datamining pres
Embed Size (px)
TRANSCRIPT
-
7/29/2019 Datamining Pres
1/40
1
Modeling Condition And Performance
Of Mining Equipment
Tad S. Golosinski and Hui Hu
Mining Engineering
University of
Missouri-Rolla
-
7/29/2019 Datamining Pres
2/40
2
Condition and Performance Monitoring
Systems
Machine health monitoring
Allows for quick diagnostics of problems Payload and productivity
Provides management with machine and fleetperformance data
Warning systemAlerts operator of problems, reducing the risk
of catastrophic failure
-
7/29/2019 Datamining Pres
3/40
3
CATs VIMS(Vital Information Management System)
Collects / processesinformation on majormachine components
Engine control Transmission/chassis
control
Braking control
Payload measurementsystem
Installed on Off-highway trucks
785, 789, 793, 797
Hydraulic shovels 5130, 5230 Wheel loaders
994, 992G (optional)
-
7/29/2019 Datamining Pres
4/40
4
Other, Similar Systems
Cummins CENSE (Engine Module)
Euclid-Hitachi
Contronics & Haultronics Komatsu
VHMS (Vehicle Health Monitoring System) LeTourneau
LINCS (LeTourneau Integrated Network ControlSystem)
-
7/29/2019 Datamining Pres
5/40
5
Round Mountain Gold Mine
Truck Fleet17 CAT 785 (150t)
11 CAT 789B (190t)PSA
(Product Support
Agreement)CATdealer guarantees88% availability
-
7/29/2019 Datamining Pres
6/40
6
VIMS in RMG Mine
Average availability is 93%
over 70,000 operating hours
VIMS used to help withpreventive maintenance
Diagnostics after engine failure
Haul road condition assessment Other
Holmes Safety Association Bulletin 1998
-
7/29/2019 Datamining Pres
7/40
7
CAT MineStar
CAT MineStar - Integrates
Machine Tracking System(GPS)
Computer Aided Earthmoving System(CAES)
Fleet scheduling System(FleetCommander)
VIMS
-
7/29/2019 Datamining Pres
8/40
8
Cummins Mining Gateway
CumminsEngine
Base
Station
RF Receiver Modem
Modem
CENSEDatabaseMiningGateway.com
-
7/29/2019 Datamining Pres
9/40
9
VIMS Data & Information Flow
VIMS Data
Warehouse
DataExtract
DataCleanupDataLoad
Data Mining
Tools
Information
Extraction
InformationApply
MineSite 1
Mine
Site 2
MineSite 3
VIMSLegacyDatabase
-
7/29/2019 Datamining Pres
10/40
10
Earlier Research:Data Mining of VIMS
Kaan Atamantried modeling using: Major Factor Analysis
Linear Regression AnalysisAll this on datalogger data Edwin Madibatried modeling using:
Data formatting and transferring
VIMS events associationAll this on datalogger and event data
-
7/29/2019 Datamining Pres
11/40
11
Research Objectives
Build the VIMS data warehouse to
facilitate the data mining
Develop the data mining application forknowledge discovery
Build the predictive models for prediction
of equipment condition and performance
-
7/29/2019 Datamining Pres
12/40
12
Data Mining
Interactions
ResultInterpretation
Data
Preparation
Data
Acquisition
-
7/29/2019 Datamining Pres
13/40
13
VIMS Features
Sensors&ControlsMonitor&Store
Event list Event recorder Data logger Trends Cumulative data Histograms Payloads
Wireless Link
Maintenance
Management
Download
Operator
VIMS wireless
-
7/29/2019 Datamining Pres
14/40
14
Data Source
-
7/29/2019 Datamining Pres
15/40
15
VIMS Statistical Data Warehouse
Minimum Maximum Average Data Range Variance
Regression Intercept Regression Slope Regression SYY Standard Deviation
EVENT ID TC_OUT_TEMP_AVG TC_OUT_TEMP_MAX TC_OUT_TEMP_MIN TC_OUT_TEMP_RANGE
0_6 70.35 73 65 8
0_7 64.95 66 64 2
0_8 65.67 66 65 1
0_9 66.30 67 66 1
767_1 80.00 80 80 0
767_2 80.37 81 80 1
767_3 80.95 81 80 1
767_4 81.32 82 81 1
767_5 81.83 82 81 1
767_6 83.43 87 82 5
1-3 minute interval statistical data
-
7/29/2019 Datamining Pres
16/40
16
VIMS Data Description
Six CAT 789B trucks
300 MB of VIMS data
79 High Engine Speed events
One-minute data statistics
Dataset Count of Record
Training Set 1870 86.4%Test set 1 (#1) 98
Test set 2 (#2) 19613.6%
Total 2164
-
7/29/2019 Datamining Pres
17/40
17
SPRINT -A Decision Tree Algorithm
IBM Almaden Research Center
GINI index for the split point
Strictly binary tree
Built-in v-fold cross validation
21)( jpsgini
)()()( 22
11 sgini
n
nsgini
n
nsginisplit
-
7/29/2019 Datamining Pres
18/40
18
-
7/29/2019 Datamining Pres
19/40
19
00000654321000000
High Engine Speed
Snapshot
Normal Engine Speed Normal Engine Speed
High Eng
767_1 767_2
Eng_1 Eng_2Other Other OtherOther
VIMS
Data
Predicted
Label
Event_ID
VIMS EVENT PREDICTION
-
7/29/2019 Datamining Pres
20/40
20
One-Minute
decision tree
-
7/29/2019 Datamining Pres
21/40
21
Total Errors = 120 (6.734%)
Predicted Class --> | Other | Eng1 | Eng3 | Eng2 | Eng4 | Eng6 | Eng5 |
----------------------------------------------------------------------------------------------------------------Other | 1331 | 18 | 9 | 5 | 16 | 6 | 1 | total = 1386
Eng1 | 0 | 62 | 1 | 3 | 0 | 0 | 0 | total = 66
Eng3 | 0 | 11 | 51 | 2 | 2 | 1 | 0 | total = 67
Eng2 | 0 | 12 | 8 | 38 | 7 | 0 | 0 | total = 65
Eng4 | 0 | 3 | 7 | 2 | 55 | 0 | 1 | total = 68
Eng6 | 0 | 0 | 0 | 1 | 0 | 61 | 4 | total = 66
Eng5 | 0 | 0 | 0 | 0 | 0 | 0 | 64 | total = 64
--------------------------------------------------------------------------------------------------------------
1331 | 106 | 76 | 51 | 80 | 68 | 70 | total = 1782
Decision Tree: Training on One-Minute Data
-
7/29/2019 Datamining Pres
22/40
22
Total Errors = 24 (24%)
Predicted Class --> | Other | Eng1 | Eng3 | Eng2 | Eng4 | Eng6 | Eng5 |
-----------------------------------------------------------------------------------------------------------
Other | 59 | 3 | 0 | 2 | 3 | 0 | 1 | total = 68
Eng1 | 4 | 1 | 0 | 1 | 0 | 0 | 0 | total = 6
Eng3 | 0 | 3 | 1 | 0 | 1 | 0 | 0 | total = 5
Eng2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | total = 4
Eng4 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | total = 4
Eng6 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | total = 7
Eng5 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | total = 6
-----------------------------------------------------------------------------------------------------------
65 | 9 | 2 | 5 | 5 | 7 | 7 | total = 100
Decision Tree: Test#1 on One-Minute Data
-
7/29/2019 Datamining Pres
23/40
23
Decision Tree: Test#2 on One-Minute Data
TotalErrors = 35 (17.86%)
Predicted Class --> | Other | Eng1 | Eng3 | Eng2 | Eng4 | Eng6 | Eng5 |
--------------------------------------------------------------------------------------------------------
Other | 141 | 9 | 2 | 4 | 4 | 0 | 0 | total = 160
Eng1 | 2 | 2 | 1 | 1 | 0 | 0 | 0 | total = 6
Eng3 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | total = 6
Eng2 | 2 | 1 | 2 | 1 | 0 | 0 | 0 | total = 6
Eng4 | 1 | 0 | 1 | 1 | 3 | 0 | 0 | total = 6
Eng6 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | total = 6
Eng5 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | total = 6
---------------------------------------------------------------------------------------------------------
148 | 13 | 8 | 7 | 8 | 6 | 6 | total = 196
-
7/29/2019 Datamining Pres
24/40
24
Two-Minute
decision tree
-
7/29/2019 Datamining Pres
25/40
25
Total Errors = 51 (5.743%)
Predicted Class --> | OTHER | ENG1 | ENG2 | ENG3 |
---------------------------------------------------------------------
OTHER | 657 | 6 | 19 | 3 | total = 685
ENG1 | 0 | 62 | 10 | 0 | total = 72
ENG2 | 0 | 13 | 54 | 0 | total = 67
ENG3 | 0 | 0 | 0 | 64 | total = 64
---------------------------------------------------------------------
657 | 81 | 83 | 67 | total = 888
Decision TreeTraining on Two-Minute Data Sets
-
7/29/2019 Datamining Pres
26/40
26
Total Errors = 14 (29.79%)
Predicted Class --> | OTHER | ENG1 | ENG2 | ENG3 |
---------------------------------------------------------------------
OTHER | 28 | 5 | 4 | 1 | total = 38
ENG1 | 1 | 0 | 0 | 0 | total = 1
ENG2 | 2 | 1 | 1 | 0 | total = 4
ENG3 | 0 | 0 | 0 | 4 | total = 4
---------------------------------------------------------------------
31 | 6 | 5 | 5 | total = 47
Decision TreeTest #1 on Two-Minute Data
-
7/29/2019 Datamining Pres
27/40
27
Total Errors = 15 (15.31%)
Predicted Class --> | OTHER | ENG1 | ENG2 | ENG3 |
---------------------------------------------------------------------
OTHER | 71 | 8 | 1 | 0 | total = 80
ENG1 | 3 | 3 | 0 | 0 | total = 6
ENG2 | 0 | 3 | 3 | 0 | total = 6
ENG3 | 0 | 0 | 0 | 6 | total = 6
---------------------------------------------------------------------
74 | 14 | 4 | 6 | total = 98
Decision TreeTest #2 on Two-Minute Data
-
7/29/2019 Datamining Pres
28/40
28
Three-Minute
decision tree
-
7/29/2019 Datamining Pres
29/40
29
Total Errors = 28 (4.878%)
Predicted Class --> | OTHER | ENG1 | ENG2 |
----------------------------------------------------
OTHER | 411 | 23 | 4 | total = 438
ENG1 | 1 | 65 | 0 | total = 66
ENG2 | 0 | 0 | 70 | total = 70
----------------------------------------------------
412 | 88 | 74 | total = 574
Decision TreeTraining on Three-Minute Data
-
7/29/2019 Datamining Pres
30/40
30
Total Errors = 12 (19.05%)
Predicted Class --> | OTHER | ENG1 | ENG2 |
----------------------------------------------------
OTHER | 42 | 9 | 0 | total = 51
ENG1 | 3 | 5 | 0 | total = 8
ENG2 | 0 | 0 | 4 | total = 4
----------------------------------------------------
45 | 14 | 4 | total = 63
Decision TreeTest #1 on Three-Minute Data
-
7/29/2019 Datamining Pres
31/40
31
Decision TreeTest #2 on Three-Minute Data
Total Errors = 9 (14.06%)
Predicted Class --> | OTHER | ENG1 | ENG2 |----------------------------------------------------
OTHER | 47 | 5 | 0 | total = 52
ENG1 | 4 | 2 | 0 | total = 6
ENG2 | 0 | 0 | 6 | total = 6----------------------------------------------------
51 | 7 | 6 | total = 64
-
7/29/2019 Datamining Pres
32/40
32
Decision Tree Summary
One-Minute model needs more complex treestructure
One-Minute model gives low accuracy of
predictions Three-Minute decision tree model gives
reasonable accuracy of predictions Based on test #1
Other - 13% error rate Eng1 - 50% error rate Eng2 0 error rate
Other approach?
-
7/29/2019 Datamining Pres
33/40
33
Backpropagation
A Neural Network Classification Algorithm
Input Hidden
Layer
Out
Some choices for F(z):
f(z) = 1 / [1+e-z] (sigmoid)
f(z) = (1-e-2z) / (1+e-2z) (tanh)
Characteristic: Each output
corresponds to a possible classification.
f(z)
x1
x2
x3w3
w2
w1
Node Detail
z = Siwixi
Node
-
7/29/2019 Datamining Pres
34/40
34
mk kk
ytE1
2)(
2
1min
mk
kk ytE1
2)(
2
1
yk (output) is a function ofthe weights wj,k.tk is the true value.
SSQ Error Function
Freeman & Skapura, Neural Networks,Addison Wesley, 1992
Minimize the Sum of Squares
kj ,,
,
,for W0solveand
kjW
kj
kjWE
W
EE
In the graph:
Ep is the sum ofsquares error
Ep is the gradient,(direction of maximumfunction increase)
More
-
7/29/2019 Datamining Pres
35/40
35
Neural Network Modeling Results
Three-Minute training set
-
7/29/2019 Datamining Pres
36/40
36
Neural Network Modeling Result
Three-Minute set: test #1 and #2
Test #1
Test #2
-
7/29/2019 Datamining Pres
37/40
37
NN Summary
Insufficient data for one-minute and two-
minute prediction models
Three-minute network shows betterperformance than the decision tree
model: Other - 17% error rate Eng1 - 28% error rate Eng2 - 20% error rate
-
7/29/2019 Datamining Pres
38/40
38
Conclusions
Predictive model can be built
Neural Network model is more accurate
than the Decision Tree one Based on all data Overall accuracy is not sufficient for
practical applications
More data is needed to train and test themodels
-
7/29/2019 Datamining Pres
39/40
39
References
Failure Pattern Recognition of a MiningTruck with a Decision Tree Algorithm Tad Golosinski & Hui Hu, Mineral Resources
Engineering, 2002 (?)
Intelligent Miner-Data Mining Applicationfor Modeling VIMS Condition MonitoringData Tad Golosinski and Hui Hu, ANNIE, 2001, St. Louis
Data Mining VIMS Data for Information onTruck Condition Tad Golosinski and Hui Hu, APCOM 2001, Beijing,
P.R. China
-
7/29/2019 Datamining Pres
40/40
40