david bennett university of notre dame for the microfun, ogle, moa and planet collaborations

17
First Orbital Parameters for a Planet Found by Microlensing the Jupiter/Saturn analog system OGLE-2006-BLG-109Lb,c David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. MicroFUN Microlensing Follow-Up Network

Upload: amandla

Post on 05-Feb-2016

39 views

Category:

Documents


0 download

DESCRIPTION

First Orbital Parameters for a Planet Found by Microlensing the Jupiter/Saturn analog system OGLE-2006-BLG-109Lb,c. MicroFUN M icrolensing F ollow- U p N etwork. David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

First Orbital Parameters for a Planet Found by Microlensing

the Jupiter/Saturn analogsystem OGLE-2006-BLG-109Lb,c

David Bennett

University of Notre Dame

for the MicroFUN, OGLE, MOA and PLANET

collaborations

David Bennett

University of Notre Dame

for the MicroFUN, OGLE, MOA and PLANET

collaborations

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

MicroFUNMicrolensing Follow-Up Network

MicroFUNMicrolensing Follow-Up Network

Page 2: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

Double-Planet Event: OGLE-2006-BLG-109•5 distinct planetary light curve features

•Source trajectory crosses long axis of planetary caustic feature

•Feature #4 requires an additional planet

•Planetary signals visible for 11 days

•Features #1 & #5 cannot simultaneously be fit without including the orbital motion of the Saturn-mass planet and the Earth

FUN, OGLE, MOA & PLANETFUN, OGLE, MOA & PLANET

Page 3: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

OGLE-2006-BLG-109 Light Curve Detail• OGLE alert on feature

#1 as a potential planetary feature

FUN (Gaudi) obtained a model approximately predicting features #3 & #5 prior to the peak

• But feature #4 was not predicted - because it is due to the Jupiter - not the Saturn

Gaudi et al (2008) published in ScienceGaudi et al (2008)

published in Science

Page 4: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

OGLE-2006-BLG-109 Light Curve Features• The basic 2-planet

nature of the event was identified during the event,

• But the final model required inclusion of orbital motion, microlensing parallax and computational improvements (by Bennett).

Page 5: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

OGLE-2006-BLG-109Lb,c Caustics Curved source trajectory due

to microlensing parallax

Feature due toJupiter

Feature due toJupiter

Caustic curves plotted at 3-day intervals

0.2% of 14-yr orbit completed during planetary event

Model includes planet-star relative velocity and acceleration

Page 6: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

Effect of Parallax & Orbital Motion• black curve is the full model• red curve: neither orbital motion nor parallax.• blue curve: orbital motion, but no parallax• green curve: constant velocity approx.• cyan curve: parallax and the constant velocity

approx.

ratio to single lenslight curve

Binary model similar to OGLE-06-109Binary model similar to OGLE-06-109

Page 7: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

Lens System Properties

• For a single lens event, 3 parameters (lens mass, distance, and velocity) are constrained by the Einstein radius crossing time, tE

• There are two ways to improve upon this with light curve data:– Determine the angular Einstein radius : E= *tE/t* = tErel

where * is the angular radius of the star and rel is the relative lens-source proper motion

– Measure the projected Einstein radius, , with the microlensing parallax effect (due to Earth’s orbital motion).

%rE

Page 8: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

Lens System Properties

• Einstein radius : E= *tE/t* and projected Einstein radius,

* = the angular radius of the star

– from the microlensing parallax effect (due to Earth’s orbital motion).

%rE

%rE

RE =EDL , so α =

%rEDL

=4GM

c2EDL

. Hence M =c2

4GE%rE

Page 9: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

OGLE-2006-BLG-109 Source Star

The model indicates that the source is much fainter than the apparent star at the position of the source. Could the brighter star be the lens star?

source from modelsource from model

Apparent source In imageApparent source In image

Page 10: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

OGLE-2006-BLG-109Lb,c Host Star

• OGLE images show that the source is offset from the bright star by 350 mas• B. Macintosh: Keck AO images resolve lens+source stars from the brighter star.• But, source+lens blend is 6 brighter than the source (from CTIO H-band light

curve), so the lens star is 5 brighter than source.– H-band observations of the light curve are critical because the lens and source and not

resolved

• Planet host (lens) star magnitude H 17.17– JHK observations will help to constrain the extinction toward the lens star

Page 11: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

Implications of Light Curve Modelcircular orbit case

• Apply lens brightness constraint: HL 17.17.

• Correcting for extinction: HL0= 16.93 0.25

– Extinction correction is based on preliminary HL-KL color

– Error bar includes both extinction and photometric uncertainties

• Lens system distance: DL= 1.49 0.13 kpc

Host star mass: M L =0.52−0.07+0.18 Me from light curve model.

Host star mass: M L =0.50 ±0.05Me from light curve and lens H-magnitude.Other parameter values:

• “Jupiter” mass: mb= 0.71 0.08 MJup semi-major axis:

• “Saturn” mass: mc= 0.27 0.03 MJup= 0.90 MSat

semi-major axis:

• “Saturn” orbital velocity vt = 9.5 0.5 km/sec

ab =2.3±0.3AU

ac =4.6 ±0.5AU

Page 12: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

Orbital Motion Modeling• 4 orbital parameters are well determined from the light

curve– 2-d positions and velocities– Slight dependence on distance to the source star when

converting to physical from Einstein Radii units

• Masses of the host star and planets are determined directly from the light curve

– So a full orbit is described by 6 parameters (3 relative positions & 3 relative velocities)

– A circular orbit is described by 5 parameters

• Models assume planetary circular motion– 2-d positions and velocities are well determined– Orbital period is constrained, but not fixed by the light curve– The orbital period parameter can be interpreted as acceleration

or 3-d Star-Saturn distance (via a = GM/r2)

• Details in Bennett et al (2009) in preparation

Page 13: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

Full Orbit Determination forOGLE-2006-BLG-109Lc

• Series of fits with fixed orbital acceleration (weight with fit 2)

• Each fit corresponds to a 1-parameter family of orbits parameterized by vz

– unless

• Assume the Jupiter orbits in the same plane and reject solutions crossing the Jupiter orbit or that are Hill-unstable

• Weight by prior probability of orbital parameters– planet is unlikely to be near

periastron if 0

1

2vx

2 + vy2( )−

GMr

> 0

Families of solutions corresponding to best models at various values of a.Families of solutions corresponding to best models at various values of a.

Page 14: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

• Full calculation using Markov chains run at fixed a.

• Include only Hill-stable orbits• preliminary results:

M LA =0.54 −0.03+0.02 M e

M Lc =0.29 −0.02+0.01 M J

M Lb =0.77 −0.04+0.02 M J

aLc =4.0 −0.7+2.3AU

aLb =2.0 −0.2+0.4 AU

inclination=62 o−6+4

=0.14 −0.10+0.13

Full Orbit Determination forOGLE-2006-BLG-109Lc

• RV follow-up w/ 30m telescope–K = 13 km/sec

• RV follow-up w/ 30m telescope–K = 13 km/sec

Page 15: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

Complication

• New models include terrestrial parallax - unlike the results presented in Gaudi et al (2008)

2 improves by 2 = 12 - so orbital parallax is “confirmed” by terrestrial parallax

• but, the best dJ > 1 models improve by 2 = 22, so they are disfavored by only 2 1

• Fortunately, these models are almost entirely inconsistent with stable, co-planar orbits

• So, the previous interpretation of a Jupiter orbiting inside a Saturn remains unchanged.

Page 16: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

Limits on Additional Planets

• Jupiter-mass planets excluded from projected separations of 0.5-8.0 AU

• Planets with the same mass as OGLE-2006-BLG-109Lc (0.27 Jupiter-masses) are excluded from projected separations of 0.8-6.6 AU

• Planets of 10 Earth-masses are excluded from projected separations of 1.8-2.8 AU, but such orbits probably aren’t stable.

Page 17: David Bennett University of Notre Dame for the MicroFUN, OGLE, MOA and PLANET collaborations

OGLE-2006-BLG-109Lb,c Summary

• 1st Jupiter+Saturn analog system• 1st planets and host star with geometrically measured

masses• 1st non-transiting, non-astrometric exoplanet with a

known orbital inclination• Probably the first microlensing planetary system with a

host star brighter than the source– ~ 5 brighter in H

• Best determined planetary parameters for a non-transiting planet (?)

• RV confirmation possible in 10yrs < t < 100 yrs– an improvement over next microlensing confirmation in ~106 yrs– hard, but easier than TPF or Darwin