/connectivity/availability test initiative (use

d b

y the P

ING

pro

gra

m).

D

ata Com

munications &

Fieldbus System

s442

Page 444: Data Communication &Fieldbus Systems

T-039

EC

HO

RE

QU

ES

T AN

D R

EP

LY IC

MP

ME

SS

AG

ES

The echo request/reply ICM

P m

essages comprise a transaction pair that is used to verify the

reachability (Is it a va

lid IP

addre

ss, and is th

e n

etw

ork co

nnectivity in

tact ?

) and operational status (Is it tu

rned o

n ?

) of a specified destination router or host.

The echo request/reply is a useful first level network diagnostic tool for verifying feasibility of a

network connection, and for roughly estim

ating network perform

ance.

●●

PIN

G - P

AC

KE

T IN

TE

RN

ET

GR

OP

ER

PIN

G a

pplica

tion-le

vel p

rogra

ms p

rovid

e a

com

mon h

um

an in

terfa

ce to

the e

cho re

quest/re

ply

service

.

Many d

iffere

nt ve

rsions o

f PIN

G h

ave

been d

eve

loped, b

ut th

ey typ

ically a

llow

som

eone to

in

itiate

an e

cho tra

nsm

ission w

ith a

simple

keyb

oard

com

mand like

ping destination_address

In its sim

ple

st form

, PIN

G w

ill resp

ond b

y confirm

ing su

ccess in

reach

ing th

e sp

ecifie

d

destin

atio

n (F

ailu

re is in

dica

ted b

y the a

bse

nce

of a

reply), a

nd d

ispla

ying th

e n

etw

ork ro

und-trip

tra

nsit tim

e d

ela

y that w

as e

nco

unte

red.

Many im

ple

menta

tions o

f PIN

G w

ill perm

it initia

tion o

f multip

le su

ch tra

nsa

ctions, a

nd p

rese

nt

statistica

lly sum

marize

d tra

nsit tim

e d

ela

y resu

lts

●●

Data C

omm

unications & Fieldbus S

ystems

443

Page 445: Data Communication &Fieldbus Systems

T-621

TR

AC

ER

OU

TE

Traceroute records each of the hops along the route from

 the local host to the designated remote 

host, and therefore provides considerably more inform

ation than ping.  

It is useful for diagnosing network-related problem

s  (such as router configuration errors)  and learning w

hat kind of delays to expect from the routed infrastructure rem

ote from the local subnet.

Traceroute sends a series of U

DP datagram

s, all addressed to the designated remote host -- w

ith the T

ime-T

o-Live (TT

L)  value initially set to 1 -- and incremented for each iteration.

With the first datagram

, the first router in the path decrements the T

TL to zero and, returns an IC

MP 

TIM

E-E

XC

EE

DE

D type m

essage to the originating host, and in the process, reveals its IP address. 

Traceroute then perform

s an inverse DN

S lookup to identify the router's nam

e  (Note: D

NS is m

ore com

monly used to perform

 a name -to- address translation).

The screen display from

 Traceroute show

s the response from each router on a new

 line, and the round-trip delay(s) that w

ere observed from typically three tests perform

ed per router.

Many routers do not support this class of IC

MP response, since revealing the router addresses and 

configuration of networks is seen to be an unnecessary security liability.  N

on-participating routers w

ill time out and appear as an asterisked field -- and for sim

ilar reasons, many router addresses are 

not registered with the D

NS and w

ill only present their dotted decimal address value.

Data C

omm

unications & Fieldbus S

ystems

444

Page 446: Data Communication &Fieldbus Systems

TR

AN

SP

OR

T

TRA

DITIO

NA

LO

SI P

RO

TOC

OL

MO

DE

L DE

SC

RIP

TION

NE

TW

OR

K

DA

TA LIN

K

PH

YS

ICA

L

INTE

RN

ET

PR

OTO

CO

L

UP

PE

R LA

YE

RS

UP

PE

R LA

YE

RS

PH

YS

ICA

L

LLC

MA

C

1 2 3 4

TCP

/IP O

VE

RIE

EE 802-S

ER

IES

LAN

S

TC

P

AD

DR

ES

SE

S U

SE

D B

Y T

HE D

AT

A LIN

K LA

YE

R (LA

YE

R 2) 

AR

E LO

CA

L.

IN T

HE C

AS

E O

F LA

Ns, T

HE

Y A

RE T

HE 48-B

IT M

AC 

AD

DR

ES

SE

S

AD

DR

ES

SE

S U

SE

D B

Y T

HE N

ET

WO

RK LIN

K LA

YE

(LAY

ER 3) A

RE S

YS

TE

M-W

IDE (G

LOB

AL).

IN T

HE C

AS

E O

F IP

, TH

EY A

RE T

HE 32-B

IT IP

 A

DD

RE

SS

ES

.

AD

DR

ES

SE

S M

AK

EC

ON

NE

CT

IVIT

Y H

AP

PE

N

T-680

LAYER

Bridges, R

outers and Sw

itches are the devices we 

use to achieve network connectivity.

Bridges w

ork with the D

ata Link Layer addresses -- here assum

ed to be the 48-bit MA

C addresses.

Routers w

ork with N

etwork Layer addresses -- here 

assumed to be the 32-bit IP

 addresses.

Sw

itches are hardware-level devices that em

ulate either  the role of bridges (Layer 2 sw

itches)  or routers  (Layer 3 sw

itches).

Data C

omm

unications & Fieldbus S

ystems

445

Page 447: Data Communication &Fieldbus Systems

T-046

AD

DR

ES

S R

ES

OLU

TION

PR

OTO

CO

L

The Address R

esolution Protocol (A

RP

) is a procedure used to determine the physical

(hard

ware

) address corresponding to a given IP address -- a capability that is a critical link in the

process of actually delivering a datagram to the destination host over the physical netw

ork.

AR

P is very effective in resolving addresses on broadcast-oriented netw

orks (such

as sh

are

d m

edia

LA

N's like

eth

ern

et) but w

ould be disastrous on wide area netw

orks like X.25 or fram

e relay.

The router creates and maintains an A

RP

table based on the results of AR

P transactions (a

void

ing

the n

eed to

repetitive

ly AR

P fo

r the sa

me d

ata

).

The A

RP

sequence

of e

vents u

nfo

lds a

s follo

ws:

1. In

com

ing d

ata

gra

ms a

re a

ccepte

d b

y the ro

ute

r.

2. T

he ro

ute

r bro

adca

sts ove

r the lo

cal n

etw

ork w

ith

an A

RP

request, a

sking w

ho o

ut th

ere

reco

gnize

s th

e d

estin

atio

n a

ddre

ss.

3. T

he d

evice

that o

wns th

e sp

ecifie

d IP

addre

ss will

genera

te a

n A

RP

reply m

essa

ge ca

rrying its

loca

l hard

ware

addre

ss -- sufficie

nt to

delive

r the

data

gra

m to

the co

rrect d

evice

.

12

AS

SU

ME

D T

AR

GE

T

DE

VIC

E❉

3

RO

UT

ER

D

ata Com

munications &

Fieldbus System

s446

Page 448: Data Communication &Fieldbus Systems

T-228

WO

RK

SH

EE

T: DA

TAG

RA

M D

ELIV

ER

Y S

EQ

UE

NC

E

RO

UT

ER

RO

UT

ER

ROUTERN

ET

WO

RK

#1N

ET

WO

RK

#3N

ET

WO

RK

#4

NE

TW

OR

K #2

BD

A

RO

UT

ER

INT

ER

NE

TC

HO

ST

C

OM

PU

TE

R S

YS

TE

M

HO

ST

C

OM

PU

TE

R S

YS

TE

M

HO

ST

C

OM

PU

TE

R S

YS

TE

M

HO

ST

#1

HO

ST

#2

HO

ST

#3A

RP

TAB

LE

HO

ST

RO

UT

ING

TA

BLE

AR

P TA

BLE

Data C

omm

unications & Fieldbus S

ystems

447

Page 449: Data Communication &Fieldbus Systems

T-642

IP D

ELIV

ER

Y P

RO

CE

SS R

EV

IEW

SO

UR

CE

NE

TWO

RK

DE

ST

INA

TIO

NN

ETW

OR

KT

RA

NS

ITN

ETW

OR

KS

OU

RC

EH

OS

TD

ES

TIN

AT

ION

HO

ST

EN

TR

YR

OU

TE

RE

XIT

RO

UT

ER

The S

ource Host IP

 process initiates the IP 

datagram, specifying the source and destination 

IP address.

Since the D

estination Host's IP

 address identifies a different netw

ork from the source, the S

ource H

ost will consult its H

ost Routing T

able, and identify the IP

 address of the Entry R

outer.

Using the E

ntry Router IP

 address, the corresponding M

AC address w

ill be discovered w

ith the AR

P process, and the IP

 datagram w

ill be encapsulated in a M

AC fram

e using this MA

destination address.

The E

ntry Router identifies the IP

 address of the E

xit Router from

 Routing T

ables constructed by its R

oute Coordination P

rotocol.

It uses AR

P (or w

hatever equivalent process applies to the T

ransit Netw

ork) to discover the M

AC address of the E

xit Router, encapsulates 

the IP datagram

 in a MA

C fram

e and sends it.

The exit router determ

ines the Destination H

ost IP address from

 the IP header, and uses the 

AR

P process to discover the corresponding M

AC 

address, and sends it to the Destination H

ost.

Data C

omm

unications & Fieldbus S

ystems

448

Page 450: Data Communication &Fieldbus Systems

T-122

PO

INT-TO

-PO

INT P

RO

TOC

OL (P

PP

)

Point-to-P

oint Protocol (P

PP

) was developed as a replacem

ent for SLIP

, with the intent that it

would address the lim

itations which frustrate S

LIP usage

PP

P is a fully functional (a

nd th

ere

fore

radica

lly more

com

ple

x than S

LIP

) implem

entation capable of:

administrative coordination of addresses

supporting multiple netw

ork protocols error detection and correction

PP

P is structurally an H

DLC

link protocol im

plementation, w

ith additional features to enable identification of upper layer protocols (U

LP's) and higher level link

control processes

PP

P w

as developed to support the TC

P/IP

protocol suite in a m

ore generally functional w

ay than SLIP

; the result has been a highly versatile point-to-point services protocol w

hich is becoming increasingly im

portant in enterprise-w

ide WA

N connectivity (S

ee

box)

WA

N R

OU

TE

R-T

O-R

OU

TE

R C

ON

NE

CT

ION

Mo

st existin

g ro

ute

r-con

ne

cted

wid

e a

rea

n

etw

orks a

re se

rved

by p

rop

rieta

ry p

oin

t-to-p

oin

t pro

toco

ls, forcin

g u

sers in

to

a sin

gle

ven

do

r ne

two

rk en

viron

me

nt

Consid

era

ble

pro

gre

ss has b

een m

ade in

u

sing

PP

P a

s a o

pe

n-syste

ms so

lutio

n to

th

is pro

ble

m

In a

dd

ition

to n

ative

IP su

pp

ort, P

PP

ha

s b

ee

n e

xten

de

d to

sup

po

rt IPX

, Ap

ple

talk,

DE

Cnet a

nd O

SI C

LN

P n

etw

ork la

yer

pro

toco

ls -- thu

s sup

po

rting

ge

ne

ral

mu

lti-pro

toco

l WA

N e

nviro

nm

en

ts

●●●

◆◆◆

Data C

omm

unications & Fieldbus S

ystems

449

Page 451: Data Communication &Fieldbus Systems

PO

INT

-TO

-PO

INT

PR

OT

OC

OL F

EA

TU

RE

S

Point-to-P

oint Protocol (P

PP

) is a data link protocol designed to carry IP datagram

s over serial lines, taking a m

uch more sophisticated approach to the problem

than was done w

ith SLIP

.

PP

P is uniquely able to operate over either character-at-a-tim

e (asyn

chro

nous p

roto

col) links and

bit-oriented (synch

ronous) link system

s.

Various extensions to P

PP

have been developed, supporting data compression, inverse

multiplexing (o

pera

ting o

ver m

ultip

le p

ara

llel p

ath

s concu

rrently) and authentication procedures.

PP

P is based on the long-standing H

DLC

(Hig

h L

eve

l Data

Lin

k Contro

l) protocol frame

structure, widely used in X

.25 and other synchronous wide area netw

orks.

T-474

FLA

GAD

DR

ESSC

ON

TRO

LPRO

TOCO

LF

CS

FLA

GIN

FO

RM

AT

ION

(PA

YLO

AD

)

0111111011111111

0000001116 B

ITS

0111111016 B

ITS

PP

P FR

AM

E FO

RM

AT

NO

TES

:(1) A

DD

RE

SS

FIE

LD IS

UN

IFO

RM

LY S

ET

T

O H

EX

FF

(2) CO

NT

RO

L FIE

LD IS

HE

X 03

(Unnum

bered connectionless frame)

(3) TH

RE

E P

RO

TO

CO

L TY

PE

S A

RE

CO

MM

ON

:●

LINK

CO

NT

RO

L PR

OT

OC

OL (F

IELD

SE

T T

O H

EX

C021)

● NE

TW

OR

K C

ON

TR

OL P

RO

TO

CO

L (FIE

LD S

ET

TO

HE

X 8021)

● INT

ER

NE

T P

RO

TO

CO

L (FIE

LD S

ET

TO

HE

X 0021)

D

ata Com

munications &

Fieldbus System

s450

Page 452: Data Communication &Fieldbus Systems

PO

INT

-TO

-PO

INT

PR

OT

OC

OL

FE

AT

UR

ES

, cont.

The protocol field specifies the upper layer protocol being serviced, equivalent to the S

ervices A

ccess Point (S

AP

) codes used with the IE

EE

803.2 LLC standard.

The three protocol field uses com

mon w

ith IP applications provide for link initiation (L

ink C

ontro

l P

roto

col), link control, such as initializing upper layer protocols (N

etw

ork C

ontro

l Pro

toco

l), and Internet P

rotocol itself.

In IP applications, the IP

-specific version of the Netw

ork Control P

rotocol (NC

P) is called In

ternet

Pro

toco

l Co

ntro

l Pro

toco

l (IPC

P).

In addition to these IP-related protocols, P

PP

supports a wide variety of other netw

ork layer protocols, like N

ovell IPX

, XN

S, D

EC

NE

T and A

ppletalk.

Because the control logic of H

DLC

(in syn

chro

nous lin

k applica

tions) is critically dependent on

correctly recognizing the delimiting flags, a special b

it-stuffin

g process is used to break up

happenstance message data that coincidentally replicates the flag pattern (H

EX

7E

).

The problem

of possible flag ambiguity is handled in asynchronous im

plementations of P

PP

by inserting a H

EX

7D (A

SC

II: }) in front of all happenstance flag data patterns, or any octet of value less than H

EX

20 (AS

CII co

ntro

l codes).

Operationally, the LC

P serves to establish a link connection (a

nd m

ain

tain

s resp

onsib

ility for lin

k m

ain

tenance

and te

rmin

atio

n); IP

CP

then takes responsibility for IP m

odule initialization, address coordination and com

pression functions, if any.

T-475

Data C

omm

unications & Fieldbus S

ystems

451

Page 453: Data Communication &Fieldbus Systems

TRA

NS

MIS

SIO

N C

ON

TRO

L PR

OTO

CO

L

T-360

The Transmission C

ontrol P

rotocol (TC

P) header (a

s illu

strate

d in

the b

ox)

follows the IP

header in a TC

P/IP

message segm

ent.

Sim

ilar to the configuration of the IP

header, the TCP

header is also 5 w

ords (20

octe

ts) minim

um length -

and the Offset field

specifies the actual length (in

units o

f 32 b

it word

s).

Unlike the IP

case, TC

P

options (alth

ough p

rovid

ed

for) are of no practical

business interest.

The So

urce and D

estinatio

n P

ort N

um

ber fields specify the upper level protocol (U

LP)

which is being served by TC

P. S

ample P

ort Num

ber codes are presented in the box on the next page.

Seq

uen

ce Nu

mb

ers are used to indicate the progress of transmitting m

essage segments,

where the sequence num

ber identifies the byte position of the first byte in a given segment.

At the receiving site, logical consistency of incom

ing sequence numbers is used to verify that

no segments have gone m

issing.

BIT

PO

SIT

ION

S W

ITH

IN 32-B

IT W

OR

DS

32 BIT WORDS

01

23

45

67

89

01

23

45

67

89

01

23

45

67

89

01

22

22

22

22

22

33

11

11

11

11

11

12345678

DE

ST

INA

TIO

N P

OR

T N

O.

SE

QU

EN

CE

NU

MB

ER

AC

KN

OW

LE

DG

EM

EN

T N

UM

BE

RWIN

DO

W

UR

GE

NT

PO

INT

ER

VA

RIA

BL

E L

EN

GT

H O

PT

ION

S F

IEL

DP

AD

DIN

G

AP

PL

ICA

TIO

N L

AY

ER

INF

OR

MA

TIO

N B

EG

INS

HE

RE

SO

UR

CE

PO

RT

NO

.

FL

AG

SR

ES

ER

VE

DO

FF

SE

T

CH

EC

KS

UM

TR

AN

SM

ISS

ION

CO

NT

RO

L P

RO

TO

CO

L H

EA

DE

R D

ET

AIL

D

ata Com

munications &

Fieldbus System

s452

Page 454: Data Communication &Fieldbus Systems

TRA

NS

MIS

SIO

N C

ON

TRO

L PR

OTO

CO

L, cont.

T-361

Ackn

ow

ledg

emen

t Nu

mb

ers are carried in the opposite direction to data flow

(and id

entify th

e se

quence

num

ber

of th

e n

ext e

xpecte

d m

essa

ge

segm

ent).

Where no data are available for

transmission, the acknow

ledgement

field may be the only m

eaningful content in the entire m

essage.

The Flag

s field carries indicators that validate the acknow

ledgement and

urgent fields, and that are used to logically synchronize (in

itialize

) and close a call.

The Win

do

w field defines an allow

able number of bytes that the receiving TC

P handler is w

illing to accept -- thus TC

P asserts flow

control in a very proactive way. N

o data are ever sent that are not previously agreed to.

The TCP

Checksum

field is similar in objectives and calculation m

ethod to that in the IP header. A

m

ajor difference is the TCP

header includes the segment payload in the calculation -- and regrettably,

portions of the IP header (IP

addre

sses, IP

pro

toco

l code a

nd S

egm

ent L

ength

).

By involving the IP

header in TC

P activity, the desirable separation of layered system

functions is lost, m

aking it impossible to m

ake changes to IP w

ithout simultaneously changing TC

P.

●P

OR

T CO

DE

AS

SIG

NM

EN

TS

AR

E S

ET B

Y T

HE

INT

ER

NE

T

AS

SIG

NE

D N

UM

BE

RS

AU

TH

OR

ITY

(IAN

A) - A

ND

AR

E

CA

LLED

"WE

LL KN

OW

N P

OR

TS

"

5202123257080210

RE

MO

TE JO

B E

NTR

YFILE

TRA

NS

FER

PR

OTO

CO

L - DA

TA C

ON

NE

CTIO

NFILE

TRA

NS

FER

PR

OTO

CO

L - CO

NTR

OL C

ON

NE

CTIO

NTE

LNE

T INTE

RA

CTIV

E TE

RM

INA

L PR

OTO

CO

LS

IMP

LE M

AIL TR

AN

SFE

R P

RO

TOC

OL

GO

PH

ER

PR

OTO

CO

LH

TTP (W

OR

LD-W

IDE

WE

B P

RO

TOC

OL)

Z39.50 (WID

E A

RE

A IN

FOR

MA

TION

SE

RV

ICE

) PR

OTO

CO

L

No

.D

ES

CR

IPTIO

N

SA

MP

LE

R O

F P

OR

T C

OD

E A

SS

IGN

ME

NT

S

Data C

omm

unications & Fieldbus S

ystems

453

Page 455: Data Communication &Fieldbus Systems

KA

RN

JAC

OB

SO

N R

ETR

AN

SM

ISS

ION

TIME

R C

ON

TRO

L

T-362

TCP

operates with a positive acknow

ledgment -- m

eaning that successful delivery of data is explicitly confirm

ed by the receiving station.

There is no response when delivery of a TC

P segm

ent fails, for whatever reason.

The sending TCP

system is forced to m

ake its own decision to retransm

it a message segm

ent if no positive acknow

ledgment is received in a reasonable tim

e.

The complicating consideration is that the duration of an appropriate w

aiting interval is dependent on the type of netw

ork being served; LAN

s typically require waiting tim

es in the order of 10's of m

illiseconds, WA

Ns (e

specia

lly sate

llite-se

rved n

etw

orks) typically require w

aiting times in the

order of seconds.

The Karn Jacobson A

lgorithm specifies a m

oving average calculation, based on observed round-trip acknow

ledgement tim

e delays, as a way of setting this retransm

ission timer.

Getting the process started w

ith a new netw

ork connection typically involves some inefficiency in

defining the retransmission tim

e interval (with

impaire

d re

sponse

times b

ein

g e

vident) -- but the

algorithm very quickly converges to a viable tim

e interval.

The net effect is that TCP

/IP is uniquely capable of delivering effective, efficient results over a

remarkable diversity of netw

orking technology.

D

ata Com

munications &

Fieldbus System

s454

Page 456: Data Communication &Fieldbus Systems

K-0

SC

AD

A P

RO

JEC

TS

continued ....

Managing S

CA

DA projects is really very m

uch like managing any technical/industrial project, w

ith a few

 unique features that are traceable to the operational importance of these system

s, and historically at least, the highly proprietary nature of the technology.

The m

ain phases of any project typically include these five elements:

Planning and Identification of R

equirements

This stage typically includes preparing a P

roject Proposal, w

hich is a business and technical plan that defines the scope and characteristics  (including functional deliverables and prelim

inary budgets)  of the project -- and w

hich is typically the basis on which executive decisions proceed.

A system

atic technical plan should always answ

er the  Who? W

hy? What? W

here? When?   and 

How

 Much?  questions about the project.

Preparation of Functional S

pecifications

Functional specifications translate the requirem

ents defined in the Project P

roposal guidance to support the detailed design activity, and develop a m

ore precise budget assessment than is 

possible in the Project P

roposal.

Data C

omm

unications & Fieldbus S

ystems

455

Page 457: Data Communication &Fieldbus Systems

SC

AD

A P

RO

JEC

TS

, cont.

K

continued ....

Preparation of Functional S

pecifications, cont.

Functional specifications should define the behaviors of the system

s, conceptual architecture and operating characteristics, reliability requirem

ents and environmental fram

ework - typically from

 a user's (operator's)  perspective.

This stage includes definitions of how

 the new project w

ill integrate with existing system

s and provides a plan for operations and m

aintenance  (O&

M)  through the lifecycle of the project.

Detailed D

esign

This design stage translates the conceptual fram

ework of the functional design into detailed plans, 

working draw

ings, specifications and cost estimates based on detailed know

ledge of all com

ponents of the project.

Detail at this point should be sufficient for im

plementation/fabrication to proceed either in-house or 

contracted out.

Stakeholders, executives and designers should agree and sign-off on strategic m

ilestones in the detailed design using a system

atic, periodic design review process.

Data C

omm

unications & Fieldbus S

ystems

456

Page 458: Data Communication &Fieldbus Systems

SC

AD

A P

RO

JEC

TS

, cont.

K-0

Implem

entation

Large SC

AD

A projects are typically contracted out to a turn-key system

s vendor, who w

ill be responsible for orchestrating resources sufficient to m

eet project schedule comm

itments. 

Implem

entation is a project within a project.  T

he classic Critical P

ath or PE

RT  (P

rogram E

valuation and R

eview T

echnique)  charts and methodologies tend to be m

ost diligently used at this stage of the project.

Acceptance and P

roject Com

pletion

Testing and acceptance m

ay or may not be a staged process  (i.e. factory test/acceptance follow

ed by installed test/acceptance procedures)  - increasingly com

monly, factory acceptance tests are no 

longer considered necessary.

Typically, there is a transition period defined in the contract, w

hereby the contractor deals with 

implem

entation defects and the contractor and purchaser share early operations and maintenance 

activities.

Data C

omm

unications & Fieldbus S

ystems

457

Page 459: Data Communication &Fieldbus Systems

PR

OJE

CT IS

SU

ES T

HA

T AR

E U

NIQ

UE T

O S

CA

DA

continued ....

SC

AD

A projects have uniquenesses that require special attention in the procurem

ent process:

The Organization's V

ulnerability to Non-P

erformance

SC

AD

A system

s always serve the core business of the enterprise -- it m

anages the "goose that lays the golden eggs", and is therefore the epitom

e of a "mission critical" technical system

.

Failure to perform

 with this service is not an option, so a professional, highly structured process 

must be follow

ed from concept through to final acceptance.

Validation of P

arts of The Solution is D

ifficult

Often, S

CA

DA system

s are built as "greenfield" projects, or replace an ageing system   in its 

entirety .

Thus, the m

ajor components of the system

  (RT

Us, M

TU

, HM

I, networks)  have no convenient w

ay of being tested independent of the other com

ponents.

That is, w

ithout proper attention to this detail, the tendency is to build all the pieces without 

comprehensive testing and then discover they don't w

ork together only at the final integration and testing stage. 

Data C

omm

unications & Fieldbus S

ystems

458

Page 460: Data Communication &Fieldbus Systems

PR

OJE

CT IS

SU

ES T

HA

T AR

E U

NIQ

UE T

O S

CA

DA

, cont.

SC

AD

A S

ystems H

ave a Large Custom

 Com

ponent

No tw

o SC

AD

A system

s are the same -- w

ith the consequence that every system is a custom

 design, to som

e extent.

Projects w

ith a large custom com

ponent must be m

anaged with a carefully structured program

 that m

easures and validates progress through sometim

es-elaborate test procedures.  

SC

AD

A S

ystems H

ave a Long Lifetime

Com

pared with other com

puter-based, electronic systems, S

CA

DA system

s tend to be operate through a m

uch more extended tim

eframe.

Thus typically, system

s being replaced will be very old indeed, and this w

ill result in there being a rather radical change in the w

ay information is handled -- and the w

ay operational tasks are perform

ed.

Anticipating an extended lifetim

e for a new system

, it is very important to ensure that a safe, 

continuing supply of spare parts is available.  From

 the outset, there should be a budget to buy a spares inventory as and w

hen parts availability becomes a jeopardy issue. 

314

Data C

omm

unications & Fieldbus S

ystems

459

Page 461: Data Communication &Fieldbus Systems

ALT

ER

NA

TIV

ES IN

 PR

OC

UR

ING S

CA

DA S

OLU

TIO

NS

In-house technical staff tends to:

Have m

uch better familiarity w

ith corporate needs and culture issues -- an in-house design tends to "fit" better

Be m

ore limited in their design freedom

 -- they do things the way they have alw

ays done them -- 

for better or for worse.

Like with any procurem

ent process, there are a number of alternate approaches to procuring 

SC

AD

A solutions.

These range the gam

ut from doing it all in-house   (i.e. contracting for no im

plementation assistance) 

through enlisting a consultant's services to manage the process of letting a design-build turnkey 

contract.

Considerations that w

ill determine the approach that best suits any particular application include:

The level of fam

iliarity and skills available in-house -- i.e. how capable is the host organization to 

do all or part of the work them

selves?

The tim

e-line constraints -- i.e. is the schedule too tight to manage w

ith the presumably lim

ited num

ber of in-house technical resources?

) D

ata Com

munications &

Fieldbus System

s460

Page 462: Data Communication &Fieldbus Systems

IMP

LEM

EN

TA

TIO

N A

ND 

CO

MM

ISS

ION

ING IS

SU

ES

There are som

e operational aspects to implem

enting and comm

issioning SC

AD

A system

s that are different from

 many kinds of projects.

This includes these context issues:

Often, there are reconfiguration tasks that involve the old system

 being replaced - floor space m

ust be freed up, limited telecom

munications circuitry m

ust be reconfigured, etc.  Old technology 

is often "cranky", and disruption results in unpredictable outcomes.

SC

AD

A system

s operate with live, m

ission-critical infrastructure.  How

 do you test "Em

ergency S

hutdown" control sequences w

ithout actually doing an emergency shutdow

n?

Both the installation and com

missioning activities are challenged by distance.  C

hecking each rem

ote point being supervised and/or controlled typically requires staff positioned at both ends of the netw

ork to validate signals and logical consistency.

A carefully orchestrated strategy for m

anaging the cutover is vital   (assuming an in-place system

 is being replaced),  including som

e parallel operation of old and new technology. A

 sudden death cutover is not an option.

41101)

Data C

omm

unications & Fieldbus S

ystems

461

Page 463: Data Communication &Fieldbus Systems

WH

ER

E IN

THE

TEC

HN

OLO

GY

LIFE-C

YC

LE

SH

OU

LD O

NE

BE

A P

LAY

ER

?

PIO

NE

ER

EA

RLY

AD

OP

TER

LATE

AD

OP

TER

LAG

GA

RD

PIO

NE

ER

S G

ET

BU

RIE

DA

T T

HE

SID

E O

F T

HE

R

OA

D

PR

ES

EN

TS

EX

CIT

ING

OP

PO

RT

UN

ITY

TO

BE

A B

RE

AK

TH

RO

UG

HLE

AD

ER

RE

QU

IRE

S V

ER

Y

CA

RE

FU

L, HA

ND

S-O

NM

AN

AG

EM

EN

T

AP

PR

OA

CH

PO

TE

NT

IAL P

AY

OF

F IS

PH

EN

OM

EN

AL, D

OW

N-

SID

E IS

PO

OR

OD

DS

OF

SU

CC

ES

S

OP

PO

RT

UN

ITY

HE

RE

IST

O LE

AD

WIT

H C

AU

TIO

N

BE

A C

AR

EF

UL

SH

OP

PE

R

FO

R M

AN

Y B

US

INE

SS

SIT

UA

TIO

NS

, BE

ING

AN

EA

RLY

FO

LLOW

ER

ISO

PT

IMA

L ST

RA

TE

GY

(manageable m

ixture of risk vs rew

ard)

TH

ER

E IS

ST

ILL A R

ISK

OF

AC

TIN

G B

EF

OR

E T

HE

TE

CH

NO

LOG

Y S

TA

B-

ILIZE

S -- B

UT

WA

ITIN

GLO

NG

ER

IS A

LSO

RIS

KY

BU

Y IN

TO

MA

TU

RE

TE

CH

NO

LOG

Y; T

HU

S:

PR

OD

UC

T C

OS

TS

A

RE

ST

AB

ILIZE

D A

ND

/OR

RE

DU

CE

D

TE

CH

NO

LOG

Y IS

ST

AN

DA

RD

IZE

D

RIS

KS

OF

FA

ILUR

E A

RE

M

INIM

IZE

D -- B

UT

RIS

KO

F B

EIN

G LE

FT

BE

HIN

DIS

HIG

H

LES

S-T

HA

N-O

PT

IMU

MB

US

INE

SS

PA

YO

FF

SP

EN

D T

OO

MU

CH

TIM

EM

AK

ING

EX

CU

SE

S F

OR

BE

ING

SLO

W

CO

ST

S A

RE

NO

T M

UC

HM

OR

E A

TT

RA

CT

IVE

TH

AN

EA

RLIE

R O

PT

ION

SB

UT

TH

ER

E A

RE

MA

JOR

BU

SIN

ES

S P

EN

ALT

IES

FR

OM

BE

ING

NO

N-

PR

OG

RE

SS

IVE

OT

HE

R C

OS

TS

NO

W

DE

FIN

E T

HE

B

US

INE

SS

CA

SE

(Personnel efficiency,

opportunity costs ... )

●●●●

●●●●

●●●

●●●

Data C

omm

unications & Fieldbus S

ystems

462

Page 464: Data Communication &Fieldbus Systems

THE

RIG

HT TIM

E TO

MA

KE

A M

OV

E IS

AN

O

RG

AN

IZATIO

N-S

PE

CIFIC

CO

NS

IDE

RA

TION

INC

RE

AS

ING

(ELA

PS

ED

) TIM

E

LOW

TE

CH

NIC

AL R

ISK

FO

LLOW

ER

DO

MA

INH

IGH

RIS

K, B

LEE

DIN

G E

DG

E D

OM

AIN

INC

RE

AS

ING

QU

ALIT

YO

F D

ELIV

ER

AB

LED

UE

TO

MA

TU

RIT

Y O

FT

HE

TE

CH

NO

LOG

Y

DE

CR

EA

SIN

G C

OS

T,

EF

FO

RT

AN

D R

ISK

- ALS

O D

UE

TO

MA

TU

RIT

Y O

F T

HE

T

EC

HN

OLO

GY

Information and com

puter com

munications technologies are

moving at a pace that challenges

most organizations to keep up.

This effect combined w

ith the increasingly urgent need for all organizations to be m

ore com

petitive (e

ither fo

r busin

ess o

r in

creasin

gly sca

rce p

ublic fu

nds)

makes it a challenging business

decision to correctly identify the cross-over point in the accom

panying diagram.

The consequence of moving too

early is principally excess risk (for a

give

n b

usin

ess cu

lture

).

The consequence of moving too late is principally lost opportunity (to

delive

r busin

ess e

ffective

ness

to th

e o

rganiza

tion).

The cross-over point is sometim

es called the 'ah-h

a' po

int -- because of the inspiration that it is

now tim

e to move is not altogether obvious!

Data C

omm

unications & Fieldbus S

ystems

463

Page 465: Data Communication &Fieldbus Systems

Ap

pe

nd

ice

s

Glossary of T

erms

Suggestions F

or Further R

eading

Data C

omm

unications & Fieldbus S

ystems

464

Page 466: Data Communication &Fieldbus Systems

GL

OS

SA

RY

OF

TE

RM

INO

LO

GY

A-to

-D

Analog to digital conversion. T

he conversion process whereby analog signals

are

con

verte

d in

to a

dig

ital fo

rma

t, or e

nco

de

d in

to a

dig

ital, o

r nu

me

ricrepresentation. Inverse of D

/A process.

AC

CE

SS

ME

TH

OD

In context of LA

N system

s, a means of m

anaging access from individual stations

to the shared cable medium

. Exam

ples of comm

on LAN

access control techniquesare T

oken Passing and C

arrier Sense M

ultiple Access w

ith Collision D

etection(C

SM

A/C

D).

AC

K

A positive acknow

ledgement of m

essage (typically a block or frame m

essagesegm

ent) receipt -- indicating acceptance of the message segm

ent. An A

CK

istyp

ically sig

na

led

with

a sp

ecia

l con

trol ch

ara

cter (w

ith h

alf-d

up

lex lin

kp

roto

cols) o

r a p

re-d

efin

ed

bit-fla

g (w

ith fu

ll-du

ple

x link p

roto

cols). T

he

alternative to an AC

K is a N

AK

, or negative acknowledgem

ent.

AD

AP

TIV

E D

IFF

ER

EN

TIA

L P

UL

SE

CO

DE

MO

DU

LA

TIO

N (A

DP

CM

) A

DP

CM

is a vo

ice sig

na

l en

cod

ing

tech

niq

ue

wh

ich d

elive

rs dig

itally co

de

dtoll-quality signals at 32 kbps. -- com

pared with 64 kbps. using conventional

PC

M. S

everal AD

PC

M standards exist, including the m

ost widely supported

ITU

-T specification.

AD

AP

TIV

E R

OU

TIN

G

A netw

ork routing capability that selects the most appropriate route available

at th

e m

om

en

t of co

nn

ectio

n d

em

an

d. S

om

e d

ata

ne

two

rk ad

ap

tive ro

utin

gp

roce

du

res co

ntin

uo

usly e

valu

ate

this ro

utin

g co

nfig

ura

tion

, an

d re

de

fine

sthe route in m

id-session.

AD

DR

ES

S R

ES

OL

UT

ION

T

he

pro

cess w

he

reb

y an

inte

rne

t (IP) a

dd

ress is in

terp

rete

d (typ

ically b

y arouter/gatew

ay device) and a physical address value deduced. See "address

resolution protocol".

AD

DR

ES

S R

ES

OL

UT

ION

PR

OT

OC

OL

(AR

P)

The A

RP

is a capability required on many T

CP

/IP system

s which enable the

ga

tew

ay ro

ute

r to a

ssocia

te a

n in

com

ing

IP a

dd

ress w

ith a

loca

l pie

ce o

fhardw

are -- such as an Ethernet w

orkstation.

AM

ER

ICA

N N

AT

ION

AL

ST

AN

DA

RD

S IN

ST

ITU

TE

(AN

SI)

AN

SI is a

Ne

w Y

ork, N

Y b

ase

d o

rga

niza

tion

tha

t bo

th d

efin

es sta

nd

ard

sa

pp

licab

le to

US

A in

tere

sts, an

d re

pre

sen

ts the

US

A o

n a

nu

mb

er o

fin

tern

atio

na

l foru

ms, su

ch a

s the

ISO

. AN

SI d

efin

es sta

nd

ard

s ove

r a w

ide

ran

ge

of te

chn

olo

gie

s; in co

nte

xt of co

mp

ute

r com

mu

nica

tion

s the

y are

curre

ntly p

layin

g a

ma

jor ro

le is p

articip

atin

g in

the

pro

cess o

f de

finin

gstandards for high speed W

AN

and MA

N technologies.

AM

ER

ICA

N S

TA

ND

AR

D C

OD

E F

OR

INF

OR

MA

TIO

N IN

TE

RC

HA

NG

E

Th

e A

SC

II cod

e is a

7-b

it cod

e u

sed

to re

pre

sen

t 12

8 d

ata

an

d co

ntro

lch

ara

cters. E

xten

de

d A

SC

II is an

8-b

it versio

n o

f the

cod

e w

ith 1

28

no

rma

lA

SC

II code values, and 128 additional codes accessed using the "Alt" keyboard

key. S

eve

ral in

tern

atio

na

l ad

ap

tatio

ns o

f AS

CII h

ave

be

en

de

velo

pe

d to

enable representation of "non-English" characters, such as accented vow

els.T

he

orig

ina

l AS

CII is so

me

time

s refe

rred

to a

s US

AS

CII to

diffe

ren

tiate

itfrom

these derivative versions. AS

CII w

as defined by the Am

erican National

Standards Institute, or A

NS

I.

AM

PL

ITU

DE

MO

DU

LA

TIO

N (A

M)

Am

plitude modulation is one of three m

odulation techniques (See definition of

"mo

du

latio

n"). W

ith A

M, th

e b

ase

ba

nd

sign

al in

form

atio

n is e

nco

de

d, o

rim

pressed on the carrier signal by modifying its am

plitude to instantaneouslyrespond to variations in the baseband signal.

AN

AL

OG

LO

OP

BA

CK

A

test procedure used to effectively short-circuit the remote end of an analog

da

ta lin

e to

verify th

e e

nd

-to-e

nd

con

ne

ction

. Th

e a

ctua

l loo

pb

ack is n

ot

actu

ally a

wire

d sh

ort-circu

it, bu

t rath

er a

log

ical e

cho

of th

e o

utg

oin

gtest signal.

AN

AL

OG

SIG

NA

L

An analog signal m

odels or imitates the behavior of som

e (generally naturallyoccurring) process, such as hum

an speech. The analog signal literally can be

reg

ard

ed

as a

na

log

ou

s to th

e p

roce

ss be

ing

mo

de

led

, an

d re

pre

sen

ts tha

tp

roce

ss by m

ea

ns o

f a co

ntin

uo

usly va

rying

ph

ysical q

ua

ntity su

ch a

s an

ele

ctrical vo

ltag

e. In

such

a a

case

, the

volta

ge

will ch

an

ge

in th

e sa

me

pro

po

rtion

s, an

d a

t the

sam

e ra

te a

s the

spe

ech

itself. T

hu

s the

ele

ctrical

signal is an analog of the naturally occurring, continuously variable (speech)process.

AN

AL

OG

TR

AN

SM

ISS

ION

A

na

log

sign

als a

re co

ntin

uo

usly va

riab

le sig

na

ls, an

d th

ere

is info

rma

tion

con

veye

d in

the

con

tinu

um

of sig

na

l valu

es. C

on

trast w

ith d

igita

l sign

als

wh

ich d

em

on

strate

on

ly sign

al va

lue

s, an

d co

nve

y info

rma

tion

on

ly by th

eir

va

lue

s a

t the

se

dis

cre

te le

ve

ls. A

na

log

tran

sm

iss

ion

fac

ilities

an

de

qu

ipm

en

t thu

s are

resp

on

sible

for fa

ithfu

lly rep

rod

ucin

g th

e in

finite

lyvariable continuum

of signal states. The com

plexity of analog signals makes

it fun

da

me

nta

lly im

po

ss

ible

to d

ev

elo

p tra

ns

mis

sio

n e

qu

ipm

en

t tha

tu

nd

ers

tan

ds

an

d in

terp

rets

the

sig

na

l va

lue

s (a

s is

do

ne

with

dig

ital

systems), thus m

aking it necessary to amplify and m

anipulate the signals with

a m

inim

um

of d

istortio

n, b

ut a

lwa

ys (be

cau

se e

qu

ipm

en

t is imp

erfe

ct) in a

nim

perfect way.

AN

SI

See definition of "A

merican N

ational Standards Institute".

Data C

omm

unications & Fieldbus S

ystems

465

Page 467: Data Communication &Fieldbus Systems

AP

PL

ICA

TIO

N P

RO

GR

AM

A

pp

licatio

n p

rog

ram

s in co

nte

xt of co

mp

ute

r system

s are

the

pro

gra

ms

de

ve

lop

ed

(ofte

n b

y th

e e

nd

-us

er o

rga

niz

atio

n) th

at d

ea

l with

the

org

an

izatio

n’s re

aso

n fo

r ow

ing

the

com

pu

ter in

the

first pla

ce. A

pp

licatio

nprogram

s include payroll, accounting, text processing, spread sheet systems.

In co

ntra

st to a

pp

licatio

n p

rog

ram

s, sup

erviso

ry pro

gra

ms a

re typ

ically

pro

vide

d b

y the

com

pu

ter ve

nd

or, a

nd

inclu

de

op

era

ting

system

s (such

as

MA

C-O

S and the various W

indows variants).

AP

PL

ICA

TIO

N P

RO

GR

AM

INT

ER

FA

CE

(AP

I) T

he software interface betw

een an application program and the com

puter andn

etw

ork o

pe

ratin

g syste

ms w

hich

sup

po

rt it. Th

e A

PI e

ffective

ly spe

cifies

the technical envelope within w

hich a programm

er must operate. O

n Unix-based

systems, the A

PI is referred to as a "socket".

AR

PA

NE

T

AR

PA

NE

T w

as the first operational packet switching netw

ork, from w

hich evolvedb

oth

X.2

5 p

ac

ke

t sw

itch

ing

sta

nd

ard

s (m

id 1

97

0’s

) an

d th

e T

CP

/IPinternetw

orking protocols (early 1980’s). AR

PA

NE

T’s research/developm

entrole has becom

e largely unnecessary due to OS

I standards development, and its

operational role has been replaced by the DD

N (D

efense Data N

etwork).

AR

Q

Autom

atic Repeat reQ

uest. AR

Q system

s operate by providing for retransmission

of data whenever errors are encountered (w

hich would occur in response to a

"NA

K" m

essage sent back to the source). Thus, w

ith AR

Q, the sending station

rem

ain

s acco

un

tab

le (a

nd

thu

s mu

st ma

inta

in a

ll da

ta in

a b

uffe

r), rea

dy fo

ra

po

ss

ible

ne

ed

to re

tran

sm

it it, un

til the

rec

eiv

ing

sta

tion

ac

ce

pts

resp

on

sibility w

ith a

po

sitive "A

CK

" me

ssag

e. S

ee

"Sto

p-a

nd

-Wa

it AR

Q",

"Go-B

ack-N A

RQ

" and "Selective A

RQ

".

AS

CII

See definition of "A

merican S

tandard Code for Inform

ation Interchange".

AS

YN

CH

RO

NO

US

TR

AN

SF

ER

MO

DE

(AT

M)

AT

M has em

erged as the preferred switching technology for im

plementing cell

relay fast packet switching. A

TM

is currently viewed as the m

ost appropriatew

ay o

f de

liverin

g fu

nctio

na

l, use

r con

trolla

ble

inte

rcon

ne

ction

be

twe

en

hig

hsp

ee

d lo

cal a

ccess a

nd

wid

e a

rea

ne

two

rk facilitie

s. AT

M is sca

lab

le --

op

era

ting

at u

p to

mu

lti-Gig

ab

it rate

s. AT

M’s m

ain

un

iqu

en

ess is its

flex

ibility

-- it is c

ap

ab

le o

f su

pp

ortin

g th

e u

niq

ue

req

uire

me

nts

of

vo

ice

, vid

eo

, gra

ph

ica

l an

d c

on

ve

ntio

na

l da

ta a

pp

lica

tion

s. A

TM

iscu

rren

tly the

favo

red

switch

ing

tech

no

log

y with

bo

th w

ide

are

a n

etw

ork

planners (telephone companies), m

etropolitan area network designers and is

fea

sible

(bu

t no

t po

pu

lar) a

s a h

igh

spe

ed

loca

l are

a n

etw

ork (H

SL

AN

)technology -- a rem

arkable range of applications.

AS

YN

CH

RO

NO

US

TR

AN

SM

ISS

ION

A

sy

nc

hro

no

us

tran

sm

iss

ion

utiliz

es

a c

ha

rac

ter-b

y-c

ha

rac

ter d

ata

synch

ron

izatio

n m

eth

od

in w

hich

ea

ch in

form

atio

n ch

ara

cter is in

divid

ua

llyh

an

dle

d, b

y the

use

of sta

rt an

d sto

p b

its. Th

e tim

e in

terva

l be

twe

en

ea

chch

ara

cter is n

ot co

ntro

lled

. Se

e d

efin

ition

of S

ynch

ron

ou

s tran

smissio

n fo

ra

com

pa

rison

. Asyn

chro

no

us tra

nsm

ission

is com

mo

nly ca

lled

"start-sto

p"

transmission.

AT

M

See "A

synchronous Transfer M

ode".

AT

TE

NU

AT

ION

A

ttenuation is the loss or decrease in analog signal strength (as measured by

voltage, current or power) caused by som

e component of a com

munications

system

-- typica

lly the

me

diu

m itse

lf. Atte

nu

atio

n is u

sua

lly me

asu

red

an

dexpressed in decibels.

AU

DIO

FR

EQ

UE

NC

IES

A

udio frequencies are those components of speech, m

usic, etc. (sound) that area

ud

ible

to a

pe

rson

with

no

rma

l he

arin

g, typ

ically ta

ken

to b

e in

the

ran

ge

from about 30 to 20,000 hertz.

AU

TH

EN

TIC

AT

ION

A

uthentication deals with the question of confidence that a m

essage’s claimed

orig

ina

tor w

as in

fact th

e a

uth

en

tic orig

ina

tor o

f the

me

ssag

e. C

om

mo

nly,

pu

blic ke

y en

cryptio

n te

chn

olo

gy is u

sed

to a

ssure

ele

ctron

ic me

ssag

ea

uth

en

tica

tion

. Th

e p

rob

lem

is s

imila

r to v

erify

ing

tha

t a tra

ditio

na

ld

ocu

me

nt’s sig

na

ture

is au

the

ntic -- a

nd

ind

ee

d, d

igita

l sign

atu

res a

re o

ne

tool used in network-oriented authentication procedures.

AU

TO

MA

TIC

NU

MB

ER

IDE

NT

IFIC

AT

ION

(AN

I) T

he

ab

ility for th

e te

lep

ho

ne

nu

mb

er o

f the

callin

g sta

tion

to b

e m

ad

ea

vaila

ble

to th

e ca

lled

loca

tion

. Th

ere

are

nu

me

rou

s ap

plica

tion

s of A

NI;

me

ssag

e a

ccou

ntin

g, in

teg

ratio

n w

ith b

usin

ess co

mp

ute

r ap

plica

tion

s an

dpersonal caller identification to nam

e a few.

AU

TO

MA

TIC

RE

PE

AT

RE

QU

ES

T E

RR

OR

CO

RR

EC

TIO

N

See definition of "A

RQ

".

AU

TO

MA

TIC

RO

UT

E S

EL

EC

TIO

N (A

RS

) A

RS

is a b

usin

ess te

lep

ho

ne

system

fea

ture

use

d to

sele

ct the

mo

stcost-effective outgoing service or route for each telephone connection.

BA

CK

BO

NE

NE

TW

OR

K

A high speed netw

ork system that links other typically low

er speed networks

together. The m

ost comm

on usage is associated with a connectivity solution

for a

nu

mb

er o

f loca

l are

a n

etw

orks, su

ch a

s is en

cou

nte

red

in a

typica

lcam

pus environment. M

etropolitan area networks (M

AN

’s) may be configured as

backbone networks.

BA

LA

NC

ED

CIR

CU

IT

A b

ala

nce

d co

mm

un

icatio

n circu

it or in

terfa

ce is co

nfig

ure

d so

tha

t the

two

con

du

ctor re

qu

ired

to su

pp

ort th

e e

lectrica

l con

ne

ction

are

ide

ntica

llyco

nfig

ure

d. T

he

two

con

du

ctors (n

orm

ally w

ires) w

ill the

refo

re b

e o

f the

sam

e typ

e, h

ave

eq

ua

l ele

ctrical ch

ara

cteristics a

nd

ne

ithe

r will b

e d

irectly

connected to ground or earth.

BA

ND

A

frequency band is a range of analog frequencies that are normally associated

with

the

sam

e a

pp

licatio

n, su

ch a

s the

AM

rad

io b

roa

dca

st ba

nd

, wh

ichoccupies the range of frequencies from

about 550 khz to 1600 khz.

Data C

omm

unications & Fieldbus S

ystems

466

Page 468: Data Communication &Fieldbus Systems

BA

ND

WID

TH

T

he range of frequencies present in a signal (signal bandwidth), or the range

of fre

qu

en

cies su

pp

orte

d b

y a co

mm

un

icatio

n syste

m (syste

m o

r eq

uip

me

nt

bandwidth). B

andwidth is a m

easure of the frequency difference between the

highest and lowest frequencies in this range. T

he usable telephone channelbandw

idth is nominally 3 khz; the highest frequency on a standard telephone

channel is approximately 3,300 hz; the low

est 300 hz.

BA

SE

BA

ND

SIG

NA

L

The native form

at of a signal as derived from the source apparatus, before any

modulation or m

ultiplexing procedures are effected. Thus, in telephony, the

ba

se

ba

nd

sig

na

l is th

e s

pe

ec

h s

ign

al its

elf; in

da

ta a

pp

lica

tion

s th

ebaseband signal is the digital voltage square w

ave waveform

.

BA

UD

T

he baud rate of a signal is the rate at which recognizable changes of coded

sign

al sta

tus (sig

na

l ele

me

nts) a

re tra

nsm

itted

. In a

pp

licatio

ns w

he

re o

ne

bit of information is encoded as one recognizable signal elem

ent, or symbol,

the baud rate is the same num

erical value as the bit rate. In most m

odems,

da

ta is e

nco

de

d w

ith m

ultip

le b

its pe

r sign

al e

lem

en

t, an

d th

us th

e b

it rate

is a

lmo

st a

lwa

ys

gre

ate

r tha

n th

e b

au

d ra

te. It is

a w

ide

ly m

ista

ke

na

ssum

ptio

n th

at b

it rate

an

d b

au

d ra

te a

re th

e sa

me

; thu

s it is com

mo

n to

refe

r to th

e b

au

d ra

te o

f a m

od

em

in a

n a

ttem

pt to

de

sc

ribe

its d

ata

transmission capability.

BIN

AR

Y C

OD

E

A b

ina

ry cod

e is sim

ply th

e re

pre

sen

tatio

n o

f info

rma

tion

in th

e sim

ple

st of

units, being combinations of the binary pair of digits (the "1" and "0" values)

. Th

e e

xecu

tab

le fo

rm o

f a co

mp

ute

r pro

gra

m is in

bin

ary co

de

; effe

ctively

unintelligible to humans but necessary for com

puter execution.

BIN

D

Berkeley Internet N

ame D

omain - a specific im

plementation of the D

omain N

ame

Server function on B

erkeley Unix system

s.

BIT

B

IT is a

con

tractio

n o

f "BIn

ary d

igiT

," the

sma

llest u

nit o

f info

rma

tion

in a

bin

ary syste

m. A

bit o

f info

rma

tion

pro

vide

s the

ab

ility to d

iffere

ntia

tebetw

een a "1" or a "0" condition.

BIT

RA

TE

T

he

rate

at w

hich

bits o

f info

rma

tion

are

tran

smitte

d, u

sua

lly exp

resse

d in

bits p

er se

con

d (b

ps), a

nd

mu

ltiple

s the

reo

f: kbp

s, mb

ps, g

bp

s, tbp

s, etc.

Com

pare with the definition of baud.

BL

OC

K

One com

plete message segm

ent, or data unit on a data comm

unications link. Ab

lock is stru

cture

d b

y pre

-ag

ree

me

nt to

con

vey co

ntro

l info

rma

tion

such

as

source/destination addresses, message num

ber, retransmission requests ("N

AK

"codes), and error checking features. T

he message units know

n as blocks tendto

be

as

so

cia

ted

with

ha

lf du

ple

x s

ys

tem

s; th

e c

om

pa

rab

le u

nit o

finform

ation in full duplex systems is typically know

n as a frame.

BR

IDG

E

A bridge is one of the sim

plest LAN

connection devices based on examination of

physical, or MA

C-layer addresses only. B

ridges do not examine netw

ork layeraddresses,or m

ake any changes to the contents of a message -- in contrast to

the

role

of ro

ute

rs. Brid

ge

s mu

st en

cou

nte

r the

sam

e te

chn

olo

gy (e

.g.

Eth

ern

et) o

n a

ll seg

me

nts, a

nd

are

ide

ally su

ited

to a

rela

tively sm

all

number of locally connected LA

N segm

ents.

BR

OA

DB

AN

D

(1) Com

munication facilities w

hich have analog bandwidth values greater than

tha

t of a

voice

-gra

de

tele

ph

on

e ch

an

ne

ls, an

d a

re th

us a

ble

to su

pp

ort d

ata

tran

smissio

n ra

tes in

exce

ss of th

ose

fea

sible

on

tele

ph

on

e ch

an

ne

ls. (2)

Ge

ne

rally h

igh

cap

acity d

ata

com

mu

nica

tion

s system

s. An

exa

mp

le is

"Bro

ad

ba

nd

ISD

N", w

hic

h is

a fu

lly d

igita

l (an

d th

us

ha

s n

o lite

ral

"bandwidth" features at all) system

offering very high data transmission rate

capability.

BR

OA

DC

AS

T

A m

essage delivery concept where all m

embers of a com

munity receive exactly

the same m

essage. Exam

ples are television broadcasting and Ethernet LA

N’s.

BR

OU

TE

R

A hybrid bridge-router. F

eatures of brouters vary amongst vendors, but they

typica

lly offe

r rou

ting

service

s in so

me

circum

stan

ces (e

.g. w

he

re th

ey

reco

gn

ize th

e n

etw

ork p

roto

col in

use

) an

d a

ct as b

ridg

es in

oth

ers (e

.g.

where they don’t recognize the netw

ork protocol in use).

BU

FF

ER

A

bu

ffer is a

pla

ce to

store

info

rma

tion

tem

po

rarily w

hile

som

e (u

sua

lly)related activity can be perform

ed. Buffers are used to save data w

hile errorch

eckin

g a

nd

retra

nsm

ission

can

be

pe

rform

ed

, the

y are

ne

cessa

ry wh

ere

interfaces occur between data transm

ission systems that operate at different

da

ta ra

tes, o

r op

era

te w

ith d

iffere

nt p

roto

cols. B

uffe

rs will g

en

era

llyin

trod

uce

a tim

e d

ela

y, an

d re

qu

ire ca

refu

l ma

na

ge

me

nt so

as to

avo

idoverflow

(and consequent loss of data).

BU

S

A b

us is a

ph

ysical m

ed

ium

wh

ere

the

re is n

o sig

nifica

nce

to th

e p

ositio

n o

rco

nn

ectio

n p

oin

t of d

evice

s. A co

mp

ute

r ba

ckpla

ne

is a b

us (o

ne

can

plu

ga

ccesso

ries a

nd

au

xiliary e

qu

ipm

en

t into

an

y ava

ilab

le "slo

t") an

d a

coa

xial

cable ethernet LAN

is a bus system (one can connect at m

ost any point alongth

e ca

ble

). Bu

s system

s are

alw

ays o

pe

rate

d co

ncu

rren

tly -- tha

t is tosa

y, sign

als a

re d

elive

red

to a

ll po

ints o

n th

e b

us a

t effe

ctively th

e sa

me

time.

BY

TE

In

mo

st con

texts, a

byte

is an

8-b

it un

it of in

form

atio

n, w

hich

is mo

ree

xactly, a

nd

mo

re te

chn

ically re

ferre

d to

as a

n "o

ctet". A

byte

typica

llyrepresents one character of text inform

ation. Since com

puters process datain

pa

ralle

l form

at, th

e b

yte b

eco

me

s the

sma

llest u

nit o

f info

rma

tion

in m

ost

da

ta m

an

ipu

latio

n a

ctivities. S

ince

som

e e

arlie

r com

pu

ters u

sed

oth

er th

an

mu

ltiple

s of 8

bit w

ord

s sizes, th

ere

ha

ve b

ee

n situ

atio

ns w

he

re th

e te

rmb

yte w

as u

sed

to re

fer to

oth

er th

an

8 b

its of in

form

atio

n. F

or e

xam

ple

, the

old DE

C P

DP

-8 computer w

as a 12-bit mem

ory system; the characters w

ere

Data C

omm

unications & Fieldbus S

ystems

467

Page 469: Data Communication &Fieldbus Systems

encoded into 6 bits of data -- thus a byte was 6 bits length.

BY

TE

MU

LT

IPL

EX

ING

B

yte m

ultip

lexin

g, o

r byte

inte

rlea

ved

mu

ltiple

xing

is a fo

rm o

f time

-divisio

nm

ultiplexing in which w

hole bytes of data are captured from each sub-channel,

an

d se

nt a

s a u

nit. B

ytes o

f da

ta fro

m d

iffere

nt su

b-ch

an

ne

ls follo

w e

ach

oth

er in

seq

ue

ntia

l time

slots. A

ltern

ative

me

cha

nism

s are

bit in

terle

avin

g,

and message interleaving; byte interleaved m

ultiplexing is the most com

mon.

CA

BL

E

A cable is an assem

bly of one or more conductors (or optical fibers) w

ithin ab

un

dle

(wh

ich typ

ically in

clud

es a

n e

nve

lop

ing

pro

tective

she

ath

). Ca

ble

sa

re typ

ically co

nstru

cted

so a

s to a

llow

the

use

of co

nd

ucto

rs sep

ara

tely o

rin

gro

up

s. Th

e te

rm is o

ften

use

d to

sug

ge

st the

coa

xial ca

ble

tha

t is the

ke

y e

lem

en

t in c

ab

le te

lev

isio

n s

ys

tem

s -- b

ut is

no

t an

ac

cu

rate

generalization.

CA

RR

IER

A

carrie

r sign

al is a

simp

le co

ntin

uo

us fre

qu

en

cy sign

al cre

ate

d fo

r the

purpose of being modulated by another inform

ation carrying signal.

CA

RR

IER

FR

EQ

UE

NC

Y

The carrier frequency is the operating frequency of the carrier signal used in

the

mo

du

latio

n p

roce

ss. In ra

dio

com

mu

nica

tion

, the

carrie

r freq

ue

ncy

corre

spo

nd

s to th

e fre

qu

en

cy to w

hich

on

e tu

ne

s the

rad

io to

rece

ive a

desired program or m

essage.

CA

TV

C

omm

unity Antenna T

elevision, or CA

TV

refers to the cable television servicea

re o

ffere

d in

mo

st com

mu

nitie

s. Un

like th

e o

ver-th

e-a

ir bro

ad

cast sig

na

lsu

sed

in co

mm

ercia

l tele

vision

an

d ra

dio

, CA

TV

sign

als a

re co

nfin

ed

to a

coa

xial ca

ble

distrib

utio

n n

etw

orks. A

dd

ition

ally, m

icrow

ave

an

d sa

tellite

links, may be used as part of these distribution netw

orks.

CC

IR

See "IT

U-R

", which is the current identity for the form

er CC

IR.

CC

ITT

S

ee "ITU

-T", w

hich is the current identity for the former C

CIT

T.

CC

TV

C

losed Circuit T

elevision, or CC

TV

systems use coaxial cable or other "closed

circuit" (ie

. no

n-b

roa

dca

st) me

dia

to ca

rry tele

vision

sign

als. E

xam

ple

s of

CC

TV

applications include CA

TV

(cable television entertainment services) and

security video systems.

CE

LL

RE

LA

Y

Ce

ll rela

y is a p

acke

tized

ne

two

rking

tech

no

log

y ba

sed

on

the

use

of sm

all,

fixed

len

gth

pa

ckets ca

lled

cells. T

he

rou

ting

log

ic an

d p

acke

t con

trol

functions are implem

ented largely in hardware, m

aking it possible to handleth

e ca

ll switch

ing

pro

cess a

t very h

igh

spe

ed

s -- mu

ch m

ore

qu

ickly tha

nsoftw

are-driven technology (as is used in conventional X.25 packet sw

itchinga

nd

fram

e re

lay syste

ms). A

synch

ron

ou

s Tra

nsfe

r Mo

de

(AT

M) sw

itchin

gim

ple

me

nta

tion

s are

the

curre

ntly fa

vore

d te

chn

olo

gy fo

r de

liverin

g ce

ll

relay services -- for both WA

N, M

AN

and high speed LAN

applications.

CE

NT

RA

L O

FF

ICE

T

he

tele

ph

on

e ce

ntra

l office

, or e

xcha

ng

e is th

e p

lace

wh

ere

loca

l acce

sslines (local loops), and inter-exchange com

munications lines are term

inated,a

nd

wh

ere

sw

itch

ing

eq

uip

me

nt (w

hic

h s

erv

es

to in

terc

on

ne

ct th

es

ecom

munication facilities) is located.

CE

NT

RE

X

A business telephone service w

here the features and functions of on-premises

private branch exchange (PB

X), or "sw

itchboard" equipment are delivered from

the

tele

ph

on

e co

mp

an

y’s cen

tral o

ffice. C

en

trex te

nd

s to b

e fa

vore

d b

ylarge, m

ulti-office corporations and government departm

ents.

CE

PT

C

ouncil of European P

ostal and Telecom

munications adm

inistrations. CE

PT

is ab

od

y wh

ich a

ssum

es re

spo

nsib

ility for th

e sp

ecia

l inte

rests o

f Eu

rop

ea

ntelecom

munications providers by m

aking policy and standards recomm

endationsfor telecom

munications practice w

ithin Europe. C

EP

T’s role has been largely

superseded by the European T

elecomm

unications Standards Institute (E

TS

I),w

hich

inclu

de

s in its m

em

be

rship

the

gro

win

g n

um

be

r of n

on

-go

vern

me

nt

European telecom

munications providers.

CG

I S

ee definition of "Com

mon G

ateway Interface".

CH

AN

NE

L

A channel is a path for com

munication of inform

ation, which m

ay be derivedfro

m a

co

mm

un

ica

tion

circ

uit o

r tran

sm

iss

ion

fac

ility. M

ultip

lex

ing

tech

niq

ue

s ma

ke it p

ossib

le fo

r mu

ltiple

cha

nn

els to

be

crea

ted

on

a sin

gle

comm

unication facility such as a microw

ave radio system. A

channel can bethought of as having the sam

e relationship to the comm

unication facility as ap

ain

ted

lan

e o

n a

hig

hw

ay h

as to

the

hig

hw

ay itse

lf. In so

me

usa

ge

s, the

term channel im

plies a unidirectional comm

unication capability.

CH

AR

AC

TE

R

Characters m

ay be human-readable alphanum

eric characters, such as the letterso

f the

alp

ha

be

t, nu

me

ric an

d p

un

ctua

tion

symb

ols. In

con

text o

f com

pu

ter

systems, the term

"character" is often taken to mean the 7 or 8 bit A

SC

II (oro

the

r cod

e) re

pre

sen

tatio

ns o

f da

ta. T

he

se "ch

ara

cters" in

clud

e th

e fu

ll set

of a

lph

an

um

eric ch

ara

cters d

escrib

ed

ab

ove

, bu

t also

inclu

de

a n

um

be

r of

"con

trol ch

ara

cters", w

hich

invo

ke syste

m co

ntro

l fun

ction

s. Th

is latte

rcategory includes, for exam

ple, the Carriage R

eturn Character (A

SC

II 0DH

) andthe E

scape Character (A

SC

II 1BH

).

CH

RO

MIN

AN

CE

T

he

colo

r pa

rt of a

vide

o sig

na

l, wh

ich p

erta

ins to

the

hu

e a

nd

satu

ratio

n(but not the brightness) of the signal.

CIR

CU

IT

A co

mm

un

icatio

n circu

it is a p

hysica

l tele

com

mu

nica

tion

facility w

hich

pro

vide

s a w

ay o

f tran

smittin

g in

form

atio

n b

etw

ee

n tw

o o

r mo

re p

oin

ts. An

electronic circuit consists of an assembly of com

ponents connected togetherto form

some signal processing or other electronic function.

Data C

omm

unications & Fieldbus S

ystems

468

Page 470: Data Communication &Fieldbus Systems

CIR

CU

IT - F

OU

R W

IRE

A

4-w

ire co

mm

un

icatio

n p

ath

use

s fou

r wire

s (two

pa

irs) to su

pp

ort fu

llys

ep

ara

ted

info

rma

tion

flow

in e

ac

h o

f two

dire

ctio

ns

. Th

at is

, an

ind

ep

en

de

nt, d

ed

icate

d p

air o

f wire

s is use

d fo

r ea

ch d

irectio

n. T

his te

rmhad its origins in an era w

hen all comm

unication facilities were derived from

me

tallic w

ire; th

e te

rm is n

ow

use

d to

de

scribe

the

fun

ction

al e

qu

ivale

nt

of 4

-wire

s, wh

ich m

igh

t be

actu

ally su

pp

orte

d b

y gla

ss fibe

r op

tic cab

le, o

rperhaps m

icrowave radio technology.

CIR

CU

IT - T

WO

WIR

E

A 2

-wire

com

mu

nica

tion

pa

th u

ses tw

o w

ires (ie

. on

e p

air) to

sup

po

rtc

om

mu

nic

atio

n s

erv

ice

s. A

2-w

ire fa

cility

ca

n s

up

po

rt bid

irec

tion

al

com

mu

nica

tion

if the

cab

le is sh

ort e

no

ug

h so

as to

no

t req

uire

an

y sign

al

amplification (w

hich is an inherently one-way process) and does not include

an

y mu

ltiple

xing

or o

the

r sign

al p

roce

ssing

fun

ction

s (wh

ich a

re a

lsou

nid

irec

tion

al a

ctiv

ities

). Oth

erw

ise

, a 2

-wire

se

rvic

e w

ill be

unidirectional only.

CIR

CU

IT S

WIT

CH

ING

C

ircuit switching system

s provide an imperm

anent connection between tw

o (orm

ore

) loca

tion

s, an

d p

rovid

e th

e syste

m u

sers w

ith e

xclusive

use

of a

continuously open channel, over which inform

ation may be exchanged. C

ircuitsw

itchin

g co

sts are

pro

po

rtion

al to

ho

ldin

g tim

e, a

nd

are

un

rela

ted

to th

evolum

e of information transm

itted. Com

pare with P

acket Sw

itching.

CL

IEN

T

The softw

are supporting user-oriented computing functions in a client/server

com

pu

ting

en

viron

me

nt. C

lien

t softw

are

typica

lly (at le

ast) co

nce

rns itse

lfw

ith m

an

ag

ing

the

hu

ma

n in

terfa

ce; fo

r this re

aso

n clie

nt syste

ms a

reco

mm

on

ly asso

ciate

d w

ith th

e g

rap

hica

l use

r inte

rface

(GU

I). Th

e te

rm’client’ is often (som

ewhat casually) associated w

ith the hardware com

putingsystem

which supports the client as defined here.

CL

IEN

T/S

ER

VE

R P

AR

AD

IGM

T

he Client/S

erver computing m

odel has been accepted as the de facto standardo

f the

ind

ustry b

eca

use

it sup

po

rts en

riche

d h

um

an

inte

rface

s (e.g

. the

gra

ph

ical u

ser in

terfa

ce, o

r GU

I), an

d is a

me

na

ble

to d

istribu

ted

pro

cessin

g(co

nsiste

nt w

ith d

ow

nsize

d h

ard

wa

re co

mp

ute

r arch

itectu

res), a

mo

ng

oth

er

thin

gs

. Clie

nt/s

erv

er s

ys

tem

s te

nd

to b

e in

ten

siv

e u

se

rs o

f ne

two

rkresources.

CL

OC

K

A p

recise

ly time

d, re

pe

titive d

igita

l pu

lse sig

na

l seq

ue

nce

wh

ich is u

sed

tocontrol a data transm

ission and reception procedures.

CL

OC

K R

EC

OV

ER

Y

Th

e p

roce

ss of d

erivin

g a

loca

l clock sig

na

l at a

rece

iving

loca

tion

by

extra

cting

the

em

be

dd

ed

timin

g in

form

atio

n fro

m th

e sig

na

l rece

ived

on

asynchronous channel.

CO

AX

IAL

CA

BL

E

A com

munications cable w

hich consists of central conductor surrounded by anco

nce

ntric, o

r co-a

xial o

ute

r con

du

ctor. T

he

two

con

du

ctors a

re se

pa

rate

dfro

m e

ac

h o

the

r by

a c

ylin

dric

al s

ha

pe

d in

su

lato

r. Co

ax

ial c

ab

le is

technically very much superior to (tw

isted) paired telephone cable.

CO

DE

C

A codec, or C

oder-Decoder is a device that converts analog signals to digital,

an

d d

igita

l sign

als to

an

alo

g. C

od

ec’s a

re u

sed

to co

nve

rt an

alo

g sig

na

lssu

ch a

s spe

ech

to a

dig

ital fo

rma

t as re

qu

ired

for tra

nsm

ission

ove

r dig

ital

me

dia

-- an

d th

e co

mp

an

ion

fun

ction

at th

e re

ceivin

g e

nd

ba

ck to th

eoriginal analog form

at.

CO

LO

R B

UR

ST

A

few cycles (typically 8 to 10) of the 3.58 M

hz. color subcarrier which occur

du

ring

the

"ba

ck po

rch" in

terva

l in th

e lu

min

an

ce vid

eo

sign

al. T

he

colo

rb

urst p

rovid

es fre

qu

en

cy an

d p

ha

se re

fere

nce

valu

es fo

r the

rece

iver co

lor

oscillator.

CO

LO

R S

UB

CA

RR

IER

In

NT

SC

tele

vision

, the

3.5

8 M

Hz sig

na

l wh

ich is m

od

ula

ted

with

colo

rinform

ation, and superimposed (am

plitude modulated) onto the lum

inance signald

efin

es th

e co

lor su

bca

rrier. T

he

am

plitu

de

of th

e m

od

ula

ted

sub

carrie

r isproportional to color saturation, and phase is proportional to hue.

CO

MM

ON

CH

AN

NE

L IN

TE

RO

FF

ICE

SIG

NA

LIN

G (C

CIS

) C

CIS

is a te

lep

ho

ne

sign

alin

g te

chn

iqu

e in

wh

ich ca

ll con

trol sig

na

ling

da

tais transm

itted over a separate comm

unication system from

that used to supportthe m

essage traffic. Typical C

CIS

systems use packet com

munication m

ethods.C

urrent interest focuses on Signaling S

ystem N

umber S

even (SS

#7) -- which is

a CC

IS service being deployed w

ith ISD

N.

CO

MM

ON

GA

TE

WA

Y IN

TE

RF

AC

E (C

GI)

The C

omm

on Gatew

ay Interface, or CG

I technology creates an interface between

web servers and other inform

ation systems, enabling access to databases and

legacy computing system

s, for example. W

ithout CG

I (or a similar function),

web servers are lim

ited to presenting fixed format, prepackaged inform

ation.W

ith C

GI (o

r on

e o

f the

pro

prie

tary e

xten

sion

s) it is po

ssible

to co

nstru

ctfully interactive client/server business applications.

CO

MM

ON

MA

NA

GE

ME

NT

INF

OR

MA

TIO

N P

RO

TO

CO

L

CM

IP is th

e O

SI sta

nd

ard

ne

two

rk ma

na

ge

me

nt p

roto

col. It is le

ss wid

ely

supported and more com

plex to implem

ent than the TC

P/IP

equivalent, Sim

pleN

etwork M

anagement P

rotocol.

CO

MM

UN

ICA

TIO

NS

SA

TE

LL

ITE

C

om

mu

nica

tion

s sate

llites a

re e

arth

orb

iting

sate

llites d

esig

ne

d to

fun

ction

as telecomm

unications microw

ave radio relay devices. Typical com

munications

sate

llites a

re p

ositio

ne

d in

ge

osyn

chro

no

us o

rbits, w

hich

are

22

,30

0 m

iles

(35,888 km) above the equator, and traveling eastw

ardly, so that they appearfro

m e

arth

to b

e s

tatio

na

ry in

sp

ac

e -- th

us

the

ir orb

ital p

os

ition

isreferred to as a "geostationary orbit".

Data C

omm

unications & Fieldbus S

ystems

469

Page 471: Data Communication &Fieldbus Systems

CO

MP

AN

DO

R

The w

ord "compandor" is a hybrid term

for a device that performs a com

pressionfunction on outgoing signals (w

hich reduces the dynamic range, or am

plitudesca

le o

f an

an

alo

g sig

na

l (in o

rde

r tha

t the

full ra

ng

e o

f sign

al stre

ng

thva

riatio

n m

ay b

e re

pre

sen

ted

at a

hig

he

r ave

rag

e vo

lum

e le

vel), a

nd

acom

panion expansion function performed on incom

ing signals (that have beencom

pressed at the other end of the comm

unication channel). The purpose of

com

pa

nd

or o

pe

ratio

n is to

red

uce

the

vuln

era

bility o

f we

ak sig

na

ls to n

oise

distortion on the comm

unication link. The D

olby tape recording process is anexam

ple of a compandor system

.

CO

MP

ON

EN

T D

IGIT

AL

SIG

NA

L

A d

igita

l vide

o fo

rma

t in w

hich

sep

ara

te vid

eo

sign

als a

re u

sed

to re

pre

sen

tth

e lu

min

an

ce

(Y), a

nd

co

lor d

iffere

nc

e s

ign

als

(R-Y

an

d B

-Y), o

ralternatively, in R

GB

format.

CO

MP

OS

ITE

VID

EO

A

mixed signal com

prised of the a luminance (m

onochrome) com

ponent and ach

rom

ina

nce

(colo

r) com

po

ne

nt, a

lon

g w

ith syn

chro

nizin

g sig

na

ls (such

as

sy

nc

hro

niz

atio

n p

uls

es

, bla

nk

ing

pu

lse

s a

nd

co

lor b

urs

t). Sta

nd

ard

over-the-air television broadcast signals are composite.

CO

NC

EN

TR

AT

OR

A

con

cen

trato

r is a d

evice

wh

ich co

nn

ects a

nu

mb

er o

f circuits, o

r term

ina

lc

on

ne

ctio

ns

to a

sin

gle

hig

he

r sp

ee

d, s

ha

red

co

mm

un

ica

tion

circ

uit.

Co

nce

ntra

tors a

re fu

nctio

na

lly very sim

ilar to

mu

ltiple

xers -- e

xcep

t tha

tconcentrators are equipped w

ithout a companion concentrator at the host end

of a

link, sin

ce th

e h

ost syste

m itse

lf pe

rform

s the

com

pa

nio

n ro

le. S

ince

the

ir op

era

tion

is inte

gra

lly linke

d to

ho

st system

op

era

tion

(con

trast

with

mu

ltiple

xer d

evice

s, wh

ich a

re tra

nsp

are

nt to

ho

st system

s), the

y are

ge

ne

rally p

rop

rieta

ry pro

du

cts cap

ab

le o

f wo

rking

on

on

ly on

e e

qu

ipm

en

tvendor’s netw

orks.

CO

ND

ITIO

NIN

G

Co

nd

ition

ing

is a

n o

ptio

na

l pro

ce

du

re a

pp

lied

to le

as

ed

line

an

alo

gc

om

mu

nic

atio

n c

ircu

its, w

ith th

e in

ten

t to c

on

trol th

e q

ua

lity o

ftransm

ission. Conditioning procedures require custom

analysis and mitigation

of syste

m im

pa

irme

nts o

n a

n e

nd

-to-e

nd

ba

sis -- an

d a

re th

ere

fore

no

tapplicable to dial services. C

onditioning is not a comm

on service in currentpractice, since m

ost leased line services are provided with digital technology.

Where used, there are tw

o types of conditioning: C and D

conditioning.

CO

NT

RO

L C

HA

RA

CT

ER

C

on

trol ch

ara

cters a

re ch

ara

cter co

de

s (wh

ich a

lon

g w

ith a

lph

an

um

eric

characters comprise the character code sets like A

SC

II and EB

CD

IC) w

hoseo

ccurre

nce

in a

da

ta se

qu

en

ce w

ill resu

lt in th

e in

itiatio

n, m

od

ificatio

n, o

rin

terru

ptio

n o

f op

era

tion

al d

ata

flow

. An

exa

mp

le is th

e A

SC

II "Esca

pe

"character.

CR

OS

S T

AL

K

Cro

ss talk is th

e u

nin

ten

de

d tra

nsfe

r of e

ne

rgy fro

m o

ne

com

mu

nica

tion

sch

an

ne

l to a

no

the

r. It is mo

st com

mo

nly e

nco

un

tere

d a

s the

low

volu

me

occurrence of one voice telephone conversation on top of another -- caused byboth connections sharing w

ires in a comm

on cable bundle, and simultaneously,

some m

is-configuration of equipment.

CS

MA

/CA

C

arrie

r Se

nse

Mu

ltiple

Acce

ss with

Co

llision

De

tectio

n is th

e co

nte

ntio

na

ccess p

roto

col u

sed

with

eth

ern

et L

AN

system

s. Th

e "C

SM

A" p

art o

f the

pro

toco

l pro

vide

s for a

statio

n first liste

nin

g fo

r activity o

n th

e ca

ble

system

be

fore

com

me

ncin

g tra

nsm

ission

tha

t wo

uld

be

de

structive

to th

ecu

rren

t use

ap

plica

tion

. Th

e "C

D" fu

nctio

n p

rovid

es fo

r con

tinu

ing

tolis

ten

for a

ctiv

ity fro

m o

the

r sta

tion

s o

n th

e c

ab

le s

ys

tem

afte

rtra

ns

mis

sio

n is

initia

ted

-- to d

ete

ct c

ollis

ion

s w

hic

h re

su

lt from

the

tran

smissio

n a

ttem

pt. In

the

eve

nt o

f a co

llision

, bo

th a

ffecte

d sta

tion

sw

ill be required to back off and attempt the com

munication later.

CU

G

Clo

sed

Use

r Gro

up

. A G

UG

is an

ad

min

istrative

ly de

fine

d virtu

al n

etw

ork

service, such that mem

bers of a GU

G are able to com

municate freely am

ongstthem

selves, but are isolated from the larger public com

munity that shares the

comm

on comm

unications infrastructure.

CU

ST

OM

ER

PR

EM

ISE

S E

QU

IPM

EN

T (C

PE

) C

PE

is tele

com

mu

nica

tion

s term

ina

l eq

uip

me

nt co

nn

ecte

d to

the

en

d o

f atelecom

munications netw

ork termination link. T

he comm

on telephone is CP

E --

on a customers prem

ises, and connected to the public telephone network. A

we

ll de

fine

d d

em

arca

tion

po

int w

ill esta

blish

the

bo

un

da

ry of re

spo

nsib

ilitybetw

een CP

E and the netw

ork service provider. In the U.S

.A., clear policies

have been defined prohibiting ownership of C

PE

by the telecomm

unicationsnetw

ork service company.

D-to

-A

Dig

ital to

an

alo

g co

nve

rsatio

n. T

he

con

versio

n p

roce

ss wh

ere

by d

igita

lsig

na

ls are

con

verte

d in

to a

n a

na

log

form

at, o

r de

cod

ed

from

a d

igita

l, or

numeric representation. T

he inverse of the A-to-D

process.

DA

TA

D

ata is the encoded representation of information, w

hich may be in the form

ofn

um

be

rs, cha

racte

r-orie

nte

d te

xts, tab

ula

ted

facts, in

structio

ns, e

xecu

tab

lep

rog

ram

s, etc. D

ata

is a p

lura

l term

(da

tum

is the

form

al sin

gu

lar te

rm) --

however com

mon usage ignores this distinction, using the "data" term

for bothsingular and plural.

DA

TA

CO

MM

UN

ICA

TIO

NS

EQ

UIP

ME

NT

(DC

E)

In th

e co

nte

xt of a

da

ta co

mm

un

icatio

ns, it is th

e e

qu

ipm

en

t wh

ich is

interposed between the D

ata Term

inal Equipm

ent (DT

E) and the com

munication

circuit. The purpose of the D

CE

is to translate signals presented by the DT

Ein

to a

form

at su

itab

le fo

r pa

ssing

acro

ss the

com

mu

nica

tion

link. T

hu

s, the

DC

E m

ust be selected to operate within the constraints of the m

edium (based

on analog/digital and 2-wire/4-w

ire options, for example).

DA

TA

DIC

TIO

NA

RY

A

document or database file that specifies the precise content characteristics

of d

ata

ele

me

nts, w

hich

are

in tu

rn a

re in

divid

ua

l item

s of in

form

atio

n, like

perhaps a telephone number.

Data C

omm

unications & Fieldbus S

ystems

470

Page 472: Data Communication &Fieldbus Systems

DA

TA

EN

CR

YP

TIO

N S

TA

ND

AR

D (D

ES

) T

he public domain data encryption m

ethodology developed by the US

National

Institute of Standards and T

echnology (NIS

T, form

erly the National B

ureau ofS

tan

da

rds

). DE

S s

ys

tem

s a

ll op

era

te u

sin

g th

e s

am

e 5

6 b

it ke

ye

ncryp

tion

/de

cryptio

n a

lgo

rithm

-- an

d m

ain

tain

the

secu

rity of d

ata

thro

ug

ha private key code know

n only to the two com

municating entities.

DA

TA

SE

T

The data set is a largely disused telephone industry term

for the analog modem

.T

his u

sag

e co

ntin

ue

s with

resp

ect to

circuit d

esig

na

tion

s on

the

EIA

-23

2-C

interface standard.

DA

TA

TE

RM

INA

L E

QU

IPM

EN

T (D

TE

) In the context of a data com

munications, it is the data processing equipm

entw

hich is attached to, and terminates the netw

ork connection, and which is the

en

tity be

ing

serve

d b

y the

com

mu

nica

tion

facility a

nd

the

asso

ciate

d d

ata

comm

unications equipment, or D

CE

.

DA

TA

GR

AM

T

he term for the m

essage unit which is supported by the Internet P

rotocol, orIP

in TC

P/IP

networks. A

lthough technically distinct, a datagram is som

ewhat

like a packet. (The term

’datagram’ im

plies an uncoordinated, unannouncedco

mm

un

icatio

n; ’p

acke

t’ imp

lies a

pre

-esta

blish

ed

log

ical co

nn

ectio

n p

rior

to sending data.)

DB

S (D

IRE

CT

BR

OA

DC

AS

T S

AT

EL

LIT

E)

Dire

ct bro

ad

cast sa

tellite

s a g

eo

synch

ron

ou

s orb

it sate

llites d

esig

ne

d to

de

liver a

sufficie

ntly h

igh

po

we

red

sign

al so

as to

be

reco

vere

d b

y a sm

all

rece

iving

dish

an

ten

na

. By ra

dica

lly red

ucin

g th

e co

st of th

e re

ceivin

ge

arth

term

ina

l in th

is ma

nn

er, D

BS

tech

no

log

y is com

pe

titive a

ltern

ative

for

delivery of entertainment broadcast services.

DC

E

See definition of "D

ata Com

munication E

quipment".

DE

CIB

EL

T

he

de

cibe

l is form

ally th

e te

nth

pa

rt of a

"Be

l" -- na

me

d in

ho

no

r of

Ale

xan

de

r Gra

ha

m B

ell. In

pra

ctice, th

e "B

el" u

nit is n

eve

r use

d. T

he

de

cibe

l is a u

nit (a

bb

revia

ted

"dB

") for m

ea

surin

g a

nd

de

scribin

g th

ere

lative

stren

gth

of tw

o sig

na

ls -- an

d is typ

ically b

ase

d o

n u

nits o

f po

we

ror voltage. T

he decibel is defined as ten times the logarithm

(to the base 10)o

f the

ratio

of th

e p

ow

er o

f two

sign

als. C

om

mo

n p

ractice

ofte

n su

bstitu

tes

on

e o

f the

se tw

o sig

na

ls with

an

arb

itrary re

fere

nce

leve

l, ma

king

the

de

cibe

l into

an

ab

solu

te m

ea

sure

of sig

na

l stren

gth

. Wh

ere

so u

sed

, the

reference level must alw

ays be indicated, such as a 1 watt pow

er reference --in w

hich case the unit would becom

e "dBW

".

DE

MO

DU

LA

TIO

N

Dem

odulation is the process of recovering the encoded information or data from

a re

ceive

d, m

od

ula

ted

carrie

r wa

ve. D

em

od

ula

tion

is the

inve

rse o

f the

inverse of modulation.

DIG

ITA

L L

OO

PB

AC

K

Digital loopack capability is provided by data com

munications equipm

ent (DC

E)

-- such as modem

s and DS

U’s -- w

hich involves taking an incoming data signal

and sending it back out over the return data path to the origination location.T

he

pu

rpo

se is to

test a

com

mu

nica

tion

s circuit, in

clud

ing

DC

E. S

ee

"Analog Loopback".

DIG

ITA

L M

OD

UL

AT

ION

D

igita

l mo

du

latio

n in

vo

lve

s a

pro

ce

ss

of e

nc

od

ing

(an

d s

ub

se

qu

en

td

em

od

ula

tion

, or d

eco

din

g) o

f bin

ary d

igita

l da

ta o

nto

an

an

alo

g ca

rrier o

fso

me

type

. Wh

eth

er u

sing

an

au

dio

or R

F ca

rrier, th

e d

evice

tha

t pe

rform

sthis function w

ill be a modem

.

DIS

TR

IBU

TE

D C

OM

PU

TIN

G E

NV

IRO

NM

EN

T (D

CE

) T

he

DC

E is a

n o

pe

n sta

nd

ard

s-orie

nte

d co

llectio

n o

f softw

are

tech

no

log

ies

(primarily related to data base m

anagement and hum

an interface aspects ofclient/server system

s) supported by the Open S

ystems F

oundation, or OS

F. A

ke

y fe

atu

re o

f the

DC

E is

tha

t it is in

ten

de

d to

en

ab

le fu

nc

tion

al

client/server interoperability between heterogeneous hardw

are and software

elements of a com

puting environment.

DIS

TR

IBU

TE

D M

AN

AG

EM

EN

T E

NV

IRO

NM

EN

T (D

ME

) D

ME

is a collection of network m

anagement specifications and standards w

hichact as a kind of m

anagement um

brella to the DC

E, or D

istributed Com

putingE

nvironment -- both of w

hich are defined and supported by the Open S

oftware

Foundation, or O

SF

.

DO

MA

IN N

AM

E S

YS

TE

M (D

NS

) A

’human-friendly’ site nam

ing system used on the Internet to avoid the need

to remem

ber numeric address values. T

he DN

S uses a syntax w

here strings ofcharacters are separated by ’decim

al points’ or ’periods’, as in "ee.mit.edu".

DO

TT

ED

DE

CIM

AL

AD

DR

ES

S

A num

eric TC

P/IP

(Internet) address which uses the syntax of breaking the 32

bit b

ina

ry IP a

dd

ress in

to fo

ur b

ytes, re

pre

sen

ting

ea

ch b

yte a

s a d

ecim

al

value, and separating each byte segment w

ith a decimal point. A

hypotheticalexam

ple could be "128.34.222.197".

DP

CM

D

iffere

ntia

l pu

lse co

de

mo

du

latio

n, o

r DP

CM

is a va

rian

t of p

ulse

cod

em

odulation (PC

M) in w

hich successive signal sample values are encoded on the

basis of differences between these sam

ple values -- instead of their absolutevalue, as is done w

ith simple P

CM

. See definition of "P

CM

".

DS

-0

Ind

ividu

al vo

ice ch

an

ne

ls are

en

cod

ed

usin

g in

du

stry stan

da

rd p

ulse

cod

em

odulation (PC

M), w

ith a resulting 64 kbps. data sequence, and are known as

DS

-0 channels. This 64 kbps. data stream

doesn’t necessarily carry encodedvo

ice in

form

atio

n, b

ut is re

ga

rde

d a

s voice

cha

nn

el-e

qu

ivale

nt. N

orth

Am

erican telephone networks aggregate 24 D

S-0 channels into one D

S-1 (or T

-1)se

rvice a

t 1,5

44

,00

0 b

ps. u

sing

time

divisio

n m

ultip

lex te

chn

iqu

es. IT

U-T

standards used in Europe aggregate 30 D

S-0 channels into w

hat is widely know

nas "E

-1", or First O

rder Multiplex channels at 2,048,000 bps.

Data C

omm

unications & Fieldbus S

ystems

471

Page 473: Data Communication &Fieldbus Systems

DS

-1

Dig

ital S

ign

al - 1

is a

ge

ne

ric te

rm fo

r the

"T-1

" hig

h s

pe

ed

da

tacom

munications service available com

mercially in N

orth Am

erica and Japan. Itis a

1,5

44

,00

0 b

ps p

oin

t-to-p

oin

t da

ta se

rvice. T

he

"T-1

" de

sign

atio

n h

as

its orig

ins a

s a ve

nd

or-sp

ecific (A

T&

T) p

rod

uct n

am

e -- th

e D

S-1

eq

uiva

len

tis se

en

to b

e a

mo

re g

en

eric re

fere

nce

. Sim

ilarly, D

S-3

an

d T

-3 a

reequivalent. T

he ITU

-T equivalent to D

S-1 used in E

urope is properly referredto

as

"Firs

t Ord

er M

ultip

lex

", bu

t is v

ery

wid

ely

refe

rred

to a

s "E

-1",

parallel to the "T-1" designation.

DS

AP

D

estination Service A

ccess Point -- the upper layer protocol specification for

the network layer protocol w

hich is to receive incoming packets.

DS

I D

igita

l spe

ech

inte

rpo

latio

n is a

dig

ital im

ple

me

nta

tion

of tim

e a

ssign

ed

speech interpolation (TA

SI). S

ee definition of "TA

SI".

DT

E

See definition of "D

ata Term

inal Equipm

ent".

DU

PL

EX

TR

AN

SM

ISS

ION

T

wo-w

ay transmission capability or process. U

sage varies; to be unambiguous,

one should specify full duplex (simultaneous bidirectional com

munication), or

ha

lf du

ple

x (seq

ue

ntia

l bid

irectio

na

l com

mu

nica

tion

) in b

oth

dire

ction

s.Less form

al usage may associate full duplex w

ith "duplex", and differentiateonly half duplex configurations.

EB

CD

IC

Extended B

inary Coded D

ecimal Interchange C

ode: an IBM

proprietary 8-bitalphanum

eric information code. E

BC

DIC

is comparable to, but incom

patiblew

ith AS

CII code.

EC

HO

SU

PP

RE

SS

OR

U

sed

to co

ntro

l the

sub

jective

imp

airm

en

t cau

sed

by e

cho

es o

n te

lep

ho

ne

com

mu

nica

tion

by re

du

cing

the

am

plitu

de

of e

cho

ed

sign

als. T

he

ech

osu

pp

resso

r sen

ses w

hich

spe

ech

pa

th (in

a 4

-wire

, or d

ua

l spe

ech

pa

thco

nfig

ura

tion

) is active

at a

ny p

articu

lar m

om

en

t an

d fu

nctio

ns b

y red

ucin

gth

e a

mp

litud

e in

the

dire

ction

of co

mm

un

icatio

n o

pp

osite

to th

at w

ith th

eo

bs

erv

ed

sp

ee

ch

ac

tivity

. Sin

ce

hu

ma

n s

pe

ec

h is

fun

da

me

nta

lly a

half-duplex process, and because the echo suppressor is capable of quicklyse

nsin

g n

orm

al re

versa

ls in d

irectio

n o

f spe

ech

activity, th

is red

uctio

n in

signal amplitude w

ill only affect the unwanted echo signal. E

cho suppressorsa

re o

f limite

d e

ffective

ne

ss wh

ere

lon

g tim

e d

ela

y (such

as e

nco

un

tere

d o

nsa

tellite

-de

rived

com

mu

nica

tion

cha

nn

els, a

nd

lon

g in

tern

atio

na

l terre

strial

channels) impairs sw

itching responsiveness. Suppressor sw

itching times of up

to 1

00

millise

con

ds w

ill (alo

ng

with

oth

er fa

ctors) lim

it line

turn

aro

un

dtim

es on half-duplex dial telephone data connections.

ED

I S

ee definition of "Electronic D

ata Interchange".

EF

T

Electronic F

unds Transfer involves the electronic com

munication of financial

assets, either between trading partners directly, or m

ore comm

only, between

one organization and a bank.

EIA

S

ee definition of "Telecom

munications Industries A

ssociation".

EIA

INT

ER

FA

CE

T

he

Ele

ctron

ic Ind

ustrie

s Asso

ciatio

n h

as sp

ecifie

d th

e p

hysica

l, ele

ctrical,

functional and procedural aspects of interconnection of equipment (D

TE

and DC

E)

in internationally recognized standards. The m

ost comm

only encountered EIA

interface standard is the EIA

-232-C, form

erly known as the R

S-232-C

.

EL

EC

TR

OM

AG

NE

TIC

INT

ER

FE

RE

NC

E (E

MI)

EM

I is inte

rfere

nce

in th

e fo

rm o

f ele

ctrom

ag

ne

tic en

erg

y rad

iate

d b

ye

lec

trica

l po

we

r sy

ste

ms

(su

ch

as

po

we

r tran

sm

iss

ion

line

s, p

ow

er

transformers, industrial m

otors), natural phenomena (such as lightning strikes)

an

d e

lectro

nic a

pp

ara

tus (su

ch a

s rad

io tra

nsm

itters, ra

da

r eq

uip

me

nt,

cathode ray tube display devices). Vulnerability is very m

uch affected by thekin

d o

f com

mu

nica

tion

s cab

le syste

ms u

sed

(un

shie

lde

d tw

isted

pa

ir cab

le,

or UT

P, shielded tw

isted pair cable, or ST

P, coaxial cable or fiber optic m

edia), a

nd

in e

xtrem

e ca

ses, b

uy sh

ield

ing

me

asu

res ta

ken

to p

rote

ct term

ina

lequipm

ent as well.

EL

EC

TR

ON

IC D

AT

A IN

TE

RC

HA

NG

E

The com

puter-to-computer exchange of standard business docum

entation inm

achine processable form. E

DI is/w

as an early form of e-business and has

largely been overtaken by this class of solution.

EL

EC

TR

ON

IC M

AIL

T

he electronic comm

unication of generally free-formatted inform

ation over acom

puter network. T

he largest e-mail system

in the world is supported by the

global Internet, comprising hundreds of m

illions of users world-w

ide.

EL

EC

TR

ON

IC M

AIL

BO

X

A com

puter file system m

anaged by a network provider w

here incoming e-m

ail fora

give

n re

cipie

nt is lo

dg

ed

, pe

nd

ing

the

ir con

ven

ien

ce in

takin

g d

elive

ry --very analogous to a physical postal m

ail box.

EN

CR

YP

TIO

N

Encryption technology provides for system

atically and thoroughly encoding acom

municated m

essage so that any unintended recipient will be functionally

inca

pa

ble

of co

rrectly in

terp

retin

g its co

nte

nt. T

he

re a

re se

vera

l wid

ely

used encryption systems, m

any of which are developed in the U

.S.A

. and arere

stricted

to u

se in

tha

t cou

ntry. M

ilitary u

se o

f en

cryptio

n is g

en

era

llyre

ga

rde

d to

be

con

side

rab

ly mo

re so

ph

isticate

d a

nd

effe

ctive th

an

the

systems available for civilian applications.

ER

RO

R C

ON

TR

OL

E

rror co

ntro

l is a te

rm u

sed

to d

escrib

e a

ny o

f a n

um

be

r of te

chn

iqu

es fo

rco

ntro

lling

erro

rs on

a d

ata

com

mu

nica

tion

link. E

rror co

ntro

l alw

ays

req

uire

s s

om

e c

ap

ab

ility o

f de

tec

ting

the

pre

se

nc

e o

f erro

rs. U

po

nd

ete

ctio

n, th

ere

are

ba

sic

ally

two

pro

ce

du

ral o

ptio

ns

: (1) in

vo

ke

a

D

ata Com

munications &

Fieldbus System

s472

Page 474: Data Communication &Fieldbus Systems

retra

nsm

ission

req

ue

st (Se

e d

efin

ition

of "A

RQ

"), or (2

) pe

rform

ad

ditio

na

lcalculations on the com

posite message received, and m

ake a determination of

error location(s) without further retransm

ission (See definition of "F

EC

").

ER

RO

R C

OR

RE

CT

ING

CO

DE

D

ata

pro

tecte

d b

y erro

r corre

cting

cod

es is tra

nsm

itted

with

ad

ditio

na

l bits

of d

ata

-- erro

r corre

cting

cod

e fie

lds. E

rror co

rrectin

g co

de

s de

fine

the

sea

dd

ition

al d

ata

ele

me

nts

in s

uc

h a

wa

y th

at it is

po

ss

ible

to v

alid

ate

rece

ived

da

ta b

y che

cking

the

erro

r corre

cting

cod

e b

its, since

the

sen

din

ga

nd

rec

eiv

ing

sta

tion

s b

oth

follo

w th

e s

am

e id

en

tica

l erro

r ch

ec

kin

gcalculation procedure.

ER

RO

R D

ET

EC

TIN

G C

OD

E

A m

eans for encoding data signals, such that they conform to specific rules of

con

structio

n -- so

tha

t de

pa

rture

s from

tho

se ru

les a

t the

rece

iving

loca

tion

can be automatically detected. S

uch codes require additional, or redundantd

ata

to b

e tra

nsm

itted

tha

n a

re n

ece

ssary to

me

rely co

nve

y the

de

sired

information.

ER

RO

R R

AT

E

Da

ta e

rror ra

tes a

re ca

lcula

ted

an

d e

xpre

ssed

as th

e ra

tio o

f erro

red

da

tab

its to th

e to

tal n

um

be

r tran

smitte

d. E

rror ra

tes a

re typ

ically e

xpre

ssed

interm

s of numbers like "1 in 1,000,000) -- m

eaning that for every million data

bits transmitted, one bit is statistically likely to be errored, or incorrect.

ET

HE

RN

ET

E

thernet LAN

technology was developed initially by X

erox, who subsequently

pa

rtne

red

with

DE

C a

nd

Inte

l to fu

rthe

r its ma

rket a

ccep

tan

ce. T

he

IEE

E8

02

.3 sta

nd

ard

versio

n is slig

htly d

iffere

nt fro

m e

the

rne

t. Eth

ern

et is a

concurrent (messages are delivered to all stations at one tim

e), bus orientedcontention LA

N technology. T

he original ethernet was a 1 m

bps. design; allcurrently supported versions are 10 m

bps. (with the exception of developing

100 mbps. "pseudo-ethernet" versions. E

arly implem

entations were all based

on "Fat E

thernet" (10-Base-5) cable designs; developm

ent of "Thin E

thernet"(10-B

ase-2) and "10-Base-T

" telephone cable versions have changed the cableenvironm

ent of typical installations.

ET

SI

European T

elecomm

unications Standards Institute, an independent and broadly

based standards organization which has assum

ed the carrier coordination rolepreviously held by C

EP

T.

EV

EN

PA

RIT

Y C

HE

CK

(OD

D P

AR

ITY

CH

EC

K)

Even and O

dd parity checking are examples of error detection codes w

hich areu

se

d to

va

lida

te d

ata

at a

rec

eiv

ing

loc

atio

n. P

arity

pro

vid

es

for

con

structin

g d

ata

seq

ue

nce

s (typica

lly cha

racte

r-sized

seg

me

nts) in

such

aw

ay th

at th

ere

will b

e a

pre

dicta

bly e

ven

(or o

dd

) nu

mb

er o

f "1" b

its in th

esequence.

EX

CH

AN

GE

, PR

IVA

TE

BR

AN

CH

(PB

X)

A private business telephone sw

itching system (located on user’s prem

ises)w

hich

is con

ne

cted

to th

e p

ub

lic tele

ph

on

e n

etw

ork via

trun

k circuits. In

time past it w

as operated by a switchboard attendant. M

ore recent usage ofth

e te

rm P

BX

pre

sup

po

ses th

at th

e e

qu

ipm

en

t will b

e fu

lly au

tom

atic. In

an

era

wh

en

this a

uto

ma

tic role

cou

ld n

ot b

e a

ssum

ed

, the

term

"PA

BX

", with

the

"A" u

sed

to in

dica

te "a

uto

ma

tic". Th

e a

cron

ym "P

BX

" is the

mo

stcom

monly used form

in current practice.

EX

TE

ND

ED

SU

PE

RF

RA

ME

(ES

F)

ES

F is a D

S-1/T

-1 enhancement w

hich makes all 192 data bits in each of the 24

rep

ea

ting

fram

e p

atte

rns a

vaila

ble

for cu

stom

er d

ata

. With

ES

F in

pla

ce,

each DS

-0 subchannel on the T-1 or D

S-1 service can deliver a "clear channel"

64

kbp

s. con

ne

ction

. Th

is is in co

ntra

st to th

e p

recu

rsor ve

rsion

of T

-1know

n as T-1/D

-3. With the T

-1/D-3 configuration, each D

S-0 subchannel is

req

uire

d to

sa

crific

e o

cc

as

ion

al "ro

bb

ed

sig

na

ling

bits

", limitin

geffective clear channel use to 56 kbps. E

SF

is an enhancement to T

-1 network

systems to m

ake them capable of supporting IS

DN

services.

FA

CS

IMIL

E

Fa

cs

imile

is a

sy

ste

m fo

r tran

sm

itting

info

rma

tion

in g

rap

hic

al fo

rm,

typica

lly ove

r the

pu

blic sw

itche

d te

lep

ho

ne

ne

two

rk. Th

e im

ag

e is ra

ster

scanned at medium

resolution, resulting scanning information com

municated by

da

ta m

od

em

, an

d re

con

structe

d b

y the

rece

iving

eq

uip

me

nt -- o

ften

on

thermally sensitive paper.

FA

ST

PA

CK

ET

SW

ITC

HIN

G

Fa

st pa

cket is a

ge

ne

ral te

rm u

sed

to d

escrib

e p

acke

t com

mu

nica

tion

stechnology based on a m

ore dynamic packet sw

itching methodology than that

permitted by the X

.25 international standard. The tw

o principal technologiesin

clu

de

d in

this

ca

teg

ory

are

"Fra

me

Re

lay

" an

d "C

ell R

ela

y".

Imp

lem

en

tatio

ns o

f cell re

lay a

re co

mm

on

ly asso

ciate

d w

ith A

synch

ron

ou

sT

ransfer Mode (A

TM

) -- a currently important technical developm

ent.

FD

DI

See definition of "F

iber Distributed D

ata Interface".

FD

MA

S

ee definition of "Frequency-division m

ultiple access".

FE

C

See definition of "F

orward E

rror Correction".

FIB

ER

DIS

TR

IBU

TE

D D

AT

A IN

TE

RF

AC

E (F

DD

I) O

ne of two leading high speed standard netw

orking technologies (Alternative is

DQ

DB

, see

de

finitio

n o

f "Distrib

ute

d Q

ue

ue

, Du

al B

us") su

itab

le fo

r eith

er

MA

N a

pp

licatio

ns (sh

are

d b

y a n

um

be

r of u

sers, a

nd

ph

ysically re

ach

ing

ap

ub

lic me

trop

olita

n a

rea

use

r com

mu

nity) o

r HS

LA

N (h

igh

spe

ed

LA

Na

pp

licatio

ns), w

he

re th

e p

hysica

l scale

of th

e n

etw

ork is u

sua

lly limite

d to

a sin

gle

, con

tigu

ou

s pie

ce o

f rea

l esta

te (e

g. a

un

iversity ca

mp

us o

rm

ilitary b

ase

), an

d p

rovid

es a

ba

ckbo

ne

service

to typ

ically a

larg

e n

um

be

rof low

er capacity LAN

systems. F

DD

I operates at 100 Mbps as a dual token ring

system w

ith a total circumference of up 200km

. Extensions to F

DD

I includeC

DD

I, and FD

DI-II w

hich extends the data rate capability into the Gigabit per

se

co

nd

ran

ge

. FD

DI e

njo

ys

the

be

ne

fit of b

ein

g a

n A

NS

I sta

nd

ard

technology, but is not included in the almost universally em

braced IEE

E/IS

OL

AN

stan

da

rds -- th

us it’s lo

ng

term

futu

re co

mp

are

d w

ith o

the

r hig

h-sp

ee

dLA

N/M

AN

technologies is limited.

Data C

omm

unications & Fieldbus S

ystems

473

Page 475: Data Communication &Fieldbus Systems

FIB

ER

OP

TIC

SY

ST

EM

S

Fib

er o

ptic syste

ms co

mm

un

icate

with

(ge

ne

rally in

frare

d) lig

ht p

ulse

stra

nsm

itted

thro

ug

h e

xtrem

ely th

in, h

igh

ly pu

re g

lass fib

ers th

at tra

p, o

rco

nta

in th

e lig

ht e

ne

rgy so

tha

t it follo

ws th

e ca

ble

aro

un

d b

en

ds a

nd

em

erg

es fro

m th

e fa

r en

d w

ith su

fficien

t en

erg

y as to

drive

an

op

to-e

lectric

de

tecto

r de

vice. S

ho

rt dista

nce

ap

plica

tion

s som

etim

es u

s a p

lastic "fib

er"

op

tic cab

le m

ed

ium

. In a

dd

ition

the

ir incre

dib

le d

istan

ce a

nd

da

ta ra

teca

pa

bilitie

s (com

me

rcially a

vaila

ble

system

s op

era

te o

ver m

an

y kilom

ete

rsw

itho

ut re

pe

ate

rs at d

ata

rate

s of m

an

y Gb

ps) -- th

ere

is con

side

rab

leb

en

efit in

usin

g fib

er o

ptic te

chn

olo

gy w

he

re im

mu

nity to

ele

ctrom

ag

ne

ticinterference (E

MI), w

here industrial hazard voltages are present and/or where

security issues are of concern.

FIE

LD

O

ne

ha

lf of a

n in

terla

ce

d te

lev

isio

n p

ictu

re, o

r fram

e. In

52

5 lin

etelevision fram

e systems (N

orth Am

erican NT

SC

), the field consists of 262.5lines and is repeated at a 59.94 H

z. rate.

FIL

E T

RA

NS

FE

R P

RO

TO

CO

L (F

TP

) T

he

orig

ina

l, an

d m

ost co

mm

on

ly use

d m

ea

ns o

f mo

ving

files o

ver T

CP

/IPnetw

orks (and therefore the Internet). See ’anonym

ous FT

P’.

FIN

GE

R

Fin

ge

r is a

clie

nt/s

erv

er c

on

figu

red

ap

plic

atio

n p

roc

es

s fo

r TC

P/IP

inte

rne

two

rke

d s

ys

tem

s th

at m

ak

e it p

os

sib

le to

en

qu

ire a

s to

the

ava

ilab

ility of re

mo

te h

ost syste

ms a

nd

/or in

divid

ua

ls. By in

vokin

g th

e"finger" com

mand, a m

essage is send over the TC

P/IP

network to the specified

ho

st system

, wh

ich re

turn

s statistica

l da

ta re

ga

rdin

g cu

rren

t usa

ge

or

personal information of individual users.

FL

OW

CO

NT

RO

L

In data comm

unication systems or netw

orks which m

ake use of buffer storage,th

e p

ossib

ility of co

ng

estio

n p

reve

ntin

g n

orm

al d

ata

flow

s wo

uld

, if ign

ore

d,

cause a risk of buffer overflow. T

hus, information system

s connected to suchsyste

ms m

ust b

e ca

pa

ble

of re

spo

nd

ing

to sig

na

ls req

uirin

g te

mp

ora

ry(typ

ically m

om

en

tary) ce

ssatio

n o

f tran

smissio

n. T

he

re a

re tw

o typ

es o

fflo

w co

ntro

l: (1) co

ntro

l via th

e in

terfa

ce re

ad

y sign

als (typ

ically D

SR

),and (2) through the use of flow

control characters, such as the AS

CII X

OF

F and

XO

N control characters.

FO

RW

AR

D E

RR

OR

CO

RR

EC

TIO

N

FE

C system

s operate by providing sufficient redundant information accom

panyinge

ach

orig

ina

l me

ssag

e tra

nsm

ission

tha

t it is po

ssible

to n

ot o

nly id

en

tifyth

e p

rese

nce

of e

rrors o

n d

ata

, bu

t to a

lso lo

cate

the

m -- th

us e

na

blin

g a

correction decision to be made w

ithout any reverse transmissions. T

hus then

am

e. S

ince

FE

C syste

ms o

pe

rate

with

ou

t an

y fee

db

ack to

the

po

int o

fo

rigin

, the

re is n

o d

efin

itive cu

stod

y tran

sfer a

ction

, as th

ere

is with

AR

Q(S

ee definition of "AR

Q") system

s. Consequently, F

EC

systems for business

ap

plica

tion

s are

typica

lly con

figu

red

with

an

acco

mp

an

ying

ba

ckstop

AR

Qcapability -- or m

ore correctly, in a hybrid AR

Q/F

EC

configuration.

FO

UR

WIR

E C

IRC

UIT

S

ee definition of "Circuit, F

our Wire".

FR

AM

E

The com

plete representation of a single video image, w

hich is reproduced atthe field refresh rate (29.97 H

z. in NT

SC

equipment).

FR

AM

E

One com

plete message segm

ent, or data unit on a data comm

unications link. Afra

me

is structu

red

by p

rea

gre

em

en

t to co

nve

y con

trol in

form

atio

n su

ch a

ssource/destination addresses, m

essage number, retransm

ission requests ("NA

K"

codes), and error checking features. The m

essage units known as fram

es tendto

be

as

so

cia

ted

with

full d

up

lex

sy

ste

ms

; the

co

mp

ara

ble

un

it of

information in half duplex system

s is typically known as a block.

FR

AM

E R

EL

AY

F

rame relay is a sim

plified, expedited equivalent of conventional X.25 packet

network sw

itching technology -- such that the delivered service has a higherth

rou

gh

pu

t cap

ab

ility -- an

d is th

us m

ore

suita

ble

to L

AN

con

ne

ctivitya

pp

licatio

ns. F

ram

e re

lay’s g

rea

test sim

plifica

tion

(com

pa

red

to X

.25

pa

cket sw

itchin

g) is th

at it d

ispe

nse

s with

link-b

y-link d

ata

valid

atio

n,

making it possible to com

mence forw

arding a packet onto its outbound routeb

efo

re th

e tra

iling

po

rtion

ha

s a

rrive

d (in

co

ntra

st to

the

store-validate-forward process inherent in packet sw

itching). Thus the term

"relay" rather than "switching".

FR

EQ

UE

NC

Y

The rate at w

hich signal values alternate. Thus, frequency is the m

easure ofh

ow

freq

ue

ntly a

na

log

sign

al va

lue

s rep

ea

t the

ir cyclic pa

ttern

of a

mp

litud

eva

riatio

n. F

req

ue

ncy w

as o

nce

me

asu

red

in te

rms o

f "cycles p

er se

con

d",

which w

as a useful, descriptive term. C

urrent practice describes frequency inthe H

ertz unit. Variations are the K

ilohertz, Megahertz, G

igahertz, etc.

FR

EQ

UE

NC

Y D

IVIS

ION

MU

LT

IPL

E A

CC

ES

S (F

DM

A)

FD

MA

is a technique for frequency, or bandwidth sharing an analog com

mon

comm

unication channel -- typically a geographically dispersed channel, sucha

s a sa

tellite

service

. De

vices a

t diffe

ren

t ge

og

rap

hica

l loca

tion

s can

fea

sibly sh

are

such

a ch

an

ne

l if the

y are

discip

line

d to

coo

rdin

ate

the

irin

div

idu

al tra

ns

mis

sio

ns

so

as

to n

ot tra

ns

mit in

ex

ac

tly th

e s

am

efrequency bandw

idth segment as any other user. F

DM

A is in som

e ways like a

distributed frequency division multiplexer system

. Com

pare with T

DM

A.

FR

EQ

UE

NC

Y D

IVIS

ION

MU

LT

IPL

EX

(FD

M)

Frequency-division m

ultiplexer or frequency division multiplexing. F

DM

is ap

roc

es

s b

y w

hic

h d

iffere

nt a

na

log

sig

na

l so

urc

es

ca

n c

o-e

xis

t on

aco

mm

un

icatio

n circu

it or fa

cility by a

lloca

ting

ea

ch sig

na

l a u

niq

ue

fractio

nof the com

posite system bandw

idth.

FR

EQ

UE

NC

Y M

OD

UL

AT

ION

(FM

) F

requency modulation is one of three m

odulation techniques (See definition of

"mo

du

latio

n"). W

ith F

M, th

e b

ase

ba

nd

sign

al in

form

atio

n is e

nco

de

d, o

rim

pressed on the carrier signal by modifying its frequency to instantaneously

respond to variations in the baseband signal.

Data C

omm

unications & Fieldbus S

ystems

474

Page 476: Data Communication &Fieldbus Systems

.

FR

EQ

UE

NT

LY

AS

KE

D Q

UE

ST

ION

S (F

AQ

) F

requently Asked Q

uestion -- or FA

Q -- docum

ents are comm

only created andd

istribu

ted

on

the

Inte

rne

t pe

rtain

ing

to th

ou

san

ds o

f diffe

ren

t top

ics. FA

Qd

ocu

me

nts a

re a

vaila

ble

de

alin

g w

ith m

ost o

f the

top

ics of th

e U

SE

NE

TN

ewsgroups, and m

any other technical and non-technical topics of interest tothe Internet com

munity. F

AQ

documents are typically organized in question

an

d a

nsw

er fo

rma

t, an

d a

lmo

st alw

ays a

re d

esig

ne

d to

give

the

rea

de

r an

en

try leve

l exp

osu

re to

the

title su

bje

ct. A co

mp

reh

en

sive F

AQ

arch

ive site

is maintained at M

IT, at an anonym

ous FT

P server designated as "rtfm

.mit.edu"

in the "pub" directory.

FU

LL

DU

PL

EX

(FD

X)

Full D

uplex refers to a data flow sequences, or com

munications system

s which

op

era

te (o

r pe

rmit o

pe

ratio

n) in

bo

th d

irectio

ns a

t the

sam

e tim

e. C

om

pa

rew

ith "Half D

uplex".

GO

-BA

CK

-N A

RQ

G

o-Back-N

AR

Q system

s provide for a sequence numbered m

essage stream (such as

supported by HD

LC) to identify a m

essage segment, or fram

e that is found tobe flaw

ed by transmission errors, and provide for retransm

ission of the flawed

or errored frame, and all m

essage frames that have been transm

itted since thee

rrore

d fra

me

. Th

us, th

e se

nd

ing

statio

n sim

ply "b

acks u

p" to

the

po

int

wh

ere

the

erro

r occu

rred

an

d sta

rts ove

r. Th

us it w

ou

ld b

e m

ore

litera

l torefer to the procedure as "G

o Back T

o N", rather than "G

o Back N

". Contrast

with "S

elective AR

Q", w

hich provides for only retransmitting the errored fram

e.S

ee definition of "AR

Q".

GO

PH

ER

Largely obsolete: G

opher is a menu-based hierarchical inform

ation search andre

co

ve

ry to

ol w

ide

ly u

se

d o

n th

e In

tern

et. It w

as

de

ve

lop

ed

at th

eU

niversity of Minnesota, w

here many gopher search sequences still originate.

Go

ph

er is a

clien

t/serve

r structu

red

en

viron

me

nt th

at o

pe

rate

s with

eith

er a

text or graphical presentation.

GR

OU

ND

RE

TU

RN

CIR

CU

IT

A g

rou

nd

retu

rn circu

it is an

ele

ctrical co

nn

ectio

n co

nn

ectin

g tw

o p

oin

ts,w

hich

is ge

ne

rally a

me

tallic co

nn

ectio

n (a

ltho

ug

h it m

ay b

e a

n e

arth

conduction path) that (1) provides an electrically comm

on, neutral connectionm

edium, and (2) creates an electrical return path for signals passed betw

eentw

o syste

ms -- su

ch a

s with

the

pin

no

. 7 co

nn

ectio

n o

n th

e E

IA-2

32

-Cinterface.

HA

LF

DU

PL

EX

(HD

X)

Half duplex system

s (and circuits) demonstrate bi-directional com

munication

cap

ab

ility -- bu

t (du

e to

com

mu

nica

tion

eq

uip

me

nt o

r pro

toco

l limita

tion

s)a

re o

nly a

ble

to co

mm

un

icate

in o

ne

dire

ction

at a

time

. Th

ey a

re th

us

sequential bi-directional systems or circuits. H

uman speech is an exam

ple ofa half duplex process.

HA

MM

ING

CO

DE

T

he Ham

ming code is an early, sim

ple, and relatively ineffective forward error

corre

cting

cod

e th

at u

ses a

un

iqu

e p

arity ca

lcula

tion

to d

ete

ct an

d iso

late

transmission errors in data.

HD

LC

S

ee definition of "High Level D

ata Link Protocol".

HD

TV

H

igh

De

finitio

n T

ele

vision

; a d

eve

lop

me

nta

l dig

ital te

levisio

n b

roa

dca

sting

tech

no

log

y de

sign

ed

to re

pro

du

ce m

an

y mo

re lin

es o

f reso

lutio

n th

an

are

ava

ilab

le w

ith e

xisting

an

alo

g te

levisio

n b

roa

dca

sting

. Th

e U

.S. d

efin

ition

is based on 1080 lines, 1920 horizontal samples (pixels) per line distributed

as an MP

EG

-2 compressed digital signal.

HE

RT

Z

Th

e "H

ertz" is th

e u

nive

rsally u

sed

un

it of fre

qu

en

cy, eq

uiva

len

t to th

e n

ow

dis

us

ed

"cy

cle

s p

er s

ec

on

d" u

nit. L

arg

er u

nits

inc

lud

e k

iloh

ertz

(abbreviated khz, and meaning thousands of hertz), m

egahertz (abbreviated Mhz,

and meaning m

illions of hertz) and gigahertz (abbreviated Ghz, and m

eaningbillions of hertz).

HIG

H L

EV

EL

DA

TA

LIN

K C

ON

TR

OL

(HD

LC

) H

DLC

is the most w

idely used synchronous, serial bit oriented link protocol.H

DLC

is an ISO

standard patterned after IBM

’s proprietary Synchronous D

ataLink P

rotocol, or SD

LC. T

he U.S

. AN

SI equivalent of H

DLC

is called AD

CC

P -

Advanced D

ata Com

munications C

ontrol Procedure.

HIG

H S

PE

ED

LA

N (H

SL

AN

) T

he HS

LAN

term is used to describe the application of high speed technology to

a (campus) backbone service. H

SLA

N and M

AN

systems share the sam

e technology-- see definition of "M

etropolitan Area N

etwork" for discussion of technology

alternatives.

HO

ME

PA

GE

A

ho

me

pa

ge

is a sta

rting

po

int fo

r exp

lorin

g a

Wo

rld W

ide

We

b site

. Th

edefault file nam

e for the home page is ’index.htm

’.

HO

RIZ

ON

TA

L P

AR

ITY

ER

RO

R D

ET

EC

TIO

N

Horizontal parity calculations are based on defining a block check character

(BC

C), th

e in

divid

ua

l bits o

f wh

ich a

re d

efin

ed

on

the

ba

sis of m

ain

tain

ing

an

eve

n (o

r od

d) n

um

be

r of "o

ne

" bits th

rou

gh

ou

t all o

f the

bits in

tha

tp

ositio

n in

all ch

ara

cters o

f a d

ata

blo

ck. Th

us, fo

r exa

mp

le, th

e th

ird b

ito

f the

BC

C w

ill be

de

fine

d so

tha

t it, alo

ng

with

all o

f the

da

ta b

its inth

e th

ird b

it po

sitio

n in

all c

ha

rac

ters

in th

e b

loc

k w

ill co

llec

tive

lydem

onstrate even (or odd) parity.

HO

T S

TA

ND

BY

H

ot sta

nd

by e

qu

ipm

en

t is eq

uip

me

nt re

du

nd

an

tly pro

vision

ed

so th

at it is

powered up and instantly ready to assum

e an operational role -- in the eventth

at a

n o

pe

ratin

g co

mp

an

ion

un

it sho

uld

fail. H

ot sta

nd

by e

qu

ipm

en

tco

nfig

ura

tion

s are

ge

ne

rally sim

ple

r to im

ple

me

nt th

an

full co

ncu

rren

tre

du

nd

an

t op

era

tion

s, in w

hich

no

rma

l system

activity is sh

are

d b

y two

pro

du

ctive d

evice

s -- an

d in

wh

ich th

e o

pe

ratio

na

l role

is assu

me

d b

y the

survivor when one fails. T

he idle equipment in hot standby configurations is

ne

ver p

rod

uctive

with

resp

ect to

the

role

for w

hich

it is stan

din

g b

y --a

ltho

ug

h it m

ay p

erfo

rm so

me

low

prio

rity tasks w

hich

are

sub

ject to

be

ing

preempted.

Data C

omm

unications & Fieldbus S

ystems

475

Page 477: Data Communication &Fieldbus Systems

HU

B

A h

ub

is a d

evice

wh

ich is lo

cate

d a

t som

e ce

ntra

l po

int in

a n

etw

ork, a

nd

provides a means of term

inating a number of incom

ing connections. In LAN

system

s, the

hu

b is typ

ically lo

cate

d in

a te

lep

ho

ne

wirin

g clo

set, a

nd

isequipped w

ith a direct wire connection to each device on the LA

N. H

ubs area

vaila

ble

in va

rying

de

gre

es o

f sop

histica

tion

, som

e ca

pa

ble

of su

pp

ortin

ga num

ber of different LAN

technologies and centralized network m

anagement

systems.

HY

PE

RT

EX

T

Hypertext docum

ents are specially formatted text w

hich has embedded codes that

hig

hlig

ht p

ortio

ns o

f the

text, a

nd

pro

vide

a lo

gica

l linka

ge

to o

the

r files

or in

form

atio

n re

sou

rces. B

y view

ing

hyp

erte

xt do

cum

en

ts with

ap

pro

pria

teso

ftwa

re, it is p

ossib

le to

po

int to

a p

iece

of h

igh

ligh

ted

Hyp

erte

xt text,

click the

mo

use

, an

d e

stab

lish th

e lin

kag

e to

the

em

be

dd

ed

refe

ren

ceinform

ation. Thus, hypertext m

akes it possible to move betw

een documents by

keying on internal content of these documents, rather than using an external

menu system

.

HY

PE

RT

EX

T M

AR

KU

P L

AN

GU

AG

E (H

TM

L)

HT

ML is an industry standard syntax for m

arking up, or annotating text so asto

ma

ke

it into

Hy

pe

rtex

t. Se

e d

efin

ition

of ’H

yp

erte

xt’.

Extensions/alternatives to H

TML include S

GM

L (Standard G

eneral Markup Language)

, XM

L (Extensible M

arkup Language) and WM

L (Wireless M

arkup Language).

HY

PE

RT

EX

T T

RA

NS

FE

R P

RO

TO

CO

L (H

TT

P)

HT

TP

is the specified protocol for exchanging hypertext encoded documents (and

graphics, audio and video information) on the W

orld Wide W

eb.

IEE

E

See definition of ’Institute of E

lectrical and Electronics E

ngineers’.

IEE

E 8

02.3

IE

EE

80

2.3

is the

mo

st wid

ely u

sed

LA

N te

chn

olo

gy, b

ein

g th

e fo

rma

lized

,sta

nd

ard

de

rived

from

the

orig

ina

l eth

ern

et. E

the

rne

t as d

efin

ed

by th

eX

ero

x/DE

C/In

tel co

nso

rtium

is sub

tly diffe

ren

t from

the

de

rived

IEE

E 8

02

.3version. S

ee "Ethernet" definition.

IEE

E 8

02.4

T

he IEE

E 802.4 is a specification for a token bus LA

N technology developed at

Ge

ne

ral M

oto

rs as a

de

livery syste

m fo

r ind

ustria

l au

tom

atio

n a

pp

licatio

ns.

Th

e s

ys

tem

ch

ara

cte

ristic

s a

re n

ot e

as

ily a

da

pte

d to

typ

ica

l offic

ea

pp

licatio

ns -- m

akin

g th

e IE

EE

80

2.4

larg

ely irre

leva

nt to

no

n-in

du

strial

uses.

IEE

E 8

02.5

S

ee definition of "Token R

ing" LAN

technology.

IEE

E 8

02.6

T

he IEE

E standard specification for M

etropolitan Area N

etworks (M

AN

) technology.T

he IEE

E 802.6 standard is based on the D

istributed Queue D

ual Bus (D

QD

B)

MA

N technology. D

QD

B is essentially a dead technology.

IN-B

AN

D S

IGN

AL

ING

In-band signaling is an analog telephone netw

ork signaling scheme w

herebyessential netw

ork signaling information is conveyed by m

eans of tone codedsig

na

ls tha

t ha

ve fre

qu

en

cy valu

es su

ch th

at th

ey ca

n b

e ca

rried

with

in th

ea

na

log

ba

nd

wid

th n

orm

ally u

sed

for vo

ice tra

nsm

ission

. (Co

mp

are

with

definition of ’Com

mon C

hannel Interoffice Signaling’).

INS

TIT

UT

E O

F E

LE

CT

RIC

AL

AN

D E

LE

CT

RO

NIC

S E

NG

INE

ER

S (IE

EE

) T

he

IEE

E is th

e w

orld

’s larg

est p

rofe

ssion

al o

rga

niza

tion

, wh

ich o

ver its

histo

ry ha

s esta

blish

ed

a re

pu

tatio

n fo

r pu

blish

ing

a re

ma

rkab

le a

rray o

fh

igh

ly reg

ard

ed

jou

rna

ls an

d o

the

r pe

riod

icals th

at d

efin

e th

e sta

te-o

f-the

art in

mo

st dim

en

sion

s of e

lectrica

l an

d e

lectro

nics te

chn

olo

gy. In

rece

nt

time they have becom

e involved in the computer com

munications standards

settin

g p

roce

ss -- mo

st no

tab

ly with

resp

ect to

the

80

2-se

ries o

f LA

Nstandards.

INT

EG

RA

TE

D S

ER

VIC

ES

DIG

ITA

L N

ET

WO

RK

(ISD

N)

ISD

N is a standards-based technology keyed to the delivery of digital-form

ats

ign

als

ov

er p

ub

lic a

cc

es

s n

etw

ork

s. T

his

is in

co

ntra

st to

ex

istin

gtelephone system

s which are based on analog signals and an analog interface

at the demarcation point betw

een telephone company and custom

er premises

equipment (C

PE

).

INT

ER

FA

CE

A

n interface is the formal point of interconnection -- or boundary -- betw

eentw

o pieces of equipment. T

he functions of each signals which are exchanged,

the

ir ele

ctrical ch

ara

cteristics a

nd

the

ph

ysical fe

atu

res o

f con

ne

ctors

are

ge

ne

rally th

e ke

y com

po

ne

nts o

f inte

rface

stan

da

rds. T

he

stan

da

rdE

IA-232-C

interface is an example.

INT

ER

NA

TIO

NA

L O

RG

AN

IZA

TIO

N F

OR

ST

AN

DA

RD

IZA

TIO

N (IS

O)

Th

e IS

O (o

ften

inco

rrectly re

ferre

d to

as th

e In

tern

atio

na

l Sta

nd

ard

sO

rganization) is an international agency that develops and endorses standards-- fo

r a w

ide

varie

ty of te

chn

olo

gie

s. Th

e IS

O h

ad

a m

ajo

r role

in cre

atin

ga

un

ified

wo

rld vie

w o

f info

rma

tion

tech

no

log

y thro

ug

h th

e O

pe

n S

ystem

sInterconnection M

odel (OS

I) -- and related protocols.

INT

ER

NA

TIO

NA

L T

EL

EC

OM

MU

NIC

AT

ION

S U

NIO

N (IT

U)

The IT

U is an agency of the U

nited Nations, w

hich was established to provide

glo

ba

l stan

da

rdiza

tion

of co

mm

un

icatio

ns p

roce

du

res a

nd

pra

ctices --

including coordination of telephony practices and radio technology usage. Key

operating branches of the ITU

are the ITU

-T and the IT

U-R

. (Refer to these

individual definitions).

INT

ER

NE

T

Th

e te

rm In

tern

et h

as tw

o ke

y inte

rpre

tatio

ns: (1

) Wh

en

use

d w

ith a

n u

pp

er

case "I", Internet refers to the world-w

ide comm

unity of interconnected TC

P/IP

ne

two

rks -- all o

f wh

ich n

ece

ssarily su

pp

ort th

e In

tern

et P

roto

col, o

r "IP".

(2) W

he

n u

se

d w

ith a

low

er c

as

e "I", in

tern

et re

fers

to th

e g

en

eric

interconnection of networks -- m

ore properly referred to as an "internetwork"

to avoid any confusion with (1).

D

ata Com

munications &

Fieldbus System

s476

Page 478: Data Communication &Fieldbus Systems

INT

ER

NE

T E

NG

INE

ER

ING

TA

SK

FO

RC

E (IE

TF

) T

he IET

F is a largely volunteer group responsible for guiding the developm

entof T

CP

/IP and Internet technical standards and practices.

INT

ER

NE

T P

RO

TO

CO

L (IP

) IP

is the

ba

sic da

ta d

elive

ry service

an

d N

etw

ork L

aye

r pro

toco

l for T

CP

/IPnetw

orks. IP-level addressing and routing logic m

akes it possible to deliverm

essage traffic (datagrams) through large, com

plex networks like the Internet.

INT

ER

NE

T S

ER

VIC

E P

RO

VID

ER

(ISP

) A

com

me

rcial e

nte

rprise

tha

t pro

vide

s Inte

rne

t acce

ss in typ

ically a

limite

dg

eo

gra

ph

ic service

are

a -- fo

r a m

od

est fe

e. S

om

e IS

P’s o

ffer n

atio

na

lse

rvice -- a

nd

a w

ide

ran

ge

of q

ua

lity, com

pe

ten

cy, fea

ture

s an

d co

st of

service is evident.

INT

RA

NE

T

Th

ere

are

diffe

ring

view

s of ju

st wh

at a

n In

tran

et is. A

ll wo

uld

ag

ree

tha

tit in

volve

s ad

op

ting

the

inte

rne

t com

pu

ting

arch

itectu

re a

nd

tech

no

log

y for

com

pa

ny-p

rivate

use

. So

me

de

fine

it is an

infra

structu

re, a

nd

thu

s issynonym

ous with a private T

CP

/IP netw

ork environment. O

thers argue that itis synonym

ous with w

eb technology, and thus describes a private web service

-- an

ap

plic

atio

n d

efin

ition

. In p

rac

tice

it is b

oth

; it wo

uld

be

un

thin

kab

le to

crea

te a

priva

te in

tran

et w

itho

ut u

sing

bo

th T

CP

/IP a

nd

we

btechnology.

IP S

WIT

CH

ING

T

here are two m

ain categories of LAN

switching technology deployed in support

of V

irtua

l LA

N se

rvice -- sw

itche

s ba

sed

on

ad

ap

ting

brid

gin

g te

chn

olo

gy

(Layer 2 Sw

itches) and switches based on adapting routing technology (Layer 3

switch

es). O

f the

La

yer 3

switch

alte

rna

tives, IP

Sw

itchin

g is b

y far th

em

ost p

op

ula

r. It take

s ad

van

tag

e o

f the

ne

ar-u

nive

rsal u

se o

f Inte

rne

tP

rotocol in business networks -- and m

akes switching decisions based on IP

network and/or sub-netw

ork addresses. See "T

ag Sw

itching" for a contrastingLayer 2 sw

itch discussion.

ISO

S

ee definition of "International Organization for S

tandardization".

ITU

-R

The International T

elecomm

unications Union - R

adio Com

mittee (form

erly theC

on

sulta

tive C

om

mitte

e o

n In

tern

atio

na

l Ra

dio

, or C

CIR

) is resp

on

sible

for

coordinating the usage of radio comm

unication technology around the world.

Th

is inclu

de

s com

mu

nica

tion

sate

llite se

rvices, m

icrow

ave

rad

io se

rvices

an

d b

roa

dca

sting

service

s. Th

e IT

U-R

is on

e o

f the

two

key o

pe

ratin

gb

ran

che

s of th

e In

tern

atio

na

l Te

leco

mm

un

icatio

ns U

nio

n (IT

U) -- th

e o

the

rm

ain branch is the ITU

-T.

ITU

-T

The International T

elecomm

unications Union - T

elephony Com

mittee (form

erly theC

onsultative Com

mittee on International T

elephony and Telegraphy or C

CIT

T) is

responsible for coordinating the development of technology and standards in

ma

tters

rela

ting

to te

lep

ho

ny

an

d te

leg

rap

hy

-- from

wh

ich

da

taco

mm

un

icatio

ns te

chn

olo

gy h

as e

volve

d. T

he

ITU

-T/C

CIT

T h

as h

istorica

llyb

ee

n m

os

t influ

en

tial in

Eu

rop

e, a

ltho

ug

h th

eir ro

le is

be

co

min

g

incre

asin

gly a

ccep

ted

glo

ba

lly. Th

e IT

U-T

is on

e o

f the

two

key o

pe

ratin

gb

ran

che

s of th

e In

tern

atio

na

l Te

leco

mm

un

icatio

ns U

nio

n (IT

U) -- th

e o

the

rm

ain branch is the ITU

-R.

JA

VA

Java is a S

un MicroS

ystems developm

ent that adds executable software to the

info

rma

tion

reso

urce

s cap

ture

d in

a w

eb

tran

sactio

n. T

hu

s, in a

dd

ition

toa

cqu

iring

text a

nd

gra

ph

ics info

rma

tion

wh

en

we

b b

row

sing

, Java

en

ab

les

acce

ss to e

xecu

tab

le so

ftwa

re w

hich

can

an

ima

te a

we

b p

rese

nta

tion

or b

ecu

stom

ized

to su

it spe

cific bu

sine

ss ap

plica

tion

s, such

as d

ata

en

try. On

es

tron

g b

en

efit o

f Ja

va

is its

pla

tform

-ind

ep

en

de

nc

e; it ru

ns

with

ou

tm

odification on any recent web brow

ser on any machine.

LA

N

See definition of "Local A

rea Netw

ork".

LE

AS

ED

CIR

CU

IT

Te

lep

ho

ne

lea

sed

(or "d

ed

icate

d", "p

rivate

" or "fu

ll pe

riod

") line

s are

tele

ph

on

e co

mp

an

y pro

vision

ed

on

a 2

4 h

ou

r a d

ay, 7

da

ys a w

ee

k ba

sis.Leased lines bypass all sw

itching equipment. Leased lines are unsuitable for

oc

ca

sio

na

l us

e (to

o c

os

tly), o

r for a

pp

lica

tion

s re

qu

iring

va

riab

leco

nn

ectio

n p

oin

ts (no

t con

ven

ien

tly reco

nfig

ura

ble

). Th

ey a

re su

itab

le fo

rh

igh

cap

acity, co

ntin

uo

us a

pp

licatio

ns -- like

pe

rha

ps h

ea

dq

ua

rters to

branch office data connections.

LE

O S

AT

EL

LIT

ES

S

ee definition of "Low E

arth Orbit" S

atellites.

LO

AD

ING

CO

IL

Lo

ad

ing

coils a

re co

ils of w

ire (in

du

ctan

ce) a

dd

ed

in se

ries w

ith lo

ng

metallic local loop telephone cables for the purpose of m

inimizing am

plituded

istortio

n. L

oa

din

g co

ils em

be

dd

ed

in th

e te

lep

ho

ne

cab

le p

lan

t com

plica

tedeploym

ent of high capacity digital technologies like AD

SL.

LO

CA

L A

CC

ES

S A

ND

TR

AN

SP

OR

T A

RE

A (L

AT

A)

Sp

ecific to

U.S

.A. re

gu

lato

ry po

licy, the

LA

TA

’s are

the

ge

og

rap

hic a

rea

sw

ithin

wh

ich th

e re

gu

late

d te

lep

ho

ne

com

pa

nie

s op

era

te. C

om

pe

titivelong-distance carriers are not allow

ed to offer service between points w

ithinone LA

TA

; only between LA

TA

’s. The physical size of LA

TA

’s vary from the

scop

e o

f a sin

gle

city (e.g

. Wa

shin

gto

n D

.C.) in

de

nse

ly po

pu

late

d a

rea

s of

the country to entire states (e.g. North D

akota and New

Mexico).

LO

CA

L A

RE

A N

ET

WO

RK

A

LAN

is a somew

hat loosely defined network w

hich covers a relatively small

ge

og

rap

hic a

rea

, such

as a

sing

le o

ffice b

uild

ing

, an

ind

ustria

l cam

pu

s, au

nive

rsity cam

pu

s, or a

milita

ry ba

se. L

AN

tech

no

log

y typica

lly sup

po

rtsh

igh

da

ta ra

tes (m

an

y Mb

ps), re

lative

ly low

erro

r rate

s, an

d a

ll reso

urce

sare ow

ned and administered by the user organization.

LO

CA

L L

OO

P

The telephone netw

ork connection to individual customer prem

ises is called thelo

cal lo

op

. It is a co

pp

er tw

isted

pa

ir cab

le co

nn

ectio

n, th

e le

ng

th o

fw

hich

is de

term

ine

d b

y the

dista

nce

sep

ara

ting

custo

me

r pre

mise

s from

tele

ph

on

e e

xcha

ng

e site

s. Th

e u

nive

rsality o

f the

cop

pe

r wire

loca

l loo

p

Data C

omm

unications & Fieldbus S

ystems

477

Page 479: Data Communication &Fieldbus Systems

infra

structu

re is b

ein

g ch

alle

ng

ed

by w

irele

ss an

d ca

ble

tele

vision

-ba

sed

alternative technologies.

LO

OP

T

he

term

"loo

p" is a

n a

ltern

ate

term

for "lo

cal lo

op

". Se

e d

efin

ition

of

"local loop".

LO

W E

AR

TH

OR

BIT

SA

TE

LL

ITE

S

Lo

w e

arth

orb

it sate

llite te

chn

olo

gy d

iffers fro

m cla

ssical g

eo

synch

ron

ou

ss

ate

llite c

om

mu

nic

atio

ns

sy

ste

ms

in th

e lite

rally

low

altitu

de

orb

it of

operation. Low orbit im

plies a satellite that appears to move across the sky

-- thu

s req

uirin

g (1

) a n

um

be

r of sa

tellite

s servin

g th

e sa

me

ap

plica

tion

,and (2) non-directional antenna system

s (almost alw

ays). LEO

technology isthe basis of a num

ber of mobile telephone and data access netw

orks, such asthe financially challenged Iridium

project.

LU

MIN

AN

CE

T

he monochrom

e, or brightness part of a video signal. Whenever a m

onochrome

video signal is encountered, it consists entirely of luminance inform

ation.

MA

IL G

AT

EW

AY

A

host computer system

that is connected to two or m

ore different networks,

an

d se

rves to

pa

ss e-m

ail b

etw

ee

n th

em

. Be

cau

se th

ere

is a d

iffere

nce

inte

chn

olo

gy su

pp

orte

d o

r a n

ee

d fo

r secu

rity pa

rtition

ing

be

twe

en

the

ma

ilsystem

s being ’gatewayed’ (otherw

ise a gateway w

ould not be required), thereare protocol conversion and/or proxy functions required at a gatew

ay.

MA

ILIN

G L

IST

A

distrib

utio

n list to

wh

ich b

ulk e

-ma

il ma

y be

de

livere

d. M

ailin

g lists a

reused as a w

ay of supporting ’listserv’ newsgroups, or discussion groups.

MA

IN D

IST

RIB

UT

ION

FR

AM

E (M

DF

) T

he MD

F is a rack system

in telephone exchanges where all incom

ing cableconnections are physically term

inated. From

the MD

F, connections are m

ade totelephone sw

itching apparatus, or other cable connection termination point by

means of cable "jum

pers".

MA

N

See definition of "M

etropolitan Area N

etwork".

MA

RK

SIG

NA

L

The "m

ark" signal is the opposite, or complem

entary signal to a "space" signal.S

ee the definition of "space signal" for a definition of both.

MA

RK

-TO

-SP

AC

E T

RA

NS

ITIO

N

A m

ark-to

-spa

ce tra

nsitio

n in

da

ta (i.e

. the

tran

sition

from

the

"1" to

the

"0" s

ign

al s

tate

) is p

artic

ula

rly c

ritica

l as

a tim

ing

refe

ren

ce

po

int in

asynchronous transmission system

s -- an most references to this topic are in

context of achieving bit level and character synchronization in asynchronoussystem

s.

ME

AN

TIM

E B

ET

WE

EN

FA

ILU

RE

(MT

BF

) A

pplied to either systems or com

ponents of systems, M

TB

F specifies the m

ean(o

r ave

rag

e) le

ng

th o

f time

the

de

vice o

r eq

uip

me

nt w

ill be

exp

ecte

d to

operate between failures. U

sually expressed in hours, such as "expected MT

BF

= 9

,00

0 h

rs." -- imp

lying

an

exp

ecte

d fa

ilure

rate

of a

bo

ut o

nce

pe

r yea

r of

24 hour operation.

ME

AN

TIM

E T

O R

EP

AIR

(MT

TR

) M

TT

R specifies the expected m

ean or average time required to restore a failed

system

to o

pe

ratio

na

l statu

s -- me

asu

red

from

the

po

int in

time

wh

en

afailure occurred.

ME

DIU

M

The com

munications resource used to actually carry inform

ation; It may be a

cop

pe

r cab

le, a

fibe

r op

tic cab

le, a

micro

wa

ve ra

dio

sign

al o

r a sa

tellite

comm

unications system.

ME

DIU

M A

CC

ES

S C

ON

TR

OL

(MA

C)

The M

AC

corresponds to the firmw

are-based logic on a LAN

Netw

ork InterfaceC

ard (NIC

) that supports the LAN

access protocol (e.g. ethernet’s CS

MA

/CD

).T

he

OS

I stan

da

rd sp

ecifica

tion

of L

aye

r 2 (D

ata

Lin

k La

yer) is sp

lit into

two

components in the IE

EE

LAN

standards; the upper Logical Link Control (LLC

)su

b-la

yer, w

hich

is ide

ntica

l for a

ll IEE

E-sta

nd

ard

LA

N’s, a

nd

the

low

er

Me

diu

m A

ccess C

on

trol (M

AC

) sub

-laye

r, wh

ich is d

iffere

nt fo

r ea

ch L

AN

technology.

ME

SS

AG

E S

WIT

CH

ING

M

essage switching system

s (obsolete) were com

puter-based applications thataccepted incom

ing text messages, store them

temporarily (in (typically som

ek

ind

of ro

tatin

g m

em

ory

) un

til the

ap

pro

pria

te o

utg

oin

g c

ircu

it wa

sa

vaila

ble

, an

d th

en

retra

nsm

itted

, or fo

rwa

rde

d th

e m

essa

ge

on

to th

eaddressed destination. T

hese systems replaced torn tape m

essage centers(W

W-II era) -- and have in turn been replaced by electronic m

ail systems.

ME

TR

OP

OL

ITA

N A

RE

A N

ET

WO

RK

(MA

N)

A M

etropolitan Area N

etwork is a netw

ork service that has the data rate andd

istan

ce fe

atu

res th

at m

ake

it suita

ble

for in

tern

etw

orkin

g L

AN

system

s (or

oth

er h

igh

sp

ee

d a

pp

lica

tion

s) a

cro

ss

the

dim

en

sio

ns

typ

ica

l of a

me

trop

olita

n a

rea

-- a d

ime

nsio

n o

f pe

rha

ps 1

00

km. in

dia

me

ter. M

AN

tech

no

log

y is see

n to

req

uire

sufficie

nt d

ata

rate

cap

ab

ility so a

s to o

ffer

virtu

al p

riva

te n

etw

ork

se

rvic

es

to a

nu

mb

er o

f un

rela

ted

us

er

organizations -- on a comm

on MA

N backbone. D

ata rates of Gigabits per second

and higher are currently regarded as necessary for this role. MA

N technology,

when deployed as a private cam

pus backbone service, is generally referred toas a H

igh Speed LA

N (H

SLA

N) service. M

ost MA

N solutions are either A

TM

orhigh-speed sw

itched Ethernet based.

MIC

RO

WA

VE

SIG

NA

LS

R

adio signals are classified as microw

ave signals if their wavelength is less

tha

n 1

0 c

m. -- c

orre

sp

on

din

g to

a fre

qu

en

cy

of 8

90

MH

z. o

r gre

ate

r.C

omm

ercial microw

ave systems operate in the frequency range betw

een about2,000 M

Hz (2 G

Hz.) and 15,000 M

Hz. (15 G

Hz.), although em

erging wireless

systems (such as LM

DS

) will operate at m

uch higher frequencies.

D

ata Com

munications &

Fieldbus System

s478

Page 480: Data Communication &Fieldbus Systems

MO

DE

M

The w

ord "modem

" is a contraction of the words "m

odulator" and "demodulator",

reco

gn

izing

the

two

fun

ction

s tha

t the

de

vice p

erfo

rms. T

he

mo

du

lato

rfu

nc

tion

of th

e m

od

em

ap

plie

s to

the

en

co

din

g o

f dig

ital in

form

atio

np

rese

nte

d to

it by th

e a

ttach

ed

DT

E, su

ch th

at th

e p

hysica

l cha

racte

risticsand lim

itations of the comm

unication channel can be accomm

odated, and the dataca

n b

e su

ccessfu

lly con

veye

d a

cross th

e ch

an

ne

l -- carrie

d o

n a

n a

ud

ible

an

alo

g "ca

rrier sig

na

l". Th

e d

em

od

ula

tion

fun

ction

is simp

ly the

inve

rseprocess. M

odems thus are used to pass digital signals across analog circuits.

MO

DU

LA

TIO

N

Mo

du

latio

n is a

pro

cess w

he

reb

y on

e sig

na

l’s varia

tion

s (typica

lly a so

urce

info

rma

tion

sign

al like

voice

, an

d re

ferre

d to

as th

e b

ase

ba

nd

sign

al) a

rem

od

ula

ted

on

to, o

r imp

ose

d u

po

n a

seco

nd

sign

al, ca

lled

the

carrie

r sign

al.

Ca

rrier sig

na

ls are

synth

etica

lly ge

ne

rate

d, a

nd

the

ir cha

racte

ristics are

se

lec

ted

on

the

ba

sis

of th

eir a

bility

to ca

rry th

e d

es

ired

info

rma

tion

acro

ss the

com

mu

nica

tion

ga

p o

f inte

rest. A

typica

l exa

mp

le is a

rad

iotra

nsm

itter’s ca

rrier sig

na

l. Se

e d

efin

ition

s of a

mp

litud

e m

od

ula

tion

,frequency m

odulation and phase modulation.

MO

DU

LA

TIO

N, P

UL

SE

CO

DE

(PC

M)

See definition of "P

ulse Code M

odulation".

MO

DU

LA

TO

R

A m

odulator is a device which takes baseband signals (such as voice or digital

da

ta), a

nd

use

s the

m to

mo

dify th

e ch

ara

cteristics o

f a syn

the

tic carrie

rsig

na

l for p

urp

ose

s of d

istan

ce co

mm

un

icatio

n, o

r to sh

are

hig

h ca

pa

cityanalog com

munication facilities (frequency division m

ultiplexing).

MU

LT

IPL

EX

ER

M

ultiplexers are devices which m

ake it possible for more than one signal to be

simu

ltan

eo

usly ca

rried

on

a sin

gle

(typica

lly hig

h ca

pa

city) com

mo

n circu

it.In

da

ta co

mm

un

icatio

n a

pp

licatio

ns, m

ultip

lexe

rs are

typica

lly eith

er "tim

edivision m

ultiplexers" or "statistical time division m

ultiplexers".

MU

LT

IPO

INT

LIN

E

Mu

ltipo

int, o

r mu

ltidro

p lin

es o

r circuits p

rovid

e fo

r the

inte

rcon

ne

ction

of

mu

ltiple

acce

ss po

ints o

n a

sing

le, co

mm

on

da

ta circu

it -- a d

aisy ch

ain

configuration.

MU

LT

IPR

OC

ES

SIN

G

Mu

ltipro

cessin

g in

volve

s the

simu

ltan

eo

us a

pp

licatio

n o

f mo

re th

an

on

eprocessor (in either a m

ulti-processor or distributed processing system) to a

sing

le jo

b o

r task. M

ultip

roce

ssing

is com

mo

nly h

an

dle

d w

ith p

ara

llel o

rarray processors.

MU

LT

IPR

OG

RA

MM

ING

A

mu

ltipro

gra

mm

ing

com

pu

ter o

pe

ratin

g syste

m e

na

ble

s the

(ap

pa

ren

t)sim

ultaneous execution of more than one task by tim

e-slicing its sequence ofo

pe

ratin

g in

structio

ns. M

ultip

rog

ram

min

g syste

ms a

re a

ble

to d

em

on

strate

ap

pa

ren

t simu

ltan

eo

us e

xecu

tion

of ta

sks by ra

pid

ly switch

ing

con

text

be

twe

en

ap

plica

tion

s, exe

cutin

g a

few

instru

ction

s for o

ne

task a

nd

the

nm

oving on and executing a few instructions for another.

MU

LT

IST

AT

ION

AC

CE

SS

UN

IT (M

AU

) T

he MA

U is the hub device specified for T

oken Ring LA

N system

s. Originally,

the

no

n-in

tellig

en

t IBM

82

20

MA

U w

as th

e o

nly o

ptio

n -- re

qu

iring

spe

cificconnector types and m

ounting arrangements. M

ore recently, numerous vendors

offe

r a w

ide

ran

ge

of p

hy

sic

al c

on

figu

ratio

ns

, co

nn

ec

tor ty

pe

s a

nd

intelligence in MA

U products.

MU

LT

ITA

SK

ING

S

ee definition of "Multiprogram

ming".

MU

LT

ITH

RE

AD

ING

M

ultithreading is the simultaneous processing of m

ultiple service requests bya

n a

pp

lica

tion

pr

og

ra

m -

- ty

pic

ally

a s

er

ve

r p

ro

ce

ss

.M

ultitasking/Multiprogram

ming are supported by the operating system

while

Mu

ltithre

ad

ing

is s

up

po

rted

by

the

ap

plic

atio

n p

roc

es

s (a

ltho

ug

hm

ultith

rea

din

g typ

ically re

qu

ires a

mu

ltipro

gra

mm

ing

op

era

ting

system

).M

ultithreading is associated with ’reentrancy’.

NA

K

A negative acknow

ledgement of m

essage (typically a block of frame m

essagesegm

ent) receipt -- indicating a request to retransmit the m

essage segment. A

NA

K is typ

ically sig

na

led

with

a sp

ecia

l con

trol ch

ara

cter (w

ith h

alf-d

up

lex

link p

roto

cols) o

r a p

re-d

efin

ed

bit-fla

g (w

ith fu

ll-du

ple

x link p

roto

cols).

The alternative to a N

AK

is an AC

K, or positive m

essage acknowledgem

ent.

NA

TIO

NA

L IN

ST

ITU

TE

OF

ST

AN

DA

RD

S A

ND

TE

CH

NO

LO

GY

(NIS

T)

Form

erly, the National B

ureau of Standards (N

BS

), NIS

T has historically been

responsible for maintaining U

SA

physical standards, such as length and time.

Th

ey h

ave

be

en

resp

on

sible

for d

efin

ing

stan

da

rds fo

r da

ta e

ncryp

tion

technology (such as the public domain D

ata Encryption S

tandard or DE

S) --

in cooperation with the N

ational Security A

gency (NS

A).

NE

TB

IOS

N

ET

BIO

S (N

etwork B

asic Input/Output S

ystem) w

as the essential core of the "IBM

LAN

Program

", which w

as the first widely used LA

N operating system

. NE

TB

IOS

is still sup

po

rted

by M

icroso

ft ne

two

rking

pro

du

cts, alth

ou

gh

it attra

ctslittle continuing interest.

NE

TS

CA

PE

N

etsca

pe

is a g

rap

hica

l bro

wse

r clien

t too

l wid

ely u

sed

for a

ccess to

the

World W

ide Web. N

etscape was inspired by the success of M

osaic (and developedb

y the

orig

ina

l au

tho

r of M

osa

ic) -- the

first com

mo

nly u

sed

pa

ckag

e o

f this

type

. Ne

tscap

e w

as th

e d

om

ina

nt w

eb

bro

wse

r for a

time

, bu

t lost th

isclaim

to Microsoft’s Internet E

xplorer.

NE

TW

OR

K

An interconnected com

munication facility w

hich provides services to a number

of service points, or users.

NE

TW

OR

K F

ILE

SY

ST

EM

(NF

S)

NF

S w

as originally a proprietary data base access technology developed by Sun

Mic

ros

yste

ms, c

ap

ab

le o

f op

era

ting

ov

er T

CP

/IP n

etw

ork

s. It is s

tillp

rop

rieta

ry, bu

t Su

n h

as m

ad

e N

FS

spe

cificatio

ns p

ub

licly ava

ilab

le, a

nd

itis now

regarded as an "open" technology. A key part of the acceptance of N

FS

Data C

omm

unications & Fieldbus S

ystems

479

Page 481: Data Communication &Fieldbus Systems

ha

s be

en

the

con

ven

ien

ce o

f inte

rpro

cess co

mm

un

icatio

n (e

.g. clie

nt to

server) enabled by the associated Rem

ote Procedure C

all (RP

C) feature.

NE

TW

OR

K M

AN

AG

EM

EN

T C

EN

TE

R (N

MC

) A

cen

tral fa

cility eq

uip

pe

d w

ith n

etw

ork m

on

itorin

g e

qu

ipm

en

t cap

ab

le o

fd

ete

cting

ne

two

rk failu

res a

nd

ab

erra

tion

s, an

alyzin

g th

eir sig

nifica

nce

an

dd

ispa

tchin

g re

sou

rces to

de

al w

ith th

e p

rob

lem

. Typ

ical N

MC

cap

ab

ilities

inc

lud

e c

olle

ctin

g o

pe

ratin

g s

tatis

tics

, ma

inte

na

nc

e s

ch

ed

ulin

g a

nd

configuration control.

NIS

T

See "N

ational Institute of Standards and T

echnology".

NO

DE

A

node is a junction point in a network, w

here comm

unication links converge.T

he

term

ha

s also

com

e to

imp

ly a p

oin

t of in

tellig

en

ce in

a n

etw

ork,

particularly in the context of packet switching.

NO

ISE

In

con

text o

f com

mu

nica

tion

s system

s, no

ise is a

ny u

nw

an

ted

sign

al th

at

dis

turb

s o

r imp

airs

the

ab

ility to

co

rrec

tly in

terp

ret d

es

ired

inco

min

gsig

na

ls. No

ise m

ay b

e ca

use

d b

y exte

rna

l distu

rba

nce

s (e.g

. fluo

resce

nt

ligh

ting

) or co

mm

un

icatio

ns e

qu

ipm

en

t itself. T

he

con

cep

t of n

oise

an

dn

ois

e im

pa

irme

nt re

late

to th

e a

na

log

vie

w o

f sig

na

ls a

nd

sig

na

linterpretation.

NT

SC

N

atio

na

l Te

levisio

n S

tan

da

rds C

om

mitte

e, w

hich

wa

s the

orig

ina

l tele

vision

tech

no

log

y spe

cificatio

n. N

TS

C is th

e te

levisio

n sta

nd

ard

use

d in

No

rthA

merica, and carries an em

bedded dependency on a 60 Hz. electrical pow

erinfrastructure.

OC

TE

T

An

8 b

it un

it of in

form

atio

n, e

qu

ivale

nt to

the

wid

ely re

cogn

ized

"byte". T

he

octet term is favored in international usage (such as standards specifications)

an

d o

the

r form

al a

pp

licatio

ns -- n

om

ina

lly be

cau

se o

f the

histo

rically

ambiguous byte (w

hich hasn’t always referred to 8 bits -- som

etimes 6 bits),

an

d p

ron

un

ciatio

n d

ifficultie

s with

diffe

ren

tiatio

n "b

it" an

d "b

yte" in

the

French language.

OF

F H

OO

K

The condition of a telephone w

hich occurs when the handset is rem

oved from its

crad

le, th

us e

ng

ag

ing

the

ho

ok sw

itch. O

ff ho

ok sta

tus th

us m

ea

ns th

at a

circuit sw

itche

d te

lep

ho

ne

con

ne

ction

is eith

er in

use

, or in

pro

cess o

fb

ein

g a

ctivate

d. A

n o

ff ho

ok te

lep

ho

ne

con

ditio

n w

ill ren

de

r the

line

"bu

sy"to any in-calling attem

pts.

ON

HO

OK

T

he condition of a telephone which occurs w

hen the handset is placed on itscradle, thus disengaging the hook sw

itch. On hook status thus m

eans that acircuit sw

itched telephone connection is available for use, or otherwise idle.

An

on

ho

ok

tele

ph

on

e c

on

ditio

n w

ill ren

de

r the

line

av

aila

ble

for

in-calling attempts.

ON

LIN

E T

RA

NS

AC

TIO

N P

RO

CE

SS

ING

(OL

TP

) O

n L

ine

Tra

nsa

ction

Pro

cessin

g is a

ge

ne

ral te

rm fo

r tran

sactio

n-o

rien

ted

bu

sine

ss com

pu

ting

system

s tha

t offe

r on

-line

, or re

al-tim

e a

ccess fro

mrem

ote users. OLT

P system

s are typically configured as client/server systems.

OP

EN

SY

ST

EM

S IN

TE

RC

ON

NE

CT

ION

(OS

I) T

he OS

I model and related standards w

ere developed by the ISO

(in cooperationw

ith other, regional standards groups, like AN

SI and E

TS

I. The O

SI m

odel was

de

ve

lop

ed

with

the

ob

jec

tive

of d

efin

ing

an

inte

rna

tion

al, o

pe

n (ie

.non-proprietary) set of standards for com

puter comm

unications applicationsthat w

ill permit interoperability betw

een different vendor systems. A

ny hopeo

f actu

ally b

uild

ing

ne

two

rks in co

nfo

rma

nce

to th

e O

SI sta

nd

ard

s wa

sp

retty m

uch

killed

by th

e co

mp

lexity o

f the

fina

l spe

cificatio

ns a

nd

the

concurrent success of TC

P/IP

and the Internet.

OP

TIC

AL

FIB

ER

O

ptica

l fibe

r is a th

in fila

me

nt o

f tran

spa

ren

t ma

teria

l; typica

lly gla

ss or

pla

stic. Op

tical fib

er is co

mp

rised

of a

very th

in co

re (w

hich

actu

ally

ca

rries

ligh

t pu

lse

s o

ve

r the

len

gth

of th

e fib

er), a

nd

a m

ore

bu

lky

surrounding material know

n as cladding. See "F

iber Optic C

able" definition.

OU

T-O

F-B

AN

D S

IGN

AL

ING

A

method of telephone netw

ork signaling which com

municates the necessary

sign

alin

g a

nd

con

trol in

form

atio

n o

ver a

ne

two

rk con

ne

ction

oth

er th

an

the

message channel. C

omm

on Channel Interoffice S

ignaling (CC

IS) and S

ignalingS

ystem N

umber 7 (S

S7) are exam

ples of out-of band signaling technologies.

PA

BX

P

rivate automatic branch exchange - (S

ee definition of "Exchange").

PA

CK

ET

A

(typically) brief message segm

ent which includes both user data and m

essagea

dd

ressin

g a

nd

con

trol in

form

atio

n w

hich

is rou

ted

, or sw

itche

d a

s acom

posite message. T

he data and related control information are arranged in a

stan

da

rd, p

rescrib

ed

form

at, th

us e

na

blin

g p

acke

ts from

oth

er u

sers to

intermingle on com

mon netw

ork facilities.

PA

CK

ET

SW

ITC

HIN

G

Pa

cket sw

itchin

g syste

ms su

pp

ort th

e tra

nsm

ission

of d

ata

by m

ea

ns o

fsp

ecifica

lly form

atte

d a

nd

ad

dre

ssed

pa

ckets, re

sultin

g in

a co

mm

un

icatio

nc

ap

ab

ility th

at o

cc

up

ies

a tra

ns

mis

sio

n fa

cility

for th

e d

ura

tion

of

tran

smissio

n o

f the

pa

cket o

nly. T

he

com

mu

nica

tion

facility, o

r ne

two

rk isth

us a

vaila

ble

to d

elive

r pa

ckets m

an

y diffe

ren

t use

rs on

a sh

are

d b

asis.

Note: Large m

essages will be subdivided in to a num

ber of discrete packetsfor transm

ission across the network, and reassem

bled at receiving end of thelink -- by m

eans of a packet assembly/disassem

bly function. Packet sw

itchingse

rvice co

sts are

pro

po

rtion

al to

the

volu

me

of in

form

atio

n tra

nsm

itted

,and are unrelated to holding tim

e. Com

pare with C

ircuit Sw

itching.

PA

CK

ET

SW

ITC

HIN

G N

ET

WO

RK

A

packet switching netw

ork is designed to carry packet-formatted data. W

ithinth

e p

acke

t ne

two

rk, all u

sers’ tra

ffic is pre

sen

ted

in a

n id

en

tical fo

rma

t(p

acke

tized

), diffe

ren

tiate

d o

nly b

y a sta

nd

ard

ized

he

ad

er -- a

na

log

ou

s tothe address on an envelope. P

acket routing decisions are made at a num

ber of

D

ata Com

munications &

Fieldbus System

s480

Page 482: Data Communication &Fieldbus Systems

switching, or node sites on the basis of header contents.

PA

L

Ph

ase

Alte

rna

te L

ine

s, refe

rring

to th

e p

ha

se a

ltern

atio

n u

sed

in th

e co

lor

sub

carrie

r, with

the

pu

rpo

se o

f crea

ting

mo

re sta

ble

hu

e re

pro

du

ction

. PA

Lis th

e te

levisio

n sta

nd

ard

use

d th

rou

gh

ou

t mo

st of w

este

rn E

uro

pe

(exce

pt

Fra

nce

), an

d in

mo

st cou

ntrie

s tha

t use

a 5

0 H

z. ele

ctrical in

frastru

cture

.P

AL is the m

ost widely used analog television technology standard.

PA

RA

LL

EL

TR

AN

SM

ISS

ION

P

arallel transmission involves the provisioning of m

ultiple data comm

unicationp

ath

s so th

at th

e d

ata

bits p

erta

inin

g to

a u

nit o

f da

ta (typ

ically a

byte

,or data character) can be passed across different circuits. P

arallel systems

are

typica

lly 8 b

its (or so

me

inte

ge

r mu

ltiple

of 8

) wid

e, e

na

blin

g a

ll da

tab

its of o

ne

byte

to b

e se

nt in

on

e clo

ck time

un

it. Pa

ralle

l tran

smissio

nis fa

ster th

an

com

pa

rab

le se

rial a

ltern

ative

s, bu

t is serio

usly tro

ub

led

by

timin

g co

ntro

l an

d sig

na

l cross-ta

lk pro

ble

ms if th

e lin

k len

gth

exce

ed

s afew

meters. C

ompare w

ith Serial T

ransmission.

PA

RIT

Y

Pa

rity che

cking

invo

lves th

e a

dd

ition

of (re

du

nd

an

t) no

n-in

form

atio

n b

its tod

ata

(typ

ica

lly, b

ut n

ot a

lwa

ys

the

se

ve

n o

r eig

ht-b

it ch

ara

cte

rre

pre

sen

tatio

ns), in

such

a w

ay a

s to fo

rce th

e n

um

be

r of o

ne

bits in

the

gro

up

to b

e e

ithe

r alw

ays a

n e

ven

(or a

lwa

ys an

od

d) n

um

be

r. Th

us p

arity

imp

lem

en

tatio

ns a

re d

escrib

ed

as b

ein

g e

ithe

r eve

n p

arity o

r od

d p

arity.

Pa

rity imp

lem

en

tatio

ns p

erm

it de

tectio

n o

f sing

le e

rror o

ccurre

nce

s in th

ed

ata

wh

ich is "co

vere

d" b

y the

pa

rity calcu

latio

n. (S

ee

"Ho

rizon

tal P

arity"

and "Vertical P

arity".

PB

X

Private branch exchange. A

telephone exchange on the user’s premises w

ithaccess to the public netw

ork. (See definition under "E

xchange").

PH

AS

E M

OD

UL

AT

ION

P

ha

se m

od

ula

tion

is on

e o

f thre

e m

od

ula

tion

tech

niq

ue

s (Se

e d

efin

ition

of

"mo

du

latio

n"). W

ith P

M, th

e b

ase

ba

nd

sign

al in

form

atio

n is e

nco

de

d, o

rim

pre

ss

ed

on

the

ca

rrier s

ign

al b

y m

od

ifyin

g its

ph

as

e v

alu

e to

instantaneously respond to variations in the baseband signal.

PIN

G

The "P

acket Internet Groper", or P

ING

application program is a utility program

ava

ilab

le o

n T

CP

/IP-e

na

ble

d syste

ms. P

ING

pe

rform

s the

simp

le ta

sk of

rep

etitive

ly tran

smittin

g d

ata

gra

ms to

a d

esig

na

ted

ne

two

rk ad

dre

ss, an

drecovering the replies (using the Internet M

essage Protocol, or IC

MP

). PIN

Gv

erifie

s th

e v

alid

ity o

f the

ch

os

en

ad

dre

ss

, av

aila

bility

of a

ne

two

rkco

nn

ectio

n to

the

spe

cified

de

stina

tion

, an

d th

e o

pe

ratio

na

l statu

s of th

at

system.

PO

INT

OF

PR

ES

EN

CE

(PO

P)

Th

e p

oin

t (in a

cou

ntry, sta

te/p

rovin

ce o

r reg

ion

) wh

ere

a n

etw

ork se

rvicep

rov

ide

r offe

rs a

cc

es

s to

the

ir ne

two

rk. It is

typ

ica

lly a

cu

sto

me

r’sproblem

(expense) to provide the connection between the nearest P

OP

and theirbusiness location.

PO

INT

TO

PO

INT

PR

OT

OC

OL

P

oin

t-to-P

oin

t Pro

toco

l -- a lin

k con

trol p

roto

col ca

pa

ble

of e

nca

psu

latin

gany of a num

ber of network layer protocols; m

ost importantly IP

. Num

erousva

riatio

ns a

nd

/or fe

atu

re e

xten

sion

s ha

ve b

ee

n a

dd

ed

to th

e o

rigin

al P

PP

spe

cificatio

ns, e

na

blin

g P

PP

to b

e u

sed

in a

wid

e va

riety o

f ap

plica

tion

s,such as V

PN

’s.

PO

INT

-TO

-PO

INT

A

com

mu

nica

tion

circuit th

at e

stab

lishe

s a co

nn

ectio

n b

etw

ee

n o

nly tw

olocations (in contrast to a m

ulti-point circuit).

PO

LL

ING

P

ollin

g syste

ms o

pe

rate

as a

wa

y of co

ntro

lling

the

sha

red

acce

ss tom

ultip

oin

t com

mu

nica

tion

line

s. Th

e ce

ntra

l site syste

m u

nd

erta

kes to

be

a"m

aster of ceremonies", directing each station to speak in a prearranged order.

Ind

ividu

al re

mo

te sta

tion

s tha

t ha

ve n

o kn

ow

led

ge

of o

the

r statio

ns’ n

ee

ds

to co

mm

un

icate

are

inh

ibite

d fro

m tra

nsm

itting

at th

e sa

me

time

-- an

d th

us

interfering with one another.

PO

RT

A

logical (software) or physical (hardw

are) point of interaction with a system

.Id

en

tificatio

n o

f ap

pro

pria

te p

orts to

use

for a

ccessin

g syste

ms (g

en

era

llyin

con

text o

f seve

ral a

ltern

ative

po

rts be

ing

ava

ilab

le) is o

ften

ne

cessa

ry;see D

SA

P and S

SA

P definitions.

PP

P

See definition of "P

oint to Point P

rotocol".

PR

OP

AG

AT

ION

TIM

E D

EL

AY

P

rop

ag

atio

n tim

e d

ela

y is the

time

req

uire

d fo

r a sig

na

l to tra

vel fro

m o

ne

po

int in

a s

ys

tem

circ

uit to

an

oth

er -- th

at is

, the

time

req

uire

d to

trave

rse th

e n

etw

ork. C

om

mo

nly, it is th

e ro

un

d-trip

time

de

lay th

at a

ffects

system perform

ance (eg. the waiting tim

e between m

essage transmission and

rece

ipt o

f ackn

ow

led

ge

me

nt). O

pe

n a

ir rad

io sig

na

ls (such

as sa

tellite

co

mm

un

ica

tion

sig

na

ls) tra

ve

l at (v

ery

clo

se

to) th

e s

pe

ed

of lig

ht;

co

ns

train

ed

sig

na

ls o

pe

ratin

g w

ithin

ca

ble

s (m

eta

llic o

r op

tica

l) are

co

mm

on

ly e

stim

ate

d a

t on

e h

alf o

f the

sp

ee

d o

f ligh

t. It tak

es

ligh

ta

pp

roxim

ate

ly 5 m

illiseco

nd

s to tra

nsit 1

,00

0 m

iles -- o

r 3 m

illiseco

nd

s totra

nsit 1

,00

0 km

. Pro

pa

ga

tion

de

lay is p

artly co

mp

rised

of th

e tra

nsit

time

limita

tion

s of th

e sp

ee

d o

f ligh

t, an

d p

artly d

ue

to sig

na

l pro

cessin

gdelays in equipm

ent along the way.

PR

OT

OC

OL

A

form

ally d

efin

ed

pro

ced

ure

wh

ich d

escrib

es th

e fo

rma

t, an

d p

roce

du

ral

seq

ue

ncin

g o

f me

ssag

es b

etw

ee

n tw

o co

mm

un

icatin

g e

ntitie

s. req

uire

d to

initiate and maintain com

munication. T

he term "P

rotocol" has become m

oreg

en

era

lized

in re

cen

t pra

ctice. A

t on

e tim

e it re

ferre

d to

wh

at is n

ow

kno

wa

s "L

ink

lay

er p

roto

co

l", wh

ich

de

als

ex

plic

itly w

ith th

e s

truc

turin

g(b

lockin

g o

r fram

ing

) of b

ina

ry da

ta se

qu

en

ces, th

eir va

lidity ch

eckin

g(error control) and addressing. T

he more general (current) usage is extended

to a

ll seve

n la

yers o

f the

OS

I stan

da

rd a

rchite

cture

de

finitio

n -- in

wh

ich"protocol entities" exchange inform

ation in "protocol data units".

Data C

omm

unications & Fieldbus S

ystems

481

Page 483: Data Communication &Fieldbus Systems

PT

&T

P

ostal, telephone and telegraph organization which acts as a nation’s public

tele

ph

on

e se

rvice p

rovid

er. T

he

term

PT

&T

is no

t use

d in

con

text o

fin

vesto

r-ow

ne

d te

lep

ho

ne

com

pa

nie

s -- PT

&T

’s are

go

vern

me

nt-co

ntro

lled

monopoly organizations w

hich acts as an arm of national telecom

munication

policy. The trend to global deregulation has very m

uch reduced the number of

countries where this class of telephone operation exists.

PU

BL

IC S

WIT

CH

ED

TE

LE

PH

ON

E N

ET

WO

RK

(PS

TN

) T

he

PS

TN

is the

ub

iqu

itou

s, glo

ba

l pu

blic te

lep

ho

ne

system

tha

t pro

vide

sg

en

era

l con

ne

ctivity to th

e a

pp

roxim

ate

ly 1 b

illion

tele

ph

on

e su

bscrib

ers

wo

rldw

ide

. Th

e in

teg

ratio

n o

f the

trad

ition

al w

ired

tele

ph

on

e in

frastru

cture

with

rap

idly g

row

ing

wire

less se

rvices is g

rea

tly exp

an

din

g th

e ro

le o

f the

PS

TN

.

PU

LS

E

A p

uls

e is

a s

ho

rt ch

an

ge

in th

e e

lec

trica

l or o

ptic

al s

ign

al s

tate

of

comm

unication -- or electronic -- system. P

ulse values are typically encodedto

rep

rese

nt b

ina

ry da

ta, a

nd

are

allo

we

d to

exist fo

r very sp

ecific p

erio

ds

of time, consistent w

ith some uniform

, and mutually accepted m

easure of time.

(See definition of "C

lock").

PU

LS

E-C

OD

E M

OD

UL

AT

ION

(PC

M)

PC

M is a m

ethod of representing analog signals (such as speech) by takingp

erio

dic sa

mp

les o

f the

time

-varyin

g a

na

log

sign

al (th

e in

du

stry stan

da

rdsam

pling rate is 8000 samples per second), and converting each sam

ple valuein

to a

bin

ary co

de

(the

ind

ustry sta

nd

ard

is an

eig

ht-b

it cod

e, su

fficien

tto

rep

rese

nt 2

56

distin

ct sam

ple

valu

es). P

CM

is no

t a tru

e m

od

ula

tion

process (See definition of "M

odulation").

PU

SH

TE

CH

NO

LO

GY

In contrast to typical inform

ation recovery or retrieval systems w

hich requireth

e u

ser to

exp

licitly see

k, or "p

ull" in

form

atio

n to

the

ir wo

rkspa

ce, p

ush

technology automates the outw

ard dissemination of inform

ation. This is done

by

de

finin

g a

us

er in

tere

st p

rofile

in s

om

e w

ay

, an

d p

rov

idin

g a

ninform

ation delivery mechanism

.

RA

ID

Redundant A

rrays of Inexpensive Disks, or R

AID

systems use sophisticated disk

con

trolle

rs an

d a

ssocia

ted

softw

are

to cre

ate

hig

hly re

liab

le a

gg

reg

ate

d,

fault-tolerant disk systems from

readily available, inexpensive disk hardware.

Th

ere

are

five le

vels o

f RA

ID so

ph

isticatio

n ra

ng

ing

from

simp

le re

du

nd

an

tm

irroring through hot-swappable dynam

ically redundant systems.

RE

DU

CE

D IN

ST

RU

CT

ION

SE

T C

OM

PU

TE

R (R

ISC

) A

com

pu

ter w

hich

op

era

tes a

simp

lified

instru

ction

set (co

mp

are

d w

ith a

traditional "Com

plex Instruction Set C

omputer", w

hich supports a large number

of o

ften

len

gth

y an

d co

mp

lex b

uilt-in

instru

ction

s as re

qu

ired

by h

igh

leve

lla

ng

ua

ge

s) wh

ich is sp

ecia

lly de

sign

ed

to o

pe

rate

efficie

ntly o

n h

ard

wa

red

esig

ne

d o

r this p

urp

ose

. RIS

C syste

ms th

ere

fore

pe

rform

the

ma

jority o

fsim

ple

rep

etitive

com

pu

ting

tasks ve

ry efficie

ntly, a

nd

com

bin

e th

ese

simp

lified

pro

ced

ure

s into

softw

are

rou

tine

s wh

en

req

uire

d to

pe

rform

mo

recom

plex functions.

RE

DU

ND

AN

CY

R

ed

un

da

ncy in

volve

s the

con

cep

t of d

up

licatio

n, o

r (typica

lly) un

de

rutilize

dca

pa

city. Th

ere

are

two

diffe

ren

t con

texts: (1

) Info

rma

tion

red

un

da

ncy,

which involves data representations (codes) that are less efficient than they

mig

ht th

eo

retica

lly be

. Th

is is com

pa

rab

le to

red

un

da

ncy in

lan

gu

ag

e -- a

typ

ica

l se

nte

nc

e is

still c

om

pre

he

ns

ible

wh

en

a fe

w c

ha

rac

ters

are

inco

rrectly p

rese

nte

d -- a

s with

spe

lling

erro

rs. (2) E

qu

ipm

en

t red

un

da

ncy

invo

lves p

rovisio

nin

g o

f spa

re co

mp

on

en

ts in a

critical syste

m, so

tha

tfa

ilure

of o

ne

will n

ot te

rmin

ate

service

. Du

al a

uto

mo

bile

he

ad

lam

ps a

re a

ne

xam

ple

-- on

e o

nly co

uld

pro

vide

sufficie

nt illu

min

atio

n, b

ut its fa

ilure

would be too serious to be an acceptable risk.

RE

PE

AT

ER

, RE

GE

NE

RA

TIV

E

(1) Repeaters are used in telephone netw

ork connections to link high capacity,lo

ng

dis

tan

ce

sy

ste

ms

tog

eth

er. T

he

dis

tan

ce

limita

tion

s o

f sp

ec

ifictechnologies (fiber optic cables, m

icrowave radio system

s, etc.) are overcome

by ca

scad

ing

mu

ltiple

ma

ximu

m le

ng

th sp

an

s of th

ese

tech

no

log

ies w

ithrepeater interconnections. (2) R

epeaters are used in much this sam

e role incontext of local area netw

orks as a way of extending the physical rang of LA

Nsegm

ents, or to interface different cable media types on a single LA

N.

RE

SID

UA

L B

IT E

RR

OR

RA

TE

, UN

DE

TE

CT

ED

ER

RO

R R

AT

E

Th

e re

sidu

al e

rror ra

tes (S

ee

de

finitio

n o

f "erro

r rate

") is the

rate

at w

hich

erro

rs are

ab

le to

esca

pe

erro

r de

tectio

n a

nd

rem

ain

un

de

tecte

d a

fter

wh

ate

ver m

ea

ns o

f erro

r de

tectio

n h

as b

ee

n u

tilized

-- an

d th

us re

sidu

al in

data that is thought to be correct.

RE

SP

ON

SE

TIM

E

Response tim

e is the time that a system

requires to respond to a given input.T

his is issue is comm

only associated with enquiry-response transactions on

mu

ltipo

int co

mm

un

icatio

n syste

ms. W

he

n a

n e

nq

uiry (o

r oth

er tra

nsa

ction

initia

tive) is ke

yed

into

a te

rmin

al b

y an

op

era

tor th

ere

is ge

ne

rally a

nexpected reply from

the controlling computer system

. There is a short w

indowo

f time

follo

win

g th

is initia

tive w

ithin

wh

ich th

e te

rmin

al u

ser p

erce

ives

favorable responsiveness from the rem

ote host system. B

eyond this critical,and subjective tim

e window

, the user becomes quickly frustrated w

ith processd

ela

ys. Co

mp

on

en

ts of re

spo

nse

time

de

lay w

hich

mu

st be

ind

ividu

ally

addressed in system planning are: (1) tim

e required to transmit enquiry data

inbound to the computer; (2) tim

e required to process the service request atthe com

puter; and (3) time required to transm

it the response data back to thete

rmin

al. T

he

pe

rson

al co

mp

ute

r revo

lutio

n h

as ch

an

ge

d typ

ical u

ser

response time expectations from

a few seconds (perhaps as m

uch as 5 or 8seconds in tim

e past) to sub-second times.

RF

C

Request for C

omm

ent -- a series of documents w

hich specify TC

P/IP

and numerous

rela

ted

pro

toco

l stan

da

rds, a

nd

pro

vide

a fo

rum

for d

eve

lop

ing

con

sen

sus

rela

tive to

em

erg

ing

tech

nica

l de

velo

pm

en

ts for T

CP

/IP a

nd

the

Inte

rne

t --such as the N

ext Generation versions of IP

and TC

P. T

he Internet Engineering

Ta

sk Fo

rce (IE

TF

) ma

inta

ins a

con

ven

ien

t we

b site

for a

ccessin

g th

e la

test

RF

C and draft docum

ents (ww

w.ietf.org).

Data C

omm

unications & Fieldbus S

ystems

482

Page 484: Data Communication &Fieldbus Systems

RG

B

Re

d, G

ree

n, B

lue

-- the

thre

e p

rima

ry c

olo

rs o

f ligh

t rep

res

en

ted

inte

levisio

n syste

ms. O

nce

colo

r sign

als a

re fu

lly de

cod

ed

in a

tele

vision

receiver, they are presented to the color display in RG

B form

at.

RO

UT

ER

A

rou

ter is a

da

ta n

etw

ork co

nn

ectio

n d

evice

tha

t ma

kes d

ecisio

ns a

bo

ut

passing data between connected netw

orks based on network layer addresses (O

SI

La

yer 3

). Ro

ute

rs are

con

figu

red

to d

ea

l with

spe

cific ne

two

rk laye

rp

roto

cols, a

nd

thu

s mu

st be

con

figu

red

to co

pe

with

all p

roto

cols u

sed

on

con

ne

cted

ne

two

rks. Ro

ute

rs are

req

uire

d to

coo

rdin

ate

"rea

cha

bility"

info

rma

tion

with

oth

er ro

ute

rs with

spe

cific rou

te e

xplo

ratio

n p

roto

cols.

See contrasting definition of "B

ridge".

RO

UT

ING

INF

OR

MA

TIO

N P

RO

TO

CO

L (R

IP)

A ro

ute

r-to-ro

ute

r coo

rdin

atio

n, o

r rou

te e

xplo

ratio

n p

roto

col u

sed

on

sma

llT

CP

/IP netw

orks, or used internally on small T

CP

/IP sub-netw

orks.

RS

-232-C

T

he TIA

interface standard comm

only known as the R

S-232-C

is actually more

corre

ctly spe

cified

as th

e T

IA-2

32

-C. It is a

20

kbp

s. ma

ximu

m d

ata

rate

,unbalanced electrical interface suitable for connecting D

CE

’s to DT

E’s (e.g.

modem

s to computers). A

"D" version of the interface has been defined but is

not yet widely supported.

SE

CA

M

Sequential C

ouleur Mem

oire, a television standard introduced by France, w

ithth

e w

ide

ly acce

pte

d (b

ut u

no

fficial) p

urp

ose

of b

ein

g in

com

pa

tible

with

the

rest o

f the

wo

rld -- n

om

ina

lly to p

rote

ct the

Fre

nch

ma

nu

factu

ring

ind

ustry.

A variant of S

EC

AM

was adopted by the E

astern Bloc countries to discourage

reception of Western E

uropean PA

L signals off-air.

SE

LE

CT

IVE

AR

Q

Se

lective

AR

Q syste

ms p

rovid

e fo

r the

exp

licit ide

ntifica

tion

of a

n e

rrore

dfra

me

of d

ata

, an

d fo

r the

retra

nsm

ission

of o

nly th

at fra

me

. Co

ntra

st with

"Go-B

ack-N A

RQ

", which provides for sim

ply backing up to the point of erroroccurrence, and starting over a that point. H

DLC

link protocol supports thistechnique as an option.

SE

RIA

L L

INE

INT

ER

NE

T P

RO

TO

CO

L (S

LIP

) S

LIP

is a

sim

ple

pro

toc

ol fo

r ex

ten

din

g a

cc

es

s to

IP n

etw

ork

s o

ve

rp

oin

t-to-p

oin

t con

ne

ction

s, such

as d

ial te

lep

ho

ne

links. S

LIP

is reg

ard

ed

as o

bso

lete

, ha

ving

be

en

rep

lace

d b

y PP

P a

s the

IP a

ccess p

roto

col o

fpreference.

SE

RIA

L T

RA

NS

MIS

SIO

N

Se

rial tra

nsm

ission

system

s pro

vide

for tra

nsm

itting

all o

f the

da

ta b

its inth

e in

form

atio

n s

trea

m a

cro

ss

a s

ing

le c

om

mu

nic

atio

n c

ha

nn

el -- in

bit-se

qu

en

tial fo

rma

t. Th

us, it re

qu

ires 8

clock tim

e u

nits to

tran

smit a

sing

le 8

-bit b

yte o

f info

rma

tion

. Effe

ctively a

ll imp

lem

en

tatio

ns o

f da

tacom

munication system

s which operate beyond a few

meters are based on serial

transmission. C

ompare w

ith Parallel T

ransmission.

SE

RV

ER

T

he

so

ftwa

re s

up

po

rting

the

ho

st-o

rien

ted

co

mp

utin

g fu

nc

tion

s in

aclie

nt/se

rver co

mp

utin

g e

nviro

nm

en

t. Se

rver so

ftwa

re typ

ically co

nce

rns

itself w

ith m

an

ag

ing

sha

red

da

ta re

sou

rces; fo

r this re

aso

n d

ata

ba

sem

an

ag

em

en

t system

s are

ofte

n a

key p

art th

e se

rver. T

he

term

’serve

r’ isoften (som

ewhat casually) associated w

ith the hardware com

puting system w

hichsupports the server as defined here.

SH

IEL

DE

D T

WIS

TE

D P

AIR

(ST

P)

ST

P cable is configured in m

uch the same form

at as unshielded twisted pair

(Se

e d

efin

ition

for co

mp

ariso

n), e

xcep

t tha

t a b

raid

ed

exte

rior cylin

drica

lshield is constructed surrounding each individual pair of w

ires on the bundle.S

TP

cable has technically superior performance (com

pared with equivalent U

TP

), b

ut th

e a

dd

ition

al co

st an

d b

ulk m

ake

it un

po

pu

lar co

mp

are

d to

UT

P. T

he

ad

ditio

n o

f the

shie

ld m

ake

s it ne

cessa

ry to p

acka

ge

few

er p

airs p

er ca

ble

bu

nd

le (th

us o

ccup

ying

sign

ifican

tly mo

re d

uct sp

ace

) -- an

d th

e h

elica

lca

ble

twist m

ake

s the

exte

rior ja

cket irre

gu

lar -- a

nd

difficu

lt to m

an

ipu

late

through cable ducts.

SIG

NA

L

A sig

na

l con

sists of e

lectro

ma

gn

etic im

pu

lses w

hich

pro

pa

ga

te a

cross a

tran

smissio

n ch

an

ne

l, an

d a

re e

nco

de

d, o

r mo

du

late

d in

such

a w

ay a

s toconvey inform

ation. Signals can be broadly classified as being either analog

or digital in character.

SIG

NA

L-to

-NO

ISE

RA

TIO

(SN

R)

Th

e ra

tio (typ

ically e

xpre

ssed

in d

ecib

els), o

f the

stren

gth

of a

sign

al to

the

stren

gth

of th

e n

oise

en

erg

y pre

sen

t on

the

cha

nn

el. A

go

od

qu

ality

analog telephone channel would dem

onstrate a 1000:1 (30 decibel) signal tonoise ratio.

SIG

NA

LIN

G

Signaling is the process by w

hich network connection requests (such as dialed

telephone numbers) and control signals (such as "hang up") are com

municated

acro

ss a n

etw

ork. S

ign

alin

g ca

n b

e e

ithe

r "in-b

an

d" (ca

rried

in th

e sa

me

ba

nd

wid

th a

s me

ssag

e tra

ffic) or "o

ut-o

f-ba

nd

" (carrie

d o

ver a

sep

ara

techannel or system

).

SIM

PL

E N

ET

WO

RK

MA

NA

GE

ME

NT

PR

OT

OC

OL

(SN

MP

) S

NM

P is the netw

ork managem

ent coordination protocol used on TC

P/IP

-basedn

etw

orks. S

NM

P su

pp

orts a

n e

ffective

an

d w

ide

ly use

d se

t of n

etw

ork

managem

ent services, and is very popular as a basis for managing enterprise

networks.

SIM

PL

EX

S

implex com

munication system

s have the capability of carrying information in

on

ly on

e d

irectio

n. A

n e

xam

ple

is a p

ocke

t pa

ge

r system

-- wh

ere

the

re is

never any capability of transmitting a signal from

the pager back to the basestation to confirm

receipt of a message.

Data C

omm

unications & Fieldbus S

ystems

483

Page 485: Data Communication &Fieldbus Systems

SIN

GL

E C

HA

NN

EL

PE

R C

AR

RIE

R (S

CP

C)

SC

PC

configured equipment is used w

ith satellite comm

unications equipment that

serve

s limite

d ca

pa

city or sm

all e

arth

statio

ns. T

ypica

lly, VS

AT

ea

rthte

rmin

als o

pe

rate

in S

CP

C m

od

e. T

ech

nica

lly, SC

PC

me

an

s tha

t on

ly on

em

essage channel (such as a voice conversation or a data session) is carried one

ach

sate

llite ra

dio

carrie

r. Hig

h ca

pa

city system

s, on

the

oth

er h

an

d,

mu

ltiple

x a

nd

mo

du

late

a n

um

be

r of m

es

sa

ge

s o

nto

a s

ing

le c

arrie

rsim

ultaneously.

SL

IP

See "S

erial Line Internet Protocol".

SO

NE

T

Synchronous O

ptical Netw

ork (Know

n in Europe as the S

ynchronous Digital

Hierarchy, or S

DH

) is an international standard for high speed WA

N (i.e. long

distance telephone company netw

orks) applications. SO

NE

T is an open-ended

sp

ec

ifica

tion

, in th

at h

igh

er s

pe

ed

da

ta ra

tes

will b

e d

efin

ed

as

the

need/capability emerges. C

urrent SO

NE

T system

s are defined up to the OC

-768rate (approxim

ately 40 Gbps), typical im

plementations operate at the O

C-192

(10 Gbps) rate.

SP

AC

E

Th

e "sp

ace

" con

ditio

n o

n a

da

ta co

mm

un

icatio

n circu

it (op

po

site a

nd

com

ple

me

nta

ry to a

"ma

rk" con

ditio

n) is e

qu

ivale

nt to

a lo

gica

l bin

ary 0

sign

al sta

te. T

he

ma

rk is eq

uiva

len

t to a

log

ical b

ina

ry 1. T

he

term

s ma

rka

nd

spa

ce a

re b

orro

we

d fro

m th

e d

ays o

f Mo

rse co

de

tele

gra

ph

y, an

d th

eearliest autom

atic code reading equipment, w

hich left marks or spaces on a

strip of paper tape corresponding to the presence or absence of Morse code

pulse. The term

s mark and space are m

uch more com

monly associated w

ithasynchronous than synchronous transm

ission.

SP

AC

E C

HA

RA

CT

ER

In m

ost character codes, the requirement to leave a physical space betw

eenp

rintin

g ch

ara

cters is h

an

dle

d th

rou

gh

the

use

of a

"spa

ce" ch

ara

cter. T

his

is the character code transmitted w

hen the keyboard space bar is struck.

SS

AP

S

ource Service A

ccess Point -- the upper layer protocol specification for the

ne

two

rk laye

r pro

toco

l from

wh

ich d

ata

are

de

rived

to co

nstru

ct ou

tgo

ing

packets.

ST

OP

AN

D W

AIT

AR

Q

A p

roce

ss of tra

nsm

itting

da

ta a

nd

wa

iting

for a

resp

on

se fro

m re

ceivin

gsta

tion

be

fore

pro

cee

din

g w

ith tra

nsm

itting

mo

re d

ata

-- or re

tran

smittin

gp

revio

usly se

nt d

ata

-- as re

qu

ired

. Sto

p-a

nd

-wa

it system

s ne

cessa

rilyoperate in a half-duplex m

ode. Binary synchronous link protocol and X

MO

DE

Mare exam

ples of stop-and-wait protocols.

ST

OR

E A

ND

FO

RW

AR

D

A m

essage forwarding m

echanism w

here an incoming m

essage is fully buffered ata

ne

two

rk n

od

e s

witc

hin

g p

oin

t (rou

ter), d

ata

va

lidity

co

nfirm

ed

, the

po

ssibility o

f retra

nsm

ission

con

tem

pla

ted

(be

cau

se o

f erro

rs), an

d a

message-by-m

essage dynamic routing analysis perform

ed. The m

essage is thenforw

arded to the next way-point on route to the destination. T

his procedure

is time consum

ing, but is suitable to wide area netw

orks where data rates are

low-to-m

oderate and errors in transmitted data are frequent enough to w

arrantthe overhead. T

he first store and forward system

s were m

essage switching

system

s (rep

lacin

g to

rn-ta

pe

me

ssag

e ce

nte

rs); latte

rly, X.2

5 p

acke

tsw

itching are described with this term

.

ST

P

See definition of "S

hielded Tw

isted Pair" cable.

SU

PE

RS

ER

VE

R

Superservers are high-end m

ultiprocessor computer system

s designed to functiona

s serve

r pla

tform

s for d

em

an

din

g a

pp

licatio

ns. S

up

erse

rvers a

re typ

ically

RIS

C a

rchite

cture

system

s with

op

timize

d I/O

cap

ab

ility an

d a

re fre

qu

en

tlyequipped w

ith RA

ID m

ass storage systems.

SY

NC

HR

ON

OU

S

Synchronous system

s operate on a comm

on, or uniform tim

e base, creating aconstant and uniform

measure of tim

e for purposes of data transmission and

recovery.

SY

NC

HR

ON

OU

S D

IGIT

AL

HIE

RA

RC

HY

(SD

H)

The S

DH

is the European designation for S

ON

ET

-- the Synchronous O

pticalN

etwork -- standard for high speed W

AN

network m

ultiplexing. See definition

of "SO

NE

T".

SY

NC

HR

ON

OU

S T

RA

NS

MIS

SIO

N

A m

eth

od

of tra

nsm

itting

da

ta in

wh

ich b

oth

the

sen

din

g e

qu

ipm

en

t an

dreceiving equipm

ent are driven by a comm

on clocking system -- typically from

the

tran

sm

itter e

nd

of th

e lin

k. F

urth

erm

ore

, the

clo

ck

ing

sy

ste

m is

con

tinu

ou

sly op

era

ted

, an

d p

rovid

es fo

r a u

nifo

rm m

ea

sure

of tim

e a

t bo

thends of the link -- so that data pulses can be accurately decoded.

SY

ST

EM

S N

ET

WO

RK

AR

CH

ITE

CT

UR

E (S

NA

) S

NA

has been IBM

’s principal computer com

munications architecture, initially

de

fine

d in

19

74

. It is s

ign

ifica

nt a

s th

e in

du

stry

’s firs

t stru

ctu

red

,la

yere

d a

rchite

cture

de

finitio

n, a

nd

as su

ch, se

rved

as th

e m

od

el fo

rd

eve

lop

ing

the

no

w-u

nive

rsal vie

w o

f laye

red

com

pu

ter co

mm

un

icatio

ns

arch

itectu

res. T

he

pro

prie

tary ch

ara

cteristics o

f SN

A ve

ry mu

ch lim

it isusefulness in current tim

e.

TA

G S

WIT

CH

ING

T

here are two m

ain categories of LAN

switching technology deployed in support

of V

irtua

l LA

N se

rvice -- sw

itche

s ba

sed

on

ad

ap

ting

brid

gin

g te

chn

olo

gy

(Layer 2 Sw

itches) and switches based on adapting routing technology (Layer 3

switch

es). O

f the

La

yer 2

switch

alte

rna

tives, T

ag

Sw

itchin

g is th

e m

ost

po

pu

lar. It in

volve

s ap

pe

nd

ing

a ta

g (a

dd

ition

al m

essa

ge

field

) to th

ed

ata

fram

e th

at p

rovid

es a

nu

me

ric ide

ntifica

tion

of th

e virtu

al L

AN

to w

hich

the

orig

ina

tion

statio

n is a

ssocia

ted

. Se

e "IP

Sw

itchin

g" fo

r La

yer 3

switch

discu

ssion

. Th

e IE

EE

80

2.1

p sp

ecifica

tion

mo

ved

this te

chn

olo

gy fro

m its

initially proprietary category.

Data C

omm

unications & Fieldbus S

ystems

484

Page 486: Data Communication &Fieldbus Systems

TA

RIF

F

Tariffs are published, standard rates for com

munications services or equipm

ent.R

eg

ula

ted

tele

ph

on

e co

mp

an

ies h

ave

no

flexib

ility in p

ricing

the

ir service

so

nce

the

ir reg

ula

tor h

as a

pp

rove

d a

give

n ta

riff pa

ckag

e. T

he

term

isa

pp

licab

le to

oth

er in

du

stries a

s we

ll, such

as th

e ca

se o

f freig

ht ta

riffsused by railw

ays. This term

is less widely used now

that the industry works

with com

petitive pricing models driven by deregulation.

TC

P/IP

T

ran

smissio

n C

on

trol P

roto

col/In

tern

et P

roto

col. T

CP

/IP is re

ally tw

odistinct protocols; T

CP

operating at layer 4 of the OS

I reference model, and

IP operating at Layer 3. In com

bination with m

any other less widely discussed

pro

toco

ls, TC

P/IP

ha

s com

e to

be

use

d to

de

scribe

the

wh

ole

fam

ily of

ne

two

rking

pro

toco

ls, wh

ich co

llective

ly en

ab

le in

tero

pe

ratio

n b

etw

ee

nd

issimila

r ho

st system

s an

d b

etw

ee

n d

issimila

r ne

two

rks - a h

ete

rog

en

eo

us

interoperability capability that is unique in the industry.

TE

LE

CO

MM

UN

ICA

TIO

NS

IND

US

TR

IES

AS

SO

CIA

TIO

N (T

IA)

Th

e T

IA (F

orm

erly, th

e E

lectro

nic In

du

stries A

ssocia

tion

, or E

IA) is a

Wa

shin

gto

n, D

C b

ase

d o

rga

niza

tion

tha

t ha

s pro

vide

d a

lea

de

rship

role

indefining technology standards for the U

S com

munity.

TE

LE

PR

INT

ER

A

n o

bso

lete

asyn

chro

no

us te

rmin

al d

evice

tha

t con

sists of a

keyb

oa

rd a

nd

integrated low-speed printer. A

n alternate term is teletypew

riter.

TE

LN

ET

T

he Teletype N

etwork, or T

elnet is an interactive terminal service specific to

TC

P/IP

ne

two

rk ap

plica

tion

s. Te

lne

t (very sim

ilar to

"rlog

in") a

llow

s arem

ote network access user to operate w

ith the same privileges and functions

as a

loca

lly con

ne

cted

term

ina

l use

r. Th

e p

oo

r resp

on

se tim

e a

nd

prim

itiveh

um

an

inte

rface

fea

ture

s of T

eln

et m

ake

it un

favo

red

for u

ser-a

ccessib

leapplications.

TE

RM

INA

L

In general, a terminal is a point in a com

munication system

where inform

ationca

n e

nte

r or le

ave

the

system

. In co

mm

on

pra

ctice, a

term

ina

l is a d

evice

(typica

lly op

era

ted

by h

um

an

s) wh

ich tra

nsm

its an

d/o

r rece

ives in

form

atio

nover a com

munication channel. A

lthough computers connected at the edge of a

ne

two

rk are

tech

nica

lly ’term

ina

ls’, com

mo

n u

sag

e re

stricts the

term

tonon-intelligent devices.

TIA

S

ee definition of "Telecom

munication Industries A

ssociation".

TIM

E A

SS

IGN

ED

SP

EE

CH

INT

ER

PO

LA

TIO

N (T

AS

I) T

ime assignm

ent speech interpolation, or TA

SI system

s take advantage of thefact that hum

an speech on any given telephone circuit in any given directionw

ill ne

ve

r av

era

ge

mo

re th

an

50

% b

us

y. In

fac

t, du

e to

pa

us

es

inc

on

ve

rsa

tion

, it is m

ore

like

40

% b

us

y. It is

ofte

n e

ffec

tive

to e

qu

ipd

evice

s at b

oth

en

ds o

f a te

lep

ho

ne

ne

two

rk to d

yna

mica

lly allo

cate

the

bu

rsts of vo

ice m

essa

ge

activity to

a p

oo

l of a

vaila

ble

on

e-w

ay circu

its --s

uc

h th

at th

e o

the

rwis

e in

ac

tive

, an

d n

on

-pro

du

ctiv

e h

alf o

f ea

ch

con

versa

tion

pa

th ca

n b

e u

tilized

. TA

SI syste

ms ca

n im

pro

ve u

tilizatio

n o

f

ocean cables, for example, by up to 80%

. New

technology TA

SI system

s arealso called D

igital Speech Interpolation, or D

SI system

s.

TIM

E D

IVIS

ION

MU

LT

IPL

E A

CC

ES

S (T

DM

A)

TD

MA

is a te

chn

iqu

e fo

r time

sha

ring

a co

mm

on

com

mu

nica

tion

cha

nn

el --

typica

lly a g

eo

gra

ph

ically d

ispe

rsed

cha

nn

el, su

ch a

s a sa

tellite

service

.D

evice

s at d

iffere

nt g

eo

gra

ph

ical lo

catio

ns ca

n fe

asib

ly sha

re su

ch a

sc

ha

nn

el if th

ey

are

dis

cip

line

d to

co

ord

ina

te th

eir s

ho

rt bu

rsts

of

info

rma

tion

tran

smissio

n w

ith a

ll oth

er u

sers -- o

n a

time

sha

red

, or tim

ed

ivision

ba

sis. TD

MA

is in so

me

wa

ys like a

distrib

ute

d tim

e d

ivision

multiplexer system

. Com

pare with F

DM

A.

TIM

E D

IVIS

ION

MU

LT

IPL

EX

(TD

M)

Tim

e Division M

ultiplexers collect data from a num

ber of typically low speed

data sources, and interleave the incoming data stream

s onto a single, highersp

ee

d co

mm

un

icatio

n lin

k to a

com

pa

nio

n m

ultip

lexe

r de

vice, w

he

re th

ein

terle

ave

d d

ata

is allo

cate

d b

ack to

a n

um

be

r of lo

w sp

ee

d d

istribu

tion

po

rts -- com

mo

nly p

orts o

n a

com

pu

ter syste

m. If th

e a

lloca

tion

of tim

eslots on the com

mon high speed inter-m

ultiplexer channel is fixed, the deviceis

reg

ard

ed

as

a s

imp

le, o

r trad

ition

al T

DM

. If the

allo

ca

tion

isd

yna

mica

lly alte

red

ba

sed

on

statistica

lly varia

ble

de

ma

nd

from

term

ina

ld

evice

s -- such

as w

ith h

um

an

inte

ractive

term

ina

ls -- it is said

to b

e a

Statistical T

ime D

ivision Multiplexer -- or "statm

ux".

TO

KE

N

Th

e to

ken

use

d w

ith to

ken

pa

ssing

LA

N syste

ms is a

spe

cial m

essa

ge

tha

tcirculates over the sam

e path as message traffic. T

he purpose of the tokenis to

gra

nt a

uth

ority to

the

statio

n th

at h

old

s the

toke

n to

tran

smit. T

he

system design is configured to assure that there is only one token present on

the system at any tim

e (thus insuring there will be no contention for access)

and that it is passed quickly around the comm

unity of attached devices (thusin

surin

g th

at n

o sta

tion

wa

its an

ina

pp

rop

riate

ly lon

g tim

e fo

r a ch

an

ce to

transmit). T

he complexity of m

anaging token behavior in the absence of anycentralized authority m

akes token passing LAN

systems m

ore complex than

ethernet.

TO

KE

N B

US

Token bus LA

N system

s are the most com

plex of the comm

on LAN

technologies, dueto the challenge of m

aintaining an addressing regime for passing the token to

all a

ttach

ed

de

vices. B

eca

use

a b

us is a

bro

ad

cast m

ed

ium

, all d

evice

sre

ceive

all m

essa

ge

s, an

d a

dd

ress d

iffere

ntia

tion

is the

on

ly wa

y to id

en

tifythe intended destination for m

essages and tokens. The addressing technique

use

d fo

r toke

n d

istribu

tion

is kno

wn

as a

"log

ical rin

g". T

he

IEE

E 8

02

.4 is

an example of token bus technology.

TO

KE

N R

ING

T

he standard token ring LAN

technology was developed by IB

M in the m

id-1980’s,and accepted by the IE

EE

as a standard (IEE

E 802.5). It is the second m

ostcom

monly used LA

N technology, after E

thernet, with perhaps 5%

market share.

Data C

omm

unications & Fieldbus S

ystems

485

Page 487: Data Communication &Fieldbus Systems

TR

AC

ER

OU

TE

T

race

rou

te (a

com

mo

n u

tility pro

gra

m) p

rovid

es a

listing

of th

e ro

ute

rstraversed in establishing a connection over a T

CP

/IP internet.

TR

AN

SM

ISS

ION

CO

NT

RO

L P

RO

TO

CO

L (T

CP

) T

CP

is the

prin

cipa

l sessio

n co

ntro

l, so ca

lled

"ho

st-to-h

ost" p

roto

col w

ithT

CP

/IP syste

ms. T

CP

pro

vide

s con

ne

ction

con

trol a

nd

po

sitive d

elive

ryacknow

ledgements that are not available w

ith the underlying IP.

TR

AN

SP

ON

DE

R

An electronic subsystem

(typically associated with com

munication satellites)

wh

ich in

clud

es a

com

bin

ed

rece

iver-tra

nsm

itter fu

nctio

n. T

ran

spo

nd

ers

rece

ive, fre

qu

en

cy-shift, a

mp

lify an

d re

tran

smit u

ser’s sig

na

ls, op

era

ting

on

the signals as an analog processor.

TR

IVIA

L F

ILE

TR

AN

SF

ER

PR

OT

OC

OL

(TF

TP

) T

rivial F

ile T

ran

sfer P

roto

col is a

TC

P/IP

ap

plica

tion

pro

cess th

at o

ffers a

mo

re ru

dim

en

tary file

tran

sfer ca

pa

bility th

an

the

mo

re co

mm

on

FT

P. A

nadvantage of T

FT

P is that it doesn’t require a m

ultitasking operating systemfor support, as does F

TP

, and can be implem

ented in firmw

are.

TR

UN

K

Trunks are telephone netw

ork connections which interconnect sw

itching equipment.

(Co

mp

are

with

"loca

l loo

ps" w

hich

exte

nd

con

ne

ctivity to sw

itche

s from

non-switching equipm

ent, such as telephones).

TT

Y

Ab

bre

viatio

n fo

r "Te

letyp

e". T

ele

type

ha

s be

en

histo

rically a

pro

prie

tary

trade name (A

T&

T), but has evolved to refer to m

echanical teleprinters of allm

an

ufa

cture

, an

d th

e m

ea

ns o

f com

mu

nica

tion

tha

t the

y sup

po

rted

. TT

Ycom

munication can be regarded as a prim

itive link protocol, associated with

asynchronous timing, A

SC

II or Baudot coded data, and character-m

ode terminal

systems. T

he serial port of a PC

is a TT

Y-capable interface.

TW

O-W

IRE

CIR

CU

IT

A circu

it form

ed

by a

pa

ir of co

nd

ucto

rs, or w

ires, w

hich

are

insu

late

d fro

me

ach

oth

er, a

nd

typica

lly twiste

d to

ge

the

r. Th

e tw

o m

eta

llic con

du

ctors

crea

te a

nd

sup

po

rt the

simp

lest p

ossib

le co

mm

un

icatio

n m

ech

an

ism, w

hich

typica

lly sup

po

rts tran

smissio

n o

f info

rma

tion

in e

ithe

r dire

ction

(with

ou

ta

ny d

irectio

na

l pre

fere

nce

). Te

lep

ho

ne

loca

l loo

p co

nn

ectio

ns to

the

pu

blic sw

itche

d n

etw

ork a

re a

lwa

ys con

ne

cted

as a

two

-wire

service

(ie.

using one pair of wires). S

ee definition of "Unshielded T

wisted P

air".

UH

F

Ultra high frequency. V

HF

is a term used to describe radio frequencies in the

range 300 MH

z to 3 GH

z. UH

F frequencies are characterized as "line-of-sight"

service

s (no

t cap

ab

le o

f use

sign

ifican

tly be

yon

d th

e h

orizo

n), a

nd

are

wid

ely u

sed

in p

erso

na

l com

mu

nica

tion

(cellu

lar), te

levisio

n , lo

w-ca

pa

citypoint-to-point and radar services.

UN

IFO

RM

RE

SO

UR

CE

LO

CA

TO

R (U

RL

) T

he UR

L concept provides for a comm

on syntax for specifying the applicableaccess protocol, the host system

address, path on the specified host system,

an

d file

spe

cificatio

n fo

r info

rma

tion

reso

urce

s on

TC

P/IP

inte

rne

ts. Th

eU

RL form

at is most com

monly encountered in context of specifying H

ypertextT

ransport Protocol (H

TT

P) inform

ation resources on the World W

ide Web.

UN

INT

ER

RU

PT

AB

LE

PO

WE

R S

UP

PL

Y (U

PS

) U

PS

systems provide for pow

er continuity in event of failure of primary pow

er.T

his is typ

ically a

ccom

plish

ed

usin

g b

atte

ries a

nd

po

we

r inve

rter circu

its togenerate the required prim

ary power replacem

ent. Where long duration backup

cap

ab

ility is req

uire

d, so

me

alte

rna

te so

urce

of p

ow

er is re

qu

ired

, such

as

a diesel generator.

UN

SH

IEL

DE

D T

WIS

TE

D P

AIR

(UT

P)

UT

P is the term

used to describe any telephone-type cable, usually in contexto

f ho

use

cab

ling

, or b

uild

ing

wirin

g syste

ms. U

TP

is com

prise

d o

f a p

air o

fin

su

late

d w

ires

, twis

ted

tog

eth

er in

to a

he

lix. U

TP

ca

ble

pa

irs a

retyp

ically p

acka

ge

d in

to ca

ble

bu

nd

les co

nsistin

g o

f mu

ltiple

pa

irs con

tain

ed

within a com

mon exterior jacket. T

here a number of (m

ost vendors agree on 5)d

iffere

nt c

las

se

s o

f UT

P, d

iffere

ntia

ted

on

the

ba

sis

of w

ire g

au

ge

,in

sula

tion

type

an

d d

iam

ete

r, an

d th

e n

um

be

r of tw

ists pe

r foo

t in th

e ca

ble

con

structio

n. T

he

se d

iffere

nt "le

vels", o

r classe

s of ca

ble

are

de

sign

ate

da

s be

ing

suita

ble

for vo

ice o

nly, lo

w o

r hig

h sp

ee

d d

ata

, ISD

N a

pp

licatio

ns,

etc. See definition of "T

wo-W

ire Circuit".

US

EN

ET

U

SE

NE

T (U

ser’s Netw

ork) is the interconnection of a collection of UN

IX system

s-- a

ll of w

hich

run

the

"ne

tne

ws" so

ftwa

re, w

hich

sup

po

rts a n

ew

s exch

an

ge

service between users of the netw

ork. It has evolved into a remarkable m

eansof exchanging inform

ation about any of hundreds of special interest subjects.

US

ER

DA

TA

GR

AM

PR

OT

OC

OL

(UD

P)

A connectionless protocol w

hich operates parallel to TC

P in T

CP

/IP system

s --and provides support for very sim

ple application processes (such as PIN

G and

TF

TP

), more sophisticated processes w

hich provide their own session control

(su

ch

as

Su

n M

icro

sy

ste

ms

NF

S) o

r time

-critic

al s

erv

ice

s lik

e th

os

esupported by R

eal Tim

e Protocol.

UT

P

See definition of "U

nshielded Tw

isted Pair".

UU

CP

U

UC

P, or the "U

NIX

-to-UN

IX C

opy Program

" is a comm

on application program used

for file

tran

sfer in

the

UN

IX e

nviro

nm

en

t. Th

ere

is a clo

se a

ssocia

tion

between electronic m

ail and file transfer (UU

CP

performs both tasks), and as

a result, UU

CP

has come to be associated w

ith mail transfer in U

NIX

-basedsystem

s.

VE

RO

NIC

A

Ob

sole

te: V

ero

nica

is a g

op

he

r-initia

ted

inte

rne

t sea

rch to

ol w

hich

loca

tes

files (or file directories) based on keyword specification.

Data C

omm

unications & Fieldbus S

ystems

486

Page 488: Data Communication &Fieldbus Systems

VE

RT

ICA

L P

AR

ITY

DE

TE

CT

ION

V

ertica

l pa

rity calcu

latio

ns a

re b

ase

d o

n d

efin

ing

a sin

gle

pa

rity bit w

hich

acco

mp

an

ies e

ach

cha

racte

r tha

t is tran

smitte

d -- su

ch th

at th

e co

mp

osite

gro

up

of b

its (Typ

ically 7

cha

racte

r da

ta b

its plu

s 1 p

arity b

it) will h

ave

ap

red

ictab

le e

ven

(or o

dd

) nu

mb

er o

f "on

e" b

its. (Se

e d

efin

ition

s of "P

arity"

and "Horizontal P

arity").

VE

RY

SM

AL

L A

PE

RT

UR

E T

ER

MIN

AL

(VS

AT

) V

SA

T co

mm

un

icatio

ns sa

tellite

ea

rth te

rmin

als a

re su

ited

to re

lative

ly low

cap

acity re

mo

te lo

catio

ns -- typ

ically u

sed

to d

elive

r a sm

all n

um

be

r of

(perhaps up to 4) channels for low-to-m

oderate data rate applications (up toabout 64 kbps. per channel) or voice applications.

VH

F

Very high frequency. V

HF

is a term used to describe radio frequencies in the

ran

ge

30

MH

z to

30

0 M

Hz

. VH

F fre

qu

en

cie

s a

re c

ha

rac

teriz

ed

as

"line

-of-s

igh

t" se

rvic

es

(no

t ca

pa

ble

of u

se

sig

nific

an

tly b

ey

on

d th

eh

orizo

n), a

nd

are

wid

ely u

sed

in p

erso

na

l com

mu

nica

tion

(mo

bile

) an

dtelevision services.

VIR

TU

AL

CIR

CU

IT

A term

used to describe the addressable connection that exists across a packetsw

itche

d n

etw

ork. V

irtua

l circuits b

eh

ave

in so

me

wa

ys like re

al p

hysica

lcircu

its, bu

t the

y are

"virtua

l" in th

at th

e o

nly lin

k acro

ss such

a n

etw

ork

is susta

ine

d th

rou

gh

a p

acke

t de

livery ca

pa

bility. P

erm

an

en

t virtua

lc

ircu

its a

re c

on

figu

red

an

d a

va

ilab

le fo

r se

rvic

e 2

4 h

ou

rs a

da

yco

ntin

uo

usly -- a

nd

offe

r no

flexib

ility reg

ard

s diffe

ren

t con

ne

ction

op

tion

s.S

witch

ed

virtua

l circuits re

qu

ire u

ser in

itiatio

n o

f ea

ch se

ssion

, an

d o

ffer

flexibility with regard to connection options.

VO

ICE

FR

EQ

UE

NC

Y

An

y (au

dib

le) fre

qu

en

cy with

in th

at p

ortio

n o

f the

au

dio

freq

ue

ncy sp

ectru

mw

hich

is con

sisten

t with

the

tran

smissio

n o

f tele

ph

on

e q

ua

lity spe

ech

. Se

e"V

oice Grade C

hannel").

VO

ICE

GR

AD

E C

HA

NN

EL

A

telephone-grade comm

unication channel which is designed for, and is suitable

for tra

nsm

ission

of sp

ee

ch, m

od

em

-inte

rface

d d

igita

l da

ta, a

nd

facsim

ilein

form

atio

n. In

mo

st cou

ntrie

s, freq

ue

ncy b

an

dw

idth

, or ra

ng

e o

f ab

ou

t 30

0to 3000 H

z. characterizes the voice grade channel.

WA

N

See definition of "W

ide Area N

etwork".

WID

E A

RE

A N

ET

WO

RK

(WA

N)

A W

AN

has traditionally been viewed as a low

speed network service -- a view

no

lon

ge

r accu

rate

. WA

N se

rvices a

re p

rop

erly co

nsid

ere

d to

be

ne

two

rkservices that extend beyond the im

mediately local environm

ent (as supportedb

y LA

N syste

ms) -- a

nd

exce

pt fo

r the

larg

est sca

le u

sers, w

ill be

ba

sed

on

facilities leased or rented from a public netw

ork service provider, or comm

onca

rrier. S

om

e d

efin

ition

s of th

e W

AN

inclu

de

me

trop

olita

n a

rea

ne

two

rk, or

MA

N access facilities -- in w

hich case a LAN

-to-LAN

internetwork connection

would be a LA

N-W

AN

-LAN

configuration. Other definitions differentiate, such

tha

t in in

ter-c

ity L

AN

-to-L

AN

se

rvic

e w

ou

ld b

e s

ee

n a

s a

LAN

-MA

N-W

AN

-MA

N-LA

N configuration.

WIR

EL

ES

S L

AN

W

ireless LAN

systems use radio or infrared technology to avoid or m

inimize the

ne

ed

for h

ard

wire

d ca

ble

system

s. Hig

h co

st, limite

d ca

pa

city an

d se

curity

concerns initially limited w

idespread acceptance of wireless LA

N technology.

Sta

nd

ard

izatio

n e

fforts (IE

EE

80

2.1

1 a

nd

Hip

erla

n) a

re ch

an

gin

g th

is,prom

ising greatly increased acceptance.

WO

RD

H

istorica

lly, a w

ord

ha

s be

en

de

fine

d a

six cha

racte

rs (typica

lly com

prisin

gfive

cha

racte

rs plu

s on

e sp

ace

). Mo

re typ

ically, a

wo

rd is co

nsid

ere

d to

be

a g

rou

p o

f bits (typ

ically co

mp

rising

an

inte

ge

r nu

mb

er o

f octe

ts), wh

ich is

treated as a unit and is capable of being stored or comm

unicated as a unit ofinform

ation within a com

puter. A com

mon w

ord size is 32 bits.

WO

RK

ST

AT

ION

W

orkstations are high-end, powerful m

icrocomputer system

s. These kinds of

eq

uip

me

nt a

re o

ften

asso

ciate

d w

ith g

rap

hics-in

ten

sive te

chn

ical d

esig

na

pp

licatio

ns a

nd

are

also

freq

ue

ntly d

ep

loye

d a

s hig

h-e

nd

serve

r pla

tform

s.W

orksta

tion

s are

ofte

n co

nfig

ure

d w

ith R

ISC

pro

cesso

rs an

d a

re o

ften

supported by the Unix operating system

s.

WO

RL

D W

IDE

WE

B (W

WW

) T

he

WW

W is th

e co

llectio

n o

f Inte

rne

t-ba

sed

reso

urce

s tha

t sup

po

rt the

Hypertext T

ransport Protocol (H

TT

P), m

aking it possible to exchange documents

that are encoded with the H

ypertext Markup Language (H

TM

L). Using a client

software package (such as Internet E

xplorer), the WW

W becom

es a simple,

convenient vehicle for locating information resources.

X.2

5

X.2

5 is a

n o

bso

lete

ITU

-T sta

nd

ard

tha

t de

fine

s the

cha

racte

ristics of

first-g

en

era

tion

pa

ck

et s

witc

he

d n

etw

ork

s. T

he

X.2

5 s

tan

da

rds

are

historically important because they inspired the m

ore current frame relay and

AT

M netw

ork standards.

XE

RO

X N

ET

WO

RK

SY

ST

EM

(XN

S)

XN

S w

as th

e first fu

nctio

na

l ne

two

rk op

era

ting

system

de

sign

ed

for L

AN

systems, and established m

any of the features and functions that have come to

be associated with this class of system

.

Data C

omm

unications & Fieldbus S

ystems

487

Page 489: Data Communication &Fieldbus Systems

SU

GG

ES

TIO

NS

FO

R F

UR

TH

ER

RE

AD

ING

1.0

GE

NE

RA

L C

OM

PU

TE

R C

OM

MU

NIC

AT

ION

S

1.1 Fred H

alsallD

ata

Com

munica

tions

Com

pute

r Netw

orks a

nd O

pen

Syste

ms

Wokingham

UK

Addison W

esley1996 (IS

BN

020142293X).

1.2 Gilbert H

eldU

ndersta

ndin

g D

ata

Com

munica

tions (S

ixthE

ditio

n)R

iders Publishing

1999 (ISB

N 0735700362)

1.3 Joseph A. P

ecar and David A

. Garbin

The M

cGra

w-H

illTe

leco

mm

unica

tions F

actb

ook

New

York

NY

McG

raw H

ill2000(IS

BN

0071351639)

1.4 William

Stallings

Data

and C

om

pute

r Com

munica

tions (S

ixth E

ditio

n)

Upper S

addle RiverN

JP

rentice Hall1999 (IS

BN

0130643709)

1.5 William

Stallings

Handbook o

f Com

pute

r Com

munica

tions S

tandard

sU

pper Saddle R

iverNJ

Prentice H

all1990 (ISB

N 0024155217)

1.6 Andrew

S. Tanenbaum

Com

pute

r Netw

orks

Seco

nd E

ditio

nU

pperS

addle RiverN

JP

rentice Hall1996 (IS

BN

0133499456)

2.0

TR

AN

SM

ISS

ION

TE

CH

NO

LO

GY

2.1 Roger L. F

reeman

Tele

com

munica

tion T

ransm

ission H

andbook

(Fourth

Editio

n)N

ew Y

orkN

YJohn W

iley & S

ons1998 (IS

BN

0471240164)

2.2 Stam

atios V. Kartalopoulos

Intro

ductio

n to

DW

DM

Tech

nolo

gy; D

ata

in a

Rain

bow

Piscataw

ayN

JIE

EE

Press

2000 (ISB

N 0780353994)

3.0

LO

W-S

PE

ED

NE

TW

OR

K T

EC

HN

OL

OG

Y

3.1 George C

. Clark

Jr. and J. Bibb C

ainE

rror-C

orre

ction C

odin

g fo

rD

igita

l Com

munica

tion

New

York

NY

Plenum

Press

1981 (ISB

N0306406152)

4.0

AT

M A

ND

BR

OA

DB

AN

D T

EC

HN

OL

OG

IES

4.1 George A

beR

esid

entia

l Bro

adband

IndianapolisIN

Cisco P

ress1997 (IS

BN

1578700205)

4.2 Uyless B

lackE

merg

ing C

om

munica

tions Te

chnolo

gie

s (Seco

nd

Editio

nU

pper Saddle R

iverNJ

Prentice H

all1997 (ISB

N0137428340)

4.3 Martin P. C

larkA

TM

Netw

orks - P

rincip

les a

nd U

seC

hichesterUK

John Wiley &

Sons

1996 (ISB

N 0471967017)

4.4 Ranier H

ändelManfred H

uber and Stefan S

chröderA

TM

Netw

orks ..

Conce

pts

Pro

toco

lsA

pplica

tions

Reading

Mass.A

ddison Wesley

1998 (ISB

N 0201178176)

4.5 David E

. McD

ysan and Darren L. S

pohnA

TM

Theory a

nd A

pplica

tion

New

YorkN

YM

cGraw

Hill1998 (IS

BN

0070453462)

4.6 Stam

atios V. Kartalopoulos

Understa

ndin

g S

ON

ET

/SD

H a

nd A

TM

Piscataw

ayN

JIE

EE

Press

1999 (ISB

N 0780347455)

4.7 Tim

othy Kw

okA

TM

: The N

ew

Para

dig

m fo

r Inte

rnetIn

tranet a

nd

Resid

entia

l Bro

adband S

ervice

s & A

pplica

tions

Upper S

addle River

NJ

Prentice H

all1998 (ISB

N 0131072447)

4.8 Byeong G

i LeeM

inho Kang and Jonghee Lee

Bro

adband

Tele

com

munica

tions Te

chnolo

gy (S

eco

nd E

ditio

n)N

orwood

MA

Artech H

ouseInc.1996 (IS

BN

0890068666)

4.9 Mark A

. Sportack

Frank C

. Pappas

Em

il Rensing

et alH

igh-

Perfo

rmance

Netw

orkin

gIndianapolis

INH

oward W

. Sam

s &C

ompany (D

ivision of Macm

illanInc.)1997 (IS

BN

1575211874)

4.10 William

Stallings

ISD

N a

nd B

roadband IS

DN

With

Fra

me R

ela

y and

AT

M (F

ourth

Editio

n)U

pper Saddle R

iverNJ

Prentice H

all1998(IS

BN

0139737448)

Data C

omm

unications & Fieldbus S

ystems

488

Page 490: Data Communication &Fieldbus Systems

5.0

TC

P/IP

AN

D T

HE

INT

ER

NE

T

5.1 Paul A

lbitz and Cricket Liu

DN

S a

nd B

IND

SebastopolC

AO

’Reilly &

Associates

Inc.1998 (ISB

N 1565925122)

5.2 David A

ngell and Brent H

eslopT

he In

tern

et B

usin

ess C

om

panio

nR

eadingM

ass.Addison W

esley1995 (IS

BN

0201408503)

5.3 Robin B

urkM

artin Bligh

Thom

as Leeet al

TC

P/IP

Blu

eprin

tsIndianapolis

INH

oward W

. Sam

s & C

ompany (D

ivision of Macm

illanInc.)1997 (IS

BN

0672310554)

5.4 Douglas C

omer

Inte

rnetw

orkin

g W

ith T

CP

/IP - P

rincip

les

Pro

toco

lsand A

rchite

cture

; Volu

me I (F

ourth

Editio

n)

Volu

me II (T

hird

Editio

n)

and V

olu

me IIIU

pper Saddle R

iverNJ

Prentice H

all2000/1998/1997 (V

ol I: ISB

N 0130183806; V

ol II: ISB

N 0139736436;

Vol III: IS

BN

0136467146)

5.5 Jill H. E

llsworth and M

atthew V. E

llsworth

Marke

ting o

n th

e In

tern

et

(Seco

nd E

ditio

n)N

ew Y

orkN

YJohn W

iley & S

onsInc.1997 (IS

BN

0471165042)

5.6 Sidnie F

eitT

CP

/IP - A

rchite

cture

Pro

toco

ls and Im

ple

menta

tion W

ithIP

v6 a

nd IP

Secu

rityN

ew Y

orkN

YM

cGraw

Hill1998 (IS

BN

0070220697)

5.7 Steve G

uengerich et alB

uild

ing T

he C

orp

ora

te In

tranetN

ew Y

orkN

YJohn W

iley & S

ons1997 (IS

BN

047116268X

)

5.8 Brent H

eslopH

TM

L P

ublish

ing O

n T

he In

tern

et (S

eco

nd E

ditio

n)T

heC

oriolis Group

1998 (ISB

N 1566046254)

5.9 Melanie H

illsIn

tranet B

usin

ess S

trate

gie

sN

ew Y

orkN

YJohn W

iley&

Sons

1997 (ISB

N 0471

163740)

5.10 Christian H

uitema

Routin

g in

the In

tern

et (S

eco

nd E

ditio

n)U

pperS

addle RiverN

JP

rentice Hall2000 (IS

BN

0130226475)

5.11 Craig H

untT

CP

/IP N

etw

ork A

dm

inistra

tion (S

eco

nd E

ditio

n)

SebastopolC

AO

’Reilly &

Associates

Inc.1998 (ISB

N 1565923227)

5.12 Donald C

. LeeE

nhance

d IP

Service

s for C

isco N

etw

orks

IndianapolisIN

Cisco P

ress2000 (IS

BN

157870247X)

5.13 Radia P

erlman

Inte

rconnectio

ns: B

ridges

Route

rsS

witch

es a

nd

Inte

rnetw

orkin

g P

roto

cols

Reading

Mass

Addison-W

esley1999

(ISB

N 0201634461)

5.14 Michael S

antifallerT

CP

/IP a

nd O

NC

/NF

S - In

terw

orkin

g in

a U

NIX

Enviro

nm

entA

ddison Wesley

1995 (ISB

N 0201422751)

5.15 William

Stallings

Hig

h-S

peed N

etw

orks; T

CP

/IP a

nd A

TM

Desig

nP

rincip

les

Upper S

addle RiverN

JP

rentice Hall1998 (IS

BN

0135259657)

5.16 W. R

ichard Stevens

TC

P/IP

Illustra

ted

Volu

me 1

Reading

Mass.

Addison W

esley1994 (IS

BN

0201633469)

5.17 Stephen A

. Thom

asH

TT

P E

ssentia

ls; Pro

toco

ls for S

ecu

reS

cala

ble

Web S

ites

New

York

NY

John Wiley &

Sons

2001 (ISB

N0471398233)

5.18 Kevin W

ashburn and Jim E

vansT

CP

/IP; R

unnin

g a

Succe

ssful

Netw

ork (S

eco

nd E

ditio

n)H

arlowU

KA

ddison Wesley Longm

an Ltd.1996 (IS

BN

0201877112)

5.19 Robert W

rightIP

Routin

g P

rimerIndianapolis

INC

isco Press

1998(IS

BN

1578701082)

6.0

TH

E W

EB

AN

D R

EL

AT

ED

TO

PIC

S

6.1 Jennifer Niederst and R

ichard Kom

anW

eb D

esig

n in

a N

utsh

ell: A

Deskto

p Q

uick R

efe

rence

SebastopolC

AO

’Reilly &

Associates

Inc.1999 (IS

BN

1565925157)

7.0

EM

ER

GE

NT

AN

D E

ME

RG

ING

ICA

TO

PIC

S

7.1 Christian H

uitema

IPv6

: The N

ew

INte

rnet P

roto

colU

pper Saddle

RiverN

JP

rentice Hall1998 (IS

BN

0138505055)

7.2 Christopher Y. M

etzIP

Sw

itchin

g P

roto

cols a

nd A

rchite

cture

sN

ewYork

NY

McG

raw H

ill1998 (ISB

N 0070419531)

7.3 Ivan Pepelnjak and Jim

Guichard

MP

LS

and V

PN

Arch

itectu

res

IndianapolisIN

Cisco P

ress2001 (IS

BN

1587050021)

7.4 Stephen A

. Thom

asIP

ng a

nd th

e T

CP

/IP P

roto

cols

New

York

NY

John Wiley &

Sons

1996 (ISB

N 0471

130885)

Data C

omm

unications & Fieldbus S

ystems

489

Page 491: Data Communication &Fieldbus Systems

8.0

LO

CA

L &

ME

TR

OP

OL

ITAN

AR

EA

NE

TW

OR

KS

8.1 Dim

itris N. C

horafasLoca

l Are

a N

etw

ork R

efe

rence

(Seco

nd E

ditio

n)

New

YorkN

YM

cGraw

Hill1989 (IS

BN

0070108897)

8.2 Gilbert H

eldE

thern

et N

etw

orks; D

esig

nIm

ple

menta

tion

Opera

tion &

Managem

ent (T

hird

Editio

n)N

ew Y

orkN

YJohn W

iley & S

ons1998

(ISB

N 0471253103)

8.3 Neil Jenkins and S

tan Schatt

Understa

ndin

g L

oca

l Are

a N

etw

orks

(Fifth

Editio

n)Indianapolis

INH

oward W

. Sam

s & C

ompany (D

ivisionof M

acmillan

Inc.)1995 (ISB

N 0672308401)

8.4 Thom

as W. M

adronLA

NS

- Applica

tions o

f IEE

E/A

NS

I 802

Sta

ndard

sN

ew Y

orkN

YJohn W

iley & S

ons1989 (IS

BN

0471620491)

8.5 James M

artinK

athleen K. C

hapman and Joe Leben

Loca

l Are

aN

etw

orks - A

rchite

cture

s and Im

ple

menta

tions (S

eco

nd E

ditio

n)U

pperS

addle RiverN

JP

rentice Hall1989 (IS

BN

0135330351)

8.6 Wendy M

ichaelWilliam

Cronin Jr. and K

arl Pieper

FD

DI: A

nIn

troductio

n to

Fib

er D

istribute

d D

ata

Inte

rface

Burlington

MA

Digital

Press

1993 (ISB

N 1555580939)

8.7 Martin A

. Nem

zowF

ast E

thern

et Im

ple

menta

tion a

nd M

igra

tion

Solu

tions

New

York

NY

McG

raw H

ill1997 (ISB

N 0070463859)

9.0

CL

IEN

T / S

ER

VE

R C

OM

PU

TIN

G S

YS

TE

MS

9.1 Alex B

ersonC

lient/S

erve

r Arch

itectu

re (S

eco

nd E

ditio

n)N

ew Y

orkN

YM

cGraw

Hill1996 (IS

BN

0070056641)

9.2 D. T

ravis Dew

ireS

eco

nd G

enera

tion C

lient/S

erve

r Com

putin

gN

ewYork

NY

McG

raw H

ill1997 (ISB

N 0070167362)

9.3 Joel P. Kanter

Understa

ndin

g T

hin

-Clie

nt/S

erve

r Com

putin

gR

edmond

WA

Microsoft P

ress1998 (IS

BN

1572317442)

9.4 Robert O

rfaliDan H

arkey and Jeri Edw

ardsE

ssentia

l Clie

nt/S

erve

rS

urviva

l Guid

e (T

hird

Editio

n)N

ew Y

orkN

YJohn W

iley & S

ons1999 (IS

BN

0471316156)

9.5 Paul E

. Renaud

Intro

ductio

n to

Clie

nt/S

erve

r Syste

ms: A

Pra

ctical

Guid

e fo

r Syste

ms P

rofe

ssionals

New

York

NY

John Wiley &

Sons

1996 (ISB

N 0471133337)

9.6 Am

jad Um

arO

bje

ct-Orie

nte

d C

lient/S

erve

r Inte

rnet E

nviro

nm

ents

Upper S

addle RiverN

YP

rentice Hall1997 (IS

BN

0133755444)

10

.0 W

IRE

LE

SS

AN

D M

OB

ILE

CO

MP

UT

ING

10.1 Ira Brodsky

Wire

less C

om

putin

g: A

Manager’s G

uid

e to

Wire

less

Netw

orkin

gN

ew Y

orkN

YV

an Nostrand R

einhold1997 (IS

BN

0442019122)

10.2 Editors

Officia

l Wire

less A

pplica

tion P

roto

colN

ew Y

orkN

YJohn

Wiley &

Sons

1999 (ISB

N 0471327557)

10.3 Vijay K

. Garg and Joseph E

. Wilkes

Prin

ciple

s and A

pplica

tions o

fG

SM

Upper S

addle RiverN

YP

rentice Hall1999 (IS

BN

0139491244)

10.4 Jim G

eierW

irele

ss LA

Ns; Im

ple

mentin

g In

tero

pera

ble

Netw

orks

New

YorkN

YM

acmillan T

echnical Publishing

1999 (ISB

N 1578700817)

10.5 Lawrence H

arteS

teve Prokup and R

ichard LevineC

ellu

lar a

nd P

CS

;T

he B

ig P

icture

New

York

NY

McG

raw H

ill1997 (ISB

N 0070269440)

10.6 Nathan J. M

ullerM

obile

Tele

com

munica

tions F

actb

ook

New

York

NY

McG

raw H

ill1998 (ISB

N 0070444617)

10.7 Jochen Schiller

Mobile

Com

munica

tions

Harlow

UK

Addison W

esleyLongm

an Ltd.2000 (ISB

N 0201398362)

10.8 James D

. Solom

onM

obile

IP; T

he In

tern

et U

nplu

gged

Upper S

addleR

iverNY

Prentice H

all1998 (ISB

N 0138562466)

10.9 Mark S

. TaylorWilliam

Waung and M

ohsen Banan

Inte

rnetw

ork

Mobility; T

he C

DP

D A

ppro

ach

Upper S

addle RiverN

YP

rentice Hall

1997 (ISB

N 0132096935)

10.10E

llen Kayata W

eselW

irele

ss Multim

edia

Com

munica

tions; N

etw

orkin

gV

ideo

Voice

and D

ata

Reading

Mass.A

ddison Wesley

1997 (ISB

N0201633949)

Data C

omm

unications & Fieldbus S

ystems

490

Page 492: Data Communication &Fieldbus Systems

11

.0 V

OIC

E O

VE

R IP

AN

D R

EA

L-T

IME

SE

RV

ICE

S

11.1 Uyless B

lackV

oice

Ove

r IPU

pper Saddle R

iverNJ

Prentice H

all2000 (IS

BN

0130224634)

11.2 Jonathan Davidson

Voice

Ove

r IP F

undam

enta

lsIndianapolis

INC

isco Press

2000 (ISB

N 1578701686)

11.3 Bill D

ouskalisIP

Tele

phony

Upper S

addle RiverN

YP

rentice Hall

2000 (ISB

N 0130141186)

11.4 Oliver H

ersentDavid G

urle and Jean-Pierre P

etitIP

Tele

phony;

Packe

t-base

d M

ultim

edia

Com

munica

tions S

ystem

sH

arlowU

KA

ddison Wesley Longm

an Ltd.2000 (ISB

N 0201619105)

11.5 Daniel M

inoli and Em

ma M

inoliD

elive

ring V

oice

Ove

r IP N

etw

orks

New

YorkN

YJohn W

iley & S

ons1998 (IS

BN

0471254827)

12

.0 S

EC

UR

ITY

TO

PIC

S

12.1 D. B

rent Chapm

an and Elizabeth D

. Zw

ickyB

uild

ing In

tern

et F

irew

alls

SebastopolC

AO

’Reilly &

Associates

Inc.1995 (ISB

N 1565912400)

12.2 William

R. C

heswick &

Steven M

. Bellovin

Fire

walls a

nd In

tern

et

Secu

rity; Repellin

g th

e W

ily Hacke

rReading

Mass.A

ddison Wesley

2001 (ISB

N 020163466X

)

12.3 Sim

son Garfinkel

PG

P: P

retty G

ood P

rivacy

SebastopolC

AO

’Reilly

& A

ssociatesInc.1995 (IS

BN

1565920988)

12.4 Sim

son Garfinkel w

ith Gene S

paffordW

eb S

ecu

rity & C

om

merce

SebastopolC

AO

’Reilly &

Associates

Inc.1997 (ISB

N 1565922697)

12.5 Merike K

aeoD

esig

nin

g N

etw

ork S

ecu

rityIndianapolis

INC

iscoP

ress1999 (IS

BN

1578700434)

12.6 Charlie K

aufman

Radia P

erlman and M

ike Spencer

Netw

ork S

ecu

rity;P

rivate

Com

munica

tion in

a P

ublic W

orld

Upper S

addle RiverN

YP

rentice Hall1995 (IS

BN

0130614661)

12.7 Thom

as W. M

adronN

etw

ork S

ecu

rity In T

he 9

0’s - Issu

es A

nd

Solu

tions F

or M

anagers

New

York

NY

John Wiley &

Sons

1992(IS

BN

0471547778)

12.8 Deborah R

ussell and G.T. G

angemi S

r.C

om

pute

r Secu

rity Basics

SebastopolC

AO

’Reilly &

Associates

Inc.1992 (ISB

N 0937175714)

13

.0 M

ISC

EL

LA

NE

OU

S A

ND

RE

LA

TE

D T

OP

ICS

13.1 Paul W

. Abraham

s and Bruce A

. LarsonU

nix fo

r the Im

patie

nt

(Seco

nd E

ditio

n)R

eadingM

assA

ddison-Wesley

1996 (ISB

N0201823764)

13.2 Michael H

amm

er and James C

hampy

Reengin

eerin

g T

he

Corp

ora

tion; A

Manife

sto fo

r Busin

ess R

evo

lutio

nN

ew Y

orkN

YH

arper Collins P

ublishers1993 (IS

BN

088730687X)

13.3 Allan Leinw

and and Karen F

ang Conroy

Netw

ork M

anagem

ent - A

Pra

ctical P

ersp

ective

(Seco

nd E

ditio

n)R

eadingM

ass.Addison

Wesley

1996 (ISB

N 0201609991)

13.4 Kornel Terplan

Com

munica

tion N

etw

orks M

anagem

ent (S

eco

nd

Editio

n)U

pper Saddle R

iverNJ

Prentice H

all1991 (ISB

N0131564498)

13.5 Donald A

. Waterm

anA

Guid

e to

Exp

ert S

ystem

sR

eadingM

ass.A

ddison Wesley

1986 (ISB

N 0201083132)

13.6 Chuck H

utchinsonJoel K

leinman and D

ean Straw

(Editors)

AR

RL

Handbook fo

r Radio

Am

ate

urs

2001

New

ingtonC

TT

he Am

ericanR

adio Relay League

2001 (ISB

N 0872591867)

14

.0 L

IGH

TE

R R

EA

DIN

G O

N R

EL

AT

ED

SU

BJ

EC

TS

14.1 Tim

Berners-Lee

Weavin

g T

he W

eb; T

he O

rigin

al D

esig

n a

nd U

ltimate

Destin

y of T

he W

orld

Wid

e W

eb

New

York

NY

.Harper C

ollinsP

ublishers2000 (IS

BN

006251587X)

14.2 George G

ilderTe

leco

sm: H

ow

Infin

ite B

andw

idth

Will R

evo

lutio

nize

Our W

orld

New

York

NY

.Free P

ress Division of S

imon &

Schuster

2000 (ISB

N 0684609303)

14.3 Robert W

. LuckyS

ilicon D

ream

s: Info

rmatio

nM

an

and M

ach

ine

New

YorkN

YS

t. Martin’s P

ress1991 (IS

BN

031205517X)

14.4 Cliff S

tollT

he C

ucko

o’s E

gg; T

rackin

g a

Spy T

hro

ugh th

e M

aze

of

Com

pute

r Esp

ionage

New

York

NY

.Pocket B

ooks Division of S

imon

& S

chusterInc.1989 (ISB

N 074341

1463)

Data C

omm

unications & Fieldbus S

ystems

491

Page 493: Data Communication &Fieldbus Systems

15

.0 M

AG

AZ

INE

SJ

OU

RN

AL

S A

ND

PE

RIO

DIC

AL

S

15.1B

usin

ess C

om

munica

tions R

evie

w; P

ublished monthly by B

CR

Enterprises Inc.999 O

akmont P

laza Drive

Suite 2000

Westm

ontIL60559-5512

US

A. (S

ubscription rate: $45.00 per year US

A)

(ww

w.bcr.org)

15.2N

etw

ork M

agazin

e; Published m

onthly by CM

P(w

ww

.networkm

agazine.com) (Toll free telephone 800-577-5356)

(Subscriptions offered at no charge to "qualified" individuals.)

15.3IE

EE

Com

munica

tions M

agazin

eP

ublished monthly by the IE

EE

345E

ast 47th. StreetN

ew Y

orkN

Y 10017-2394

US

A. (S

ubscription rateis included in IE

EE

Com

munications S

ociety Mem

bership dues. See

note following) (w

ww

.comsoc.org)

15.4IE

EE

Netw

ork M

agazin

eP

ublished Bi-m

onthly (6 issues annually) bythe IE

EE

345 East 47th. S

treetNew

York

NY

10017-2394U

SA

.(S

ubscription rate is $13.00in addition to IE

EE

Com

munications

Society M

embership dues. S

ee note following) (w

ww

.comsoc.org)

15.5P

acke

t; Published quarterly by C

isco System

sand distributed free of

charge to users of Cisco products. T

he on-line version is available atw

ww

.cisco.com/go/packet

15.6A

lcate

l Tele

com

munica

tions R

evie

w; P

ublished quarterly by Alcatel

and distributed free of charge to people "who qualify" under term

s ofA

lcatel’s distribution policy. Subscription inform

ation is available atw

ww

.europe.alcatel.fr/

15.7E

ricsson R

evie

w; P

ublished quarterly by Ericsson

and distributed freeof charge. S

ubscription information and an on-line version are

available at ww

w.ericsson.com

/review

15.8N

etw

ork W

orld; P

ublished weekly by N

etwork W

orldInc.161

Worcester R

oadF

ramingham

Mass

01701-9172U

SA

. (Telephone

508-820-7444) (Subscriptions offered at no charge to "qualified"

individuals resident in the US

A and C

anadaup to $300.00 per year in

other countries.) (ww

w.netw

orkworld.com

)

15.9In

tern

et W

eek; P

ublished weekly by C

MP

Media Inc.600 C

omm

unityD

riveM

anhassetNY

11030

US

A. (T

elephone 847-647-6834)(S

ubscriptions offered at no charge to "qualified" individuals resident inthe U

SA

and Canada

up to $352.00 per year in other countries.)(w

ww

.internetweek.com

)

No

tes:

IEE

E associate m

embership is available to everyone and involves an annual

fee of approximately $100.00

depending on small variations due to

state/country of residence. Mem

bership includes a subscription toIE

EE

Spectru

mm

agazine. Inquiries regarding mem

bershipother publications and

the IEE

E’s extensive and highly recom

mended list of books

tutorial andcollected reprint item

sdirect com

munication to IE

EE

Service C

enter445H

oes LaneP

iscataway

NJ 08854-4150

US

A (T

elephone: 908-981-0060).(w

ww

.ieee.org)

AC

M associate m

embership is available to everyone and involves an annual

fee of $95and includes a subscription to

Com

munica

tions o

f the A

CM

.Inquiries should be directed to A

CM

1515 Broadw

ayN

ew Y

orkN

Y 10036-

5701U

SA

. (Telephone: 800-342-6626). (w

ww

.acm.org)

Data C

omm

unications & Fieldbus S

ystems

492