day 2 part 1 dist principle

24
HV Power Seminar Nov 2009 1 Part 1 Energy Sector © Siemens AG 2008 Distance Protection for transmission lines Gustav Steynberg

Upload: stopnaggingme1

Post on 17-May-2017

241 views

Category:

Documents


0 download

TRANSCRIPT

HV Power Seminar Nov 2009 1

Part 1

Energy Sector© Siemens AG 2008

Distance Protectionfor transmission lines

Gustav Steynberg

HV Power Seminar Nov 2009 2

Localization of short-circuits by means of an impedance measurement:

� fault on the protected lineZ1

relay A

Basic principle of impedance protection

Energy SectorEnergy Automation© Siemens AG 2008

Page 2 November 09

� fault outside the protected line

selectivity

relay A

Z2

HV Power Seminar Nov 2009 3

Distance measurement (principle)

ZL = RL + j XL

ZE = RE +j XE

IL1

IL2

IL3

IE

ZL

ZE

U U U

Energy SectorEnergy Automation© Siemens AG 2008

Page 3 November 09

6 loops: 3 phase- phase loops and3 phase- ground loops

phase- phase -loop:

The same applies to the remaining loops

UL1-L2 = ZL ( IL1 - IL2)

Measured currentmeasured voltage

06.08.97dtgerdis3

UL1UL2UL3

HV Power Seminar Nov 2009 4

IL1

IL2

IL3

IE

ZL

ZE

ZL = RL + j XL

ZE = RE +j XE

Distance measurement (principle)

Energy SectorEnergy Automation© Siemens AG 2008

Page 4 November 09

phase-ground-loop: UL1 = ΙL1 · ( RL + j XL )- ΙE · ( RE +j XE)

ΙL1, ΙE measured currentUL1 measured voltage

06.08.97dtgerdis3

The same applies to the remaining loops

UL1UL2UL3

HV Power Seminar Nov 2009 5

ZL

ZLF1

ZLF2

RF RF

ZLoadDF1 F2

X

ZL

ZLF2R ZF2

Fault area

distance relayoperating characteristic

Phase - Phase Fault

Load and short-circuit impedances

Energy SectorEnergy Automation© Siemens AG 2008

Page 5 November 09

R

ZLF2

j SC1

j SC2

j L

RR

ZF1

ZF2

RR

ZLoad

ZLF1

Fault in reverse

direction Load area

Minimum Load Impedance:Minimum voltage 0,9 UnMaximum current 1,1 InMaximum angle ± 30°

Phase - Phase Fault

RR ≈ RF / 2

Phase - Earth Fault

RR ≈ RF /(1 + RE/RL)

HV Power Seminar Nov 2009 6

ISC

E

ZL

ZSC

U1= k1⋅ USC= k1⋅ ISC⋅ZSC.

ZS A B

Principle of (analog) distance relaying

Energy SectorEnergy Automation© Siemens AG 2008

Page 6 November 09

comparator

ZReplica (line replica impedance)(corresponds to the set zone reach)

U1= k1⋅ USC= k1⋅ ISC⋅ZSC.

U2=k2 ⋅ISC⋅ZReplica

Relay design:operation if

U1< U2

i.e. ZSC< ZReplica

ZReplicaX

R

Ext. fault

Internal fault

HV Power Seminar Nov 2009 7

Fourier analysis of measured values

C(k)S(k)(k) j III ⋅+=Sampled signal i(t) Processing with two

orthogonal filters

Energy SectorEnergy Automation© Siemens AG 2008

Page 7 November 09

-6,000

-4,000

-2,000

0,000

2,000

4,000

6,000

8,000

10,000

0 20 40 60 80 100

dt t sin t)( 21

360 - Ø

Ø

S ω⋅ωπ

∫ II

dt t cos t)( 1

360 - Ø

Ø

ωωπ

⋅=°

∫ II2C

HV Power Seminar Nov 2009 8

Fourier analysis: Filtering characteristics

0.6

0.8

1

0.6

0.8

1

Full cycle (20 ms at 50 Hz) Half cycle (10 ms at 50 Hz)

Energy SectorEnergy Automation© Siemens AG 2008

Page 8 November 09

0 100 200 300 400 500Hz

0.2

0.4

50 0 100 200 300 400 500Hz

0.2

0.4

50

HV Power Seminar Nov 2009 9

Discrete Fourier transform (window = 1 cycle)

)(

∑ ⋅⋅⋅=

=

1N

1n

nS i∆nωsin2 tN

I

∆∆∆∆t

i0i1 i2

iN

Energy SectorEnergy Automation© Siemens AG 2008

Page 9 November 09

=1nN

)(

∑ ⋅⋅⋅++=

=

1N

1n

nNO

C i∆tnωcos2i

2i2

NI

n0 1 2 N

0 1 2 N

3 . . . .

3 . . .

HV Power Seminar Nov 2009 10

UU tjj eUeUU ωϕ ⋅=⋅=

II tjj eIeII ωϕ ⋅=⋅=UU t⋅= ωϕ

Impedance calculation using U- and I-phasors

IUZ ϕϕϕ −=

( ) XjRjZeZZ j ⋅+=⋅+⋅=⋅= ϕϕϕ sincos

R

X

Z

Energy SectorEnergy Automation© Siemens AG 2008

Page 10 November 09

II t⋅=ωϕ0=t

( ) ( ) ( )IUIUj

j

j

I

Uj

I

Ue

I

U

eI

eU

I

UZ IU

I

U

ϕϕϕϕϕϕϕ

ϕ

−+−⋅=⋅=⋅⋅== − sincos

R X

( ) XjRjZeZZ ZZj Z ⋅+=⋅+⋅=⋅= ϕϕϕ sincos

HV Power Seminar Nov 2009 11

Distance protectionImpedance calculation using U- und I-phasors (princi ple)

{ } ( )dttuUR ∫+

⋅⋅⋅=T/2

T/20LL ωcos(t)

T1

e

{ } ( )dttuUI ∫+

⋅⋅⋅=T/2

T/20L ωsin(t)

T1

m L

{ } { }LL me UjIURU +=L

{ } ( )dttiR ∫+

⋅⋅⋅=T/2

T/20L ωcos(t)

T1

e LI

{ } ( )dttiI ∫+

⋅⋅⋅=T/2

T/20LL ωsin(t)

T1

m I

{ } { }LLL me III jIR +=

Energy SectorEnergy Automation© Siemens AG 2008

Page 11 November 09

( ) ( ) ( )[ ]UUL

)tj(ω

LL ωsinωcosU ϕϕϕ +⋅++⋅⋅=⋅= +⋅ tjtUeUtu ( ) ( ) ( )[ ]IIL)tj(ω

LL ωsinωcosI ϕϕϕ +⋅++⋅⋅=⋅= +⋅ tjte IIti

LLLLL II ⋅+⋅= jXRU

{ } { } ( ) { } { }( )LLLLLL meme II jIRjXRUjIUR +⋅+=+

{ } { } { }LLLLL mee II IXRRUR ⋅−⋅=

{ } { } { }LLLLL mem II IRRXUI ⋅+⋅=

{ } { } { } { }{ } { }2

L2

L

LLLLL

me

meem

II

II

IR

IURRUIX

+⋅−⋅=

{ } { } { } { }{ } { }2

L2

L

LLLLL

Ime

ImImee

II

II

+⋅+⋅=

R

URURR

Note: This calculation does not consider the a-periodic DC component in the measured signals

HV Power Seminar Nov 2009 12

Distance protectionFast impedance estimation using Kalman Filters

)ωt)t)ωt)t(

i cos( C

t

e - cos( B sin( A ⋅+τ−

ω⋅+⋅=

Task: Estimation of the coefficients A, B, C on ba sis of measured currents and voltages

Method: Gauß‘s Minimization of error squares:

Energy SectorEnergy Automation© Siemens AG 2008

Page 12 November 09

Method: Gauß‘s Minimization of error squares:

2

(i)(i)

k

N-ki

f - u Delta

∑=

=MIN

Delta = quality valuek = sampling numberN = length of data windowi = variable

0 dC dBdA

Delta =

HV Power Seminar Nov 2009 13

10 ms 20 ms 30 ms 40 ms

i

t

Estimator 1 (Gauss) (5 samples)

X

R

X

Z = 50%

Estimator 2 (Gauss)

Jump detector

Fault inception

0 ms

Distance protection: Adaptive measuring method

Energy SectorEnergy Automation© Siemens AG 2008

Page 13 November 09

X

R

X

R

X

R

Normal measuring step 1 (Fourier)(2x16 samples, 5 ms shifted)

Z = 80%

Z = 90%

Z = 100%

Estimator 2 (Gauss) (7 samples)

Estimatorr 3 (Gauss)(9 samples)

Estimator 4 (Gauss) (11 samples)

Estimator 5 (Gauss) (13 samples)

Normal measuring step 2 (Fourier)(2x21samples, 5 ms shifted)

As previous measurement

HV Power Seminar Nov 2009 14

Distance protection,Typical operating time characteristic

Operating time (ms)

10

15

20

25

30

Energy SectorEnergy Automation© Siemens AG 2008

Page 14 November 09

Fault location in % zone reachShort-circuit data:SIR = 26f = 50 HzFault: L1-E5 shots per fault caseFault inception: 0°... 90°

010 20 30 40 50 60 70 80 90 100

5

HV Power Seminar Nov 2009 15

RL + j XLIL1

RE + j XE

VL1 VL2 VL3

IL2

IL3

IE

Distance measurement Fault loop formulas

Relay location

Ph-Ph Ph-E

Energy SectorEnergy Automation© Siemens AG 2008

Page 15 November 09

Phase-to-Earth loop:

Phase-to-Phase loop:

15.10.97engerdis3

( ) ( )

⋅−+

⋅−⋅=

+⋅−+⋅=

E

L

ELLE

L

ELLL

EEELLLL

IX

XIjXI

R

RIRV

jXRIjXRIV

111

11

( ) ( )2121 LLLLLL IIjXRV −⋅+=−

HV Power Seminar Nov 2009 16

time

t1

t2

t3

Z1

Z2

Z3

∆t = grading time

A CB D

Graded distance zones

Energy SectorEnergy Automation© Siemens AG 2008

Page 16 November 09

D1 D2 D3

distance

A CB D

Z1 = 0,85 ZAB

Z2 = 0,85 (ZAB + 0,85 ZBC)Z3 = 0,85 (ZAB + 0,85 (ZBC + 0,85 ZCD))

Safety margin is 15 %:� line error� CT, VT error� measuring error

Grading rules:

HV Power Seminar Nov 2009 17

2nd Zone: It must initially allow the 1st zone on the neighbouring feeder(s) to clear the fault.The grading time therefore results from the addition of the following times:

� operating time of the neighbouring feeder mechanical 25 - 80 msstatic: 15 - 40digital: 15 - 30

+ circuit breaker operating time HV / EHV: 60 ms (3 cycles) / 40 ms (2 cycles) MV up to about 80 ms (4 cycles)

+ distance relay reset time mechanical: approx. 60-100 ms static: approx. 30 ms

Determination of grading times(With numerical relays 250 ms is possible)

Energy SectorEnergy Automation© Siemens AG 2008

static: approx. 30 ms digital: approx. 20 ms.

+ errors of the distance relay internal timers mechanical: 5% of the set time, minimum 60-100 msstatic: 3% of the set time, minimum 10 msdigital: 1% of the set time, minimum 10 ms

+ distance protection starting time *) mechanical: O/C starter: 10 ms, impedance starter: 25 msstatic: O/C stater: 5 ms, impedance starter: 25 msdigital: generally 15 ms

+ safety margin (ca.) grading; mechanical-mechanical: 100 msstatic/digital-mechanical or vice versa: 75 msdigital-digital or static-static 50 ms

*) only relevant if the set relay times relate to the instant of fault detection / zone pick-up. This is the case with all Siemens relays. There are other relays where the

time is adapted by software to relate to the instant of fault inception. In the latter case the starting time has to be dropped.

HV Power Seminar Nov 2009 18

ZSC

Impedance area for forward faultsX

ϕ

Fault location Where is the fault ?

Determination of fault direction

ϕSC

Current area forforward faults

ΙSC

USC

Energy SectorEnergy Automation© Siemens AG 2008

Page 18 November 09

R

Z'SC

Impedance area forreverse faults

ϕSC

current / voltage diagram impedance diagram

The impedance also shows the direction, but ....

ΙSC

Current area for reverse faults

HV Power Seminar Nov 2009 19

Why impedance measurement and directional determination separately?

line characteristic

fault with arc resistanceX

A B

Impedance measurement and directional determination

Energy SectorEnergy Automation© Siemens AG 2008

Page 19 November 09

direction may be determined together with the impedance measurementbut: problems may arise in certain cases (e.g. close-in faults)

separate directional determination required!

fault with arc resistancein forward direction

fault in forward direction

fault in reverse direction

close-in fault

R

HV Power Seminar Nov 2009 20

Alternatives for the directional measurement

Vf

~

~

~

~

~

~

~

~

~

ZlineZgrid relay

fault L1-E

Method 1 Method 2VL1

Energy SectorEnergy Automation© Siemens AG 2008

Page 20 November 09

faulty phase voltage

If

VL2

VL3

voltage memory(pre-fault voltage)

If

VL2VL3

VL1

healthy-phase voltage(phase to phase voltage)

If

Vf

VL2-L3 VL2VL3

VL1 Vf

HV Power Seminar Nov 2009 21

Directional measurementSummery of all 3 methods

uRI = uL2-L3

uf = uL1

Energy SectorEnergy Automation© Siemens AG 2008

Page 21 November 09

Distance measurement

Direction measurementwith voltage memoryDirection measurementwith unfaulted voltage

if(t)uL1

if

if

if

uL2-L3

uL1

06.08.97dtgerdis9

Measuringwindow

HV Power Seminar Nov 2009 22

X

Z1

Z2

Z4

Z1B

Z5

Line

αααα

Distance zones

Inclined with line angle ϕAngle α prevents overreach of

Z1 on faults with fault resistance that are fed from both line ends

Impedance zones of digital relays (7SA6 and 7SA52)

Energy SectorEnergy Automation© Siemens AG 2008

Page 22 November 09

R

ϕϕϕϕ LoadLoad

Z3

Fault detection

no fault detection polygon: the largest zone determines the fault detection characteristic

simple setting of load encroachment area with Rmin and ϕLoad

HV Power Seminar Nov 2009 23

0.6

0.3

grading time(s)

Ring feeder: with grading against opposite end

Energy SectorEnergy Automation© Siemens AG 2008

Page 23 November 09

The same grading from both sides

HV Power Seminar Nov 2009 24

L2

Z3

Grading in a branched radial system

Energy SectorEnergy Automation© Siemens AG 2008

Page 24 November 09

L3

L4

L1Z2

Z1

The impedances of the Z2 and Z3 must be grading wit h the shortest impedance