deep sea drilling project initial reports volume 69

15
40. PHYSICAL PROPERTIES OF SEDIMENTS OF THE COSTA RICA RIFT, DEEP SEA DRILLING PROJECT SITES 504 AND 505 1 R. H. Wilkens, 2 Department of Geological Sciences, University of Washington, Seattle, Washington and M. G. Langseth, Lamont-Doherty Geological Observatory, Palisades, New York ABSTRACT Values of physical properties measured in the upper sections of sediment cores recovered at Sites 504 and 505 exhibit a remarkable similarity. Below a depth of 145 m Site 504 sediments appear to have undergone changes which are re- flected in physical property values. This alteration may have been due to high temperatures in the sediment. In most of Site 505, and in Site 504 above 145 m, seismic velocity averages 1.51 km/s, wet bulk density 1.32 g/cm 3 , porosity 80%, and thermal conductivity 0.80% W/m °K. Below 145 m at Site 504 and 210 m at Site 505, mean density increases to 1.40 g/cm 3 , porosity decreases to 67%, seismic velocity increases to 1.53 km/s, and thermal conductivity increases to values in excess of 1.0 W/m °K. A good correlation between independent measurements of water content and thermal resistivity supports the existence of small but regular variation in the measured parameters on the scale of 10 m and less. INTRODUCTION A comprehensive program of physical-properties mea- surements was carried out on sediments recovered from Holes 504 (1°13.6'N, 83°43.9'W) and 505 (1°54.82'N, 83°47.39'W) of Leg 69. Investigated were compres- sional-wave seismic velocity, bulk density, grain den- sity, porosity and water content, thermal conductivity, and, for Hole 504 only, shear strength. Data from all measurements for Holes 504 and 505 are presented in Table 1. Comparison of data from the two sites is interesting for several reasons. Because the sites are relatively close (504 is 80 km south of 505), the sediments are very similar. Sediments recovered from both holes are main- ly carbonatic siliceous oozes with variable proportions of clay. Diagenesis is more advanced at Site 504, owing to a higher temperature gradient, which has resulted in the formation of chert near the bottom of the sediment column; this has not occurred at Site 505. Sediment re- covery down to the cherts in Hole 504 was accomplished with a new DSDP tool, the hydraulic piston corer, whereas the sediments at Hole 505 were cored in the standard fashion, by rotary drilling. At Site 504, con- ventional coring was used to recover materials below the topmost cherts, down to basaltic basement (Holes 501, 504A, and 504B). The close agreement of values measured at each site in time-stratigraphically equivalent cores demonstrates that, with careful sample selection, the effects of drill- ing disturbance on physical-properties measurements is minimal. In cores from deeper levels, average values from the two sites begin to diverge. This is a result of the differing thermal regimes at the sites (see Langseth et Cann, J. R., Langseth, M. G., Honnorez, J., Von Herzen, R. P., White, S. M., et al., Init. Repts. DSDP, 69: Washington (U.S. Govt. Printing Office). 2 Present address: Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts. al., this volume), and the contrasting diagenetic effects mentioned earlier. Finally, good correlation of indepen- dent measurements such as thermal resistivity and water content supports the existence in each sediment column of a fine-scale structure that varies on the order of meters. MEASUREMENT PROCEDURES Cores were kept unopened in the laboratory for several hours to ensure that they were nearly equilibrated to laboratory temperature. After equilibration, thermal-conductivity measurements were made by the standard needle-probe technique (Von Herzen and Maxwell, 1959). The needle was inserted in a small hole drilled in the unopened liner. After this determination, the core was split, and the working half was given over to the rest of the physical-properties procedures. Penetrometer and vane shear measurements were made according to the procedures in Boyce (1977). The penetrometer experiment is per- formed by dropping a needle from a height of 1 cm above the sedi- ment and recording the depth of penetration. Vane shear measure- ments were made by applying increasing torque at a constant rate to a four-bladed vane embedded in the sediment. Shear strength is then calculated from the amount of torque applied to the vane at the time of failure of the sediment. Seismic-velocity measurements were made with the Hamilton frame velocimeter, following the procedures of Boyce (1976b). Prior to sedi- ment analysis, all operators of the velocimeter performed repeated runs on standards of brass, aluminum, and lucite. Obtained velocities were consistently within 1% of standard values, so no correction was applied for instrumental or operator bias. Because most of the sedi- ment was very loosely consolidated, all measurements were made with the sediment in the half liner, which means that all reported velocities are in the originally horizontal plane. Corrections for core-liner thickness and time delay were determined prior to the analysis and ap- plied to the raw data. A sample of approximately 10 cm 3 volume was taken for gravi- metric analysis, following the procedures of Boyce (1976). Samples were weighed wet in air, submerged in water, and, finally, after drying for 24 hours in an oven at 100°C. Determinations of wet-bulk density and water content were made, from which grain density and porosity were derived. Salt-water corrections were applied in the calculation of final values. The excellence of the hydraulic piston corer in returning a high percentage of the sediments cored in a virtually undisturbed state allowed measurement and sampling at Hole 504 on almost every sec- tion of core, resulting in a sampling interval of approximately 1.5 meters. Drilling disturbance at Site 505 precluded such detailed ex- 659

Upload: nguyennhi

Post on 14-Feb-2017

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Deep Sea Drilling Project Initial Reports Volume 69

40. PHYSICAL PROPERTIES OF SEDIMENTS OF THE COSTA RICA RIFT,DEEP SEA DRILLING PROJECT SITES 504 AND 5051

R. H. Wilkens,2 Department of Geological Sciences, University of Washington, Seattle, Washingtonand

M. G. Langseth, Lamont-Doherty Geological Observatory, Palisades, New York

ABSTRACT

Values of physical properties measured in the upper sections of sediment cores recovered at Sites 504 and 505 exhibita remarkable similarity. Below a depth of 145 m Site 504 sediments appear to have undergone changes which are re-flected in physical property values. This alteration may have been due to high temperatures in the sediment. In most ofSite 505, and in Site 504 above 145 m, seismic velocity averages 1.51 km/s, wet bulk density 1.32 g/cm3, porosity 80%,and thermal conductivity 0.80% W/m °K. Below 145 m at Site 504 and 210 m at Site 505, mean density increases to1.40 g/cm3, porosity decreases to 67%, seismic velocity increases to 1.53 km/s, and thermal conductivity increases tovalues in excess of 1.0 W/m °K. A good correlation between independent measurements of water content and thermalresistivity supports the existence of small but regular variation in the measured parameters on the scale of 10 m and less.

INTRODUCTION

A comprehensive program of physical-properties mea-surements was carried out on sediments recovered fromHoles 504 (1°13.6'N, 83°43.9'W) and 505 (1°54.82'N,83°47.39'W) of Leg 69. Investigated were compres-sional-wave seismic velocity, bulk density, grain den-sity, porosity and water content, thermal conductivity,and, for Hole 504 only, shear strength. Data from allmeasurements for Holes 504 and 505 are presented inTable 1.

Comparison of data from the two sites is interestingfor several reasons. Because the sites are relatively close(504 is 80 km south of 505), the sediments are verysimilar. Sediments recovered from both holes are main-ly carbonatic siliceous oozes with variable proportionsof clay. Diagenesis is more advanced at Site 504, owingto a higher temperature gradient, which has resulted inthe formation of chert near the bottom of the sedimentcolumn; this has not occurred at Site 505. Sediment re-covery down to the cherts in Hole 504 was accomplishedwith a new DSDP tool, the hydraulic piston corer,whereas the sediments at Hole 505 were cored in thestandard fashion, by rotary drilling. At Site 504, con-ventional coring was used to recover materials below thetopmost cherts, down to basaltic basement (Holes 501,504A, and 504B).

The close agreement of values measured at each sitein time-stratigraphically equivalent cores demonstratesthat, with careful sample selection, the effects of drill-ing disturbance on physical-properties measurements isminimal. In cores from deeper levels, average valuesfrom the two sites begin to diverge. This is a result of thediffering thermal regimes at the sites (see Langseth et

Cann, J. R., Langseth, M. G., Honnorez, J., Von Herzen, R. P. , White, S. M., et al.,Init. Repts. DSDP, 69: Washington (U.S. Govt. Printing Office).

2 Present address: Department of Earth and Planetary Sciences, Massachusetts Instituteof Technology, Cambridge, Massachusetts.

al., this volume), and the contrasting diagenetic effectsmentioned earlier. Finally, good correlation of indepen-dent measurements such as thermal resistivity and watercontent supports the existence in each sediment columnof a fine-scale structure that varies on the order ofmeters.

MEASUREMENT PROCEDURESCores were kept unopened in the laboratory for several hours to

ensure that they were nearly equilibrated to laboratory temperature.After equilibration, thermal-conductivity measurements were madeby the standard needle-probe technique (Von Herzen and Maxwell,1959). The needle was inserted in a small hole drilled in the unopenedliner. After this determination, the core was split, and the workinghalf was given over to the rest of the physical-properties procedures.Penetrometer and vane shear measurements were made according tothe procedures in Boyce (1977). The penetrometer experiment is per-formed by dropping a needle from a height of 1 cm above the sedi-ment and recording the depth of penetration. Vane shear measure-ments were made by applying increasing torque at a constant rate to afour-bladed vane embedded in the sediment. Shear strength is thencalculated from the amount of torque applied to the vane at the timeof failure of the sediment.

Seismic-velocity measurements were made with the Hamilton framevelocimeter, following the procedures of Boyce (1976b). Prior to sedi-ment analysis, all operators of the velocimeter performed repeatedruns on standards of brass, aluminum, and lucite. Obtained velocitieswere consistently within 1% of standard values, so no correction wasapplied for instrumental or operator bias. Because most of the sedi-ment was very loosely consolidated, all measurements were made withthe sediment in the half liner, which means that all reported velocitiesare in the originally horizontal plane. Corrections for core-linerthickness and time delay were determined prior to the analysis and ap-plied to the raw data.

A sample of approximately 10 cm3 volume was taken for gravi-metric analysis, following the procedures of Boyce (1976). Sampleswere weighed wet in air, submerged in water, and, finally, after dryingfor 24 hours in an oven at 100°C. Determinations of wet-bulk densityand water content were made, from which grain density and porositywere derived. Salt-water corrections were applied in the calculation offinal values.

The excellence of the hydraulic piston corer in returning a highpercentage of the sediments cored in a virtually undisturbed stateallowed measurement and sampling at Hole 504 on almost every sec-tion of core, resulting in a sampling interval of approximately 1.5meters. Drilling disturbance at Site 505 precluded such detailed ex-

659

Page 2: Deep Sea Drilling Project Initial Reports Volume 69

R. H. WILKENS, M. G. LANGSETH

amination. By sampling only in areas that appeared relatively un-disturbed, the sampling interval was made somewhat variable, averag-ing about 3 meters.

SEISMIC VELOCITYSeismic velocity exhibits the least variation with depth

of any of the parameters measured (Fig. 1). The datafrom Hole 505 vary around a mean of 1.51 km/s fromthe top to the bottom of the hole. The velocity in the up-per section of Hole 504, from 10 to 145 meters, variesaround a similar mean, although the dense samplingand undisturbed nature of the returned sediments sup-ports the existence of regular, small-scale excursionsfrom the 1.51-km/s mean compressional velocity. Be-low 145 meters, there is an abrupt increase in the meanseismic velocity to around 1.53 km/s. The shift is small,but supported by the data, and it corresponds to abruptand more-apparent changes in other measured physicalproperties. This level also corresponds to a major breakin the sedimentary lithology at this site (Beiersdorf andNatland, this volume). Velocities from both of the sitesare in agreement with other determinations from uncon-solidated siliceous nannofossil oozes recovered fromDSDP sites (Hamilton, 1978). Two additional velocitieswere measured in atypical materials at Site 504. A 2-cm-thick ash layer at 178 meters sub-bottom yielded a seis-mic velocity of 1.65 km/s, and a chert fragment from232 meters in Hole 504A exhibited a velocity of 4.25km/s.

GRAVIMETRIC DATA

The gravimetric data exhibit much greater changethrough the sediment column, and thus are more usefulthan velocity in making comparisons between holes orin looking at fine structure at each site. Wet-bulk den-sity and porosity are plotted versus depth in Figure 1and versus each other in Figure 2. Examining Hole 504first, we can see that, in general, the values of wet-bulkdensity recorded for the upper interval of 10 to 45 me-ters sub-bottom are between 1.3 and 1.4 g/cm3. There isone significant deviation from this range between 60and 100 meters, where values drop to a minimum of 1.21g/cm3. Between 140 and 160 meters, values becomesomewhat more variable, and by 170 meters generally arescattered between 1.45 and 1.55 g/cm3. A comparisonof these values with those of Hole 505 shows good cor-relation. Bulk-density values in samples from the top ofHole 505 are somewhat less than those in Site 504, rang-ing from 1.25 to 1.35 g/cm3. This may be a result of drill-ing disturbance of the most loosely consolidated part ofthe Hole 505 sediment column. The minimum, centeredabout 75 meters at Hole 504, occurs between 70 and 130meters at Site 505, both minima agreeing in absolutevalue (1.21 g/cm3) and in age of sediment. Lithologicdata (Beiersdorf and Natland, this volume) suggest thatthese zones correspond to areas of minimum carbonatein the sediments.

What is not seen at the bottom of the sediment col-umn at Hole 505 is the increase in variability of bulkdensities seen at Hole 504. Sediments below approxi-mately 170 meters at Hole 504 were deposited before

formation of the oceanic basement of Hole 505 at aridge crest 3.9 m.y. ago, but the variability begins athigher levels. Figure 2, wet-bulk density versus porosity,contains superimposed lines of calculated grain densi-ties. Sediments from the upper unit of Hole 504 and allof Hole 505 generally fall about a grain density of 2.70g/cm3. Those from lower in the Hole 504 column aresignificantly less dense, suggesting perhaps a greateramount of hydration of the sediment particles due to theincrease in temperature with depth, or the formation oflighter carbonate phases.

Porosity essentially mirrors bulk density, which is theexpected relationship for most of the two sediment col-umns, where grain density is relatively constant. Poros-ity generally decreases with depth, because of burialcompaction. Sediments at the base of Hole 504 attainlower porosities than those at Hole 505, but the concur-rent decrease in grain density has kept the bulk densityroughly the same as that at Hole 505.

THERMAL CONDUCTIVITYThermal conductivity (k) values (Fig. 3) have been

corrected for in situ conditions, using the relationshipsof Ratcliffe (1960; see also Hyndman et al., 1974). AtHole 504, the profile of k versus depth can be dividedinto two distinct zones, as for other physical properties.In the sub-bottom depth interval from 10 to 145 meters,conductivity gradually increases with depth from near0.75 W/m °K near the sea floor to 0.85 W/m °K at adepth of 145 meters. Values near the top of the intervalare in agreement with those measured in piston corestaken during the site survey (Langseth et al., this vol-ume). In the interval from 145 to 235 meters, the k val-ues are significantly higher and exhibit a greater varia-bility about a generally increasing trend.

Variations of thermal conductivity on a scale of 10meters are observed in the upper unit. A local maximumat a depth of 60 meters is followed by a minimum cen-tered at 75 meters, reflecting changes already describedin the bulk-density and porosity profiles (Fig. 1). It iswell established that the thermal conductivity of uncon-solidated sea-floor sediment depends principally on wa-ter content. Thus, the measurements of k provide an in-dependent indication of the variation of water contentwith depth. The general agreement between the k profileand the profiles of gravimetric data provides strong sup-port that the small variations are real.

The sediments at Hole 505 show the same generalpattern as at Hole 504, values in the upper 100 metersaveraging 0.77 W/m °K, and those in the second 100meters gradually increasing to near 0.87 W/m °K. Be-low 210 meters, values are significantly higher, aver-aging about 1.05 W/m °K in sediments that are some-what more consolidated.

The correlation between water content and thermalresistivity (I/A:) is tested in Figure 4. As in the density-porosity plot, most of the data from Hole 505 fall alongthe same trend as that from the upper unit of Hole 504.Data points with arrows indicate possible errors due toequipment problems and have not been included in thefollowing regression calculations. A linear relationship

660

Page 3: Deep Sea Drilling Project Initial Reports Volume 69

ε _ Hole 504

S 1_g .c Wet-Bulk Density

i| 3

Porosity

(%)70 75 80 85

Sonic Velocity(km/s)

1.5 1.6

j ~ Hole 505

j £ Wet-Bulk Density

| I (g/cm3)1.2 1.3 1.4 1.5

L 2 4 0

70

Porosity

(%)

75 80 85 90

Sonic Velocity(km/s)

1.4 TJ5 1.6

Figure 1. Wet-bulk density, porosity, and sonic velocity versus depth for sediments from Holes 504 and 505. Lines connect depths of the same biostratigraphic age (Sancetta, this volume).

>r§T3

Page 4: Deep Sea Drilling Project Initial Reports Volume 69

R. H. WILKENS, M. G. LANGSETH

1.60

» Hole 504 < 145 mΔ Hole 504 >145 mX Hole 505

75 80Porosity (%)

95

Figure 2. Porosity versus wet-bulk density for sediments from Holes 504 and 505. Lines represent calcu-lated grain-density relations.

seen in previous studies is indicated (Ratcliffe, 1960;Bullard, 1963; Lachenbruch and Marshall, 1968), and aline for all of the Hole 504 data was calculated, whichgives the relation

R = -0.1259 + 2.10w, r2 = 0.91,

where w is the proportion of water by wet weight. Thehigh value of the correlation coefficient indicates a goodfit; however, the relation is unsatisfactory, because itpredicts a negative thermal resistivity at 0% porosity.Furthermore, it has a steep slope compared to those de-termined from other studies (for example, Bullard andDay, 1961; see Fig. 4). A more reasonable result is ob-tained if it is assumed that the data from 0 to 145 metersand 145 to 235 meters form two separate groups. The re-lations derived by linear regression are:

R = 0.459 + 1.25w, r2 = 0.44

for unit I, and

R = 0.394 + 0.97w, r2= 0.38

for unit II. These relations are thought to be physicallymore realistic. One interpretation of this separation isthat the sediments of unit II have formed better con-ductive links between grains and thus are less sensitiveto changes in porosity. The deepest measurements madeat Hole 505 fall in the general grouping of the lowerHole 504 values and probably reflect increasing impor-tance of the thermal-conduction properties of the solidskeleton of the sediment as porosity decreases. Unfor-tunately, the low correlation coefficients for the twogroups of data rule out any positive demonstration ofthis hypothesis.

SHEAR STRENGTH

Penetrability steadily decreases down Hole 504 (Fig.5). There is perhaps a change in slope at approximately55 meters that might indicate a change in the rate ofcompaction.

Values of shear strength (Fig. 5) at the top of thehole, 100 to 200 g/cm2, are in agreement with measure-ments from deep-ocean piston cores of pelagic sedi-ments. Below 100 meters, the scatter in the measure-ments increases greatly, but the trend continues to bethat of increasing shear strength with depth. Maximumvalues of shear strength, 1600 g/cm2, were recorded atapproximately 170 meters. Below that depth, a rock sawwas employed to split the cores. Greatly reduced valuesof shear strength in the bottom 60 meters of the hole aredue to mechanical disruption during this core splitting,and should be disregarded.

SUMMARY

Physical-properties measurements at Holes 504 and505 exhibit similarities in the upper regions of the sedi-mentary columns and differ toward their bases. Thesediment at the base of Hole 504 underwent changes dueto high temperatures (Hein and Yeh, this volume). Thebulk of Hole 505 sediments and Hole 504 sediments to adepth of 145 meters have fairly uniform physical prop-erties. In this interval, seismic velocity averages 1.51km/s, wet-bulk density averages 1.32 g/cm3, porosityaverages 80%, and thermal conductivity is close to 0.80W/m °K. Below 145 meters at Hole 504, and 210 metersat Hole 505, mean density increases to 1.48 g/cm3, po-rosity decreases to 67%, seismic velocity increases to1.53 km/s, and thermal conductivity increases to valuesin excess of 1.0 W/m °K. The good correlation betweenindependent measurements of water content and ther-

662

Page 5: Deep Sea Drilling Project Initial Reports Volume 69

PHYSICAL PROPERTIES OF SEDIMENTS

HOLE 504Thermal Conductivity (W/m °K).

0.8 1.0 1.2 1.4

3E100ëIb

200

HOLE 505Thermal Conductivity (W/m °K)

0.6 0J$ LO 1.2

HF probe1 #3

J HF probe

1 #4 -

I HF probe#5

. HF probe#6

Figure 3. Thermal conductivity versus depth for sediments from Holes 504 and 505. Lines connectdepths of the same biostratigraphic age (Sancetta, this volume).

mal resistivity supports the existence of small but regu-lar variation in the measured parameters on a scale of 10meters and less.

ACKNOWLEDGMENTS

Partial support for the cruise participation of R. H. Wilkens wasprovided by Office of Naval Research grant number N0014-80-C-0252to Dr. N. I. Christensen. The participation of Marcus Langseth inthis cruise was supported by a National Science Foundation grantOCE79-19387. K. Horai and D. Sawyer reviewed the manuscript, andtheir interest is appreciated.

REFERENCES

Boyce, R. E., 1976. Definitions and laboratory techniques of com-pressional sound velocity parameters and wet-water content, wet-bulk density, and porosity parameters by gravimetric and gamma-ray attenuation techniques. In Schlanger, S. O., Jackson, E. D., etal., Init. Repts. DSDP, 33: Washington (U.S. Govt. Printing Of-fice), 695-728.

, 1977. Deep Sea Drilling Project procedures for shearstrength measurement of clay sediment using modified Wykeham

Farrance laboratory vane apparatus. In Barker, P. F., Dalziel, I.W. D., et al., Init. Repts. DSDP, 36: Washington (U.S. Govt.Printing Office), 1059-1068.

Bullard, E. C , 1963. The flow of heat through the floor of the ocean.In Hill, M. N. (Ed.), The Sea (Vol. 3): New York (Wiley-Inter-science), 218.

Bullard, E. C , and Day, A., 1961. The flow of heat through the floorof the Atlantic Ocean. Geophys. J. Royal Astron. Soc, 4:282-292.

Hamilton, E. L., 1978. Sound velocity-density relations in sea-floorsediments and rocks. J. Acoust. Soc. Am., 63:366-377.

Hyndman, R. D., Erickson, A. J., and Von Herzen, R. P., 1974. Geo-thermal measurements on DSDP Leg 26. In Davies, T. A., Luyen-dyk, B. P., et al., Init. Repts. DSDP, 26: Washington (U.S. Govt.Printing Office), 451-463.

Lachenbruch, A. H., and Marshall, B. V., 1968. Heat flow and watertemperature fluctuations in the Denmark Strait. /. Geophys. Res.,73:5829-5842.

Ratcliffe, E. H., 1960. The thermal conductivities of ocean sediments.J. Geophys. Res., 65:1535.

Von Herzen, R. P., and Maxwell, A. E., 1959. The measurement ofthermal conductivity of deep-sea sediments by a needle probemethod. J. Geophys. Res., 64:1557.

663

Page 6: Deep Sea Drilling Project Initial Reports Volume 69

R. H. WILKENS, M. G. LANGSETH

1.5

o Hole 504 <145 mA Hole 504 >145mX Hole 505

40 50 60Water Content (%)

70 80

Figure 4. Thermal resistivity versus water content for sediments from Holes 504 and 505. Dashed line isthe fit of Bullard and Day (1961) to their data. Solid lines are regression lines for Hole 504 data aboveand below 145 meters.

664

Page 7: Deep Sea Drilling Project Initial Reports Volume 69

PHYSICAL PROPERTIES OF SEDIMENTS

Or

f

rC/>

200

Penetration (mm)5 10

Shear Strength (g/crrT x 100)15 1 2 3 4 5 6 7 8 9 10 11

x x ×X*X

* x× X

× x x

X ×X ×

× X ×

x x ×

X ×

X X

× X

x × x

XX 1B70

X+1860

X X

X XX X

Figure 5. Shear-strength and penetrometer measurements versus depth for sediments from Hole 504. A rotary power saw wasused to cut sediment cores below 170 meters.

665

Page 8: Deep Sea Drilling Project Initial Reports Volume 69

R. H. WILKENS, M. G. LANGSETH

Table 1. Physical properties of sediments, Holes 504 and 505.

Water ShearSample β^ C g Φ Content Vp Strength

(level or interval in cm) (g/cm^) (g/cm3) (%) (wt.%) (km/s) (g/cm2)Penetrability k

(mm) (W/m °K)

504-1-1,

1-1,1-1,1-1,1-2,1-2,1-2,1-3,1-3,1-3,2-1,2-1,2-1,2-1,2-2,2-2,2-2,2-2,2-3,2-3,2-3,2-3,3-1,3-1,3-1,3-1,3-2,3-2,3-2,3-2,3-3,3-3,3-3,3-3,4-1,4-1,4-1,4-1,4-2,4-2,4-2,4-2,4-3,4-3,4-3,4-3,5-1,5-1,5-1,5-1,5-2,5-2,5-3,5-3,5-3,6-1,6-1,6-1,6-1,6-2,6-2,6-2,6-2,6-3,6-3,6-3,6-3,7-1,7-1,7-1,7-1,7-2,7-2,7-2,7-2,7-3,7-3,7-3,7-3,8-1,8-1,8-1,8-1,8-2,8-2,8-2,8-2,8-3,8-3,8-3,8-3,

4447521049498103-1054653614173-75791055373-75849233435663-654573-7581954073-7580109406973-75944073-7589108395773-75109415573-7581506973-751057683-851032737406373-751004373-7594106445373-751004773-7539104425873-75100396073-751167373-75931145073-7575100397273-75100

1.26 2.64 85.7 70.0

1.33 2.55 80.0 61.7

1.34 2.58 79.8 61.0

1.32 2.60 81.2 63.0

1.32 2.60 81.0 62.7

1.32 2.64 81.8 63.7

1.31 2.53 80.8 63.1

1.27 2.59 84.3 68.0

1.33 2.58 80.4 62.0

1.31 2.55 81.4 63.8

1.29 2.50 81.7 64.7

1.32 2.57 80.0 62.7

1.31 2.57 81.3 63.5

1.37 2.59 77.8 58.1

1.33 2.53 79.6 61.3

1.34 2.60 79.7 60.8

1.31 2.57 81.7 63.9

1.33 2.55 7.96 61.1

1.32 2.54 80.6 62.6

1.34 2.56 79.6 60.9

1.521.52__

1.51

1.54

-

1.53

_1.51

85_208—

125_

146—

148_

179

14.7_19.2—

10.9_

10.4—

9.7——10.1

_0.756

0.769

—0.7370.750

0.808

—0.768—

1.51

1.36 2.62 78.8 59.2 —

— — — — 1.52

— — — 1.52

1.52

1.51

1.51

1.52

1.51

1.51

1.51

1.51

1.52

1.52

1.52

1.51

135

184

159

188

233

191

1.50

1.50

1.53

175

251

-

229

214

331

285

230

182

332

375

348

11.7

9.8

9.7

9.7

10.5

9.8

9.0

8.5

10.0

7.6

8.3

9.5

8.7

8.1

6.9

7.7

0.809

0.750

0.755

0.751

0.751

0.799

0.780

0.797

0.794

0.832

0.787

0.825

0.835

0.773

0.791

0.795

666

Page 9: Deep Sea Drilling Project Initial Reports Volume 69

PHYSICAL PROPERTIES OF SEDIMENTS

Table 1. (Continued).

Sample(level or interval in cm)

504-9-1,489-1, 1219-1, 1379-2, 489-2, 729-2, 73-759-2, 929-3, 499-3, 679-3, 73-759-3, 8510-1, 7610-1, 14410-1, 14710-2, 4910-2, 73-7510-2, 9310-2, 10810-3, 3910-3, 5410-3, 5910-3, 73-7511-1,5011-1, 5111-1,7011-1, 75-7711-2,4611-2,73-7511-2,8711-2, 8911-3,4011-3,5811-3, 10012-1, 3712-1, 11812-1, 12012-1, 133-13512-2, 2312-2, 3912-2, 73-7512-2, 8712-3, 4012-3, 5312-3, 7613-1, 4713-1, 6213-1, 3513-1, 123-12513-2, 4513-2, 6113-2, 73-7513-2, 8213-3, 2813-3, 3113-3, 4213-3, 73-7514-1, 6014-1, 6814-1, 73-7514-1, 10014-2, 3614-2, 6114-2, 73-7514-2, 8814-3, 4414-3, 4914-3, 73-7514-3, 8815-1, 8415-1, 11115-1, 123-12515-1, 13315-2, 73-7515-2, 7615-2, 10115-2, 12215-3, 4515-3, 73-7515-3, 9515-3, 10016-1, 4016-1, 6816-1, 73-7516-1, 9016-2, 4016-2, 73-7516-2, 8716-2, 10216-3, 2016-3, 4016-3, 43

e b .(g/cm3)

————

1.38

_

1.36—_———

1.29—

__—

1.29___

1.56—

1.41—

_——

—1.38—_

1.35______

1.57

_1.31_

__

1.31__

1.28

__

1.25_

—1.31—__

1.22_

1.22_

__

1.21_

_1.26

—1.22____

e g ,(g/cm3)

_—

—2.57

__

2.56

___

2.51—

___

2.49___

2.61—

2.58_

__

2.56

_2.52___

__—

2.52

_2.54

_

__

2.45__

2.40

——

2.39_

_2.53—__

2.36_

2.37_

__

86.0_

_—

2.38_—

2.24____

Φ

__

—76.8

_

78.0———__

81.8_

__—

81.6___

66.0_

75.5—

_——

_—

76.8

78.3_

_____

63.8

_81.2

__

80.8_—

81.2

__

83.8_

_81.4—__

85.5_

85.7_

__

86.0_

__

82.5__

83.5____

WaterContent(wt.%)

__

56.8

_58.8—

——

64.8—

__—

64.5___

43.3—

55.0_

_—

__

57.0

_59.5___

___

41.8

_63.6

_

__

62.5__

64.8

__

69.0_

_63.9_

_71.9

_72.2

_

_72.8

_

__

67.0

_69.8_

_

(km/s)

1.52—

——

1.53_

—1.53_

1.51—___

1.52

_1.52

__

1.52__

—1.53_—

1.51

_1.52_

1.52_____

1.52——

1.53_

__

1.53

_1.54____

1.52___

1.51

——

1.50_

1.51____

1.50____

1.51_—

1.53—

_1.53__

1.53

ShearStrength(g/cm2)

_325—346—

_328——_———_

403

309

_

———

386

_302—

188——

__

386_

411_—

375——

333——303____

479—

_559__

438——

396____

517

_504__

_490

_—

667_

508_

Penetrability(mm)

_8.0—7.3——

7.0——

_7.5_—6.9—7.2

———

13.9————6.5—

6.7——9.4—————6.4_7.3——7.9———5.1——8.1___—7.0_——6.3—_

6.8——7.9——__6.4

_6.8_—

—5.0—_—

6.3_6.2—

k(W/m °K)

0.809——

0.768———

0.798———

0.945——

0.803————

0.842——

0.885———

0.931———

0.877——

0.895————

0.884——

0.834——

0.874———

0.782————

0.800——

0.729———

0.751———

0.790———__—

0.753_—

0.749__

0.728

0.717——_

0.791—_

_0.692

667

Page 10: Deep Sea Drilling Project Initial Reports Volume 69

R. H. WILKENS, M. G. LANGSETH

Table 1. (Continued).

Sample(level or interval in cm)

Waterρb go Φ Content

(g/cm3) (g/cm3) (%) (wt.%)

ShearVp Strength Penetrability k

(km/s) (g/cm2) (mm) (W/m °K)

504-16-3,17-1,17-1,17-1,17-1,17-2,17-2,17-2,17-3,17-3,17-3,17-3,18-1,18-1,18-1,18-1,18-2,18-2,18-2,18-2,18-3,18-3,18-3,18-3,19-1,19-1,19-1,19-1,19-2,19-2,19-2,19-2,20-1,20-1,20-1,20-2,20-2,20-2,20-3,20-2,20-3,21-1,21-1,21-1,21-2,21-2,21-2,21-3,21-3,21-3,21-3,22-1,22-1,22-1,22-1,22-2,22-2,22-2,22-2,23-1,23-1,23-1,23-1,24-1,24-1,24-1,24-1,24-2,24-2,24-2,24-2,25-1,25-1,25-1,25-1,25-2,25-2,25-2,25-2,25-3,25-3,25-3,26-1,26-1,26-1,26-1,26-2,26-2,26-2,26-2,26-3,

73-75606173-7589407113040436973-755873-75891085873-751888456773-75774073-7577113406173-75997073-759573-75841156?73-759563721363510105456173-759973-751121211363973-7576937373-7511712473-7592100117

2941

6073-7573-7591113116576173-75120355565596673-75107415073-7511233

1.23 1.23 85.1 71.1

1.27 2.41 82.2 66.2

1.27 2.34 81.7 66.2

1.24 2.43 84.4 69.6

1.32 2.27 76.5 59.5

1.39 2.45 74.7 55.2

1.27 2.38 82.2 66.6

1.35 2.61 79.6 60.5

1.33 2.62 80.9 62.4

1.35 2.55 78.9 60.0

1.35 2.55 78.6 59.6

1.49 2.59 70.6 48.6

1.23 2.37 84.6 70.5

1.29 2.50 818 64.8

1.29 2.68 83.9 66.6

1.36 2.58 78.2 58.7

1.35 2.63 79.6 60.31.37 2.64 78.5 58.6

1.32 2.55 80.5 62.4

1.34 2.56 79.4 60.7

1.31 2.49 80.2 62.5

1.53

1.52

1.50

1.52

1.52

1.52

1.50

1.52

1.52

1.52

1.51

1.52

594

761

927

1.53

-

1.511.51

-

1.51

1.52

1.51

1.52

543

543

-

549

520

572

-

344

251

695

397

526

333

1.52 —

491

444

5.6

5.2

534

610

543

6.2

6.3

5.7

5.6

5.8

5.9

5.9

5.2

6.7

5.0

6.4

5.4

5.7

6.0

0.766

0.766

0.741

0.733

0.768

0.807

0.783

0.809

0.856

0.758

0.814

0.803

0.898

0.781

—_

1.52

_1.50

—_870

537_

543

—_4.6

4.7

—5.5

0.9180.818—

0.819_—

0.842

759 4.90.886

0.825

668

Page 11: Deep Sea Drilling Project Initial Reports Volume 69

PHYSICAL PROPERTIES OF SEDIMENTS

Table 1. (Continued).

Sample(level or interval in cm)

ρb eg Φ Content(g/cm3) (g/cm3) (%) (wt.%)

ShearVp Strength Penetrability k

(km/s) (g/cm2) (mm) (W/m °K)

504-26-3, 5726-3, 6826-3, 73-7527-1,4427-1, 5827-1, 73-7527-1, 10427-2, 5527-2, 6427-2, 73-7527-2, %27-3, 3027-3, 3327-3, 4727-3, 73-7528-1, 7128-1, 12728-1, 13428-1, 137-13928-2, 3328-2, 3528-2, 4728-2, 73-7529-1, 73-7529-1, 7829-1, 10429-2, 7429-2, 10029-2, 123-12529-3, 4429-3, 6829-3, 73-7530-1, 3930-1, 4730-1, 73-7530-1, 8230-2, 3630-2, 73-7530-2, 9130-2, 10130-3, 1730-3, 2230-3, 4230-3, 43-4531-1, 73-7531-1,8231-1,9431-1, 11431-2, 3531-2, 73-7531-2, 8032-1,4332-1, 73-7532-1, 10432-1,4932-2, 4932-2, 6032-2, 73-7532-3, 23-2532-3, 2732-3, 3333-1,4533-1, 73-7533-1, 9133-1, 9833-2, 1633-2, 2034-1, 6834-1, 73-7534-1, 10134-1, 10434-1, 11034-3, 5034-2, 73-7534-2, 9934-3, 1835-1, 3135-1, 73-7535-1, 10735-1, 11635-2, 3835-2, 73-7535-2, 10335-3, 3535-3, 5636-1,4136-1, 73-7536-1, 7536-1, 9836-2, 4036-2, 73-75

1.35 2.57 79.1 60.1

1.34 2.55 79.1 60.2

1.32 2.54 80.6 62.6

1.35 2.57 79.2 60.3

1.33 2.57 80.5 62.2

1.34 2.60 80.0 61.31.33 2.52 79.7 61.5

1.36 2.58 78.3 58.9

1.35 2.56 78.6 59.5

1.29 2.20 77.3 61.3

1.33 2.26 75.0 57.6

1.34 2.25 74.4 56.71.37 2.33 73.3 54.7

1.40 2.37 72.0 52.7

1.38 2.34 73.1 54.4

1.37 2.46 75.9 56.81.46 2.39 67.9 47.6

1.43 2.37 69.8 49.9

1.29 2.20 77.4 61.4

1.39 2.35 72.8 53.8

1.32 2.23 75.5 58.6

1.37 2.29 72.9 54.5

1.47 2.42 57.7 47.1

1.49 2.41 66.1 45.4

1.51

1.52

1.51

1.52

1.52

1.51

1.50

818

695

742

1133

1051

1168

1.48

1.50

1.50

1.51

1.53

1.55

1.54

1.54

1.531.52

— 1203

1.54 —

1.52 —

— 16701.53 —

700

724

4.9

4.3

1.52

1.51

526

654

5.7

4.9

4.8

8.1

4.9

4.6

4.6

4.2

3.9

0.857

0.840

0.859

0.719

0.860

4.2

0.867

0.854

0.904

0.865

0.839

1.066

1.072

1.074

1.123

1.085

1.025

1.0651.164

0.987

0.943

1.065

1.270

1.253

669

Page 12: Deep Sea Drilling Project Initial Reports Volume 69

R. H. WILKENS, M. G. LANGSETH

Table 1. (Continued).

Sample(level or interval in cm)

504-36-2, 8837-1, 3337-1, 9637-1, 12537-2, 3437-2, 6337-2, 9438-1, 7338-1, 10238-1, 12938-2, 7938-2, 9738-2, 12738-3, 4838-3, 5838-3, 6140-1, 5940-1, 6540-1,8340-2, 2740-2, 3440-2, 5040-1, 8340-1, 9540-1, 10740-1, 13641-2, 3541-2, 4141-2, 7041-2, 73-7541-3, 5341-3, 7241-3, 73-7541-3, 10942-1, 6142-1, 6342-1, 73-7542-1, 11542-2, 3042-2, 3242-2, 6843-1, 5443-1, 6243-1, 73-7543-1, 10543-2, 4543-2, 7043-2, 73-7543-2, 11243-3, 4543-3, 7343-3, 73-7543-3, 9344-1, 6344-1, 73-7544-1, 7944-1, 9144-2, 1144-2, 2644-2, 5445-1, 4945-1,73-7545-1, 9845-1, 11045-2, 2445-2, 3745-2, 4446-1,6646-1, 73-7546-1, 11246-1, 13347-47-47-47-48-48-

, 73-75, 74, 104, 109,65, 65

48-1, 73-7548-1, 8949-1, 6349-1, 73-7549-1, 8449-1, 12150-1,5250-1, 73-7550-1, 8750-1, 11551-1, 4651-1,6951-1, 73-7551-1, 80

θb(g/cm3)

____

_

_—

_——_—

_——___—

1.53_—

1.51_

—1.56——_—

—1.54

__

1.55—

1.46__

1.47

__——_

1.51

————_

1.39——

1.42

___—

1.52

—1.45—

—1.41_

__

1.50—

Cg(g/cm3)

_

__

__

_—

_——_—

_——

___

2.47__—

2.43_

—2.46—_

—2.46

__

2.48—

_2.40_—

2.42_—

——_

2.46

———

_2.33——

2.34

_

_

2.44

—2.38_

—2.30

__

2.39

Φ(%)

————

_—

__

_—

_—

__

_——___

64.8_—

65.8_

_63.0_

_63.9_——

63.6_

_68.2——

67.8

_———_

66.4————

_72.1——

69.8

__

_64.8

—68.3

_70.0_

__

65.0

WaterContent(wt.%)

____

_—

_—

__

_—

___

43.3

—44.7

_

—41.5

—__—

—42.4

___

41.9_

47.7__

47.2

_—__

45.2__——

_53.3__

50.2

43.6

_48.1

_

_51.0—

__

44.3

(km/s)

1.53——

1.54_

1.53—

1.54

_1.54_——

1.52

—1.53_

1.53_

1.54

1.658__

1.53

_——

1.54

——

1.52__

1.53

1.52__—

1.52

__

1.52_

_1.53——

1.54___

1.53——

1.52_—_

1.52_

1.54——_

1.54—__

1.55—

—1.58__

1.55

ShearStrength(g/cm2)

—999——

1361—

1192

1250——829—

—625—_

438

_—

356_

754—

—800

—537———426_—

642

_923_——

631__—

543_

368__

_456——

409—

672———_

642_

561

432_—

——

525

_584—

Penetrability(mm)

—3.5——3.6_3.2—_3.2——3.5—

_3.4——3.9—_—3.6——4.1—

_4.3——4.3———3.6——

3.3

__3.7———3.4—_—

3.3—3.8____3.5——4.0

3.4_—__3.2__2.6—

3.0_—

——2.8—_3.5

k(W/m °K)

1.129——

1.071————

1.178——

1.147—

1.161—

1.257——

1.185——

1.228———

1.111———

1.199————

1.446——_

1.269—

1.142—

_1.142

_——

1.236___

1.256

_—_

1.284_

1.193

__

1.056—

__

1.224__

_1.213

_1.388

—_

1.098—

1.189———

1.207——

670

Page 13: Deep Sea Drilling Project Initial Reports Volume 69

PHYSICAL PROPERTIES OF SEDIMENTS

Table 1. (Continued).

Sample(level or interval in cm)

504-51-1, 12752-1, 4952-1, 5952-1, 8053-1,30-3253-1,46

505-2-2, 542-2, 73-752-2, 1062-3, 73-752-3, 10314, 86-882-4,922-4,972-5, 432-6,683-2, 113-2, 14-163-2, 703-3, 73-753-3, 1213-5, 1253-5, 130-1324-2, 754-2, 101-1034-2, 1224-3, 95-974-3, 1024-4,484-4, 71-734 A 1004-5, 84-864-6,464-6,904-7, 73-755-1, 73-755-2, 435-2, 73-755-2, 1245-3, 73-755^,405-4, 73-755-4, 1175-5, 73-755-6,415-6, 73-755-6, 1056-1, 53-556-2,446-2, 73-756-3, 73-756-4,456-4, 73-756-4, 1056-5, 73-756-6,446-6, 73-756-6,996-7, 73-757-1, 73-757-2, 397-2, 73-757-2,847-3, 73-757-4,447-4, 73-757-4, 1027-5, 73-757-6,287-6,367-6, 73-759-1, 100-1029-2, 479-2, 73-759-2,949-3, 73-759-4, 1410-1, 73-7510-1, 12610-2, 4210-2, 73-7510-2, 11910-3, 73-7510-3, 11010-4,46KM, 73-7510-4, 12510-5, 73-7511-1, 100-10211-1, 13511-2,73-75

eb(g/cm3)

———143_—

1.24—

1.25_

1.25——

——

1.24_

1.23_—

1.23—

1.32

1.31

1.28—

1.29_—

1.341.29_

1.25—

1.31_

1.29_

1.27_

1.25_

1.25_

1.271.25_

1.28_

1.33_

1.31_

1.251.26_

1.27—

1.30_

1.31—

1.34__

1.321.35_

1.37—

1.29_

1.32__

1.26_

1.34__

1.37_

1.311.29_

1.26

e g ,(g/cm3)

__

2.35__

2.64

2.54

2.64——

——

2.73_

2.71__

2.64_

2.72

2.65

_2.74

—2.65

_—

2.712.78_

2.73—

2.73_

2.64—

2.62

2.64_

2.55_

2.632.65_

2.64_

2.65_

2.62_

2.562.55

_2.59

—2.58

_2.64

2.52__

2.592.61_

2.94

2.59_

2.66__

2.52_

2.60__

2.66_

2.552.54

_2.50

Φ(%)

___

69.1__

86.9—

84.9_

86.2—_

_—

87.4_

88.1_—

86.7—

82.4

82.4

_

85.1—

83.9_—

81.384.9_

86.7—

83.1_

83.3—

84.4_

86.0_

85.0_

84.486.2_

83.9_

81.5_

82.3_

85.284.7_

84.0—

82.0_

82.3

79.2__

80.979.7_

82.0—

82.8_

82.1__

84.0_

79.8_

78.8_

81.682.2_

84.3

WaterContent(wt.%)

___

49.4__

72.1_

69.5_

70.8

_

__

72.2

73.6__

72.5_

63.9

64.4

_

68.1—

66.9

62.267.5

_70.9

64.9_

65.9—

68.0_

70.4_

69.4_

67.970.8

—66.9

_63.0

_

64.5_

69.769.0

_

67.5

64.5_

64.4

60.7__

62.760.7_

61.3

65.6_

63.7__

68.2_

60.8

_58.8

_

64.065.1

_68.8

ShearVp Strength Penetrability

(km/s) (g/cm2) (mm)

— 584 2.41.55 — —_ _ __ _ __ _ ___

1.51

1.50——

1.501.52—

1.50

__

1.501.52

_—

1.53_

1.51——

1.50

_1.51—

_—

1.51

_—

1.52———

1.52__

———

1.49

__

1.50_

_—

1.52_——

1.50_

1.52____—

1.51

_

1.51__

1.51

1.52__

1.51_

1.52

k(W/m °K)

1.429__

1.311—

1.2730.75

—_

——

0.71

0.67——

0.75_——

0.84—

——

0.76———

0.73———

0.73———

0.76———

0.75_——

0.72——

0.76———

0.73————

0.81———

0.82————

0.79——

0.86———

0.76——

0.76————

0.80—————

671

Page 14: Deep Sea Drilling Project Initial Reports Volume 69

R. H. WILKENS, M. G. LANGSETH

Table 1. (Continued).

—1.24

1.24—

1.23

1.21__

1.26—

1.24

1.231.24

—2.47

2.55_

2.49

2.46—

2.52

2.38

2.472.40

—84.8

85.9—

86.0

z86.8_

84.2

84.1

85.884.4

—69.9

71.0—

71.6

z73.2—

68.3—

69.4

71.669.9

1.52_

1.52

1.50—

1.52

1.52

1.51—

1.51

1.53

1.52_

Water ShearSample ρj, ρg Φ Content Vp Strength Penetrability k

(level or interval in cm) (g/cm^) (g/cm3) (%) (wt.%) (km/s) (g/cm2) (mm) (W/m °K)

505-11-2,82 — — — 0.7511-2, 13011-3,73-7511-3, 12711-4,64 — 0.7211-4,73-75IM, 124

11-5,73-75

11-5,95

11-6, 18 — — — 0.7511-6, 7311-6, 73-7512-1, 114

12-2, 37-39

12-2, 39

12-2, 53

12-3, 73-75

12-3, 118

12-4, 36 0.7112-4, 7112-4, 73-7513-1, 73-7513-1, 135 1.5313-2, 134 _ _ _ _ _ 0.7413-3, 73-75 1.26 2.57 84.5 68.5 — —13-3, 130 — — — — 1.52 —13-4,48 _ _ _ _ _ 0.7213-4,73-75 1.26 2.59 85.1 69.3 — —13-4,88 — — — — 1.52 —13-5,73-75 1.33 2.53 79.5 61.0 — —13-5, 115 — — — — 1.51 —13-6, 54 _ _ _ _ _ 0.8013-6,73-75 1.31 2.54 80.8 63.1 — —13-6, 129 — — — — 1.53 —14-2, 54 _ _ _ _ _ 0.7814-2,73-75 1.32 2.50 80.2 62.5 — —14-2,75 — — — — 1.52 —14-3,73-75 1.31 2.55 81.0 63.1 — —14-3, 129 — — — — 1.50 —14-4, 52 _ _ _ _ _ 0.7814-4, 73-75 1.32 2.57 80.9 62.8 — —14-4, 110 — — — — 1.52 —14-5, 73-75 1.37 2.58 77.6 58.0 — —14-5,92 — — — — 1.52 —15-2, 50 _ _ _ _ _ 0.8015-2, 123-125 1.35 2.59 79.0 59.7 — —15-2, 132 — — — — 1.51 —15-3,73-75 1.31 2.56 81.5 63.7 — —15-3, 139 — — — — 1.52 —15-4, 42 _ _ _ _ _ 0.8215-4, 73-75 1.38 2.62 77.5 57.4 — —15-4, 132 — — — — 1.52 —15-5, 73-75 1.34 2.51 78.7 60.2 — —15-5, 131 — — — — 1.52 —15-6,26-28 1.30 2.51 81.5 64.2 — —15-6,47 — — — — 1.52 —17-1, 103 — — — — 1.50 —17-2,45 — — — — — 0.8217-2,73-75 1.35 2.61 76.7 60.6 — —17-2, 131 — — — — 1.51 —17-3, 73-75 1.38 2.58 77.4 57.7 — —17-3, 136 — — — — 1.50 —17-4,48 _ _ _ _ _ 0.4817-4, 73-75 1.34 2.51 79.0 60.5 — —17-4, 110 — — — — 1.52 —17-5, 11 — — — — 1.52 —17-5, 73-75 1.34 2.53 78.9 60.2 — —17-6,40 _ _ _ _ _ 0.8317-6, 73-75 1.38 2.57 76.8 56.9 — —17-6,90 — — — — 1.51 —17-7, 73-75 1.38 2.59 77.1 57.1 — —17-7, 102 — — — — 1.52 —18-1, 133-135 1.33 2.59 80.5 62.0 — —18-2, 31 _ _ _ _ _ 0.8318-3,73-75 1.32 — 85.3 66.4 — —18-3, 95 _ _ _ _ _ 0.8018-3, 140 — — — — 1.51 —18-4, 73-75 1.33 2.57 80.0 61.5 — —18-5,52 — — — — — 0.8118-5,73-75 1.33 2.57 80.4 62.1 — —18-5, 114 — — — — 1.52 —18-6,33-35 1.37 2.59 78.2 58.7 — —19-1,73-75 1.38 2.63 77.6 57.5 — —19-2,50 _ _ _ _ _ 0.8619-2,73-75 1.37 2.64 78.7 58.9 — —19-2, 106 — — — — 1.51 —19-3,73-75 1.38 2.62 77.6 57.5 — —19-4,44 — — — — — 0.8719-4, 73-75 1.39 2.67 77.9 57.4 — —19-4, 120 — — — — 1.50 —19-5,73-75 1.44 2.65 74.3 52.8 — —

672

Page 15: Deep Sea Drilling Project Initial Reports Volume 69

PHYSICAL PROPERTIES OF SEDIMENTS

Table 1. (Continued).

SampleOevel or interval in cm)

505-19-6, 4019-6, 73-7519-6, 12019-7, 73-7519-8, 1520-1, 73-7520-2,3020-2, 73-7520-2, 7720-3, 73-7520^,4020-4, 73-752<M, 10620-5, 73-7520-6, 3720-6, 73-7520-6, 8820-7, 73-7521-1, 73-7521-2, 3121-2, 73-7521-2, 9121-3, 73-7521-4, 3121-4, 73-7521-4, 9121-5, 73-7521-6, 3821-6, 6821-6, 73-7521-7, 73-7521-8, 3421-8, 63-6522-1, 73-7522-2, 4722-2, 73-7522-2, 11622-3, 73-7522^, 3822-4, 73-7522-4,9422-5, 73-7522-6, 3822-6, 73-7522-6,9923-1, 73-7523-2, 4423-2, 73-7523-2, 9823-3, 73-7523^,4023-4, 73-7523-4, 10523-5, 73-7523-6, 5023-6, 73-7523-6,9924-1, 73-7524-2, 4924-2, 8924-2, 73-75

βb ,(g/cm3)

_

1.42_

1.40_

1.39

1.37_

1.40_

1.37_

1.37

1.43_

1.431.43_

1.41—

1.42_

1.39—

1.41__

1.421.43_

1.441.53_

1.48—

1.51—

1.47_

1.48_

1.45_

1.45_

1.48_

1.46_

1.47—

1.50—

1.50

1.48_—

1.48

β g(g/cm3)

_

2.60__

2.63_

2.61

2.62_

2.58_

2.63_

2.56

2.58—

2.512.62

_2.62

—2.65

_2.61—

2.62__

2.632.62

_2.622.68

_2.68_

2.68—

2.65_

2.66

2.64_

2.53_

2.65_

2.64_

2.66_

2.67_

2.66

2.71__

2.71

Φ

_

75.1_

76.4_

76.8

78.5_

75.9

78.4_

77.3

74.0_

73.174.6

_75.8

—75.4_

76.8

75.9__

75.274.9_

74.260.6

72.3—

70.7_

72.4_

72.4

73.5_

71.5_

72.1_

73.1_

73.0_

71.3_

70.9

73.2__

72.7

WaterContent(wt.<fo)

_54.4_

55.8

56.5

58.8—

55.6

58.5_

57.7

53.0—

52.553.5_

55.1—

54.2_

56.5—

55.3—_

54.253.8

_52.946.7

_49.9_

48.0—

50.3_

50.2_

51.9_

50.4_

49.9_

51.2_

51.0_

48.9_

48.5

50.7__

50.1

VP(km/s)

_

_1.51

__

_1.52

__

1.51_

_1.51—

_—

1.52

_—

1.50__

1.50—

__

__

1.50

——

1.50

__

1.51___

1.51___

1.52

__

1.53__

1.51—

ShearStrength Penetrability(g/cm2) (mm)

k(W/m °K)

0.87———

0.87—

0.87———

0.86———

0.91————

0.90———

0.87———

0.99———

1.02——

1.091.09

——

1.08———

1.00_——

1.05———

1.04———

1.07———

1.08—

673