datasheet - stgwa50h65dfb2 - trench gate field-stop, 650 v ... · - 209 - ns qrr reverse recovery...

15
C(2, TAB) E(3) NG1E3C2T G(1) Features Maximum junction temperature: T J = 175 °C Low V CE(sat) = 1.55 V(typ.) @ I C = 50 A Very fast and soft recovery co-packaged diode Minimized tail current Tight parameter distribution Low thermal resistance Positive V CE(sat) temperature coefficient Applications Welding Power factor correction UPS Solar inverters Chargers Description The newest IGBT 650 V HB2 series represents an evolution of the advanced proprietary trench gate field-stop structure. The performance of the HB2 series is optimized in terms of conduction, thanks to a better V CE(sat) behavior at low current values, as well as in terms of reduced switching energy. A very fast soft recovery diode is co-packaged in antiparallel with the IGBT. The result is a product specifically designed to maximize efficiency for a wide range of fast applications. Product status link STGWA50H65DFB2 Product summary Order code STGWA50H65DFB2 Marking G50H65DFB2 Package TO-247 long leads Packing Tube Trench gate field-stop, 650 V, 50 A, high-speed HB2 series IGBT in a TO247 long leads package STGWA50H65DFB2 Datasheet DS13185 - Rev 1 - December 2019 For further information contact your local STMicroelectronics sales office. www.st.com

Upload: others

Post on 05-Feb-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

  • C(2, TAB)

    E(3)NG1E3C2T

    G(1)

    Features• Maximum junction temperature: TJ = 175 °C• Low VCE(sat) = 1.55 V(typ.) @ IC = 50 A• Very fast and soft recovery co-packaged diode• Minimized tail current• Tight parameter distribution• Low thermal resistance• Positive VCE(sat) temperature coefficient

    Applications• Welding• Power factor correction• UPS• Solar inverters• Chargers

    DescriptionThe newest IGBT 650 V HB2 series represents an evolution of the advancedproprietary trench gate field-stop structure. The performance of the HB2 series isoptimized in terms of conduction, thanks to a better VCE(sat) behavior at low currentvalues, as well as in terms of reduced switching energy. A very fast soft recoverydiode is co-packaged in antiparallel with the IGBT. The result is a product specificallydesigned to maximize efficiency for a wide range of fast applications.

    Product status link

    STGWA50H65DFB2

    Product summary

    Order code STGWA50H65DFB2

    Marking G50H65DFB2

    Package TO-247 long leads

    Packing Tube

    Trench gate field-stop, 650 V, 50 A, high-speed HB2 series IGBT in a TO‑247 long leads package

    STGWA50H65DFB2

    Datasheet

    DS13185 - Rev 1 - December 2019For further information contact your local STMicroelectronics sales office.

    www.st.com

    https://www.st.com/en/product/STGWA50H65DFB2?ecmp=tt9470_gl_link_feb2019&rt=ds&id=DS13185

  • 1 Electrical ratings

    Table 1. Absolute maximum ratings

    Symbol Parameter Value Unit

    VCES Collector-emitter voltage (VGE = 0 V) 650 V

    ICContinuous collector current at TC = 25 °C 86

    AContinuous collector current at TC = 100 °C 53

    ICP (1)(2) Pulsed collector current 150

    VGEGate-emitter voltage ±20

    VTransient gate-emitter voltage (tp ≤ 10 μs) ±30

    IFContinuous forward current at TC = 25 °C 60

    AContinuous forward current at TC = 100 °C 38

    IFP(1) Pulsed forward current (tp ≤ 1 μs, TJ < 175 °C) 150

    PTOT Total power dissipation at TC = 25 °C 272 W

    TSTG Storage temperature range -55 to 150°C

    TJ Operating junction temperature range -55 to 175

    1. Defined by design, not subject to production test.2. Pulse width is limited by maximum junction temperature.

    Table 2. Thermal data

    Symbol Parameter Value Unit

    RthJCThermal resistance junction-case IGBT 0.55

    °C/WThermal resistance junction-case diode 1.14

    RthJA Thermal resistance junction-ambient 50

    STGWA50H65DFB2Electrical ratings

    DS13185 - Rev 1 page 2/15

  • 2 Electrical characteristics

    TC = 25 °C unless otherwise specified

    Table 3. Static characteristics

    Symbol Parameter Test conditions Min. Typ. Max. Unit

    V(BR)CESCollector-emitter breakdownvoltage VGE = 0 V, IC = 1 mA 650 V

    VCE(sat)Collector-emitter saturationvoltage

    VGE = 15 V, IC = 50 A 1.55 2

    V

    VGE = 15 V, IC = 50 A,

    TJ = 125 °C1.8

    VGE = 15 V, IC = 50 A,

    TJ = 175 °C1.9

    VF Forward on-voltage

    IF = 50 A 1.85 2.45

    VIF = 50 A, TJ = 125 °C 1.65

    IF = 50 A, TJ = 175 °C 1.45

    VGE(th) Gate threshold voltage VCE = VGE, IC = 1 mA 5 6 7 V

    ICES Collector cut-off current VGE = 0 V, VCE = 650 V 25 µA

    IGES Gate-emitter leakage current VCE = 0 V, VGE = ±20 V ±250 nA

    Table 4. Dynamic characteristics

    Symbol Parameter Test conditions Min. Typ. Max. Unit

    Cies Input capacitanceVCE = 25 V, f = 1 MHz,

    VGE = 0 V

    - 2928 -

    pFCoes Output capacitance - 162 -

    Cres Reverse transfer capacitance - 78 -

    Qg Total gate charge VCC = 520 V, IC = 50 A,

    VGE = 0 to 15 V

    (see Figure 28. Gate charge testcircuit)

    - 151 -

    nCQge Gate-emitter charge - 30 -

    Qgc Gate-collector charge - 63 -

    STGWA50H65DFB2Electrical characteristics

    DS13185 - Rev 1 page 3/15

  • Table 5. Switching characteristics (inductive load)

    Symbol Parameter Test conditions Min. Typ. Max. Unit

    td(on) Turn-on delay time

    VCC = 400 V, IC = 50 A,

    VGE = 15 V, RG = 4.7 Ω

    (see Figure 27. Test circuit forinductive load switching)

    - 28 - ns

    tr Current rise time - 20 - ns

    Eon(1) Turn-on switching energy - 910 - μJ

    td(off) Turn-off delay time - 115 - ns

    tf Current fall time - 40 - ns

    Eoff (2) Turn-off switching energy - 580 - µJ

    td(on) Turn-on delay time

    VCC = 400 V, IC = 50 A,

    VGE = 15 V, RG = 4.7 Ω,

    TJ = 175 °C

    (see Figure 27. Test circuit forinductive load switching)

    - 24 - ns

    tr Current rise time - 17 - ns

    Eon(1) Turn-on switching energy - 1800 - μJ

    td(off) Turn-off delay time - 135 - ns

    tf Current fall time - 90 - ns

    Eoff (2) Turn-off switching energy - 1090 - µJ

    1. Including the reverse recovery of the diode.2. Including the tail of the collector current.

    Table 6. Diode switching characteristics (inductive load)

    Symbol Parameter Test conditions Min. Typ. Max. Unit

    trr Reverse recovery time

    IF = 50 A, VR = 400 V,

    VGE = 15 V, di/dt = 1000 A/µs

    (see Figure 30. Diode reverserecovery waveform)

    - 92 - ns

    Qrr Reverse recovery charge - 673 - nC

    Irrm Reverse recovery current - 20.9 - A

    dIrr/dtPeak rate of fall of reverserecovery current during tb

    - 675 - A/µs

    Err Reverse recovery energy - 138 - µJ

    trr Reverse recovery timeIF = 50 A, VR = 400 V,

    VGE = 15 V, di/dt = 1000 A/µs,

    TJ = 175 °C

    (see Figure 30. Diode reverserecovery waveform)

    - 209 - ns

    Qrr Reverse recovery charge - 3500 - nC

    Irrm Reverse recovery current - 45.8 - A

    dIrr/dtPeak rate of fall of reverserecovery current during tb

    - 600 - A/µs

    Err Reverse recovery energy - 841 - µJ

    STGWA50H65DFB2Electrical characteristics

    DS13185 - Rev 1 page 4/15

  • 2.1 Electrical characteristics (curves)

    Figure 1. Power dissipation vs case temperature

    GADG041220191034PDT

    250

    200

    150

    100

    50

    025 75 125 175

    PTOT (W) ≥ ≤

    TC (°C)

    Figure 2. Collector current vs case temperature

    GADG041220191035CCT

    80

    60

    40

    20

    025 75 125 175

    IC (A)

    TC (°C)

    VGE ≥ 15 V, TJ ≤ 175 °C

    Figure 3. Output characteristics (TJ = 25 °C)

    GADG041220191035OC25

    125

    100

    75

    50

    25

    00 1 2 3 4 5

    IC (A)

    VCE (V)

    VGE = 9 V

    VGE = 7 V

    VGE = 11 VVGE = 13 V

    VGE = 15 V

    Figure 4. Output characteristics (TJ = 175 °C)

    GADG041220191036OC175

    125

    100

    75

    50

    25

    00 1 2 3 4 5

    IC (A)

    VCE (V)

    VGE = 9 V

    VGE = 7 V

    VGE = 11 VVGE = 13 V

    VGE = 15 V

    Figure 5. VCE(sat) vs junction temperature

    GADG041220191036VCET

    2.6

    2.3

    2.0

    1.7

    1.4

    1.1

    0.8-50 0 50 100 150

    VCE(SAT) (V)

    TJ (°C)

    IC = 25 A

    IC = 50 A

    IC = 100 A

    VGE = 15 V

    Figure 6. VCE(sat) vs collector current

    GADG041220191037VCEC

    3.2

    2.8

    2.4

    2.0

    1.6

    1.2

    0.8

    0.40 25 50 75 100 125

    VCE(SAT) (V)

    IC (A)

    VGE = 15 V

    TJ = 25 °C

    TJ = -40 °C

    TJ = 175 °C

    STGWA50H65DFB2Electrical characteristics (curves)

    DS13185 - Rev 1 page 5/15

  • Figure 7. Collector current vs switching frequency

    GADG051220191302CCS

    80

    60

    40

    20

    010 0 10 1 10 2

    IC (A)

    f (kHz)

    Rectangular current shape(duty cycle = 0.5, VCC = 400 V,RG = 4.7 Ω, VGE = 0/15 V , Tj = 175 °C

    TC = 80 °C

    TC = 100 °C

    Figure 8. Forward bias safe operating area

    IGBT061220191241FSOA

    10 2

    10 1

    10 0 10 0 10 1 10 2

    IC (A)

    VCE (V)

    tp = 1 µs

    tp = 10 µs

    tp = 100 µs

    tp = 1 msSingle pulse, TC = 25 °C,TJ ≤ 175 °C, VGE = 15 V

    Figure 9. Transfer characteristics

    GADG041220191038TCH

    125

    100

    75

    50

    25

    04 6 8 10

    IC (A)

    VGE (V)

    Tj = 175 °C

    Tj = 25 °C

    VCE = 6 V

    Figure 10. Diode VF vs forward current

    IGBT230216EWF6GDVF

    2.3

    2.0

    1.7

    1.4

    1.1

    0.820 30 40 50 60 70 80

    VF (V)

    IF (A)

    TJ = -40 °C

    TJ = 25 °C

    TJ = 175 °C

    Figure 11. Normalized VGE(th) vs junction temperature

    GADG300120191024NVGE

    1.1

    1.0

    0.9

    0.8

    0.7

    0.6-50 0 50 100 150

    VGE(th) (norm.)

    TJ (°C)

    VCE = VGEIC = 1 mA

    Figure 12. Normalized V(BR)CES vs junction temperature

    GADG300120191024NVBR

    1.08

    1.04

    1.00

    0.96

    0.92-50 0 50 100 150

    V(BR)CES (norm.)

    TJ (°C)

    IC = 1 mA

    STGWA50H65DFB2Electrical characteristics (curves)

    DS13185 - Rev 1 page 6/15

  • Figure 13. Capacitance variations

    GADG041220191039CVR

    10 3

    10 2

    10 1 10 -1 10 0 10 1 10 2

    C (pF)

    VCE (V)

    Cies

    Coesf = 1 MHz

    Cres

    Figure 14. Gate charge vs gate-emitter voltage

    GADG091220190907GCGE

    15

    12

    9

    6

    3

    00 40 80 120 160

    VGE (V)

    Qg (nC)

    VCC = 520 V, IC = 50 A, IG = 12 mA

    Figure 15. Switching energy vs collector current

    GADG051220191256SLC

    6

    5

    4

    3

    2

    1

    00 20 40 60 80 100

    E (mJ)

    IC (A)

    Etot

    Eoff

    VCC = 400 V, RG = 4.7 Ω, VGE = 15 V, TJ=175 ℃

    Eon

    Figure 16. Switching energy vs temperature

    GADG051220191257SLT

    2.5

    2.0

    1.5

    1.0

    0.5

    0.00 50 100 150

    E (mJ)

    Etot

    Eoff

    VCC = 400 V, VGE = 15 V, IC = 50 A, RG =4.7 Ω

    Eon

    TJ (°C)

    Figure 17. Switching energy vs collector emitter voltage

    GADG051220191258SLV

    4.0

    3.5

    3.0

    2.5

    2.0

    1.5

    1.0

    0.5150 250 350 450

    E (mJ)

    VCE (V)

    Etot

    Eoff

    Eon

    VCC = 400 V, VGE = 15 V, IC = 50 A, TJ = 175 °C

    RG = 4.7 Ω, VGE = 15 V, IC = 50 A, TJ = 175 °C

    Figure 18. Switching energy vs gate resistance

    GADG051220191258SLG

    4

    3

    2

    1

    00 10 20 30 40

    E (mJ)

    RG (Ω)

    Etot

    Eoff

    Eon

    VCC = 400 V, VGE = 15 V, IC = 50 A, TJ = 175 °C

    STGWA50H65DFB2Electrical characteristics (curves)

    DS13185 - Rev 1 page 7/15

  • Figure 19. Switching times vs collector current

    IGBT061220191050STC

    10 2

    10 1

    10 0 0 20 40 60 80 100

    t (ns)

    IC (A)

    tr

    td(off)

    tf

    td(on)

    Figure 20. Switching times vs gate resistance

    GADG051220191259STR

    10 2

    10 1

    10 0 0 10 20 30 40

    t (ns)

    RG (Ω)

    tf

    tr

    td(off)

    td(on)

    Figure 21. Reverse recovery current vs diode currentslope

    GADG051220191300RRC

    55

    50

    45

    40

    35

    30

    25

    200 500 1000 1500 2000 2500 3000

    Irrm (A) VCC = 400 V, VGE = 15 V, IF = 50 A, TJ = 175 °C

    di/dt(A/μs)

    Figure 22. Reverse recovery time vs diode current slope

    GADG051220191300RRT

    240

    220

    200

    1800 500 1000 1500 2000 2500 3000

    trr (ns) VCC = 400 V, VGE = 15 V, IF = 50 A, TJ = 175 °C

    di/dt(A/µs)

    Figure 23. Reverse recovery charge vs diode currentslope

    GADG051220191301RRQ

    4.0

    3.5

    3.0

    2.5

    2.00 500 1000 1500 2000 2500 3000 di/dt(A/µs)

    Qrr(μC) VCC = 400 V, VGE = 15 V, IF = 50 A, TJ = 175 °C

    Figure 24. Reverse recovery energy vs diode currentslope

    GADG051220191301RRE

    1.0

    0.8

    0.6

    0.4

    0.20 500 1000 1500 2000 2500 3000

    Err (mJ)

    di/dt(A/µs)

    VCC = 400 V, VGE = 15 V, IF = 50 A, TJ = 175 °C

    STGWA50H65DFB2Electrical characteristics (curves)

    DS13185 - Rev 1 page 8/15

  • Figure 25. Thermal impedance for IGBT

    10 10 10 10 10 tp(s)-5 -4 -3-2 -1

    10-2

    10-1

    K

    0.2

    0.05

    0.02

    0.01

    0.1

    Zth=k Rthj-cδ=tp/t

    tp

    t

    Single pulse

    δ=0.5

    ZthTO2T_B

    Figure 26. Thermal impedance for diode

    STGWA50H65DFB2Electrical characteristics (curves)

    DS13185 - Rev 1 page 9/15

  • 3 Test circuits

    Figure 27. Test circuit for inductive load switching

    A AC

    E

    G

    B

    RG+

    -

    G

    C 3.3µF1000

    µF

    L=100 µH

    VCC

    E

    D.U.T

    B

    AM01504v1

    Figure 28. Gate charge test circuit

    GADG160420181048IG

    RL

    VCC

    D.U.T.100 Ω IG = CONSTVi ≤ VGMAX

    2200 μF

    2.7 kΩ

    PW 1 kΩ

    47 kΩ

    Figure 29. Switching waveform

    AM01506v1

    90%

    10%

    90%

    10%

    VG

    VCE

    IC td(on)ton

    tr(Ion)

    td(off)

    toff

    tf

    tr(Voff)tcross

    90%

    10%

    Figure 30. Diode reverse recovery waveform

    t

    GADG180720171418SA

    10%

    VRRM

    dv/dt

    di/dt

    IRRM

    IFtrr

    ts tf

    Qrr

    IRRM

    STGWA50H65DFB2Test circuits

    DS13185 - Rev 1 page 10/15

  • 4 Package information

    In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,depending on their level of environmental compliance. ECOPACK specifications, grade definitions and productstatus are available at: www.st.com. ECOPACK is an ST trademark.

    4.1 TO-247 long leads package information

    Figure 31. TO-247 long leads package outline

    8463846_2_F

    STGWA50H65DFB2Package information

    DS13185 - Rev 1 page 11/15

    https://www.st.com/ecopackhttp://www.st.com

  • Table 7. TO-247 long leads package mechanical data

    Dim.mm

    Min. Typ. Max.

    A 4.90 5.00 5.10

    A1 2.31 2.41 2.51

    A2 1.90 2.00 2.10

    b 1.16 1.26

    b2 3.25

    b3 2.25

    c 0.59 0.66

    D 20.90 21.00 21.10

    E 15.70 15.80 15.90

    E2 4.90 5.00 5.10

    E3 2.40 2.50 2.60

    e 5.34 5.44 5.54

    L 19.80 19.92 20.10

    L1 4.30

    P 3.50 3.60 3.70

    Q 5.60 6.00

    S 6.05 6.15 6.25

    STGWA50H65DFB2TO-247 long leads package information

    DS13185 - Rev 1 page 12/15

  • Revision history

    Table 8. Document revision history

    Date Version Changes

    09-Dec-2019 1 First release.

    STGWA50H65DFB2

    DS13185 - Rev 1 page 13/15

  • Contents

    1 Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

    2 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

    2.1 Electrical characteristics (curves) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    3 Test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

    4 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

    4.1 TO-247 long leads package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

    STGWA50H65DFB2Contents

    DS13185 - Rev 1 page 14/15

  • IMPORTANT NOTICE – PLEASE READ CAREFULLY

    STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to STproducts and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. STproducts are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

    Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design ofPurchasers’ products.

    No license, express or implied, to any intellectual property right is granted by ST herein.

    Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

    ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or servicenames are the property of their respective owners.

    Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

    © 2019 STMicroelectronics – All rights reserved

    STGWA50H65DFB2

    DS13185 - Rev 1 page 15/15

    http://www.st.com/trademarks

    FeaturesApplicationsDescription1 Electrical ratings2 Electrical characteristics2.1 Electrical characteristics (curves)

    3 Test circuits4 Package information4.1 TO-247 long leads package information

    Revision history